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INTRODUCTION

i. Historical.

The idea of using differential forms and their integrals to define numerical invariants
of algebraic varieties goes back to Picard and Lefschetz. More recently, Atiyah and
Hodge [2] and Grothendieck [16] showed that algebraic differential forms could be
used to calculate the singular cohomology of a smooth scheme over C. This algebraic-
topological comparison theorem has been generalized by Lieberman and Herrera [29]
and by Deligne (unpublished) to include the case of singular schemes over C. Lieberman
and Herrera also proved a duality theorem for first order differential operators, of which
our Theorem (II. 5. i) is a special case. See also Lieberman [49] for another comparison
theorem.

In another context, algebraic differential forms have proved to be useful in the
study of the monodromy of a family of complex varieties, using the Gauss-Manin
connection. SeeKatzandOda [34],Katz ([32] and [33]), Deligne [10], and Brieskorn [8].

In the purely analytic context, holomorphic differentials on a singular analytic
space have been studied by Reiffen [44] and Bloom and Herrera [5].

Finally in the study of varieties in characteristic p, algebraic differential forms
are important in Monsky's formal cohomology [38], and as motivation for Grothendieck's
crystalline cohomology ([18] and [4]).

Our interest in De Rham cohomology dates from 1967, when we first found an
algebraic proof of Poincard duality for a smooth proper scheme over a field. Our
purpose in the present paper is to lay the foundations of a purely algebraic theory of
algebraic De Rham cohomology and homology for schemes with arbitrary singularities
over a field of characteristic zero.

2. Main results.

The main results of this paper have been outlined in the announcement [27],
to which we refer. See also [24, III, § 7.8], and [25]. Not mentioned in the announce-
ment however, are the Thom-Gysin sequence of a vector bundle (II, § 7.9), the theory
of relative cohomology and base change (HI, § 4? 5)5 and the formal-analytic Poincard
lemma (IV, § 2).

Please note also some changes necessary in the results of the announcement. The
theorem [27, i .2 d] needs a slight further hypothesis (see (11.4.4)). The local finiteness
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theorem [27, 2.2] is now valid more generally (III. 2.1). The field of representatives
in [27, 2.4] must be assumed to be "good" (see III, § 6). The results of [27, § 3]
as stated are valid only if Y is connected and rational over k (see (III. 3.2)).

3. Comments.

Whereas the comparison theorems of Chapter IV have been proved before, our
paper is original in that the properties of algebraic De Rham cohomology developed
in Chapters II and III are proved by purely algebraic techniques. Our presentation
is also original in the systematic use of a homology theory, analogous to the theory of
homology with locally compact supports ofBorel and Moore [6]. When dealing with
smooth proper schemes, Poincard duality eliminates the need for a homology theory.
But in dealing with non-proper schemes, and with singularities, one needs something
more. One can develop the theory of De Rham cohomology with compact supports,
using the techniques of [26]. However we have found it preferable to develop a homology
theory. The connection is that for any scheme Y of finite type over k, H^(Y) is the
dual ofH,(Y).

Using this homology theory, the Gysin sequence [24, III. 8.3] of our earlier
treatment of De Rham cohomology now reappears as the exact sequence of homology
of a closed subset (II. 3.3).

4» Applications.

The most important applications of the theory so far, which also provided the
motivation for writing this paper, are contained in the work of Ogus [43]. He was
able to find algebraic proofs of the striking theorems of Earth [3], while at the same
time eliminating the hypotheses of non-singularity. He was also able to determine
completely the cohomological dimension of projective space P" minus a subscheme Y,
in terms of the De Rham cohomology invariants of Y. This answers problems raised
in [23] and [24, III, § 5].

We will discuss some of Ogus' results, in particular the Lefschetz theorem on
hyperplane sections, in Chapter III, § 7.

Another application of our theory is to give some necessary conditions for a singular
variety to be deformed into a smooth variety. These will be discussed in our forthcoming
paper [28].

5. Problems*

Of the many questions which come to mind, perhaps the most persistent is <( What
about characteristic p? " Of course our results depend on characteristic zero, not
only for the resolution of singularities which is not yet known in characteristic p, but
also for the integration used in proving the invariance of our definitions, which is false
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in characteristic p. However, one can hope that the more formal aspects of our theory,
in particular the systematic use of homology and its exact sequences, may be useful
in characteristic p.

Another interesting topic for research is the algebraic treatment of monodromy
and the cohomology of special fibres of a family. Here one can hope that the introduction
of the sheaves of relative cohomology in the singular case (HI, § 4, 5) will be useful.
In particular, one can ask, do the De Rham cohomology groups of the fibres of a flat
proper morphism obey any semi-continuity analogous to the semi-continuity theorems
for coherent sheaves [EGA III, § 6, 7] ?

A third problem is to study various filtrations on the De Rham cohomology. For
instance, we do not know an algebraic proof of the degeneration of the first spectral
sequence, which begins Ef3 == H^X, Q^) for X smooth and proper over C. For a
scheme Y with arbitrary singularities, since the complex Q^ used to define the cohomology
of Y, where Y is embedded in the smooth scheme X, is unique up to quasi-isomorphism,
the sheaves ^{0^} depend only on Y. Thus the second spectral sequence, which begins
Ej^H^Y, A^x)) depends only on Y, and induces a well-defined filtration on H*(Y).
It would be interesting to know more abbut it.

6. Writing style.

In presenting a subject with a great many technical details, one faces a difficult
choice about how much generality to use where. Rather than state each result in
its most general form, I have chosen to present the simplest case first, and more general
cases later. This approach has two advantages: it presents the main ideas of the subject
in a form which is not overburdened with details, and it achieves a certain economy
of proofs, because in proving the more general form, one need only indicate what needs
to be modified in the earlier proof. On the other hand, this approach demands more
from the reader, who is asked to provide many details for himself. I hope he will be
willing to accept this responsibility.

7. Acknowledgements.

This work owes so much to other people that it would be impossible to mention
them all. I am especially indebted to A. Grothendieck, who awakened my interest
in the subject, and who taught me most of the techniques used here, in the course of
explaining his duality theory for my seminar at Harvard [RD], I wish to thank
P. Deligne and D. Lieberman, who first proved many results of this paper, for generously
sharing their ideas on De Rham cohomology. I also wish to thank A. Ogus for a year
of stimulating discussions, which culminated in the writing of this paper and his thesis [43].
Finally, I am grateful to the Alfred P. Sloan Foundation and the Research Institute
for Mathematical Sciences of Kyoto University for their support during the preparation
of this paper.



CHAPTER I

PRELIMINARIES

This chapter contains discussions of various technical matters which are logically
necessary for the sequel but which can be omitted at first reading. Of special importance
is § 4 on cohomology and inverse limits.

i. Cohomology theories.

In this paper, we will be dealing with cohomology of algebraic varieties, cohomology
of complex analytic spaces, cohomology with constant coefficients, cohomology of formal
schemes, and more. Historically these cohomology theories have been developed at
different times, and by different methods. Since a main purpose of this paper is to
prove comparison theorems, we should state clearly what cohomology theory we are
using, and how it relates to the different theories which can be found in the literature.

Unless otherwise specified, we will always mean cohomology in the sense of derived
functors: if X is a topological space, and F a sheaf of abelian groups on X, we define
H*(X, F) to be the z'-th right derived functor of the global section functor F, on the
category Ab^ of all sheaves of abelian groups on X. (See for example [14, § 2.3] or
[RD, Gh. II].) In particular, this cohomology can be calculated as follows. We
take an injective resolution of F in the category A&x5 lfe^ an exact sequence

o-^F-^I0-.!1-^!2^...

where the sheaves P are injective objects ofAb^. This gives a sequence of abelian groups

nX.P^I^X,!1)^!^,!2)^...,

and we have IT(X, F) ̂ ker ^/im <f-1.
If X or F has additional structure, for example if X is a scheme, or an analytic

space, or a formal scheme, and if F has a structure of ^"Module, or is coherent, we
forget the additional structure, and compute cohomology in the sense of topological
spaces and sheaves of abelian groups. To compute cohomology with constant coefficients
in a group G, we take the cohomology of the space with respect to the constant sheaf
determined by G.
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This is the cohomology theory which was introduced by Grothendieck in Tohoku [14],
and is the theory which is used in EGA.

We now compare this theory to the other principal cohomology theories in use.
The use of sheaf cohomology in algebraic geometry started with Serre's paper [FAG],
In that paper, and in the later paper [GAGA] Serre uses Cech cohomology for coherent
sheaves on an algebraic variety with its Zariski topology. The equivalence of this
theory with the derived functor theory follows from the <( Theorem of Leray"
(see [EGA III, 1.4.1]). The same argument, using Gartan's "Theorem B " shows
that the Cech cohomology of a coherent analytic sheaf on a complex analytic space
is equal to the derived functor cohomology. This ties in with the cohomology theory
of the Gartan seminars. Gunning and Rossi [21] use a cohomology theory defined
by using fine resolutions of a sheaf on a paracompact Hausdorff space. The equivalence
of this theory with ours is shown in the book of Godement [12, Thm. 4.7.1, p. 181
and Ex. 7.2.1, p. 263], who shows at the same time that both theories coincide with
his theory which is defined by a canonical flasque resolution. Godement also shows
[12, Thm. 5. io. i, p. 228] that on a paracompact Hausdorff space, his theory coincides
with Cech cohomology. This provides a bridge to the standard topological theories
with constant coefficients, as developed in the book of Spanier [48]. He introduces
Gech cohomology H*(X, G) on p. 327. He shows on p. 334 that for a paracompact
Hausdorff space, it coincides with Alexander cohomology H*(X, G). On the other
hand, he has shown earlier (p. 314) that Alexander cohomology satisfies all of his axioms,
and so coincides with singular cohomology.

If (X, ^x) ls a locally ringed space, and F an ^"Module, then tf(X, F) can
be computed also as the derived functors of F on the category of ^-Modules. This is
because injective ^"Modules are flasque, and flasque sheaves are acyclic for cohomology
[EGA, Cm, 12.1.1].

2. Direct images and inverse images.

Let f : X-^Y be a continuous map of topological spaces. If F is a sheaf of abelian
groups on X, we define the direct image f ̂7 to be the sheaf on Y, whose value on an open
set V^Y is given by /.F^^FC/^V). We denote by R1/, the derived functors
of/, considered as a functor from the category of abelian sheaves on X to the category
of abelian sheaves on Y. As before, even if X and Y have additional structure, we
mean R1/ in this sense. Note that RV»F can be computed as the sheaf associated to
the presheaf

V^HV-^V.F).

This is because the restriction of an injective sheaf to an open set is injective, and the
operation " sheaf associated to a presheaf5 is an exact functor.

The same remarks apply if/is a morphism of locally ringed spaces (X, Q^ -> (Y, ^y).
Thus we see that if F is an 0^-^Aodule, the sheaves R^F can be calculated as derived

10
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functors of/, on the category offi^-Modules, and hence they have a structure of ^y-Module.
Again let /: X->Y be a continuous map of topological spaces. Then for an

abelian sheaf G on Y, we denote by/^G the sheaf on X, whose value on an open set U is
/-IG(U)= lim G(V).

V=^(U) v /

We call this the topological inverse image of G. If/is a morphism of locally ringed
spaces (X, ^-^(Y, ffly), then we define also the inverse image f* in the sense of ringed
spaces as f*G=f~lG®^^^Q^.

Let /:X-^Y be a continuous map. Let F, G be abelian sheaves on X, Y
respectively, and suppose given a map a ^-^G)-^. Then we obtain natural maps
of cohomology

a,: H^G^H^X.F)

for all i, with obvious functorial properties. Indeed, the map a gives maps
Hi(X,/-lG)-^H^(X,F),

so it is sufficient to define natural maps H^Y, G)->Hi(X,f~lG). Let G->P be an
injective resolution of G. Now/"1 is an exact functor, so f~lG-^f~l^ is a resolution
not necessarily injective. If f~lG->y is an injective resolution of/^G, then there is
a natural map /~1^->J•, whence maps of complexes F(Y, P) -> I^X,/-1?) -^ F(X, J'),
which give the desired maps on cohomology.

3. Hypercohomology.

Let F* be a bounded below complex of sheaves of abelian groups on a topological
space X. In other words, we have a collection of sheaves F^, peZ, with FP==O for
p ^ o , and maps dp :FP-^VP+1 such that dp+ldp==o for all p. We define the coho-
mology sheaves of F" by ^(F')=ker rf'/im ̂ -1. A map of complexes 9 : F->G9 is a
quasi-isomorphism if it induces an isomorphism A'((p) : A'(F')-^'(G*) for all i.

We define the hypercohomology KP(X, F') of X with coefficients in the complex F*
to be the derived functors of F, in the sense of derived categories [RD, Gh. I]. In
particular, the hypercohomology can be computed as follows: let F'-^P be an injective
resolution ofF', i.e. a quasi-isomorphism of F* to a complex I', all of whose elements P
are injective sheaves. Then

H^x.F-^^rcx.i-)),
where A^ker d^im d'"1.

One can also compute hypercohomology by using Gartan-Eilenberg resolutions
[EGA, GUI, 11.4]. We will often use the two spectral sequences of hypercohomology
[EGA, loc. cit.] which have terms
(First) Ef^ =IP(X, F^) => E" == IT(X, F-)

(Second) E^==HP(X, ̂ (P)) ^ E^H^X, P).

11



12 R O B I N H A R T S H O R N E

Similarly, if f : X—»-Y is a continuous map, and if F" is a complex of abelian
sheaves on X, we define the hyper-direct image sheaves R^^F") as the derived functors of/,..

4. Inverse Limits.

In this section we gather together information on inverse limits and cohomology,
including slight generalizations of results ofGrothendieck [EGA, O^, § 13] and Roos [45].
I am indebted to Arthur Ogus for explaining the following elegant construction of the
derived functors of lim, and for pointing out some deficiencies in an earlier write-up.

In order for inverse limits to exist in an abelian category ^, one needs to assume
the existence of infinite direct products (this is axiom AB 3* of [14]). Furthermore,
to get reasonable properties for lim, one wants the direct product functor to be exact
(AB 4*). This is true for the category Ab of abelian groups, but fails in the category Ab(X)
of abelian sheaves on a topological space X. However, we deal mostly with coherent
sheaves on schemes or analytic spaces, in which case we can overcome this difficulty.
We axiomatize this situation as follows.

Let %" be an abelian category with enough injectives (e.g. assume AB 5 and <S'f

has a generator), and let ^ be a full subcategory of %7'. Assume

ILi. Arbitrary direct products exist in <^'.
IL2. There is a functor cr : ̂ t ->Ab such that

1) a is exact on %7.
2) If A->B->G is a sequence of objects in '̂, and if (7(A)->cr(B)->(y(C)

is exact, then A-^B-^-C is exact.
3) cr commutes with arbitrary direct products.

In applications we will have three cases where these conditions apply :
a) ^ f=<r==Ab and G=Id.
b) Let X be a noetherian scheme, ^^the category of quasicoherent sheaves

on X, c € ' == all abelian sheaves on X. Let 93 be a base for the topology of X consisting
of open affine subsets, and let <r(F)= II r(U, F), for any sheaf F.

c ) Let X be a complex analytic space, ^==the category of coherent analytic sheaves
on X, V = all abelian sheaves on X, $8 = a base for the topology of X consisting of
open Stein subsets of X, and (r(F)== II F(U, F) for any sheaf F.

Now we consider inverse systems A==(AJ^i of objects of '̂, with maps
<p^ : A^->A^ for m'^n, where Pwn0?^^?^ ^or ^m^n. The category of all such
inverse systems is denoted by pro-^'. It follows from ILi that inverse limits exist,
so lim becomes a functor from pro-^' to %". It is always left exact. Since pro-^'
also has enough injectives, we can consider the right derived functors of lim, denoted
by lim^, i^i.

12
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It follows from ILs that lim commutes with CT. It also follows that the direct
product II is exact on ^, and we deduce the useful consequence that if A === (AJ is an
inverse system of objects of ^, and if all the maps <p^ are surjective, then the natural
map limA^->A^ is surjective for all m. Indeed, this is true in the category Ab, so
we can pull the result back with cr.

Now let N be the set of natural numbers, and define a topology on N by taking
as open sets N itself, and U^==[i, n] for ^==1, 2, . . .. To an inverse system Aepro-^,
we associate a sheaf A on N by A(UJ==A^, A(N)=limA^. This gives an equivalence
of categories between pro-^ and ^-valued sheaves on N. Under this correspondence,
HmA^=H°(N, A). Thus we can calculate lim^A^ as the cohomology H'(N, A) for
all i^o.

Note that A is flasque if and only if the maps of the inverse system A are all
surjective. In general, we can calculate cohomology by flasque resolutions. Given
an inverse system Aepro-%7, define Bepro-^ by B^== II A^ for each n. Define

i<n

A^—^B^ by I! (p^. Then B is flasque, and A—>-B is injective. Let Q^be the quotient:

o->A-^B-^Q^o.

Then Q^= .FI (A^/9^(AJ). In particular, the maps of the inverse system Q^are sur-

jective, so Q is also flasque. Thus we have

Proposition (4.1) (Roos). — Let A == (AJ be an inverse system in the abelian category < ,̂
indexed by the natural numbers N. Then lim(^)A„==o for i>_2.

Furthermore, the above construction gives an explicit description of lim^A^.
Indeed, for each z, let A^==lim (AJ<p^(AJ) be the completion of A^ with respect to
the filtration by the subobjects {<Pni(AJ}^>,. Then:

Proposition (4.2). — With the above notation

W^A^^/MA,)).

This follows directly from the exact sequence

o-^lim A^-^lim B^-^limQ^-^lim^A^-^o.

Recall that A is said to satisfy the Mittag-Leffler condition (ML), if for every i, the
filtration ofA^ by{cp^(AJ} is eventually constant. In that case it is clear that A^-^A,
is surjective, so we have

Corollary (4.3). — If A satisfies (ML), then lim^A^o.

Next we study the cohomology of an inverse system of complexes (which is the
same thing as a complex of inverse systems).

13



14 R O B I N H A R T S H O R N E

Proposition (4.4). — Let A* =={^n)nev,pe^ ^e an mverse system of complexes^ and
assume for each p that the inverse system (A^)^g^ is surjective. Then for each p there is an exact
sequence

o-^lim(l)AP-l(A^)->^(limA^->limAP(A^)->o.

Proof. — As usual, let Z denote cocycles and let B denote coboundaries. Then
we have for each p, n

o-^Z^A^B^^o

o-^B^Z^ATO^o.

Taking inverse limits, and noting that A^ and hence B^ are surjective systems, we have

o-^HmZ^limA^HmB^^Hm^^^o,

o-^lim B^->limZ^lim hp{A^ ->o,

and lim^Z^hm^A^A^).

