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A REMARK ON DENJOY'S INEQUALITY
AND HERMAN'S THEOREM

by LENNART CARLESON

i. In the preceding proof [i] by M. Herman of the Arnold conjecture, the
Hurewicz (or the Ghacon-Ornstein) ergodic theorem plays an important role and the
proof is in this way non-constructive. The purpose of this note is to give a constructive
argument which gives a remainder estimate in the basic Denjoy inequality. This
argument also makes it possible to avoid the reduction to the case when

^ D/W|^=V

is small, which was used by Herman.
Let us first recall the situation and some basic results from Herman's paper: f{x) is

an increasing continuous function on — oo < x < oo such that f{x +1) —f{x) == i, o ̂ /(o) < i
and/^A:) are the iterates. Sometimes f{x) will be considered on the torus T (modulo i)
and this will be clear from the context; a is the rotation number, i.e.:

\f\x)-x-n^\<i',

a is assumed irrational with continued fraction expansion [^1,^2? • • •] ^d A/^ are

the convergents. There is a homomorphism h of (o, i) [mod i], t==h{x)^ so that

h~lofoh{t)==t+^

Herman's theorem asserts that if/(^) is smooth, then, for almost all a, it follows that
h{t) is also smooth.

There is a unique probability measure [L on (o, i) which is invariant under
f(x) (mod i) and:

|S19(/^(^))-^J ly(/W)^WI^Var(9)
t = 0 ^O

for all denominators q == ̂  in the convergents of a. This is Denjoy's inequality.
We shall prove the following theorem—without use of Herman's result but using

his ideas:
For almost all oc there are constants G and (B so that

y^/^-^vww^Q/-3
.S^o))-^;
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236 L E N N A R T C A R L E S O N

for all 9 on T ^A |9"(^)|^i. T^ same result holds if <p'(^) only satisfies some Holder
condition.

Once this is proved it follows that
(1.1) |logD/^|<G/-3

and for almost all a:
c log n

d\logD/^GS^ ^0((log^1-^)

with P^P. This is the crucial estimate needed for Herman's argument. (1.1) also
implies the estimate \fq{x)—x—p\<q8~l, 8>o. See [i], Chapter VIII.

We shall use the letters G, c to denote different constants whose values are immaterial
in the context.

2. Let q be one of the ^ and XQ a fixed point. We define the measure on (o, i):

^-k^Df-W^

where k is chosen so that v^(o, i) = i. Let I be an interval so that/(I) does not contain XQ
or y^o). Then it is easy to see that

\{fm)=ft^W) for some ^el.

If XQ or fq{xo)ef(l), the situation is a little more complicated.
We first observe that:

(2 .1) \fW-XQ\<q-\ X>o(modi)

(see [i], VIII, (2 .1)) for almost all a since ^/^-^const, almost everywhere. Assume
that the length |I| of I is greater than q~^12, and that e.g. ^6/(I). Suppose also

that e.g. 1 extends by - |I | to the right of/'^o). For every second q^ /^{xo^Xo and

by the inequality (2.1):
/^o)e/(I) if q,>Vq.

This is true for at least c log q different i's, so that

S Df\x^clogq
f^efW

since Df^^^^o, as was observed by Denjoy.
Now:

^{fW)=k S D/^o)=^'(S) S D/^o)
f^efW /^o)e1

t = 0 , . . . , ^ — I l'= —1,0, . . . , ? — 2

=/'(S)',(i)+o(y(Q)

'̂"'(•^(ioh)) '̂
^(5



A REMARK ON DENJOY'S INEQUALITY AND HERMAN'S THEOREM 237

since v^{I)>cklog q, We obtain the following lemma:

Lemma 1. — Let I be an interval of length>q~^2. Then:

\{fW) -/'(^(I), ^el, if x,J^) ̂ /(I),

^ ^(/(I))-/'^)^ +o(^l-))v,(I), ^

in all cases, provided a is not in an exceptional set of measure zero.

3. Next we need some information on the mapping x==h{t). Let o be an interval
on the ^-axis and assume that

(3.i) -^H^ 0==^.
ft-i ft ft-i

We bisect o into two equal intervals <^ and cog and we want to estimate |A(coJ|
compared to [A(cx)) | . From (3.1) follows that

2aq^

^f\h^))3{o,i)

and every point is covered at most ^a2 times. A similar statement is true for o^.

Namely, if a == -l^1 + -3—, then (h-^ < [ 81 < i, so that 2aq, iterations of an interval
f t+l f t+l f t+2

of length ^\ gives a complete covering. Furthermore:

|/^(co))|=(^//(y)|A(<o)|, ^/^(co)),

and similarly for co^. Hence:

|/^(<o))| ^ |^(co)| ^l/^,)
1/^(^)1 |A(co,)| ^o/'(^)

>^(")1,-..
-l^l)l

4a?t I h ( \\ ^i
and Ca^ S |/^((o))|^l^ S l/^^))!.——

v=l |/Z((Oi)| v==l

^,-co. 1^)1

l̂ "l)
This gives the following lemma:

Lemma 2. — Let — < \ w \ < —— and bisect u> into cdi and Wa. Then, for almost all a:
q.~ <7<-i J

[h^^expff-c^}}^^
\\ ?<-i/ /
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238 L E N N A R T C A R L E S O N

and (see (2 .1))

l^l^lc^C^2.
ft-i

4. We shall now describe the exceptional set of a.
Let 8 be a small positive number and n a large integer. Denote by B^ the interval:

Bf{n) : S^n<_k<S^+i)n

T 0^ Q 0^

8-i-_<^<8-i3-.
2 ^ 4 n

The intervals B^(^), n=i, 2, . . . and ^ as above, are disjoint.
For every B^, define the number &^(a):

6.(a)=Max9^.( > n v / feeB^ ^

For fixed (^), ^(a)^G on a set of measure ^2-ns. For fixed n, ^(a)^C for
^^3/4n yalues of ^, if we exclude a set E^ of measure ^2"^ and if 8<i/4. We now
do this for all n and consider those a which do not belong to infinitely many E^. We
also exclude those sets of measure zero mentioned earlier.