Now lim is left exact, so HmZ^^Z^limA^). Taking cohomology of the limit, we have

o-^Z^limA^-^UmA^B^^limA^^o

o-^B^lim A;) -^(Imi AJ -^(Um A;) ->o.

The conclusion follows by a simple diagram chase.
Note that in view of the preceding corollary, this is a slight generalization of

[EGA,Oni,i3.2.3].

Next we come to a basic result about the cohomology of an inverse limit of sheaves
on a topological space. This result, which is a slight generalization of [EGA, Ojjj,
^•S-1]? w^ be frequently used in the sequel.

Let X be a topological space, and let F==(Fn)neM ^e an inverse system ofabelian
sheaves on X. One sees immediately that the presheaf Uh-^ljmF^(U) is a sheaf, and
that it is the inverse limit limF^ of the sheaves F^.

Theorem (4.5). — Let (Fn)nev ^e an mverse system of abelian sheaves on the topological
space X. Let T be a functor on the category of abelian sheaves on X, which commutes with arbitrary
direct products. We assume that there is a base 23 for the topology of X such that:

a) For each Ue23, the inverse system (F^(U)) is surjective.
b) For each Ue93, IT(U,FJ==o for all i>o and all n.

Then^ for each i, there is an exact sequence

o->lim(l)Ri-lT(FJ->R^T(limFJ^limR^T(FJ^o.

In particular^ if for some z, (R^~"1T(FJ) satisfies (ML), then a^ is an isomorphism.

14



ON THE DE RHAM COHOMOLOGY OF ALGEBRAIC VARIETIES 15

Lemma (4.6). — Let G-^F be a map of sheaves and let o->F—>-P be a given infective
resolution ofF. Then there exists an injective resolution o->G->J\ and a commutative diagram

o —> G —> y
-I p-!y 4'

o —> F —> P

such that for every p, there is an isomorphism J^POK.^, and ^p is the projection onto the first
factor. (It follows that K^ is also injective.)

Proof. — Let G->K° be an injection of G into an injective sheaf K°. Let
J°=r©K°. Define a map G-^J° by taking the sum of the maps G^F—P and
G->K°. Let (B° :J°->I° be the projection. Then we have a commutative diagram

o -^ G —^ J°

[ot I30
y y

o —> F —> P

Taking the cokernels of the horizontal maps and proceeding inductively gives the result.

Proof of theorem. — Using the lemma, we construct for each n an injective resol-
ution o->F^-^ of F^, together with compatible maps ^ : I^i-^, such that for
each n, p, there is an isomorphism I^^I^®K^, and (B^ is the projection onto the first
factor. We claim that the natural map

lim F^-> lim I;

makes the complex limi^ into an injective resolution of lim F^. In the first place, for
each j&, liml^l^® II K^, and hence, being a direct product of injective sheaves, it

is also an injective sheaf. Next, to see that we have a resolution of sheaves, it is sufficient
to check for each Ue35 that the sequence of groups

o-->r(U,UmFJ->r(U,hmI^)^r(U,UmIi)-^...

is exact. This sequence is the inverse limit of the system of sequences
o->r(u, FJ^F(U, i^r(u, i^...,

which are exact because of the hypothesis b) of the theorem. Now by hypothesis a)
the inverse system (r(U, FJ) is surjective; by construction the inverse system (r(U, 1^))
is surjective for each p. Thus it follows from Proposition (4.4) above that the inverse
limit is also an exact sequence.

Now we can use the above injective resolutions of Fy^ and lim F^ to calculate the
derived functors of T. We have

R^Fj^cra;;))
and R^limFJ^CnHmI;;)).

15
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Now since T commutes with direct products by hypothesis, we have T(lim IJ = lim T(IJ.
Furthermore, the inverse system T(I^) is surjective for each^, since 1̂  is a direct summand
of 1^4.1, so we can apply Proposition (4.4) again, and get the result of the theorem.

Remarks. — In applications, we will apply this theorem to the functors F, Iy,
and/,.. Note that the hypothesis a) could be weakened to say that (F^(U)) satisfies (ML),
but we will not need this.

Next we include some special results about inverse limits of quasi-coherent sheaves.
We say a sheaf is countably quasi-coherent if it is quasi-coherent and locally countably
generated.

Proposition (4.7). — Let X be a scheme of finite type over a field k^ let G be a countably
quasi-coherent sheaf on X, and let[VL^} be a descending sequence of quasi-coherent subsheaoes ofG.
Assume that the natural map G->lim(G/HJ is a surjective map of sheaves. Then the sequence {H^}
is eventually constant.

Proof. — First of all, we can find a countable field ^9 c k such that X, G, H^ all
are defined over k^. Then one sees easily that the hypothesis G-^lim (G/HJ surjective
descends to A(), and the conclusion ascends to k, so we reduce to the case k a countable field.

Next, covering X with a finite number of affine open sets, we reduce to the case X
affine, say X==SpecA. Let M=H°(X,G), N^==H°(X,HJ. Then {NJ is a
descending sequence of submodules of M, and it is sufficient to show it is stationary.

We cannot assert that the map M->lim(M/NJ is surjective, because f lH^ might
not be quasi-coherent, and so H^X, F1HJ might not be zero. However, we can assert
that lim (M/NJ is a countable set. Indeed, Hm (M/NJ ==H°(X, Hm (G/HJ). Since the
map of sheaves G->lim(G/HJ is surjective, for any section jeH°(X, lim (G/HJ) there
is a (finite) open cover {UJ of X, and sections ^eH°(U^, G) which map to s, and
hence determine s. Now the set of finite open covers of X is countable, and for each
open set U c X, the set H°(U, G) is countable. So we find that lim (M/NJ is a
countable set.

From this it follows that the sequence {NyJ is stationary. For if not, one could
construct distinct elements of lim (M/NJ corresponding to each infinite dyadic number,
and these form an uncountable set.

Proposition (4.8). — Let X be a scheme of finite type over afield k, let {FyJ be an inverse
system of quasi-coherent sheaves on X, and assume that lim F^ is a quotient of a coherent (resp.
countably quasi-coherent) sheaf G. Then limF^ itself is coherent (resp. countably quasi-coherent).

Proof. — Let F^ c F^ be the image of G, and let H^ be the kernel, so we have

o-^H^G^F^o.

16



ON THE DE RHAM COHOMOLOGY OF ALGEBRAIC VARIETIES 17

Taking inverse limits, we have maps

G^limF^->limF^

whose composition is surjective. Hence G—limF^ is surjective, and limF^=limF^.
Now by the previous proposition, the sequence {H^} must be stationary. Hence

HmF^=F^ for sufficiently large w, so it is coherent (resp. countably quasi-coherent)
as required.

Proposition (4.9). — Let {F^} be an inverse system of countably quasi-coherent sheaves
on a scheme X of finite type over a field k. Then the following conditions are equivalent:

(i) {FJ satisfies (ML);
(ii) Hm^F^o;
(iii) lim^F^ is countably quasi-coherent.

Proof. — We need only prove (iii)=>(i). So assume that lim^F,, is countably
quasi-coherent. By (4.2) above, we have

W^^F./ImFJ.

Thus for each n, FJIm F^ is a quotient of a countably quasi-coherent sheaf. Since
F^ is also countably quasi-coherent, it follows that F^ is a quotient of a countably quasi-
coherent sheaf. Now by the previous proposition and its proof, it follows that F^ is
countably quasi-coherent, and that the filtration on F^ is eventually stationary. But
this is exactly the Mittag-Leffler condition.

Examples. — i. In Proposition (4.7) it is not sufficient to assume that X is a
noetherian scheme. For example, let X==Spec A[[^]], G==^x? ^n^I?? where P is
the closed point. Then G-^lim (G/HJ is surjective, but the sequence is not stationary,
and the latter sheaf is not quasi-coherent. Note also in this example that lim^H^o
by (4.2), although {H,J does not satisfy (ML).

2. Even when HmF^ is coherent, the inverse system may be bad. For example,
let X==A^, let Pi, Pg, ... be an infinite sequence of closed points, and let F^==Ip .. .Ip .
Then limF^=o, but the sequence does not satisfy (ML), and its lim^ is huge.

Finally, we include one result about commutation of inverse limits and tensor
products.

Proposition (4.10). — Let {FyJ be an inverse system of countably quasi-coherent sheaves
on the scheme X of finite type over k, and let E be aflat 0^-Module. We consider the natural map

(lim FJ ®E -> lim (F^E).a :

If we assume that limF^ is countably quasi-coherent then a is injective. If we assume furthermore
that lim^F^ is countably quasi-coherent^ then a is an isomorphism.

17
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Proof. — As in the proof of (4.8), let F^ be the image of F = lim F^ in F^. If F
is countably quasi-coherent, then as above, we have F=F^ for n^>o. Hence
F®E==F^®E for TZ>O. On the other hand, F^ is a subsheaf of F^, and E is flat, so
we have

o-^®E->F^®E.

It follows that we have an injection
(3 : mn(F^®E) -> Hm(F,®E).

But the first system is eventually constant, hence is equal to F^®E for n^>o, which
is the same as FOE, so a is injective.

Assuming furthermore that lim^F^ is countably quasi-coherent, we have by (4.9)
that {FJ satisfies (ML). Let ^==FJF^. Then {QJ also satisfies (ML), and
lim Q^ == o, so {Q,^} is essentially zero. It follows that the inverse system {Q^®E}
is essentially zero, and so lim(Q^®E)==o. Hence (3 is an isomorphism, and so a is
also an isomorphism.

5. Completions.

Let X be a noetherian scheme or a complex analytic space, and let Y be a closed
subspace, defined by a coherent sheaf of ideals I. We define the formal completion ofX
along Y, denoted by X/y or X, to be the ringed space whose underlying topological
space is Y, and whose sheaf of rings is lim (^x/^) • There is a natural morphism of ringed
spaces i : X-^X. In the algebraic case, X is ^formal scheme in the sense of [EGA I, § 10].
In the analytic case, X is what one might call a formal analytic space. However, we
have no need to develop a theory of abstract formal analytic spaces.

If F is a coherent sheaf on X, there are two natural ways to define its completion F:
one is to take iT^F®^^. The other is to take lim(F/rF). The following prop-
osition shows that these two definitions coincide, so that we may use the notation F
for either of them, without ambiguity.

Proposition (5.1). — Let X be a noetherian scheme or a complex analytic space, and let Y
be a closed subspace defined by a coherent sheaf of ideals I. Let X be the formal completion as
above. Then for any coherent sheaf F on X, the natural map

fF-^lm^F/PF)

is an isomorphism. Furthermore, denoting this sheaf by F, the functor F \-> F is exact on the category
of coherent sheaves on X.

Proof. — (See [EGA 1.10.8.8] for the algebraic case.) The question is local,
so we may assume that F is the quotient of a free sheaf L^^$. Let G be the kernel,
so that we have an exact sequence

o->G->L->F->o,

18



ON THE DE RHAM COHOMOLOGY OF ALGEBRAIC VARIETIES 19

with G also coherent. For each r, we have an exact sequence
o->G/(GnPL)->L/PL-^F/PF-^o.

We claim that on sufficiently small open sets U, the inverse system G/(G n PL) is cofinal
with the inverse system G/PG. Indeed, in the algebraic case, this follows from the
Artin-Rees theorem, as soon as U is affine. However, in the analytic case, the ring
of global sections of 6^ over an open set U is not noetherian in general. So we take
an open set U ^ X whose closure U is compact. For every point xeU, the local
ring 6^x ls noetherian. So for each r, there is an s==s(r,x) such that

(GnFL),2(rG),2(GnPLL.

The sheaves being coherent, the same is true in a neighborhood V(r, x). Covering U
with a finite number of these neighborhoods, we find an s such that PG 2 GnPL on
all of U. The same argument for each r shows that the two inverse systems are cofinal
on U. Since the system {G/PG} is surjective it satisfies (ML). It follows that the
system {G/(GnPL)} satisfies (ML). Thus we get an exact sequence of inverse limits.
The functor i* is in any case right exact, so we have exact sequences

z*G ———> z*L —————> i*F ———> o

^
o —> Hm(G/PG) —> Hm(L/PL) —> Hm(F/PF) —> o

Now (3 is an isomorphism because L is free, and the map i*(P^—^iim (^x/^^x)
is an isomorphism by construction. Hence y is surjective. But F was any coherent
sheaf, and G is coherent, so a is surjective. Hence y is an isomorphism.

This proves the first statement. The same argument applied to any short exact
sequence of coherent sheaves shows that the functor F—^Hm (F/PF) is exact.

6. Associated analytic spaces.

For foundations of the theory of complex analytic spaces, we refer to Gunning
and Rossi [21], except that we will allow nilpotent elements in the structure sheaves.
If X is a scheme of finite type over C, there is a natural way to associate with X a complex
analytic space X^ (see Serre [GAGA]). Roughly speaking, the construction is as
follows. Cover X with open affine sets U^. Embed U^ as a closed subscheme of a
suitable affine space A^, and let its ideal be generated by polynomials/^, . . .,/,.. These
polynomials define a closed analytic subspace of C", which we call (U^. Glue together
the analytic spaces (U^ according to the original glueing data to obtain X^. We
call X^ the associated analytic space of X. There is a natural morphism of ringed spaces
j: (X^, ^-^(^^x)- The sheaf ot ri^s ̂  is faithfully flat over 0^ [GAGA],

19
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and so the functor j* is exact and faithful. For any sheaf of (P^-modules F, we denote
by F^ the sheaf j*F. According to the general principles o f § 2 above, there are natural
maps of cohomology

a,: H^.F^H^.FJ.

A fundamental result, upon which the comparison theorems of this paper are
based, is the following theorem of Serre.

Theorem (Serre [GAGA, Thm. i, p. 19]). — Let X be a projective variety over C, and
let F be a coherent sheaf on X. Then the natural maps

a<: H^F^H^F,,)

are isomorphisms^ for all i.
Note that this is the easiest of the three main theorems in [GAGA], Its proof,

given in [GAGA, § 13] depends only on knowing that H^P^, 6^)==C for z==o, ==o for
z>o. It does not use Gartan's theorems A and B.

If Y is a closed subscheme of X, then we can consider the formal completion X
and its natural map i : X->X. On the other hand, we can consider the completion X^
of X^ along Y^, and its map i' : X^->X^. Then there is a natural map of ringed
spaces j ' : X^->X, making a commutative diagram.

X, -̂ -> X,

3' 3

X -̂ » X

We could call X^ the formal analytic space associated to the formal scheme X.
For any coherent formal sheaf S^ on X, we denote by e^ the sheaf j'*^). Since
we have a commutative diagram, we have for any coherent sheaf F on X

(F,)'=i'y(F)=j'T(F)=(F),.

Thus we will denote both sheaves by F^, with no ambiguity.
A useful consequence of Serre's theorem is the following result about cohomology

of formal completions.

Proposition (6.1). — Let X be a projective scheme over C, and let Y be a closed subscheme.
Let F be a coherent sheaf on X. Then the natural maps of cohomology

a.: H^F^H'CX^F,,)

are isomorphisms for all i.

Proof. —By (5.1) above we have F=lim(F/PF), and F^==lim(F^/I^F), where I
is the sheaf of ideals of Y. The sheaves F/PF are coherent, so by Serre's theorem,
the maps

H^X.F/rF^H^FJTO

20
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are isomorphisms for all i and r. Now we apply (4.5) above. We take for $8 the set
of open affine subsets in the algebraic case, and the set of open Stein subsets in the
analytic case. Then the hypotheses a) and b) are satisfied. On the other hand, the
cohomology groups H'(X, F/FF) are all finite-dimensional, so the inverse systems all
satisfy (ML). This gives our result.

We will also need a relative form of the comparison theorem, which generalizes
Serre's theorem.

Theorem (Grothendieck [19, XII.4.2]). — Let /:X->Y be a proper morphism of
schemes of finite type over C. Let F be a coherent sheaf on X. Then the natural maps

a,: (R^F)^R^(FJ
are isomorphisms.

The proof uses devissage and natural generalizations of Serre's techniques. Note
that this result implies that the sheaves R^(F^) are coherent. This is a special case
of the theorem of Grauert [13] on the coherence of higher direct images of coherent
sheaves under a proper morphism of analytic spaces. In our case, the proof is more
elementary, since we are dealing with analytic spaces which come from algebraic
varieties.

From this result we deduce the <( Fundamental theorem of a proper morphism "
in the case of analytic spaces which come from algebraic varieties (cf. [EGA III, 4.1.5]
for the algebraic case).

Proposition (6.2). — Let f : X'->X be a proper map of schemes of finite type over C.
Let Y be a closed subset o/X, and let Y' ̂ /-^Y). Let " denote formal completion along Y or
Y', respectively. Then for any coherent sheaf F on X', the natural maps

(R r̂-̂ F,

are isomorphisms.

Proof. — Looking at the algebraic fundamental theorem [EGA, loc. cit.] and its
proof, we will use the facts that the maps

(R^F)'->HmR^F,

are isomorphisms, that the system {R'j^FJ satisfies (ML), and that kernel and cokernel
systems of the maps

(RyjF)®(^/P)^R^F,

are both essentially zero (this is equivalent to the statement in [EGA III, 4.1.7] that
a certain filtration is I-good).

The property of an inverse system of coherent sheaves satisfying (ML) or being
essentially zero carries over under the exact functor h. We deduce that the inverse
systems

(R^F^O^/ID^C^^

21
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both satisfy (ML), and that their kernel and cokernel systems are essentially zero. It
follows that their inverse limits are isomorphic, so we have

(Ry.F);S.Hm(R^F,),.

Using the relative comparison theorem above on both sides, we have isomorphisms

(R^F^'^HmR^F,,.

Finally, we apply (4.5) above to the functor^ to deduce isomorphisms

R^F^HmRCT,.

Combining, we have the desired result.

Remark. — We do not know whether a similar result will hold for an arbitrary
proper morphism of analytic spaces and a coherent analytic sheaf. To copy the proof
of the algebraic version, it would be sufficient to prove an analytic analogue of
[EGA III, 3.3.2]. This could be considered as a generalization ofGrauert's coherence
theorem.

7. Functorial maps on De Rham cohomology.

Let X be a smooth scheme over C, and let tT be the De Rham complex on X.
If Y is a closed subset of X, we may wish to complete along Y. On the other hand,
we may wish to consider the associated analytic space. The functors ^ and h are defined
on the category of (P^-t^/Lodules. The sheaves O* are coherent ^x-'^^dules, but the
maps d are not ^-linesLr. ^° we adopt an ad hoc definition of t2' and Q^.

In the first case, let I be the sheaf of ideals ofY. Then </(P) ^ P~1, so that the
maps d \ n^-^fy4'1 are continuous for the I-adic topology. This allows us to define
d : ̂ -^Ci^1, and hence the complex £2\ If i : X->X is the natural map of ringed
spaces, we have a natural map of complexes

z-1^-^^.

Thus according to the general principles of§2 above, we have natural maps on cohomology
H^X.n^-^H^X.Q-).

For the associated analytic space, Q^ is just the sheaf of holomorphic i-forms on X^.
We know how to differentiate holomorphic functions, so we define d : Q^-^^4"1 in
the usual way. Thus we define 0.^ to be the holomorphic De Rham complex on X^.
If j : X^->X is the natural map of ringed spaces, we have a map of complexes

j-1^^^

and hence as above, we have natural maps on cohomology

H'CX^^H'CX,,,^).
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CHAPTER II

GLOBAL ALGEBRAIC THEORY

This chapter is devoted to the purely algebraic development of the theory of
algebraic De Rham cohomology and homology of a scheme Y of finite type over a
field k of characteristic zero not necessarily algebraically closed. The comparison with
singular cohomology in the complex case will be discussed in Chapter IV.

We consider a scheme Y which admits an embedding as a closed subscheme of
a scheme X smooth over k. Let ̂  denote the sheaf of ̂ -differential forms on X over k,
and let Q^ denote the complex 6^ -> Q^ -> Q^ -> ... of sheaves of differential forms,
which we call the De Rham complex of X. We refer to [EGA IV, § 16, 17] for general
results on differentials. Then we define the De Rham cohomology of Y to be the
hypercohomology of the formal completion Q,^ of the De Rham complex of X along Y.
This is the same definition used by Deligne in his (unpublished) lectures at Harvard
in 1969, and agrees at least in the proper case with the inverse limit definition used
by Lieberman and Herrera [29]. If Y does not admit a global embedding into a
smooth scheme, the definition can be generalized (see Remark at end of § i), but for
simplicity we will stick to the embeddable case.

In developing the cohomology theory, our first task is to show that this definition
is independent of the choice of the embedding. This is accomplished using an algebraic
analogue of the famous lemma 17 of Atiyah and Hodge [2]. Characteristic zero is
essential.

Next we define the homology of Y by using the local cohomology of the De Rham
complex of X with supports in Y. This definition was suggested by Grothendieck
[16, footnote 9, p. 101]. Again we must show that the definition is independent of
the embedding. This is more difficult than in the case of cohomology, because to define
the covariant functorial map of homology we need something like the trace map used
in duality theory. Thus we are led to introduce a canonical resolution of the De Rham
complex, using the notion of Cousin complex of [RD].

Next we establish a number of functorial properties of cohomology and homology,
and give exact sequences relating to closed subsets and birational morphisms. We
also prove a duality theorem relating the cohomology and homology of a proper scheme
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over k. The duality theorem is proved by using spectral sequences to reduce to the
duality theorem for coherent sheaves.

To establish the finite-dimensionality of our cohomology and homology groups,
we apply Hironaka's resolution of singularities. Using all the functorial properties
developed earlier, the proof reduces to the case of a smooth proper scheme over k, where
the result follows from Serre's finiteness theorem for cohomology of coherent sheaves.

In the final section of this chapter we construct the cohomology class associated
to a cycle on a smooth scheme, and show that it is compatible with intersection theory.
In particular, it follows that our cohomology theory has the properties needed for
Grothendieck's construction of the Ghern classes of vector bundles [15].

i. Algebraic De Rhaxn cohomology.

In this section we define the algebraic De Rham cohomology of a scheme Y of
finite type over a field k of characteristic zero, which admits an embedding as a closed
subscheme of a smooth scheme X over k. We call Y an embeddable scheme over k. We
define the cohomology of Y by taking the formal completion of the De Rham complex
on X along Y. Then we show that this definition is independent of the choice of
embedding, and we show that this cohomology is a contravariant functor in Y.

Definition. — Let Y be an embeddable scheme over A. Let Y->X be a closed
immersion of Y into a smooth scheme over k. Then we define the algebraic De Rham
cohomology of Y by

HUY)=IP(X,Qx),

the hypercohomology of the formal completion of the De Rham complex 0.^ along Y.

To show that this definition is independent of the choice of embedding, we will
need the following proposition.

Proposition (i. i) (char k == o). — Let f : X->Y be either a smooth morphism or a closed
immersion of smooth schemes over k. Let Z be a closed subscheme of X such that the
restriction f :Z->Y is a closed immersion. Then the natural map

r : ̂ ^
where "s denotes formal completion along Z, is a quasi-isomorphism of complexes of abelian groups on Z.

Proof. — Case 1. Suppose jf:X-^Y is a closed immersion. The question is
local, so we can factor f into a sequence of closed immersions of codimension one. By
composition, we reduce to the case of codimension one. Furthermore, we may assume X
and Y are affine, say X=SpecB, Y==SpecA, and B=A/(A:), where xeA is a local
equation for X. After completing along Z, we may assume that A is complete with
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respect to the ;v-adic topology, and our problem is to show that the natural map of
complexes

QI-̂ B

is a quasi-isomorphism.
We need the following lemma of Grothendieck.

Lemma (1.2). — Let Abe a noetherian ring, containing afield k, and complete with respect
to an x-adic topology., where x is a non-zero-divisor in A. Let B=A/xA, and assume that B
is formally smooth over k. Then there is an isomorphism A^B[[,y]].

Proof {see also [19, III, 5.6]). — The main point, as in the Gohen structure theorems
for complete local rings, is to show that A contains a (c ring of representatives " for B,
i.e. a subring Bo which maps isomorphically onto B. For this we use the infinitesimal
lifting property of formally smooth morphisms [EGA IV, 17.1.1]. For each n,
A/A^-^A/^ is a surjective map defined by a nilpotent ideal. We have a map B -^ A/A:,
and B is smooth over k. Hence we can lift step by step, and obtain maps B-^A/A:",
for each n, compatible with the projections. Passing to the limit, we have a map
B->Hm(A/A:n)=A, which lifts the original map B->A/x. Let the image be Bo.

Now we can map ~B[[x]] -^A by sending B to Bo and x to x. It is injective, since
x is a non-zero-divisor in A. It is surjective, because the kernel of A->B is generated
by x. Hence it is an isomorphism.

So in our case, we may assume A^B[[A;]]. Now any element coe^ can be
written uniquely in the form

o)=ao+a^+a^2+...+(^+Pl^+P2^+••.)^

where a^eB^ and ^e^~1, n==o, 1 ,2 , ... With co written in this form, one finds
that Ax) ===o if and only if

^==o, TZ==O, i, 2, ...

and ^-(-ir'-1^-!, ^= i, 2, ...

The natural map 0.^-^0.^ sends co to (XQ. This shows immediately that the cycles
of Q\ map surjectively onto the cycles of £2g. Now suppose ^o)=o. Let

e==(-i).-i^+^^2^ +^_^ V

Then co==ao+^9. Hence co determines the same cohomology class as oco. On the
other hand, oco is a boundary in the complex 0.\ if and only if it is a boundary in Dg.
Hence we have an isomorphism on cohomology, as required.
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Case 2. — Suppose that y:X-^Y is an ^tale morphism. Then the formal
schemes X and Y, the completions along Z, are isomorphic. Since the natural
maps f*Q^->Q^ are isomorphisms, the morphism of complexes

Q^"x
is actually an isomorphism.

Case 3. — Suppose that y : X — ^ Y is a smooth morphism. Again the question
is local. Hence, using the lemma below, we may assume that Z is contained in a closed
subscheme W of X, which is ^tale over Y. Then we have a commutative diagram
of completions along Z

QY———^%v"w

Now the map from X to W is a quasi-isomorphism by Case i. The map from Y to W
is an isomorphism by Case 2. Hence the map from Y to X is a quasi-isomorphism,
as required.

It remains only to prove the following lemma.

Lemma (1.3). — Let f : X->Y be a smooth morphism of smooth schemes over k. Let
Z be a closed subscheme of X such that the restriction f: Z->Y is a closed immersion. Then
for any point zeZ, one can find a neighborhood U of z in X, and a closed subscheme W of U,
containing ZnU, and with W etale over Y.

Proof. — Let n be the relative dimension of X over Y. Let I be the ideal of Z.
First we will show that one can find elements g^ .. .,^elg such that dg^ . .., dg^
span (^/y). Indeed, we have exact sequences

J/J2 ——^ ^®^z ——^ ̂  ——^ o

^®^z ——^ ̂  ——^ °\n^/y®^

where J is the ideal of Z in Y. It follows that the diagonal arrow (3 is surjective. Now
^C/Y ls ^ree of rank n. Hence using Nakayama's lemma, we can find g^ .. .,^GI^,
as required.
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Let the functions ^, .. ., g^ be defined in a neighborhood U of z, and let W be
the subscheme defined by the ideal K = (<?i, ... 5 ̂ J. W contains Z n U by construction.
To show that W is ^tale over Y, consider the exact sequence

K/K^nx/y^w^w/y^o.

Now K/K2 is generated by n elements. The first arrow is surjective (shrinking U if
necessary), and n^/y^w ls locally free of rank n. We conclude that the first arrow
is an isomorphism, and tl^/y == °- ^t follows that W is smooth over Y [EGA IV, 17.12.1],
that W is unramified over Y [EGA IV, 17.4.1] and hence etale [EGA IV, 17.6.1].

This concludes the proof of the proposition. Now we can establish that our
definition is independent of the choice of embedding.

Theorem (1.4). — Let k be afield of characteristic zero. For each embeddable scheme Y
over k, the algebraic De Rham cohomology as defined above is independent of the embedding chosen.
Furthermore, these cohomology groups are contra-variant functors in Y.

Proof (see also the general remarks in the proof of (3.2) below). — Let Y-^X^
and Y-^Xg be two closed immersions of Y into smooth schemes X^ and Xg over k.
Then we consider also the diagonal embedding Y->X^ X Xg. The projections p^ and p^
onto the two factors are smooth morphisms, so by the Proposition above, they induce
quasi-isomorphisms of complexes

QX^^X^X.

where ^ is always completion along Y. These give rise to isomorphisms of hyper-
cohomology, and so by composition we obtain an isomorphism

H^(X,,^)^H^(X,,^).

This shows that the two definitions ofH^(Y) are isomorphic. Furthermore, if Y—^X3
is a third embedding, then these isomorphisms are compatible with each other.

Now let g rY'—^Y be a morphism of embeddable schemes, and let Y'—^X',
Y->X be closed immersions into smooth schemes over k. Replacing X' by a suitable
open subset of X'xX, and taking the "diagonal" embedding of Y'-^X'xX, we
may assume that there is a smooth morphism y:X'->X whose restriction to Y' is g.
This induces a morphism of formal schemes X'->X. The natural map y*Q^->t^,
gives rise to a morphism of complexes

5-l(^)-^

from which we deduce a natural map on cohomology

HUY)^H^(Y').

We leave to the reader that this map is independent of the embeddings chosen, via the
isomorphisms above, and is functorial in Y.
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Remark. — In this paper, we consider only embeddable schemes, because the
theory is technically simpler in that case. They should suffice for most applications.
However, for the reader who is interested in the general case, there are two approaches.
One is to use the theory of crystals [4] and [i8], where the cohomology is intrinsically
defined. According to an unpublished proof of Deligne, the crystalline cohomology
for schemes of finite type over C is isomorphic to the complex cohomology, so it gives
a good theory.

Another approach is to globalize our definitions by a Cech process which we
will now describe. Note by the way that this globalization problem is much easier
than the one encountered for dualizing complexes in [RD], For here we are dealing
with actual complexes and well-defined maps, whereas there we were trying to glue
elements of the derived category, which is not always possible.

Here is the construction. Let Y be a scheme of finite type over A. We consider
a system of local embeddings ^=={U^, XJ, where {UJ is an open cover of Y, and for
each z, U^->X^ is a closed immersion into a smooth scheme X^ over k. For each
(^+ i)-tuple {^^{io^h^ • • • <^} we consider the open set

U(,=U.,n...nU^

and the embedding
U«)-X,)=X^x...xX^

Then we consider the complex of sheaves on Y

G^J^^,)).
where ^ denotes the completion along U^ and where j is the inclusion of U^ into Y.

Now for any o<^j<_p, let (^)=={?o3 • • • ? ̂  • • • ? ^}- Then we have a natural
inclusion U^->U^, and a projection X^->X^ which is a smooth morphism.
Hence there is a natural map

^. ^
^X^)1U(,)^^X(^

and hence we have a map of complexes on Y

hw '• ^z')"^)-
Note by construction that for two integers o^J'^k^p, the corresponding four S maps
are compatible with each other. Hence we can define a double complex ^(W) by

^W==nC(,)
and ^-^HC-I)^,).

Now we define the De Rham cohomology of Y to be the hypercohomology of
the associated simple complex of ^(^<).

To show that this definition is independent of the system of local embeddings
chosen, we proceed as follows. A refinement of the system of local embeddings ^ is
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another such system y^={Vj, ZJ, together with a mapping of index sets X such that
Yy. is an open subset ofU^) for eachj, and together with smooth morphisms Z.->X^.)
compatible with these inclusions for each j. Now it is clear that any two systems of
local embeddings have a common refinement. Furthermore, if V is a refinement
of ^<, there is a natural map of double complexes

<p : ^(^)--^(^).

Thus it will be sufficient to show that for any refinement of ^, the associated map of
simple complexes to <p is a quasi-isomorphism.

The question is local on Y, so we may assume Y==Ui and Y=Vr Let
^'={Ui, XJ and let y^'=={Vi, Z^}. Then we have a commutative diagram

^(^) —^ <g )̂

^(^) ——> ^(V)

The top arrow is a quasi-isomorphism by the global case (1.1). Thus it is sufficient
to show that the vertical arrows are quasi-isomorphisms. So we can forget Y^, and
need only show that

^(^')-^^(^)

is a quasi-isomorphism. Indeed, we can write ^^) as the direct sum
<g7(^)=<g7/+<r/

where T =J^

<yn T7 r^
€€ -i11^}'

Now for each (z) =={z'o3 - • - 9 ^p} with io^1? ê map
8 : C^G^.^y

is a quasi-isomorphism, by (1.1) again, since the open sets U^ and U^^ ^.^ are
equal. Hence the maps 8 give a quasi-isomorphism of %" onto its image in %7'/5 which
is everything except C^^^'). Thus the map

<g7(^)-><g?(^)

is a quasi-isomorphism as required.
Thus using the Gech process, our definition of De Rham cohomology can be

generalized to arbitrary schemes of finite type over k. We leave the reader the task
of carrying this generalization through the rest of the paper. (However, the corre-
sponding globalization for homology may be more difficult—we have not looked into
it carefully.)
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2. The canonical resolution of the De Rhaxn complex.

In defining the De Rham cohomology theory, we took completions of the De Rham
complex along a closed subvariety. This worked well, partly because completion is
an exact functor on the category of coherent sheaves. In defining the De Rham homology
theory, we will take cohomology with supports along a closed subscheme. Thus we
will need to take an injective resolution of the De Rham complex. Furthermore, to
establish the covariant functorial properties ofDe Rham homology, we are led to questions
closely related to duality and trace or residue maps. Therefore in this section we will
introduce a canonical resolution of the De Rham complex, constructed out of the
(< residual complexes " of [RD]. For these canonical resolutions, we can define a
covariant trace map, for any smooth morphism or any closed immersion of smooth
sheaves. This formalism will be used in the next section to define De Rham homology.

We recall the notion of Cousin complex from [RD IV, § 2]. Let X be a noetherian
topological space. For each p^o let V be the set of points of codimension >,?. For
any point ^eX and any abelian group M, let ^(M) be the sheaf on X which is the
constant sheaf M on {x}", and zero elsewhere. Let F be an abelian sheaf on X. Then
by [RD IV, 2.3] there is a unique augmented complex F~^G*, called the Cousin complex
of F, with the following properties:

a) For each j&^o, there is an isomorphism C?^ S 4(M^) for suitable
, , . ,,r aFZ^—Z^1

abelian groups Mp.
b) For each p>o, ^(G') has supports in Zp+2.
c ) The map F-^A°(C*) has kernel with supports in Z1 and cokernel with supports

in Z2.

Furthermore, the formation of the Cousin complex is functorial in F. We will
denote the Cousin complex of a sheaf F by E*(F).

If X is a regular scheme, and if L is an invertible sheaf on X, then E'(L) is an
injective resolution ofL [RD VI, § 2, Example, p. 239]. In fact, it is a residual complex
in the sense of [RD VI, § i]: namely, it is a complex K* of quasi-coherent injective
^x-Modules, bounded below, with coherent cohomology sheaves, and such that there
is an isomorphism

S K^ S JM.^ez a;ex

Here ]{x) denotes the sheaf 4(1 J, where 1̂  is an injective hull of k{x) over the local
ring ^.

For our purposes, we will have to generalize slightly, by considering arbitrary
locally free sheaves instead of just invertible sheaves. So we will define a generalized
residual complex (of rank r ) on a scheme X to be a complex K* of quasi-coherent injective
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^x-Modules, bounded below, with coherent cohomology sheaves, and such that there
is an isomorphism

S K^( S J(x)Y.
pez -^ex" / /

Now if F is a locally free sheaf on a regular scheme, E"(F) will be a generalized residual
complex. On the other hand, the construction of the functor /', and the construction
of the trace map

Tr,:/,/^i

for residual complexes in [RD VI] carries over immediately to generalized residual
complexes.

Now we come to the construction of the canonical resolution of the De Rham
complex. Fix a base field k (of arbitrary characteristic). Let X be a smooth scheme
over k. For each i we consider the Cousin complex E^t^x/^ which is an injective
resolution of t2x/&* Since E' is a functor on the category of abelian sheaves on X, not
just ^x'M0^11^? ^e A-linear map d : 0^^ -> 0^^ gives rise to a map of complexes

d : E-(^)->E-(Q^),

compatible with the original map d. As i varies, we obtain a double complex.

Definition. — We denote by E(£l') the simple complex associated to the doable
complex above. Thus E(^') is a complex of quasi-coherent injective ^"Modules, and
A-linear maps, and we have a natural map of complexes

^x/^E(^-)

making the latter into an injective resolution of the former (i.e. the m p is a quasi-
isomorphism). We call E(f2') the canonical resolution of the De Rham complex of X.
(Note that E(£2') is not the Cousin complex of the complex Q' in the sense of [RD IV, § 3].
Thus our notation is different from that introduced in [RD, p. 241].)

Next we come to the construction of the trace map on the canonical resolutions.
Let /: X-^Y be a smooth map of smooth schemes over k, of relative dimension n.
We have an exact sequence

o ->/* H^ -> Q^ -> 0^ -> o,

and hence for each i we deduce a natural map

Q^/^Y^X/Y

where Ox/y == ^S/Y •

On the other hand, the definition of/1 for a smooth morphism [RD VI, 3.1; p. 313
for/^; p. 145 for/^] shows that

^E-^y-E^/^^cox/Y)^].
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Thus the trace map for residual complexes [RD VI, 4.2] gives a map of graded sheaves
Tr,: /.E-C/^®^) M -> EW).