5. We shall now prove that v^ converges weakly to Lebesgue measure and shall
also obtain an estimate of the error. We first prove that for some suitable ^>o and
G<oo:

(5..) "-S^C, T H>r.

Take some q^ so that V^y,^ and so that -'-^-^C. This is possible for almost
all a. Then: qi-1

, \̂

oc=Jll+-^, i>S,>c>o (or <-c).

I 2 ^i
It follows that if ;-<|co|<, then U/'W<<>)) 3 (o, i) and every point is coveredyi Hi v == i
a bounded number of times. Since both ^(1) and |I| are transformed by the rules
in lemma i it follows that:

^(<o))l^v,(/^(<o))^ v^(co))

|A((0)| C- I/^CO))] - |A(0))|

and since both measures are additive, (5.1) follows.
We now wish to prove (5.1) with a constant C very close to i. Let us define M^ by

\(^)) .<sup ^p——==Mj,.
1,1^1 |A(co)|
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A REMARK ON DENJOY'S INEQUALITY AND HERMAN'S THEOREM 239

Suppose that q==qs and choose n so that

2n~l<S<_2n.

The number of blocks B^ so that M^ increases in B^ „ by more than a factor (i + 2'~n/2)
is less than C.2^2. Hence there exists ^? so that (with k =8^+2)
(i) ^(oc)^C,

(") M^^^-^M,.

Now pick an interval co of length between q^1 and 2^1, for which

(5.2) v,(A(co))=M^(co)|.

Divide co into ^C8n equal intervals o/ by successive bisections. We assert that for every co':

(5.3) ^(co/))^M,|A(G)')|(I-.-c8n).

To see this, recall that, by lemma 2,

[A(0|^exp(--^)[A((o)|.

Hence if (5.3) is false for one interval o/, it follows by (ii) that

v^(co))^M,((I+2-n/2)-^-c8\^-c8n)|A(<o)|<M,[A((o)|

if S is small enough. This contradicts the choice (5.2).
Let co* be an arbitrary interval of length | co* | so that

.̂-<M<,̂ -.

Then for some o/' of the same length and o/'Cc^:

hW=fm{h{^)), m<Cq,.

Divide o)* and co" into intervals of length ^"^[co*! and let co^ and co^ be two corre-
sponding intervals. Then:

v,(A(^)) =^ff^) ̂ (A«))(I +0(2-))

m|A(^)|=n/'(^)[A«)|-^
^=^.exp(Sl/-(^
["(^o)! l»(»o)l "-o

^M^i+O^-^i+O^-"'8))
W

because, by lemma 2, [/^(o;)) | ̂ ^-^[/^(o)*)) |, and S |/"(A(<o*)) |<C.
v=0

We cover (o, i) by disjoint intervals w* and obtain:

i =2\(A(0) =M,S|o>-l(i +0{e-cns))
(O* <0*

so that: M^i+O^-^8).

^5.9



^o L E N N A R T C A R L E S O N

Hence, if |a|>^1, it follows that

v,(A((o))^|A(<o)|(i+0((logy)-P))

and the reverse inequality is proved similarly.

If we observe that |A(co) |^(log ̂ -K for all K if |(ol<y-', we can conclude that

(5.4) S^^d^=S^dx+O^OS^~^ if yeC1.

It remains to prove the same remainder estimate in Denjoy's inequality.

We denote by ^ the interval \-, ——\ containing h-\Xy) +ja and denote by &>,„
'JO

the subinterval (——1, ——~—rl) of ^ ̂ ^ ^=q^q and ^ is the integer defined

above. We first observe that

9(/^o)) -<?J^9W4^) <C|A(<o,) |.

Divide (o, q—i) into blocks Gi, ..., €„ of length ^. Since ^ does not divide q we
have to skip a set F of less than ^ numbers. This set F is chosen so that

si^i^-r'.

To estimate S(y(/^o))-yj^y(x)^)) we write A(<^=A((^)uA(^.\<^). Then:

(5.5) 2:(2:j9(/^o))2,-?^.^(.)^(.) )<C,.

If C^=(X,X+^) we set J)>o=f^{xo). For jyeA((o^) we have j'==X+j,

9(/s(J'o))-y(/s^))=y'(^)JJOD/^)^

and f^y} eh(wj) and ^ is some number in h{u>j). Hence:

S(9(/^o))(i-2^)-^)VW^W)

1k~1

=(i-2v)) ^S ^q/(^(JOJJOD/s(S)^+ error

»A-1

=(1-2^) jJ^/^^D/^v'C/^))^

+0(Max|A(<^o)|)+error.

.240



A REMARK ON DENJOY'S INEQUALITY AND HERMAN'S THEOREM 241

We have used 9 'Wl^i. The error occurs because the intervals A(c^) are not
exactly maps of A(coJ. The error is estimated as in (5.5). For the final sum we
use (5.4) for q==qk and find the bound:

^o L^^CW^- ̂ S ?)-3) =o(^(log y)-P).
?A:-1

v
8=0 •^<0^))

This proves the remainder estimate.
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