Combining with the map on differentials above, applying ̂ 3 E*, and [n], we get a map
of graded sheaves

/,E-(QX+»)[»]->E-(QV).
Doing this for all i gives a map of graded sheaves, which we call the trace map for the
canonical resolutions

Tr,:/,E(Ox)[2<|^E(^).

Note the shift of 2n, arising on the one hand from the shift in exponent i, and on the
other hand, from the shift in the trace map for residual complexes. Note also we have
said nothing about whether the map Tr^ commutes with the boundary maps of the
complexes E(Qx) ^d E(^y)- So far it is only a map of graded sheaves.

Now let f : X-^Y be a closed immersion of smooth schemes over k, of codimen-
sion 772. Then we have an exact sequence

o-^I/P-./^-^-^o,

and hence natural maps
A^I/P) ®Qx -^r^^

or % ->/* ̂ +w® c^x/Y.
where (^-(AW2)).
If we set n== —m==dim X—dim Y, the (( relative dimension of X over Y "5 we can
write these maps as

Q^^T^y^x/Y.

Now the definition of^/1 for a finite morphism [RD VI 3.1$ p. 311 forf^y p. 165 forj^],
together with the fundamental local isomorphism [RD III 7.2] shows that

/'E-(^)=E-(/*^0(Ox/Y)M.
Thus the trace map for residual complexes gives

Tr^ : /.E-(/^®(OX/Y) W -> EW).

Combining with the maps on differentials above, and doing this for all i, we have a
map of graded sheaves, the trace map for a closed immersion

Tr^:/,E(^)[^]^E(Dy.

Summing up, we have

Proposition (2.1). — Let f: X->Y be a smooth morphism of smooth schemes over ky
or a closed immersion of smooth schemes over k. Let %===dimX—dimY. Then there is a
natural trace map of graded sheaves

Tiy:/.E(^)[2^E(^).
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Furthermore, if g : Y->Z is another such map (either smooth or a dosed immersion) for which
gf is also either smooth or a closed immersion^ then we have

Tr^=(Tr,)(^Tiy).

Proof. — We gave the construction above. The compatibilities follow from the
compatibilities of the trace map on residual complexes [RD VI 4.2].

So far, the trace map has been constructed only as a map of graded sheaves. It
will be important to know when it is a morphism of complexes. As a matter of notation
we use d to denote the map deduced from the exterior differential in the De Rham
complex. So

d : EW-^E-^4-1)

is a map of complexes, for each i. On the other hand, we use 8 to denote the coboundary
map in the residual complexes. So we have

S : E^'-.E^1)^1

for each i,j. To show that the trace map on E(^) is a map of complexes, is to show
that trace commutes with the total differential on E(Q*), i.e., trace commutes with both d
and 8. We will see that trace always commutes with d, it commutes with 8 under
suitable properness hypotheses.

The following is the main result of this section. It is also the key point which
allows us to extend the duality theory for coherent sheaves to duality for De Rham
cohomology. It is probably also an essential step in constructing a suitable duality
theory for complexes of coherent sheaves with differential operators.

Proposition (2.2). — Let f: X->Y be either a smooth morphism or a closed immersion
of smooth schemes over A, and let n==dim X—dim Y. Then d commutes with the trace map:
for each i we have a commutative diagram

/,EW)M Try EW)

f^{Qf^)[n] E^V4-1)
Try

Proof. Case 1. — First suppose/is a closed immersion. The question is local on X
and Y, so we can factor / into a sequence of closed immersions of smooth schemes of
codimension one. The trace maps compose, so we are reduced to the case ofcodimension
one. The trace map sends

/E-^-1)^!]^^^).
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The image lands in the subcomplex rx(E-(^y), so it will be sufficient to check the
compatibility with d there, i.e., to show that

Try
/.EW)[-i] —> ^x(EW)

Try/.E-(i4)[-i] —^ 7x(EW1))
is commutative. Since X is of codimension one, and Q^ is locally free, there is only
one non-zero local cohomology sheaf, namely AT^ffy). Hence we have

rx(E-(Qy)=E-(^(Qy)[-i]
where the second E' denotes the Cousin complex on X. With this identification, the
trace map is simply obtained by applying the functor E* to the map of sheaves

^^H^)
defined by

7] \-> 7] A Z~1 dz

where z is a local equation for X, and where we have identified locally
H^^^Z-1]!^.

Since E' is a functor on abelian sheaves, to prove our compatibility, it will be
sufficient to show that the diagram of sheaves on X

Ql-l
^x H^m

^x ——> H^1)

is commutative. This follows from the fact that for any local section T^eO^1, we have
d{f\ A z~1 dz) = df\ A z~1 dz.

Case 2. — Next we will consider the case of an ^tale morphism /: X->Y. In
this case the relative dimension is zero, and the trace map

Tr^:/,EW)->EW)

is deduced from the (c classical9? trace map on sheaves
Tr:/,Q§->^.

Since/is <5tale, the natural map f*0^->0.^ is an isomorphism. Thus we have a natural
identification

/.^/J^^W^x.
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The trace map is defined as follows: choose a local basis ^ . . .^of/^x^3- ^ree

^Y-Module. For any 7]6/^ expand 73^ in terms of the ^.:

7^=S^

with ^et^. Then
Tr^)=S^.

To see that trace commutes with d, we apply d to the equation above. We find

(^)^+(-I)^A^=2:W,^+(-I)^^A^,.

Let a^=S6^ with 6^e^. Then we have

(rf^,=S(^),,.+(-i)PS^Ae,^-(-i)^^Ae,^.
J J» — 3j k

Hence
Tr^)=S^+(-i)^A6^-(-i)^Ae,

^ ^» J t» J

W(Tiy (,))).

Cto 3. — Now let f : X->Y be a smooth morphism. It can be factored locally
into an etale morphism followed by an affine yz-space over Y. Using the previous case,
we reduce to affine yz-space. This in turn factors into a sequence of affine i-space
morphisms, so we are reduced to the case X=A^. Now the trace map is a sum of
maps ^JW-^JC^) ^ xeX, jy==f(x), and x closed in its fibre (see the construction
of the trace map [RD VI § 4]). Hence it is sufficient to verify our commutativity at
points xeX which are closed in their fibres. Any such point is contained in a sub-
scheme Z c X which is dtale over Y. Making the base extension Z—^Y, the point x
lifts to ZXyX, where it is contained in the <c diagonal section " Z->ZXyX. J [ x ) is
the same for A:eX and ^eZXyX, so we reduce to studying the morphism ZXyX->Z.
Now ZXYX=A|^ and by an automorphism, the given section can be brought to the
zero-section. Thus, changing Z to Y, we have reduced to showing that Trace commutes
with d for points contained in the zero-section of X==A^. So we must show that

/.EW^EI] -^ EW)

Trr
/.EW2)!:!:] -^ EW1)

is commutative, for points in the zero section. Let W ̂  X be the zero-section. Then
it is sufficient to verify the commutativity on the subcomplex

r^EW1)^]).
36
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But W has codimension i in X. As above in Case i, we find that

^(E-^^EiD^E-^^4-1)),

where the second E' is the Cousin complex on W. With this identification, the trace
map is obtained by applying the functor E* to the map of sheaves

^(O^1)-^

defined by
SO.^+STL.^^P^ 7]_i,

3 3

where z is the parameter of A1, and we have identified

^(n^x(-l)^^Y+l^~l]e^^Y^~l]^•

To finish the proof, we have only to show that d commutes with this trace map on sheaves.
Indeed

d{Z^zj+^^^dz)=^d9,zj+{--l)i+l^jQ^j-ldz+^d^^zjdz.
3 3 3 3 3

Applying trace, we get just ^_i, because there is no z^dz term in the other sum. q.e.d.

Proposition (2.3). — Let f : X->Y be either a smooth map or a closed immersion of smooth
schemes over k. Let X' c X and Y' c Y be closed subschemas such that /(X') c Y', and
the induced map f : X'-^Y' is proper. Then the induced map

Tr, : /^(ETOM) -^(E(fl̂ )

on the subcomplexes with supports in X' and Y', commutes with S. Hence, by the previous result,
it is a morphism of complexes.

Proof. — If the map f itself is proper, this follows immediately from the Residue
Theorem [RD VII 2.1] which says that the trace map on residual complexes for a
proper morphism is a morphism of complexes. Examining the proof of the Residue
Theorem \loc. cif.], it shows that trace commutes with 8 at every point A*eX whose
closure {x}~ is proper over Y. And this is just what we need for this result.

3. Algebraic De Rham homology.

Throughout this section we fix a field k of characteristic zero. We will define
the De Rham homology of an embeddable scheme, and prove that it is independent
of the embedding. The De Rham homology is a covariant functor for proper mor-
phisms, and a contravariant functor for open immersions. We will establish a long
exact sequence relating the homology of a closed subset to the whole space and the
open complement.
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Definition. — Let Y be an embeddable scheme over k. Let Y->X be a closed
immersion of Y into a smooth scheme X over k, of dimension n. Then we define the
algebraic De Rham homology of Y by

H^Y^H^-^X,^),

the hypercohomology, with supports in Y, of the De Rham complex on X.

Using the canonical resolution introduced in the last section, we can give a more
concrete interpretation of this cohomology. Expressing ry=ro7^, and recalling
that E(Q') is an injective resolution of £1\ we can write

H^Y^HP-^Y, JY(E(^))).

Furthermore, since the complex ZY(E(il")) is a complex of injective ^"Modules, which
are thus flasque sheaves, this hypercohomology is just the cohomology of the complex
of global sections:

H^Y)=A2n-,(p(Y, ̂ (E^)))).

Our first task is to show that this definition is independent of the embedding,
and is functorial in Y. For this we will need the following lemma, which makes essential
use of characteristic zero.

Lemma (3.1) (char. k=o). — Let f: X-^Y be either a smooth morphism or a closed
immersion of smooth schemes over k. Let Z be a closed subscheme of X such that the induced map
y:Z->Y is also a closed immersion. Then the trace map gives a quasi-isomorphism of complexes

Tr^ : /,Fz(E(^)) M -> r,(E(Qy),

where n = dim X — dim Y.

Proof. — We know at least from Proposition (2.3) above that Tr^ is a morphism
of complexes. To show that it is a quasi-isomorphism, we separate cases.

Case 1. — Suppose f is a closed immersion. The question is local, so we can
factor f into a sequence of closed immersions of smooth schemes of codimension one,
and thus we reduce to the case of codimension one. We have Z c X c Y, so it will
be sufficient to show that the map

Tr,: E(^)[-2]->Jx(E(^))

is a quasi-isomorphism. As in the proof of Proposition (2.2) above, we have
rx(E(QY))=E(^(Qy))[-i],

where Tif^Qy) denotes the complex formed of the sheaves ^Z^(Q^). The trace map is
obtained by applying the functor E, term by term, and taking the associated simple
complex, of the map of complexes

^[-i]->^(^).
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This map of complexes is defined by Y] t-> T] A z~~1 rf-2', where T] e Q^ 5 and z is a local equa-
tion of X in Y.

To simplify the discussion, we may assume that X and Y are affine, say X=Spec B,
Y==SpecA, and B==A/(-2'). Furthermore, we may complete A with respect to the
-?-adic topology without changing the situation. Then by Lemma (1.2), there is an
isomorphism A^B[[-3']]. Finally, with these identifications, we have an isomorphism

H^)^^]!^

for each p. Thus our map of complexes is

^[-i]-^!^-1]/"!
defined by •^\->'Y}^z'~ldz

for 7]ei^. It will be sufficient to show that this is a quasi-isomorphism of complexes.

Let Yenj^O-1]/^1.

Then y can be written uniquely in the form

Y=a^- l+...+a^-8+(Pl^~ l+...+P3^8)^

for suitable s>_o and a^e^4'1 and j^ef^ for each i. Now d^==o if and only if

rfa,==o, i==i, ...,.$•

î-o,

^i-O-^4'1^ i-^ ...,.y.

Letting
6=(-i)^l([3^-l+(i/2)p3,-^^^(^(^^)p^-,+l^

we find ^==dQ-{-^z~ld^, and d^==o.

Thus our map of complexes is surjective for cycles modulo boundaries. Secondly, note
that ^z'^ldz=d^ for some ^ if and only if ^==dy for some p. Indeed, ^ must be
of the form ^z~~ldz for some p. Thus our map of complexes is a quasi-isomorphism,
as required.

Case 2. — Suppose f is an etale morphism. Then the trace map

Tr,:/,r,(E(^))-^rz(E(Qy))

is actually an isomorphism of complexes. Indeed, for each xeZ, the injective hulls
ofk^x) over the local rings ̂  x anc^ ^a?,Y are t^le same, and the trace map is an isomorphism
between them. This follows from the construction of trace for residual complexes
[RD VI § 4].

Case 3. — Suppose f is a smooth morphism. The question is local on Z, so by
Lemma (1.3)3 we can find a closed subscheme W of X, containing Z, and which is
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etale over Y. . Let j : W->X be the inclusion, and g : W-^Y the restriction of/to W.
Then we have a commutative diagram of trace maps

^rz(E(0^))———^Try > /^(E(Q^)) [w~\

<
r,(E(oy)

Now/Tr, is a quasi-isomorphism by Case i; Trg is an isomorphism by Case 2. Hence
Tr^ is a quasi-isomorphism, as required.

Now we come to the main result of this section.

Theorem (3.2). — Let k be afield of characteristic zero. For each embeddable scheme Y
over k, the algebraic De Rham homology groups H^Y) defined above are independent of the
embedding used in the definition. For each proper morphism Y'->Y of embeddable schemes there
is a natural transformation H^Y^-^H^Y) making Hq into a covariant functor on the category
of embeddable schemes and proper morphisms. For each open immersion Y()->Y there is a natural
transformation H^(Y)->H^(Yo) making H^ into a contravariant functor with respect to open
immersions. For compositions of proper morphisms and open immersions, there are commutative
diagrams of these maps.

Proof. — Actually the phrase e< H^ is independent of the embedding " is somewhat
inexact. To give a completely precise statement of what we mean is rather tedious,
and may be left to the reader. Such questions were treated at some length in [RD],
so need not be repeated here. What we will prove is that for each embedding Y-^X^,
and for each y, we have a group

H^H^Y),

depending on X^. Given another embedding Y-^Xg, we have an isomorphism
a^Hi-^Hg. Given a third embedding Y->X3, we have a compatibility 043=0023042.
Then, given a proper morphism Y'-^Y, and embeddings Y'->X^, Y->X^ we have
a homomorphism ^: H^H^. Given another choice of embeddings Y'->Xg and
Y-^Xg, we have a compatibility (Bgoc^ = a^pi. There will be further compatibilities
for a composition of two proper morphisms, for open immersions, and for combinations
of proper morphisms and open immersions.

In our situation, the compatibilities will all follow from the analogous compati-
bilities for the trace map on residual complexes, which were spelled out in [RD VI, 4.2].
So we will say no more about the compatibilities here, but will confine ourselves to
defining the isomorphism comparing two embeddings, and the functorial maps for
proper morphisms and open immersions.

39



40 R O B I N H A R T S H O R N E

Let Y->Xi and Y-^Xg be two closed immersions of Y into smooth schemes
over k. Then the diagonal map Y-^X^xXg is also a closed immersion. We will
compare the two original embeddings to this one. Let 7^==dim X^, n^== dim Xg, and
let j&i, p^ be the projections onto the two factors. According to the lemma, the trace
maps for p^ and p^ induce quasi-isomorphisms of complexes, which in turn induce
isomorphisms of hypercohomology as follows:

W^^(X,xX^^^)

H^X,,^) H^X^)

Composing these two isomorphisms gives the required isomorphism o^g between the two
definitions ofH^Y). We let the reader verify the compatibility for three embeddings.

Now let g : Y'-^-Y be a proper morphism of embeddable schemes. Let Y'-^X'
and Y->X be embeddings into smooth schemes over k. Replacing Y'-^-X' by the
(< diagonal " embedding Y'-^X' X X, which is a closed immersion because g is proper,
we may assume there is a smooth morphism f : X'->X restricting to g on Y\ Then
by Proposition (2.3), the trace map for f induces a morphism of complexes

Tr,: /^(E(^)[^'-^]) -^(E^)),

where n == dim X, n' = dim X'. Taking hypercohomology, we get a homomorphism
Tr^. ̂ -W^V^-W),

in other words, a map
H^(Y')->H^(Y).

Again we leave to the reader the verification that this map is independent of the embed-
dings chosen, and is functorial in g,

Finally, let Y()->Y be an open immersion. Let Y-^X be an embedding into
a smooth scheme, and let X^c X be an open subset such that XonY==Yo. Then
the restriction map to X^ gives maps

H^-^X^y^H^-^Xe,^)
hence maps H^Y^H^Yo).

These are clearly functorial, and compatible with the maps for proper morphisms
defined above.

Theorem (3.3) (Exact sequence of a closed subset). — Let Y be an embeddable scheme
over k, and let Z be a closed subscheme. Then there is a long exact sequence of algebraic De Rham
homology

... ̂ H^(Z) ̂ H^(Y) ̂ H^Y-Z^H^Z) ->...
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Furthermore, the formation of this exact sequence is compatible with H as a covariant functor on
proper morphisms and as a contravariant functor on open immersions.

Proof. — Let Y->X be an embedding ofY into a smooth scheme of dimension n
over k. Then this sequence is just the long exact sequence of local cohomology

... -^-^(X, ̂ )->H^^(X, ̂ ) ̂ ^(X, ̂ -^-^(X, ̂ ) -> ...

together with the excision isomorphism

H^(X, ̂ )^H^(X-Z, ̂ .,).

(See [LC 1.3].)

Proposition (3.4). — IfY is smooth overk, of dimension n, then there are natural isomorphisms

H^(Y)^H^(Y).

Proof. — Immediate from the definitions: take Y=X in both cases.

4. Mayer-Vietoris and the exact sequence of a proper birational morphism.

In this section we establish a Mayer-Vietoris sequence for algebraic De Rham
cohomology and homology, and we also establish exact sequences of cohomology and
homology for a proper birational morphism. These sequences, used later in conjunction
with the resolution of singularities, will be essential for proving the finite-dimensionality
of our cohomology and homology groups, and for proving the comparison theorems
with the analytic and topological theories.

Proposition (4.1) (Mayer-Vietoris sequence for cohomology). — Let Y be an
embeddable scheme over k, which is a union of two closed subschemas Y^ and Yg. Then there is
an exact sequence of algebraic De Rham cohomology

... ̂ H^-^H^Y^eH^Y^-^H^nY^^H^^Y)^...

Proof. — Embed Y in a smooth scheme X over k. Let I^ and Ig be sheaves of
ideals defining Y^ and Yg respectively. Then for every yz, we have an exact sequence

o^x/(I?n ia -> (W) © (W) -^x/(I?+ IS) ->o.

Now the {I^nl^} topology on Q^ is equal to the {(Iiulg)71} topology. Indeed,
I; n 1̂  3 (I^ n \^. Conversely

(I, nl,^ 3(W=I^.

Now by KrulPs theorem, I^I^I^nl^ for some m>_n. This in turn contains I^nl?,
so we are done. On the other hand, the {I?+I^} topology is easily seen to be equal
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to the {(I^ +1^} topology. Therefore, in taking the inverse limit over n of the above
sequence, we obtain an exact sequence of sheaves

o->^Y->^/Y^^x/Y.-^^x/(Y,ny.)^o.

The same argument applies to any locally free sheaf on X. In particular, we
can apply it to the sheaves ̂  of ̂ -differential forms. The resulting maps are compatible
with the derivation d of the De Rham complex. So we have an exact sequence of
complexes of sheaves

o -> ̂ x/Y-^ ̂ X/Y^ @ ̂ X/Y, -> ̂ XAY^ n Y,) -> o-

The resulting long exact sequence of cohomology is the Mayer-Vietoris sequence of the
proposition.

Proposition (4.2) (Mayer-Vietoris sequence for homology). — With the same hypotheses
as the previous proposition, there is an exact sequence of algebraic De Rham homology

... ->H/Y,nY,)->H,(Y,)®H,(Y,)->H,(Y)->H^,(Y,nY,)->...

Proof. — As above, embed Y in a smooth scheme X over k. Let n -== dim X.
Then our sequence can be written

... ̂ H^^/^-^H^-^Q^eH^-^x) -^H^-^Q^-^H^^1^)-^...

This is just the Mayer-Vietoris sequence of local cohomology, obtained as follows: For
any sheaf of abelian groups F on X, there is an exact sequence

o^r^nY/F)^r^(F)©r^(F)->rY(F).
If F is flasque, in particular if F is injective, the last map is surjective. Indeed, given
^^(F)? consider the section .y'eI^X-^YinYg), F) whose restriction to ^—(Y^nY^)
is s, and which is zero elsewhere. Then s ' extends to an element of F(X, F), which
necessarily has support in Y^. Furthermore, s—s' has support in Yg, so our map
is surjective. Now taking derived functors gives the required exact sequence of local
cohomology.

Next we come to the exact sequences related to a proper birational map. We
include a statement for coherent sheaves, which will be used in the proof of the following
result, and which may be useful in its own right.

Proposition (4.3) [26, Prop. 4. i]. — Let f : X'-.X be a proper morphism of schemes.
Let Y be a closed sub scheme of X, and let Y'^-^Y). Assume that f maps X'—Y' isomor-
phically onto X—Y. Suppose given coherent sheaves F on X and F' on X', and an injective
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map F-^/F', whose restriction to X—Y is an isomorphism. Then there is a long exact sequence
of cohomology

... -^IT(X, F)^IT(X', F^H^X, F^H^X', F^H^^X, F)-^. ..
wA^ ^ denotes completion along Y or Y', respectively,

Proof. — Take an injective resolution F'->P of F', and an injective resolution
F'->J"5 and fix a map P->J* compatible with the map F'-^F'. Then we have natural
inclusions F-^/,,? and F->/J* induced by the given inclusion F->/F'. Thus we
have a diagram

o —> F —> /P —> Q: —^ o

! I i
o —> F -^ /J- —> R- —> o

where Q^ and R* are the respective quotient complexes.
We will show that the map QJ-^R* is a quasi-isomorphism, i.e., the maps

A^(Q')-->-A^(Re) of cohomology sheaves are isomorphisms, for all i. On the h° level,
we have

o —> F —> /,F' —> A°(Q:) —> oi i i
o —> F —> f^F —> A°(R-) —> o

Now the map F->/^F' was assumed to be an isomorphism when restricted to X—Y;
/is proper, so/,F' is coherent, hence A°(Q^) is a coherent sheaf, whose support is contained
in Y. By the "fundamental theorem of a proper morphism 9? [EGA III 4.1.5],
f^^W)^' Hence ^(R^^A^Q:)". But since A°(Q:) is coherent, with support in Y,
it is equal to its completion. So we have ^(Q^^A^R*).

For z>o, we have

R^P -^> ^(Q:)

R^p -^> ^'(R-).

Again by [EGAIII, 4.1.5], R^F'^R^F';?. Since/is an isomorphism outside ofY',
the sheaves R^F' for i>o are coherent and have support contained in Y. So they
are equal to their completions, and we have ^(Q^^Z^R'). Hence Q^->R' is a
quasi'isomorphism, as claimed.
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Now we take the long exact sequences of hypercohomology of the two short exact
sequences of complexes above. Note that in the middle, we get

H^/J^H^F')
and H^/J^^H^X',?),

since I^X', •) is equal to the composite functor r(X,y,(.)) (cf. [RD II, 5.1]). On the
other hand, the quasi-isomorphism QJ->R* gives rise to isomorphisms of hypercohom-
ology. So we have exact sequences

... —> H^X, F) —> H^X', F') —> H^Q:) —> tf+^X, F) —> H^^X', F') —> ...

ir(X, F) —> IP(X', F') —> H^R-) —-> H^^X, F) —> IT-^X', F')

Now we deduce the exact sequence of the proposition by an elementary diagram
chase according to the following pattern:

Theorem (4.4) (Exact sequence ofcohomology for a proper birational morphism).
Let y:X'->X be a proper morphism of schemes. Let Y be a closed sub scheme of X, and
let V^y^^Y). Assume that f maps X'—Y' isomorphically to X—Y. Assume furthermore
that there exist closed immersions X->Z and X'->Z' ofX. and X' into smooth schemes over A,
and a proper morphism g : Z'-^Z such that g\y==f and g maps Z'—^""^Y) isomorphically
to Z—Y. Then there is an exact sequence of algebraic De Rham cohomology

... -^H?(X) -^H^X^OH^Y) ->IP(Y') -^H^+^X) ->...

Remark. — The extra hypothesis about the existence of the embeddings into Z
and Z' will automatically be satisfied in many applications. For example, if X is a
variety, if y:X'->X is a resolution of singularities of X, and if X-^Z is any
embedding of X into a smooth scheme over k, then a Z' will exist as above. Indeed,
the morphism f is obtained as a sequence of monoidal transformations with respect to
non-singular centers. If we apply the same transformations to Z, we obtain a smooth
scheme Z', and a birational map g : Z'-^Z, and X' appears as the proper transform ofX.

Proof of theorem: Case 1. — X and X' smooth. Then Z and Z' are unnecessary.
We will follow the pattern of the previous proof. For eachj&, take an injective resolution
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(in the category of abelian sheaves on X7), ^->P', and extend the maps of the
complex Ox' to S^ a double complex I". Similarly, take an injective resolution (in
the category of abelian sheaves on Y') ^->J^ where " denotes completion along Y',
and form the double complex J'\ Fix also a map of double complexes r'-^T"
compatible with the completion map Q^.->0.y.

We have natural inclusions Q^-^f^O.^ and 0.^-^f^O.y, where " on X denotes
the completion along Y. Thus we obtain a diagram

o —> tix —> /.!•• —> Q:- —> oi i i
o —> Qx —> /J" — ^ R - — > o

where Q*' and R** are the quotient double complexes.
Note that for each ̂ 5 the natural map Q.^->f^0,^ is injective, and is an isomorphism

on X—Y. The previous proposition and its proof show that for each j&, the map of
complexes Qf'-^R^' is a quasi-isomorphism. It follows that the map of associated
simple complexes ^(Q") —^(R**) is also a quasi-isomorphism.

To complete the proof, we take the associated simple complexes of the diagram
above, then form the long exact sequences of hypercohomology, and deduce the exact
sequence of the theorem by a diagram chase just as in the proof of the previous result.

Case 2. — General case. With the hypotheses of the theorem, let V^^Y).
Then we necessarily have 5-l(X)=X'uY//, and Y'^X'nY". We will make a three-
step constructions as in Case i, applied to the spaces Z^X^Y and Z'2X'uY"^Y".
Then, with a slight change of notation, we have exact sequences of complexes

o —> ^ ——> R/^, —————^ Q: —^ o

Y y Y

0 ——> 0.^/x ——> ^^Z'AX'UY-) ——> R' ——> °i i [
o —> Q;/Y —> RW/Y- ———> S- —> o

where we have written Z/X to denote the formal completion of Z along X, etc., and
R/,, to denote the process of taking an injective resolution followed by^,, and where
Q*, R', S' denote the quotient simple complexes.

Now the hypotheses of Case i apply to the situations (Z^X, Z'^X'uY") and
(Z^Y.Z'^Y"). We find that Q;-^R* and Q;->S' are quasi-isomorphisms. It
follows that R'-^-S* is a quasi-isomorphism.

This result, together with the Mayer-Vietoris sequence

o -> ̂ z./(x' u Y") -^ ̂ z'/x'@ ̂ ZVY" ~^ ^ZVY^ "̂  °
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and an interesting diagram-chase show that in the situation

o -^ ^,x —> RW/x' —> T- —> oi i i
o —^ D^Y —> R/,^ —> U- —> o,

the map T'-^U" is a quasi-isomorphism. (This diagram-chase, if carried out in the
derived category, gives a good opportunity to use the octohedral axiom.) Then, as
before, taking the long exact sequence of cohomology gives the result of the theorem.

Proposition (4.5) (Exact sequence of homology for a proper birational morphism).
— Let X, X', Y, Y' be as in the previous theorem. Then there is an exact sequence of algebraic
De Rham homology

... ̂ H,(Y')^H,(Y)®H,(X')^H,(X)^H,_,(Y')-^...
Proof. — We write the exact sequences associated to the closed subsets Y in X

and Y' in X' (Theorem (3.3) above) and the functorial maps for the proper morphism
X'-^X:

... —^ H,(Y7) -^ H,(X') —> H,(X'-Y') -^ H,_,(Y') —> H^(X') -^ ...

. . .—>H, (Y) -^H,(X) -^H,(X-Y) -^H,_i(Y) -^ H,_,(X) -^ ...

The middle vertical arrow is an isomorphism because X'—Y' is isomorphic to X—Y.
So the required exact sequence follows by the diagram chase of Proposition (4.3) above.

As an application of these results, we will consider the cohomology of an affine
scheme. If X is a smooth affine scheme of dimension n, then we can calculate H?(X)
using the De Rham complex of X* itself. Since X is affine, the spectral sequence of
hypercohomology degenerates, and we have H^(X)==Al^(X, Q.^). Since ^==0 for
p>n, we find that Hl(X)==o for i>n.

The same argument in the complex case, shows that if X is a Stein manifold of
dimension n, then H l(X,C)=o for i'>n. This prompted Serre to ask whether the
same is true for a Stein space with singularities, and this question has been answered
affirmatively by Kaup [35], R. Narasimhan [42], and Bloom and Herrera [5].

Here we prove a slightly weaker result in the algebraic case.

Theorem (4.6). — Let X be an affine scheme of dimension n. Then H^X):::̂  for
i>n+i.

Proof. — We use induction on n, the case n == o being trivial. By the Mayer-
Vietoris sequence and the induction hypothesis, we reduce to the case X integral. Let
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Y be the singular locus of X. Then by resolution of singularities we can find a smooth
scheme X' and a proper birational map /: X'-»X which satisfies the hypotheses of
(4.4). Thus we have an exact sequence of cohomology

... ->ir(X) -^H^X') eiT(Y) -^H^Y7) ->...

By the induction hypothesis we may assume that H^(Y)==o for i>n. Thus to prove
our result, it will be sufficient to show that the restriction map

H^X'^HW

is an isomorphism for i'>n.
Since X' is smooth, we can calculate H^X') and H^Y') using the De Rham

complex on X', and its completion along Y'. Since X and Y are affine, we can write
the spectral sequences of hypercohomology as follows:

Er==H°(X, R^W) =>H\X')
'E^H^X, RyA.)) ̂ H^Y').

Furthermore, there is a natural morphism of the first spectral sequence into the second.
By the fundamental theorem of a proper morphism, we have

Rv:(^)=R^(^r.
On the other hand, since/is an isomorphism of X'—Y' onto X—Y, the support
of R^^) is contained in Y for q>o. It is a coherent sheaf, therefore it is equal
to its completion.

We conclude that Ef^—^Ef3 is an isomorphism for q>o and allj^, and for p>n
and all q (in the latter case it is zero). Hence in the abutment we have an isomorphism
for i>72, as required.

Remarks: i. According to the comparison theorem (IV, i. i) below, and the analytic
result about Stein spaces, it is also true that H^^X)^^. However we do not know
an algebraic proof of this fact.

2. One can also ask about the homology of an affine scheme. In the smooth
case, we have H^(X)=o for i<n, by (3.4). This result does not hold in the singular
case without further restrictions, as one can see by considering the union of two affine
planes in four-space, which meet at a point. In that case Hi(X)=j=o. However, if
one imposes the condition ofOgus [43] that DR-depth X==w, then one has H^(X)==o
for i<n also in the singular case. (See Ch. Ill, § 7 below for a discussion of this
situation.)

5, Duality.

Theorem (5.1) (Duality). — Let Y be an embeddable scheme^ proper over k. Then there
is a natural isomorphism/or each q

H^(Y)^(H,(Y))',
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where ' denotes the dual k-vector space. These isomorphisms are compatible with the functorial
maps of W as a contravariant functor, and H^ as a covariant functor^ on the category of proper
schemes over k.

Proof. — Embed Y in a smooth scheme X of dimension n over k. Then we wish
to establish an isomorphism

W[X,^^{H^{X,^)Y.

Our technique is to deduce this from a similar < c formal duality " for coherent sheaves
on X, which in turn follows from the usual <c Serre duality " for coherent sheaves. The
essential point is to show that Serre duality for the coherent sheaves 0.^ is compatible
with the exterior differential d. For this we will use the fact (Proposition (2.2) above)
that d commutes with the trace map.

Proposition (5.2) (Formal duality). — Let X be a smooth scheme of dimension n over k,
let Y be a closed subscheme, proper over k, let F be a locally free sheaf on X, and let co == ̂ /^
Then there are natural isomorphisms

IP(X, F^H^X, F®O)))'.

Note that these vector spaces need not be finite-dimensional.

Proof. (See also [24, III, 3.3], where the same result is proved with the unnecessary
additional hypothesis that X be proper over k.) — With the needs of our theorem in
mind, we will take some care in defining the map which gives rise to this duality iso-
morphism. We will use the notation of § 2: E denotes the Cousin complex of a locally
free sheaf, and the trace map will be

Tr^: r(E((o))[n]->^.

This is only a map of graded sheaves, but since Y is proper over k, the induced map

TTf: rY(E(co))[7z]->A

is a morphism of complexes (see Proposition (2.3) above).
To establish the map of our proposition, we first define a map of complexes of

sheaves

9: F-^^m^(ry(E(F®o))),ry(E(co))).

(See [RD, p. 63] for the notation ^om9.) Because of the nature of the Cousin complex,
it is sufficient to define for each xeY, a map

F^->Hom^(F®co®I^, co®IJ.
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But this is immediate, using the fact that 1^ the injective hull of k[x) over 0^ has a
natural structure of ^-module, and using the natural map F-^Hom(F®<x), <o).

Applying the functor F to the complex above, and composing with the trace map,
we have natural maps of complexes

r(J^(ry(E(F®o))), /Y(E(O))))i
HomKlY(E(F®(o)), Iy(E((o)))

h
Hom;(rY(E(F®(o)),^[-^]).

Now the map 9 defined above induces maps on cohomology; the complex on the right
is composed of flasque sheaves, so composing with the maps just defined, and noting that

^(rY(E(F®(o)))-:FPY(X, F®co),

we have maps

?(9) : H^X.^^H^X.F®^))'.

This is the duality map of the proposition.
To show it is an isomorphism, we consider the scheme Yy defined by the sheaf

of ideals ly. Expressing the cohomology of X as an inverse limit (see Ch. I, § 4) and
the local cohomology as a direct limit of Ext's, we reduce to showing that

H^(Y,, F^^CExt^^F, co))'.

Now E((o)[%] is a residual complex for X. Hence

K;==^m^(^,E(o))M)

is a residual complex for Y,.. Rewriting, we must show that

H^(Y,, F®^(Ext^(F®^, K;))'

is an isomorphism. But this is just the duality theorem for Y,. [RD, Ch. VII],

Proof of theorem (continued). — To define the map of the theorem, we follow the
pattern of the previous proof, using always homomorphisms which commute with rf,
i.e. homomorphisms of graded ^-modules. So we have a natural map

9 : Qx^^^x^E^x)),^^^)))-

The trace map is

Tr^: IY(E(^))|>Z:|-^,

49
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which is a morphism of complexes, by Propositions (2. a) and (a. 3) above. So applying F
and composing with Tiy, we have natural maps of complexes

r(Jf^.(.rY(E(Qx)), Jy(E(Qx)))

I
Hom,;(Iy(E(Qx)), Iy(E(Qx)))

1
Hom^W^)),k[-2n]).

Now <p induces maps on hypercohomology

H»(X,^)-^(H^(X,%))'

which are the maps of the theorem.
On the other hand, for each Q^, we can consider the maps of the previous prop-

osition, noting that J^om^(Q^, (o)^^""^. So for each p, we have maps

^ : Dl-^J^m^(^Y(E(^-p))^y(E(co))).

Summing over p^ we have

S^: Q;->^<(rY(E(Qx)),rY(E(<o))).
p

Furthermore, the trace maps are compatible via the projection

^^.(^(E(Qx)),rY(E(^)))i
^^(rY(E(Qx)),rY(E(<o)))

defined by c< taking the component which lands in co == O.^15?.
This shows that the map of the theorem is compatible with the maps of the prop-

osition for the sheaves n^. Thus using the spectral sequence of hypercohomology
for Ox? tne isomorphisms of the proposition show that the map of the theorem is also
an isomorphism.

The functoriality of our duality isomorphisms as Y varies follows from the func-
toriality of the construction.

Corollary (5.3) (Poincar^ duality). — Let Y be smooth and proper of dimension n over k,
Then there are natural isomorphisms

H^Y^H^-^Y))'.

Proof. — Combine the theorem with Proposition (3.4) above.
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6. Finiteness.

In this section we will prove the finite-dimensionality of the algebraic De Rham
cohomology and homology groups, as vector spaces over the base field. We have
delayed this result, because it uses the resolution of singularities of Hironaka, and we
wished to show how far the general theory can be developed without using resolution.
On the other hand, it seems that resolution is essential for proving finite-dimensionality,
and it will also be essential for proving the comparison theorem with complex cohomology
of the associated analytic spaces.

Theorem (6.1). — Let Y be an embeddable scheme of finite type over afield k of characteristic
zero. Then the cohomology groups H?(Y) and the homology groups H (Y) are finite-dimensional
k-vector spaces, for all q.

Proof. — We proceed in several steps. First suppose that Y is smooth and proper
over k. Then we can calculate HP(Y) as the hypercohomology of the De Rham
complex Q^ on Y. The first spectral sequence of hypercohomology for IP(Y, n^) has
initial terms Ef^H^Y, ̂ ). These are finite-dimensional over k since Y is proper,
and O.19 is coherent, by the finiteness theorem ofSerre and Grothendieck [EGA III, § 3].
Hence the abutment terms IP(Y) are also finite-dimensional. Since Y is smooth, we
have H^(Y)^H2n-g(Y), where n is the dimension of Y, so the homology groups are
also finite-dimensional.

For the rest of the proof, we will use induction on the dimension of Y, the case
dim Y== o being trivial.

For the next step, suppose that Y is smooth over k, but not necessarily proper.
Since Y is smooth, we have H<?(Y)^H^_^(Y), so it will be sufficient to consider the
homology groups. We will give two slightly different proofs in this case. For the
first, we use the embedding theorem of Nagata [40] to deduce that Y can be embedded
as an open, dense subset of a scheme YQ which is proper over k. By resolution of singu-
larities, we can find a smooth proper scheme Y over k, which also contains Y as an open
dense subset. Let Z=Y—Y. Then the exact sequence of homology for a closed
subset gives

. . . ̂ H,(Z)->H,(Y)-^H,(Y)->H,_,(Z)->...

By the induction hypothesis, we may assume that the homology of Z is finite-dimensional.
The scheme Y is proper and smooth over k, so its homology is finite-dimensional, as
shown above. We conclude that the homology of Y is finite-dimensional.

Our second proof of this step avoids the use of Nagata's embedding theorem.
We first reduce to the case Y smooth and affine, by chopping off a closed subset of lower
dimension, and using the exact sequence of homology of a closed subset. Now Y, being
affine, can be embedded in an affine space A^ for some N. Its closure Yg in P^ is a
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proper scheme over A, containing Y as an open dense subset. Now we complete the
proof as above.

For the last step, we consider an arbitrary embeddable scheme Y over k. Using
the Mayer-Vietoris sequences for cohomology and homology, and the induction hypothesis,
we reduce to the case of an irreductible scheme Y. Its cohomology and homology is
the same as the reduced schemes Y,.̂  so we may assume Y is reduced and irreducible.
Let Y->Z be an embedding of Y in a smooth scheme Z over k. By resolution of
singularities, we can find a proper, birational morphism g : Z'-^-Z of smooth schemes
over k, such that the proper transform Y' of Y is smooth over A, and the fundamental
locus W o f ^ i s properly contained in Y. Let f==g\^'^ and let W'^/'^W). Then
by Theorem (4.4) above, there is an exact sequence of cohomology

. . . ->H?(Y)->H?(Y')e?(W)->H?(W')->Hg+l(Y)->...

Since W and W have smaller dimension, we can apply the induction hypothesis. By
the previous step, the cohomology of Y' is finite-dimensional. We conclude that the
cohomology of Y is finite-dimensional. The same argument for homology, using
Proposition (4.5), shows that the homology of Y is finite-dimensional. This completes
the proof of the theorem.

Remark. — For a smooth affine scheme Y over a field of characteristic zero,
Monsky [39] has given an entirely different proof of the finiteness ofDe Rham cohomology,
without using resolution of singularities. It would be interesting to know if this proof
would extend also to the singular case.

7. Further Developments.

We have now established enough of the general theory so that a number of further
developments, common to many cohomology theories, will follow quite easily, provided
they are approached in the right order. Therefore in this section we will treat a number
of topics in a briefer style, trusting that the reader can supply any missing details.

The principal result of this section is the definition of the cohomology class of a
cycle on a smooth variety, the fact that it depends only on the rational equivalence
class of the cycle, and transforms intersection of cycle classes into cup-product of cohom-
ology classes. We also calculate the homology and cohomology of a vector bundle,
and establish a " Thorn isomorphism ". This shows in particular that our cohomology
theory has the properties needed for the development of a theory of Ghern classes [15],
and the phrasing of the Riemann-Roch theorem [7].

For a scheme Y, we first define the fundamental homology class 7)(Y)eH2y(Y),
where r = dim Y. Then if Y is a closed subscheme of a scheme X, we define the
homology class 7](Y)eH2^(X) of Y on X by the natural map on homology. Then,
if X is smooth of dimension n, we obtain the cohomology class of Y, 7](Y)eH2n'~2r(X),
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by the natural isomorphism of homology with cohomology on a smooth scheme (3.4).
If Y is a Gartier divisor, we also give another construction of T](Y) using Cech cohomology.

We do not know how to define the cohomology class of a cycle on a singular scheme,
and hence we do not know how to define Ghern classes for vector bundles on a singular
scheme. It would be interesting to know to what extent these results could be generalized
to the singular case.

7.1. Explicit calculations.

First we note that if Y is any scheme, the homology and cohomology of Y are
the same as for the reduced scheme Y^. I fYis a disjoint union of schemes Y,, then
the homology and cohomology of Y are the direct sum of that of the Y,. If Y is any
scheme of finite type over k, then H°(Y) is a finite-dimensional commutative A-algebra
with i. In particular, if Y is connected, it is an integral domain, hence a field. Thus
if k is algebraically closed, and Y is connected, we have H°(Y)=A.

Next we compute the cohomology of affine yz-space over k. Let Y==A^. Then
H°(Y)=H2^(Y)=^, and all other cohomology and homology groups are zero. This
follows from the (( Poincare lemma ", whose proof we include for completeness.

Proposition (7.1) (Poincare lemma). — Let k be afield of characteristic zero. Let
R==k[x^y . . ., A:J. Then the sequence

O^^R^^^...-^Q^o

is an exact sequence of k-vector spaces.

Proof.—By induction on n, the case n==o being trivial. Let coeQ^, with </Q)===O.
Then we must show (0=^7] for some ^ejQ^"1. We separate out the part of o> which
depends on dx^y i.e., we write

co = co'^4~o)"

where (*/ and (Q" do not involve dx^. Then we define

T/=JCO'^

where of course <( integration " simply means the algebraic process of replacing x[ by
^^/(r+i) wherever it occurs. Then •^'e^"1, and

rf7/=CO'^+<0"',

where o'" does not involve dx^. Now, replacing <o by G)—JT)', we reduce to the case
where co does not involve dx^.

Assuming that oj does not involve dx^y we can write

^-^A.^A-'^v ^•>I-
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Since Ao==o, we have ^ ...^ /^i==o for all ^, ..., iy. Thus the polynomials^ , do
not involve x^ at all. So we have reduced to the case of the polynomial ring k [x^y .. ., x^],
for which the result is true, by induction.

Remark. — This proof can be generalized in two directions. We can replace the
field k by any ring A containing the rational numbers. Secondly, instead of taking R
to be a polynomial ring, we can take R to be formal power series, or germs ofholomorphic
functions at the origin, in case k = C. We need only observe that in each case, the
process of ( < integration " gives again power series of the same type.

Using this remark, one can show easily that if Y is any scheme of finite type over A,
then the projection of A^ onto Y induces an isomorphism on cohomology.

We will also need one further case of the Poincare lemma, which requires a more
subtle proof.

Proposition ( 7 . 1 . 1 ) (Ogus). — Let k be afield of characteristic zero, and let R be the
completion of A[^, . . ., x^\ with respect to an I-adic topology, where I is a homogeneous ideal.
Then the sequence of the proposition above is still exact.

Proof. — This is proved for I==m in Ogus3 thesis [43, Prop. 1.1]. The same
proof works, once one observes that for a homogeneous ideal I, the homotopy operators R
of loc. cit. are continuous for the I-adic topology, hence pass to the I-adic completions.

The cohomology of projective space P^ can also be found explicitly. We have

TWP^ ^ for 0^<-2^ ^ even'n^s.j.) = { -v ' [o otherwise,

and similarly for the homology. One way to show this is to show that the coherent
sheaf cohomology H^P", Q^) is equal to k for o<^q==p<_n and zero otherwise. We
leave to the reader the extension of this result to show that for a smooth scheme X, if
TC : P^—^X is the projection, then TC* gives an isomorphism

H^X)^]/^1)--^?^

where ^ goes to the <c class of a hyperplane ".

7.2. Dimension.

Theorem (7.2). — Let Y be a scheme of finite type of dimension n over k. Then H?(Y) ==o
and Hg(Y)==o for q<o and q>2n.

proof. — If Y is non-singular, we have H^^H^-^Y), and H-(Y) is the
abutment of the spectral sequence of hypercohomology beginning with Ef^H^Y, ^p).
Thus the result follows from a theorem of Grothendieck [14], stating that for a topological

54



ON THE DE RHAM COHOMOLOGY OF ALGEBRAIC VARIETIES 55

space Y of combinatorial dimension n, and for any abelian sheaf F, ?(¥5 F) == o for
q<o and q'>n.

If Y is singular, we use induction on the dimension of Y. Furthermore, we may
assume that Y is reduced, and using the Mayer-Vietoris sequences, we reduce to the
case Y integral.

To show that the homology is zero in the desired range, let Y' be the singular
locus of Y. Then Y' has smaller dimension, Y—Y' is smooth, so that we have the
result by the exact sequence of a closed subset (Theorem (3.3) above).

To show that the cohomology is zero in the desired range, we let f: X—^Y be
a resolution of singularities of Y. This is a birational map which is an isomorphism
outside the singular locus Y' of Y. In this case we have the result by induction on
the dimension, using the exact sequence of cohomology for a birational morphism
(Theorem (4.4) above).

7.3. Cech cohomology.

Theorem (7.3). — Let Y be a closed sub scheme of a smooth scheme X. Let 91 be an open
of fine cover of Y. Then the natural map

H^Ax^H^Y)

is an isomorphism/or all q,

Indeed, there is always a natural map from Cech cohomology to derived functor
cohomology. It is compatible with the spectral sequences of hypercohomology. Hence
the result of the theorem follows from the fact that Cech cohomology of coherent sheaves
on schemes (and formal schemes, for the same reason) computes the derived functor
cohomology (see Gh. I, § i).

7.4. Products.

To define products, it seems most convenient to use the canonical flasque resolutions
of Godement [12, Ch. II, § 6.6]. Since his cohomology theory is equivalent to ours
(see Gh. I, § i above) we obtain for any ringed space (X, (P^) and any 6^"M°dules F, G,
natural cup-products

H^X, F)xIP(X, G) -> H^(X, F(x)^G).

Furthermore, if V and W are closed subsets of X, then we have the cup-product for
cohomology with supports

H^X, F)xH^(X, G) -> H^(X, F®G).

In the case of De Rham cohomology, we take the canonical flasque resolutions
of the sheaves Q1 (or ̂  on a formal scheme). Since the canonical resolution is a functor,
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we get a double complex, and can form the associated simple complex. Then the
exterior algebra structure on the De Rham complex, together with the above process,
allows us to construct products in De Rham cohomology.

Let Y be a closed subscheme of a smooth scheme X. Then the cup-product for
the De Rham complex ^x on ^le formal scheme X gives us a cup-product for algebraic
De Rham cohomology

ir(Y) x IP'(Y) -> I-T-^Y) .
Furthermore, if V and W are closed subsets of Y, then we have the cup-product for
algebraic De Rham cohomology with supports

H^Y)xH^(Y)^H^(Y).

For homology, recall that the homology of Y is computed using the complex
Jy(E(^x))* The exterior product for differential forms induces maps

^XJY(E(^))->JY(E(Q^)).

So the corresponding cup-product gives us a cap-product for algebraic De Rham cohomology
and homology

H\Y)xH,(Y)-^H,,,(Y).

If Z is a closed subscheme of Y, then taking V=Z, W==Y, the cup-product with
supports gives us a cap-product with supports

H^xH^Y^H.^Z).

These products are functorial with respect to change of scheme. If Y is smooth,
the cup-product and cap-product are compatible via the isomorphisms H^Y) ̂ H^,,»(Y).
If Y is proper over k, the cup-product and cap-product are compatible with the duality
isomorphisms H^Y^^^Y))'. Indeed, looking back at the construction of the duality
map, it is just the cap-product

H^xH^Y^IVY)

followed by the trace map Ho(Y) ->k.

7.5. Projection formula.

The projection formula expresses the relation of the cap-product to the functors f*
and^ on cohomology and homology.

Theorem (7.5). — Let f: X-^Y be a proper morphism of schemes. Let A:eH^(X),
and j/eH^Y). Then we have

/.^•/*(j))==/.W.j'.
Here the dot represents cap-product on X and Y, respectively^ and the equality takes place in H (Y).
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Basically this follows from the fact that /„ is defined by means of the trace map
on the canonical resolution of the De Rham complex. The trace map of a morphism
is linear over the base. Also, trace is compatible with the 6ech process for computing
cohomology, and hence with cup-product. We will leave details of the proof to the
reader.

7.6. Homology class of a cycle.

Let X be a scheme of dimension n, and let Y be a cycle of dimension r on X,
i.e., Y==ST^Y^ where y^eZ, and the Y, are integral closed subschemes of X, of

dimension r. Then we will define the homology class 7](Y)eH2,.(X).
First we need to define the fundamental class of an integral scheme Y of dimension r.

Let Y' be the singular locus of Y. The exact sequence of a closed subset gives us

... ̂ H.^Y^^H.^^H.^Y-Y')^^^^)^...

But Y' has dimension less than r, so by the dimension theorem H2y(Y')=H2y_i(Y')==o
and we have Hg^Y) ̂ H^Y'—Y'). On the other hand, since Y—Y' is smooth, we
have Ha^Y—Y'^H^Y—Y'), which is a finite field extension of k. We define the
fundamental class of Y

7)(Y)6lUY)

to be the image of ieH°(Y—Y') under these isomorphisms.
Now let X be any scheme, and let Y==S^Y, be a cycle of dimension r on X.

Let j : Y,-^X be the inclusion map. Then we define the homology class of the cycle Y by
7](Y)=S^(^YJ)EH,/X).

i

It is clear from the definition that if U c X is an open subset, then the class of
the cycle YnU in Hg/U) is the restriction of "^(Y). The other functorial aspect of 73
is less obvious.

Proposition (7.6). — Let y:X'-^X be a proper morphism of schemes^ and let Y' be a
cycle on X'. Then

fW))=^W).
Proof. — Since both/, and T) are linear, we may assume that Y' is a closed integral

subscheme of X', of dimension r. Let Y=y(Y'). Recall by definition ofj^ for cycles
that if dimY<r, then/^(Y')==o, and if dimY==r, then/,(Y')=mY, where mis the
degree of the morphism Y'->Y, i.e., m is the dimension of the function field K(Y') as
a vector space over K(Y).

Since the homology classes in X' and X are direct images of the fundamental classes
ofY' and Y, respectively, it is enough to study y, of the fundamental class -^(Y^eHg^Y').
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If dimY<r, then H2,.(Y)==o, so there is nothing to prove. If dimY===r, we must
show that

/.W))-m.73(Y)

in Hg^Y). By removing proper closed subsets ofY and Y', as above, we may assume
that Y and Y' are both smooth over k, and that the map f : Y' ->Y is finite. Then
H^Y^HW, and H2,(Y)==H°(Y), and/, is given by the trace map from
E^yO-^E^Y). Now 73 (Y') is just ieK(Y'), T](Y) is ieK(Y), and the trace map
from K(Y')->K(Y) sends i to m. So we are done.

7.7. Cohomology class of a Carrier divisor.

Let X be a smooth scheme, and let Y be a Carder divisor on X. We will define
the cohomology class of Y, yOOeH^X). We will show that it depends only on the
linear equivalence class of Y. Also we will show that it is equal to the homology class
of Y considered as a cycle, via the isomorphism H^X^H^.^W- Finally we will
show that it has good functorial properties.

Given X and the Carder divisor Y, let 91 = (UJ be an open affine cover of X,
and let Y be defined by the rational function f^ on U,. Then on U^nU. the
quotient f^f. is regular. We define the cohomology class of Y, Y(Y)eH2(X) to be the
class of the Gech cocycle

{</log(/,^)}e^(<tt,Q^.

One checks easily that this is a cycle, and that the cohomology class y(Y) ls independent
of the choice of^. It is also clear that y is an additive map from the group of Carder
divisors to H^X). I fY is linearly equivalent to zero, that means that we can choose
all thej^ equal to a single rational function/, in which case clearly YOO=O- Thus
Y defines a group homomorphism

Y : PicX->HP(X).

If f: X'->X is a morphism of smooth schemes, it is clear from the construction that
y*(y(Y)) =y(/*Y). Somewhat less evident is the fact that this construction is compatible
with the definition of the homology class of a cycle in the previous section.

Proposition (7.7.1). — Let X be a smooth scheme, and let Y be a Cartier divisor on X,
also considered as a cycle of codimension one. Then Y(Y)==73(Y) via the natural isomorphism
H^X^H^CX).

Proof. — One is tempted to say, since both constructions are natural, how could
they fail to give the same result? The difficulty is that y(Y) is defined using Cech
cohomology, and 'yj(Y) is defined by the trace map on the canonical resolution of the
De Rham complex. So we must chase through the identification of these two cohomology
theories.
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To compare the two, we apply the Gech process to the canonical resolution, and
consider the triple complex (̂91, E(f2')). We will use d for the exterior differentiation
in Q', 8 for the maps in the Cousin complexes E*, and B for the Cech coboundary map.
We have natural quasi-isomorphisms of associated simple complexes

(̂91, n-) -^> ^f(%, E(tr>) ̂  E(^)
which express the equivalence of the two cohomology theories.

Both Y and T] are additive, so we may assume Y is an integral subscheme of
codimension one. Now y00 is represented by the Cech cocycle

a={dlog{f,lf,)}e^^1),

and "y](Y) is represented by the image of i e^y under the trace map, which gives a section
beE\Q1).

Consider the class in the triple complex
,={rfiog^}E<WE°(n1)).

This makes sense because E^ty^iy^IHX), and the functions/ are in K(X). Note
that dc==o by construction. Clearly &:==(p(<2). And Sc is the class given by the images
of dfilfi in E^t^), which are all the same, and are equal to ^/{b), as one sees by going
back to the definition of the trace map.

Thus the total differential of c is the difference of the images of 9 (a) and ^(6) (up
to a sign which we will let the reader straighten out), and hence these two define the
same cohomology class.

We now generalize this result in a way which will be useful in the next section.

Proposition (7.7.2). — Let f : X' ->X be a morphism of integral schemes, with X smooth,
and let Y be a C artier divisor on X such that /(X') $ Supp Y. Then

^(X')./*(Y(Y))=TI(C/-*Y).

Here c denotes the cycle associated to a Cartier divisor.

Proof. — If X' is smooth, then we can consider the cohomology class y(/*Y). This
result then is a combination of the previous proposition with the fact that y commutes
with/*, and that T](X') is the identity element in the cohomology ring of X', via the
isomorphism of homology with cohomology.

If X' is normal, we can reduce to the smooth case by removing closed subsets of X'
of codimension at least two. Our equality takes place in H^^X'), where n'==dim X',
which according to the dimension theorem and the exact sequence of a closed subset is
not changed by removing these subsets.

In the general case, let g : X^-^X' be the normalization of X'. Then we have
the result for X", which says

^^gTW))^cgTm).
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Applying g^ and the projection formula, and the fact that g^ and T] commute, we have

V)(X')./*(Y(Y))=^^/*(Y)).

Now the result follows from the easy result that for a finite birational morphism
g : X"->X'3 and a Gartier divisor Z on X', we have g^cg*(Z)==c(Z).

7.8. Intersection Theory.

Let X be a smooth scheme of dimension n. Let Y be a cycle on X of dimension r.
We have already constructed the homology class of Y, 7](Y)eHay(X). Via the iso-
morphism H2y(X)^H2n~'2r(X) we obtain the cohomology class of the cycle Y, which we
denote also by

T^eH^-^X).

We now assume that X is quasi-projective, so that we can apply the theory of
rational equivalence and intersection theory of rational equivalence classes of cycles [9].
We will show that T](Y) depends only on the rational equivalence class ofY, and that
7](Y.Z)=7)(Y) .Y](Z) for any two cycle classes Y and Z.

Proposition (7.8.1). — Let X be a smooth scheme, and let Y be a cycle on X. Then the
cohomology class ^(Y) depends only on the rational equivalence class of Y.

Proof. — To define rational equivalence, one considers a cycle Z on X X P1. Let
Xo==Xx{o}, X^=Xx{i}. If Z meets Xg and X^ properly, then we say that the
cycles Zo==Z.Xo and Z^==Z.X^ on X are rationally equivalent, and these special
equivalences generate the relation of rational equivalence. Thus to prove our result,
we must have 7](Zo)==7](Zi) in H.(X).

Let GQ : Xo-^XxP1 and a^ : Xi->XxP1 be the injections. Then one verifies
easily that GQ^ and c^ define the same map of H.(X) -^H.(XxP1), and this map is
injective. Hence it will be sufficient to show that

7](Z.Xo)==7](Z.X,)

in H,(XxP1).
Now Xo and X^ are linearly equivalent divisors on XxP1. Hence they have the

same cohomology class: Y(Xo)==Y(^i)- So our result will follow from the special case
of the intersection theorem which says

7](Z.Xo)=^(Z).Y(Xo).

To prove this, we apply Proposition (7.7.2) above to the morphism /:Z—^XxP1 .
(We may assume of course that Z is an integral subscheme of XxP1.) Thus we have

^./^(Xo^^Xo)
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in H.(Z). Applying the projection formula for f, we have
7)(Z).Y(Xo)=^(Z.Xo)

in H.(XxP1), as required.

Remark, — It seems reasonable to expect that T](Y) depends only on the algebraic
equivalence class of Y, but we don't know how to prove this.

Theorem (7.8.2). — Let X be a smooth quasi-projective scheme^ and let Y, Z be cycles
on X. Then

^(Y.Z)=7)(Y).7i(Z).

Here Y.Z denotes the rational equivalence class intersection^ and the multiplication on the right is
cup-product in H*(X).

Proof. — By linearity we may assume that Y and Z are integral subschemes of X.
On the other hand, we can replace Z by a rationally equivalent cycle, so that Y and Z
intersect properly, and we may even require that Z intersect the singular locus of Y
properly also. Thus we may assume that YnZ=UW^, where W, are subvarieties of
the correct codimension, and the generic points of W, are smooth on Y.

The cohomology group of X in which this equality takes place is not affected by
removing subsets of X of dimension less than W (using the dimension theorem and the
exact sequence of a closed subset). So by throwing away closed subsets of W, we may
assume that the W, are disjoint, that each W, is contained as a closed subset of an open
affine subset U, ofX, and that YnU, is a complete intersection in U,, for each i.

For the continuation of the proof it will be convenient to use local cohomology.
For any closed subset VsX we define H^(X)=H^(X, Qx)- Now r\ (Y) lies naturally
in Hy(X), T](Z) lies in Hz(X). The cup-product applies also to cohomology with
supports, and gives us a product

7](Y).7](Z)eHYnz(X),

whose image in H*(X) is the usual cup-product. To finish our proof, we will establish
the apparently stronger result that

7)(Y.Z)==7](Y).73(Z) inH^(X).

Now YnZ is the disjoint union of closed subsets W,. Hence
HYnz(X)=SH^.(X).

And by excision for local cohomology, H^(X)==H^.(U,). Under this decomposition
the components of 73 (Y.Z) and ^(Y).T](Z) are obtained by restricting to the U,.

Thus we have reduced to the case X affine, and Y a complete intersection, and
we must show

7)(Y.Z)=7)(Y).7](Z) inH^(X)
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where W=YnZ. If Y is a divisor, this follows from Proposition (7.7.2) and the
projection formula, as in the previous proof, except that one needs to refine the projection
formula in an obvious way so as to take into account the cohomology with supports.
The case Y is a complete intersection of arbitrary codimension follows by an easy induction
on the codimension.

7.9. Cohomology and homology of a vector bundle.

As a further illustration of the functorial properties of De Rham cohomology, we
calculate the cohomology and homology of a vector bundle. Let Y be a scheme of
dimension n, and let E be a vector bundle of rank r over Y. We denote the projection
by TT : E—-Y, and the zero-section by G : Y->E.

Proposition (7.9.1). — The natural maps

IT(Y) ^=± H^E)
o*

are isomorphisms^ inverse to each other, for all i.

Proof. — It is sufficient to show that TC* is an isomorphism, since TT. G== Id. Using
Cech cohomology, the question becomes local on Y. But E is locally isomorphic to A^y,
whose cohomology is equal to that of Y, as we saw earlier (§7.1 above).

In order to define the Thorn isomorphism associated to a vector bundle, we need
to have a cohomology class of the zero-section. In general, we do not know how to
define cohomology classes of cycles on singular schemes, so we will consider the following
condition.

(*) Assume that there exists an embedding Y~>X into a smooth scheme X, and a vector
bundle F on X such that E^F|y.

In particular, this condition will be satisfied if Y is smooth. Assuming (*), we
can consider the cohomology class ^e Hi^F) of the zero-section <r(X) ofF. We identify X
with cr(X). We can also consider the restriction of ^ to Y, which we denote also by
SeH^E).

Theorem (7.9.2) (Thorn isomorphism). — Let E be a rank r vector bundle on a scheme Y,
satisfying (*), and let ^eH^(E) be the element defined above. Then the cup-product map

H^E) -̂ > H^E)

and the cap-product map

H<(E)-^> H,̂ (Y)

are isomorphisms for all i.
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Proof. — By using resolution of singularities, induction on the dimension of Y,
and the exact sequences of cohomology and homology for a proper birational morphism,
we reduce to the case Y smooth. In that case

H^^Y^H^C^HW

and the composed map H^E) -^H^Y) is just (T* which is an isomorphism by the previous
result. For the homology we have

HiCE)^^271^-^)
and H^^^H^+^Y)

which are isomorphic for the same reason.

Remark. — We have used the embedding ofYinX to define S, and this ^ apparently
depends on the choice of X. Following the terminology of Spanier [48, p. 259], if E
is a rank r bundle over a scheme Y, not necessarily satisfying (*), then we can define
an orientation of E to be a cohomology class 7]eH^(E), such that for each closed point
j^eY, 7]YeH^'(Ey)=^(^) is non-zero. We say E is orientable if it has an orientation.

Now the theorem will apply to any oriented vector bundle (E, T]), the maps in
question depending on the orientation. In this context it is natural to ask whether
every vector bundle has an orientation, and if so, whether it is unique up to a scalar
multiple. Presumably this question is related to the problem of defining Chern classes
for vector bundles on singular schemes.

Corollary (7.9.3) (Thom-Gysin sequences). — Let Y, E be as in the preceding theorem^
and let ^=<j*(^) be the "self-intersection^ class in HP^Y). Then there are exact sequences

... -> ir-^Y) ̂  H^Y) -> IT'(E -Y) ̂  ir-^-^Y) ->...

and ... -> H,(Y) ̂  H,_2r(Y) -> H,(E -Y) -> H,_,(Y) ̂ ... .

Proof. — This follows from the exact sequences
... -> H^(E) ̂  H^E) -> H^E -Y) -> H^E) -^ . . .

and . . . -> H,(Y) -> H,(E) -> H,(E -Y) -> H,^,(Y) ->...

and the isomorphisms of the theorem.
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CHAPTER III

LOCAL AND RELATIVE THEORY

In this chapter, we generalize the theory of the previous chapter in two different
directions. On the one hand, we define the De Rham cohomology and homology of
the spectrum of a complete local ring. This gives a technique for purely local inves-
tigation of a singularity. On the other hand, we define the relative cohomology and
homology sheaves of a morphism, which gives a technique for studying the variation
of cohomology in an algebraic family.

To define the local invariants, we write the given complete local ring as a quotient
of a complete regular local ring, i.e. we embed the spectrum Y in the spectrum X which
is a regular scheme. Then as in Chapter II, we define cohomology and homology by
using the (continuous) differentials on X, and taking their formal completion (resp. local
cohomology) along Y.

The elementary aspects of the theory then proceed as in Chapter II. However,
in order to prove the duality and finiteness theorems, we need to use resolution of
singularities. Recall that Hironaka's resolution theorem [30] is actually stated for
schemes of finite type over a certain class of rings B, which includes not only all fields
of characteristic zero, but also formal power series or convergent power series rings
over such a field. In that case, resolution must be understood in the absolute sense:
if X is an integral scheme of finite type over a ring AeB, then resolution guarantees
the existence of a birational morphism y.'X'-^X, where X' is a regular scheme,
not necessarily smooth over Spec A. Of course the theorem is more precise than
this (see [30]).

Now when we apply resolution to the spectrum of a complete local ring, the result
is no longer local. So even though our interest is mainly in the local case, we are forced
to consider a more general class of schemes. Therefore we consider the category %7

of schemes which admit a finite type, quasi-projective morphism to the spectrum S of
a complete local ring over A. Of course we could consider schemes which are <( embed-
dable over S ", following the pattern of Chapter II, but this is not necessary, since all
the schemes which will arise in our proofs for the local case will lie in CS.

This being said, the local theory proceeds as in the global case. One curious
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divergence from the previous theory is that in the global case, we were able to prove
duality without using resolution. In the local case, however, we were not able to do
this. Instead we use the inelegant method of applying resolution to reduce to the
global case.

In section 3 we explain the relation between the global invariants of a scheme
in projective space and the local invariants of the vertex of the cone over it. This is
useful in applications; also it gives motivation for studying the local invariants.

In the second part of this chapter we define the relative cohomology and homology
sheaves of a morphism f : Y->S of schemes. We define the Gauss-Manin connection
and the Leray spectral sequence as suggested by Grothendieck [16, footnote 13], and
using the method ofKatz [32]. We also give some elementary results about monodromy
and the relation with the cohomology of a fibre. Our main new result here is that
the coherence of the sheaves R^Y) at a point s of S is a sufficient condition for the
monodromy around s to be trivial and for the cohomology of the fibre at s to be iso-
morphic to the cohomology of nearby fibres. One can hope that a deeper study of
the sheaves R^Y) in the non-coherent case will lead to a better understanding of the
cohomology of the closed fibre in relation to nearby fibres.

As an application of the theory so far we give a new proof of the Lefschetz theorem
on cohomology of hyperplane sections. This is closely related to questions of cohom-
ological dimension which were raised in [23] and [24, Ch. Ill], and recently answered by
Ogus [43]. Since Ogus' work contains a thorough discussion of the cohomological
dimension questions, we will not go into them more here.

i. Local invariants.

For a fixed ground field k of characteristic zero, we will consider the category ^
of schemes X which admit a finite type, quasi-projective morphism to the spectrum S
of a complete local A-algebra A, whose residue field A/m is a finite extension of k. If
Xe^, the local ring A can be assumed to be a regular local ring with residue field k.
We make the following conventions for schemes in <^7. If X is irreducible, we define
the dimension ofX as follows. Since X is of finite type over S, it can be covered by open
sets U which are closed subschemes U c A^ of suitable affine spaces over S. Then
we define

dim X = dim A + N - codim(U, A|).

This dimension may be different from the combinatorial dimension of the topological
space X, but it is consistent with the usual notion of dimension for schemes of finite
type over k, if X arises from a morphism XO->YQ of schemes of finite type over k, by
taking a closed point PeYo, and making the base extension Spec fi^py —^YQ. Indeed,
this special case provides motivation for our treatment of schemes in .̂

Again let Xe^. We define the sheaf of continuous differential forms £2^ of X
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over k as follows. For each open affine set U== Spec B, we consider B as an A-module,
and give it the strong topology, namely the strongest topology on B which makes it a
topological A-module, when A has its m-adic topology. Then we consider differential
forms for B/^ which are continuous in this topology. Glueing together defines the
sheaf Q^. Now one can check that if Xe^, and X is a regular scheme (i.e. all its
local rings are regular local rings) and if dim X =72 (as defined above), then il^ is
a locally free sheaf of rank n. Furthermore, if X arises from a morphism X()->Y() of
schemes of finite type over k, then Q^ is obtained from fi^ by base extension.

Now we are in a position to define cohomology and homology for schemes in .̂
For a scheme Ye^7, we can always find an embedding of Y as a closed subscheme of
a scheme Xe^ which is smooth and finite type over S==SpecA, where A is a
complete regular local ring containing k, and with residue field k. We will call such
a triple (Y, X, S) an embedding of Y.

Definition. — Let Ye^, let (Y, X, S) be an embedding ofY, and let Z be a closed
subset of Y. Then we define the local De Rham cohomology of Y with supports in Z by

H^(Y)=H,(X,^),

where X is the formal completion of X along Y, 0,^ is the complex of continuous differen-
tial forms of X over k, and Q.^ is its completion along Y.

Definition. — With Ye^ as above, we define the De Rham homology of Y by

^(Y^H^X,^
where n == dim X.

Note that the category V contains all schemes which are quasi-projective and
finite type over k. In that case, we recover the global definitions given in Ch. II. On
the other hand, %7 also contains purely local schemes of the form Y=Spec B, where B
is any complete local ring containing k, and with residue field finite over k. In that
case, we have defined the invariants which will be of interest to us, namely the local
cohomology H|>(Y), where P is the closed point, and the homology H^(Y).

Proposition (1.1). — For any scheme Ye^, the cohomology and homology groups defined
above are independent of the embedding (Y, X, S).

Proof. — We proceed in two steps. First, keeping S fixed, we consider different
embeddings of Y in schemes X which are smooth and finite type over S. Then by
straightforward adaptation of the methods ofCh. II, § i, 2, 3, we show that the cohom-
ology and homology is independent of X. We leave details to the reader.

Concerning the choice of S, suppose Y admits finite type maps to

S,=Spec^,...,^]
and to S2=Spec^[[^, . . . ,MJ] .
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Then considering 83== Spec k[\t^ ..., t^, u^ . . ., i/J] and the diagonal map, we reduce
to the case of a commutative diagram Y with Y, S^, and 83.

x

Now we consider the intermediate scheme S'==Spec k[[t^, . .., ^.]][^, .. ., Mg],
and choose an embedding Y-^X' where X' is smooth and finite type over S'. Then
X' is smooth over S^, so we may take (Y, X', S^) as one embedding, and (Y, X3, 83)
as the other, where X3 is the completion of X' along the inverse image of the locus
u^ = = . . . = = Uy = o. Now the formal schemes X/'y and X3/y are actually isomorphic, so that
the cohomology and homology with respect to these two embeddings is naturally iso-
morphic. Now that we have defined the De Rham cohomology and homology invariants
for schemes in ^, the basic properties follow exactly as they were developed in Chapter II.
Instead of making formal statements, we will just list those results here. One word
of caution however: these functorial properties apply only to morphisms of finite type
among schemes in V. When it comes to considering morphisms which are not of finite
type, some more work will be necessary.

First of all, cohomology is a contravariant functor. More precisely, if /: Y^-^Yg
is a morphism of finite type of schemes in %', and if Z^ c Y^ and Zg c Yg are closed
subsets such that f~l{Z^) ^Z^, then there is a natural map of cohomology

/-: H^Y,)->H^(Y,)

for all i. Homology is a covariant functor for proper (finite type) morphisms, and it
is a contravariant functor for open immersions. If Z is a closed subset of Y, and
U==Y—Z, then we have long exact sequences

... -> Hz(Y) -> IT(Y) -> H\U) -^ H^ ̂ Y) ->...
and ...^H,(Z)^H,(Y)^H(U)-^H,_,(Z)-^... .

If Y is a regular scheme of dimension n in ^, then H^Y^H^'^Y) for all i.
Finally, we have exact Mayer-Vietoris sequences of cohomology and homology

just like the earlier ones (II (4.1) and II (4.2)), and we have exact sequences of a proper
birational morphism just like the earlier ones (II (4.4) and II (4.5)). We will need
one extension of these results, namely, an exact sequence of cohomology with supports
for a proper birational morphism:

Proposition (1.2). — Let X, X', Y, Y' be schemes in V satisfying the hypotheses of (II, 4.4);
suppose further that a closed subset V ^ X is given, and let V'^J^^V). Then there is an
exact sequence of cohomology with supports

... ->HKX) ^H^(X')eH^Y(Y) -^H^(y) ->H^(X) ->...
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Proof. — The proof is the same as the proof of (II, 4.4) except in the last step,
where instead of applying the functor H^X, •) to the two exact sequences of complexes,
one uses the functor H^(X, •).

We will use these results freely from now on without further comment.

2. Finiteness and Duality Theorems.

In this section we will prove finiteness and duality theorems for local De Rham
cohomology. In each case the proof will use resolution of singularities and the various
functorial properties of De Rham cohomology to reduce to the case of schemes of finite
type over a field, already treated in Chapter II. As before, we denote by V the category
of schemes which admit a finite type quasi-projective morphism to the spectrum of a
complete local ring with residue field k.

Theorem (2.1) (Finiteness).—For any scheme Ye^ and for any closed subset ZcY,
the groups Hg(Y) and H,(Y) are finite-dimensional k-vector spaces, for all i. Furthermore, they
are zero for i<o and i>2n, where n== dim Y.

Proof. — To prove the finiteness, we use induction on the dimension of Y. First
of all, the local cohomology H|;(Y) fits in an exact sequence with H'(Y) and H'(Y-Z),
so it will be sufficient to consider cohomology without restricted supports. Secondly,
using Mayer-Vietoris sequences and the induction hypothesis for cohomology and
homology, we reduce to the case Y irreducible. Since nilpotent elements don't affect
the definition, we may assume Y is integral. Next, using resolution of singularities
and the sequence of a proper birational morphism, and the induction hypothesis, we
reduce to the case Y regular. In that case H^Y^H^-^Y), so it is sufficient to prove
that either the homology or the cohomology is finite-dimensional.

Now Y was assumed to be quasi-projective over the spectrum S of a complete
local ring with residue field k, so we can embed Y as an open dense subset of a scheme Y,
projective over S, which by resolution of singularities we may assume to be regular.
Using the exact sequence of homology for the closed subset Y—Y and the induction
hypothesis, we reduce to the case Y regular, and proper over S. Let PeS be the closed
point, and let Y^^'^P), where /: Y->S is the projection. Then, according to the
lemma below, H^Y^H^Yo), and Yg is a scheme of finite type over k, so this cohom-
ology is finite-dimensional by (II, 6.1).

As for the vanishing in case i<o or i>2n, this can be checked easily by following
through the proof given above, and reducing to the case Y of finite type over k, which
was treated in (II, 7.2). One must be a little careful with the case of cohomology
with supports, which was not explicitly treated above, but this follows from the observation
that if Y is irreducible of dimension n, then H^Y) = o except in case Y is proper and
finite type over k.

It remains to prove the following lemma.
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Lemma (2.2). — Let TT : Y->S be a proper map of schemes in ^, where S is the spectrum
of a complete local ring with residue field k. Let PeS be the closed point, and let Y^^TT'^P).
Then the natural map

H^-^Yo)

is an isomorphism for all i.

Proof. — We may assume that S is regular. Embed Y in a scheme X smooth
over S. Then we can use the embeddings (Y, X, S) and (Yo, X, S) to calculate the
cohomology of Y and of Yo. We have

HP(Y) ^(X,^)

and HTO-H^X.Qx)

where - denotes completion along Y, and ~ denotes completion along Yo.
Using the first spectral sequence of hypercohomology, it will be sufficient to show

that for each p, q, the natural map

H^X,Q£)-^H^X,^)

is an isomorphism. In fact, we will show more generally that for any coherent sheaf F
on X, the natural map

mx^-.H^F)

is an isomorphism for all i.
For each r, let Y,. be the subscheme of X defined by Iy, and let F,.==F®^y .

Then F^ Km F,.. Applying the fundamental theorem of a proper morphism [EGA III,
§ 4] to the morphism TC : Y^-^S, and remembering that S is the spectrum of a complete
local ring, we have isomorphisms

H^F^H^F,)

for each r, where as before ^ defines completion along Yo. On the other hand, we
have F=HmF^ and F=limF^, so we can apply the theorem about cohomology of
an inverse limit of sheaves (1.4.5) to each. We obtain exact sequences and natural
maps for each i

o —> lun^H1-^,^)) -^ H^X,?) -^ HmH^.F,) —> o

o -^ Hm^H1-^, F,)) -^ H^F) -^ HmH^F,) -^ o

Since we have seen that H^Y,, F,.) -^H^^, F,.) is an isomorphism for all i and r,
the two outside arrows are isomorphisms, and we conclude that the middle one is also,
as required.
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Remark. — If we apply the lemma to the case Y==S, we find that H°(Y)==^,
!?(¥)= o for z=f=o. This gives a slightly different proof of the Poincart lemma (II, 7.1)
in the case of a complete local ring.

Theorem (2.3) (Duality). — Let TT : Y->S be a proper morphism of finite type of schemes
in ̂ , where S is the spectrum of a complete local ring with residue field k. Let PeS be the closed
point, and let Yo^Tr'^P). Then we have natural duality isomorphisms

H^(Y)^(H,(Y))'

of k-vector spaces for each i.

Proof. — As usual, we may assume that S is regular. To define the map, let
(Y, X, S) be an embedding of Y. We follow the method of the proof of (II, 5.1). As
in that case, we have a natural map

9 : Wx) ^^^(^Y(E(^x))^yo(E(^x)))

except that here we have introduced the supports Yg. Now Y() is proper over k, so
we have the trace map

Tr,: r^(E(^))M-^.

Then, proceeding as before, we obtain the natural map

HUx^y^W-^x,^))'
which is the one we want.

To show that it is an isomorphism we use the functorial properties of cohomology
and homology and the five-lemma. We proceed by induction on the dimension of Y.
By Mayer-Vietoris sequences we may assume that Y is integral. Then by resolution
of singularities, using Proposition (1.2) above, we may assume that Y is regular. Now
in the case Y regular of dimension 72, we have

HY.(Y)sH^_,(Yo).

On the other hand
H,(Y) ̂ H^-^Y) ̂ H^^Yo)

by the Lemma above. So we have reduced to proving the duality theorem for Yg,
which is proper over k, and this has been done already (II, 5.1).

Remark. — We are most interested in the case when Y itself is the spectrum of a
complete local ring. The theorem then states that H|»(Y) is the dual vector space
ofH^(Y). One can ask whether it is possible to give a purely local proof of this result,
based on Grothendieck's local duality theorem for modules over a local ring [LG and RD],
without resorting to global methods.
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Embed Y in the spectrum X of a complete regular local ring A of dimension n.
Then

Hi,(Y)=H^(X,^)
and H^Y^I^-^X,^).

These groups are the abutments of the first spectral sequences of hypercohomology
beginning

Er=IPp(X,QS)
and 'Ef^ = H^X, Q^-P).

On the other hand, if F is any locally free sheaf on X, the local duality theorem
of Grothendieck [LC, § 6] says that

H^(Y,, F,) ̂ D(Extr^, F®co))

where Y,. is the subscheme defined by Iy, and where D is a dualizing functor for
A-modules, namely D=Hom^(*, I) where I is an injective hull of A over A. Taking
an inverse limit on the left and a direct limit inside the parenthesis on the right, we
find that

H^(X, F) ^D(H^(F®O))).

Applying this to F==^ (in which case F®u=0.n'~p), we find that in the spectral
sequences above

Ef^DCE^^-^).

So the initial terms of the spectral sequence are dual as A-modules, and we would
like to show that the abutments are dual as A-vector spaces. We do not know how
to deduce the latter from the former. What seems to be needed is a duality theory
for a suitable abelian category of k- vector spaces (perhaps with additional structure),
which should include all A-modules, and certain differential operators between them, and
which should be a simultaneous generalization of the known duality theorems for
A-modules and for k- vector spaces. (Cf. Macdonald [37], who has given a duality
theory for topological A-modules.)

3. Relations between local and global cohomology.

In this section we will prove a strong excision theorem for local cohomology.
If Z is a closed subset of a topological space Y, then the usual excision theorem says
that H^(Y, F)=Hz(U, F), where U is any open set containing Z, and F is any abelian
sheaf. Our theorem for De Rham cohomology says that if P is a closed point of a scheme Y
of finite type over k, then H^(Y)=H|>(Y'), where Y'= Speedy. In fact, we give
a slightly more general statement below.

We use this result to calculate the local cohomology and homology of the vertex
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of the cone over a projective scheme, in terms of the global cohomology and homology
of the projective scheme.

Proposition (3.1) (Strong excision). — Let f : Y->S be a projective morphism of schemes
of finite type over k. Let P be a closed point of S, and let Z^^^P). Let S'=Spec <?p g,
and let Y'=YXgS'. Then we have natural isomorphisms for all i

H^(Y) -^ H^(Y').

Here we identify Z with the isomorphic scheme Z^ZXgS'.

Proof. — We may assume S is affine and regular. Let Y—^X be an embedding
ofY into a scheme X smooth over S, and let X'==XXgS'. Then there is a morphism
of schemes X'->X, and so we obtain the maps above as the natural maps of cohomology

H^(X,^)->H^(X',^)

where the completions are along Y and Y', respectively.
Using the spectral sequence of hypercohomology, it is sufficient to show that the

corresponding map is an isomorphism for each ^\ In fact, we will prove that for any
coherent sheaf F on X, the natural map

H,(X, F) -> H^(X', F')

is an isomorphism, where F' is the pull-back of F to X'.
We write F=limF,, and F'=limF;, where F.^F/PyF and F^F'/I^F'.

Then F^ is the pull-back of Fy. Using (1.4.5) applied to the functors Hz(Y, •) and
Hz(Y', -) , it will be sufficient to show for each Fy, or more generally for any coherent
sheaf G on X with support in Y, that the natural map

HUY,G)-^Hz(Y',G')

is an isomorphism.
Since Z is the total inverse image of P, we have Leray spectral sequences

Er==H?(S, Ry,(G)) => H^(Y, G)

and 'E^ = H?(S', RV:(G')) ^ H^Y', G').

But y and// are proper, so R^/^G) and R^/^G') are coherent sheaves. Furthermore,
since S'->S is a flat affine base extension, we have R^'(G')==R^(G)®gS'.

The local cohomology with supports in P can now be calculated over the local
rings A==(Pp g and A. To complete the proof, we have only to recall [LC, 5.9] that
if M is a finite-type A-module, then

l4(M) -> H^(M)

is an isomorphism.
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Now we will calculate the local cohomology of the vertex of a cone over a projective
variety. Let V^P^ be a projective variety. Let Y=G(V)<=AN+ 1 be the affine
cone over V. Let PeY be the vertex, and let Y'= Speedy.

Proposition (3.2). — With the above notations, we have H^Y^H^Y'):^, and
exact sequences

o -^k ->H°(V) ->H^(Y') ->o
o->Hi(Y') ->Ho(V) ̂ k->o

and ... -^H1-2^) ^H^V) -^H^Y') -^H1-1^)^ ...

... ̂ H,^(Y') -^H,(V) ^H,_,(V) -^(Y7)-^...

/or î i, wA^ S^eH^V) is the class of a hyperplane section.

Proof. — The homology statements follow immediately from the cohomology
statements by applying local and global duality, so it is sufficient to prove the latter.

So we need to calculate H^(Y') for all i. Using the strong excision theorem,
this is the same as H^>(Y). Now we use the exact sequence of local cohomology

... ̂ H^(Y) -^(Y) -^H^Y-P) -^ITp+^Y) ->...

First we note that H^^o except for i==o, when H°(Y)=yfe. (This corresponds
to the fact that Y is topologically contractible.) To prove this, we take X=AN+1.
Then H'(Y) can be calculated as the cohomology of the De Rham complex of modules
over the completion of the polynomial ring k[xQ, . .., x^] with respect to the ly-adic
topology. But then the Poincard Lemma applies to show that this complex is
acyclic (11.7.1.1).

Next we note that Y—P is fibred over V with fibre A1—^}. In fact, if
E==V(^v(—i))? then Y—P is isomorphic to the vector bundle E minus its zero-
section V. Now applying the Thom-Gysin sequence of cohomology (11.7.9.3) to E,
and combining with the above observations, we have the result.

4. Relative cohomology.

In this section we consider a morphism of schemes f:Y->S. We will define
relative De Rham cohomology R^(Y) and homology R,/*(Y) as sheaves on S. Further-
more, if S is smooth, we will construct a Leray spectral sequence, abutting to the
cohomology of Y, and beginning with E^—H^S, R^Y)), where the latter is a
suitably defined notion of cohomology with local coefficients.

For the definition of the relative cohomology and homology, we proceed as in
the absolute case (Gh. II). Let /: Y—^S be a morphism of finite type of noetherian
schemes, such that Y admits a closed immersion (over S) into a scheme X which is
smooth over S. Then let iix/s be the complex of relative differential forms ofX over S,
and let ^x/s be lts formal completion along Y.
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Definition. — With the above hypotheses and notation, we define the relative algebraic
De Rham cohomology

RDR/,(Y)=R^(X,^)
and homology R^Y) = R^-^X, ^/s),

where n is the relative dimension of X over S. Here we write R'y/^ to denote the derived
functors of the composite functor y^.J^y.

Note that the relative De Rham cohomology and homology are fi^-Modules,
because the maps in the complex ^x/s are ŝ"1111^1'- Using exactly the same
methods as in the absolute case, one verifies that these definitions are independent
of the choice of X and they enjoy analogous functorial properties on the category of
schemes over S (II. 1.4, 11.3.2). Furthermore, the same proofs show that the exact
sequence of homology of a closed subset (11.3.3), the relation between cohomology
and homology in the smooth case (11.3.4), the Mayer-Vietoris sequences (II. 4.1,
II. 4.2), and the exact sequences of a proper birational morphism (11.4.4, 11.4.5)
all hold in the relative case. On the other hand, one does not have direct analogues
of the duality and finiteness theorems, so we will come back to them later.

Now, to define a Leray spectral sequence, we need a suitable notion of De Rham
cohomology with local coefficients. If S is smooth, then the notion of an ^g-Module
with an integrable connection provides a good definition. If S is not smooth, then
we would need to envisage equivalence classes of sheaves with integrable connections
on formal schemes T, where S-^T is a closed immersion into a smooth scheme T, and
T is its formal completion along S. As we have no applications in mind for this more
general case, we will stick to the case S smooth.

So let S be a smooth scheme of finite type over k. We consider the category MJC(S)
of Modules with integrable connection on S. In other words, an element of MJC(S)
is an ^g-Module E, together with a A-linear mapping V : E->E0^ which satisfies
the connection rule

V{se)==s^{e)+e^ds

for all local sections je^g and ^eE, and such that V is integrable, i.e. V^X^o, where
V1 : E®Q1 -> E®f22 is the map defined by

V^OO^^AO+V^AO).

For background on integrable connections, see [i], [10], [32].
If (E,V)eMJC(S), then we can define the De Rham cohomology of S with

coefficients in (E, V) in the following way. For each i, we define

v1: Eory-^EOfy4-1

by V^®(o) == e®d^ +V(<?) A co.
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Then because V is integrable, Vl'+l.V^=o for all i, so we can consider the complex

E -^ E®^1 -^> E®n2 —> ... —> E®^.

We denote this complex by E®£1* (although it also depends on V). Then we define
the De Rham cohomology of S with coefficients in (E, V) by

H^E.V^H^E®^).

Following Katz and Oda [34] we will define the canonical Gauss-Manin connection
on Ry^(Y). The exact sequence

o-^rQt-^-^s-^o
of sheaves on X gives rise to a filtration of the complex Q.^, whose quotients are the
complexes f*0.^€)0.^. Taking completions, we obtain a filtration of the complex 0.^.
We consider the spectral sequence of the derived functors off^ applied to this filtered
complex. It begins with

Er=Ry;(/^j®nx/s)
and abuts to the hypercohomology R^^x)* Since Q.^ is a locally free sheaf on S,
we have

E^R^A/s)®"!.
Now the map

^: R^/A/s) ̂  R^A/s)^!
is easily seen to be an integrable connection, and it is the one we want.

Thus the sheaf R^(Y) with its Gauss-Manin connection becomes in a natural
way an element of MJC(S).

Theorem (4.1) (Leray spectral sequence). — Let f : Y-^-S be a morphism of finite
type, with S smooth over k. Then there is a spectral sequence

Er=H^(S; Ry,(Y)) => E^HS^Y).

The Leray spectral sequence was constructed in the case S affine and f smooth
by Katz and Oda [34]; it was proved more generally in case f is smooth by Deligne
and Katz [32]. We will indicate how Katz5 latter proof can be adapted to work in
our case as well. The main ideas of this proof are also in the paper [31].

Keeping the above notation, we consider the category MJC'(X) of modules with
integrable connections on X. (Of course we use only the continuous differentials Q^/jc
in the definition.) For (E, V)eMIC(X), we consider the S-connection E->E®;n^g
obtained by composing V with the projection ^->0^g. Then we can define the
relative cohomology with coefficients in E by

RDR/.(E,V)=R!/.(E®^).
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The construction of the Gauss-Manin connection applies also in this case, and shows
that RDR/*(E,V) is naturally an element ofMTC(S).

Proposition (4.2). — In the situation above, R^R/^E, V) is the i-th right derived functor
of the functor

R°DB/, : MJC(X) ->MIC{S).

Proof. — First, we consider the sheaf ^g of differential operators on S. This is
a sheaf of ^g-^gebras by left multiplication. If s^, ..., ̂  are local parameters on S,
then elements of^ are represented locally as finite sums S/jD1 where I=(ii, ..., zj,
/iG^g, and

D^-^ ffn-
^• • • a^ -

Note that the category MJC(S) is equivalent to the category of left ^-Modules,
by the map which associated to a ^-Module E the sheaf E, as an ^g-Module, with the
connection V given locally by

SeV(.)=S-A,.
i OS^

r\ o

(The integrability of V corresponds to the fact that — and — commute with each other.)
Os, ^

Similarly we consider the sheaf Q^ of differential operators on X, and let
^s^^x0^^- Then the category MJC(X) becomes equivalent to the category of
left .̂ x-1^0^1^-

With those identifications, the functor R^R/, mentioned above can be expressed
as the functor

f^om^f-Q^ .)

from the category of left 2^- Modules to the category of left ^s-Modules. Here/*^g
is given a structure of left ^x-Module by composing the differential operators.

To compute the derived functors of this functor, we use a projective resolution
ofjf*^g, namely

o-^x0^1^... -^x01^.^-^/^^0

where T=Tx/s is the relative tangent bundle. Locally, this is just the Koszul complex
Q r\

of the elements ——, .... —— in 2^, where ^, ..., ̂  are the " vertical " parameters.
C/JV! ^^n

Globally, this sequence makes sense, because T is locally free on X. Note that in writing
r\

the Koszul complex, we should put the — terms on the right.
c/.X.,

Now the derived functor of our functor can be written
R/,RJ^(/^,.)
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in the derived category. Substituting the projective resolution above, this is equal to
R/.^^A^A-T, •).

For any QyM.odule E, we now find that

^om^Q^A^T, E)==E®t2x/s-

Thus we have as derived functor R/,(E®^x/s)5 as required.
By the way, the observation that y, J^ow^(/*^g, •) has a natural structure of

^g-Module gives another construction of the Gauss-Manin connection.

Proof of theorem. — The Leray spectral sequence now appears as the spectral sequence
of the composite functor

R°DR/ : MJTC(X) -^ MIC(S)

followed by
R°DB& ; MJC(S) -> MIC{k)

where g : S->k is the projection, applied to the sheaf O^. Note that MIC(k) is just
the category of A-vector-spaces, and R^R^ = H^.

Remarks. — A number of variations are possible in the construction of the Leray
spectral sequence.

1. We can replace k by a scheme T. Then if /: X->S and g : S->T are
morphisms, with g smooth, we have a Leray spectral sequence

Ei^R^S, Ry.(X)) => E^R^/^X).

2. With Y, S as in the theorem, let Z^Y be a closed subset, and let TcS be
a closed subset. Then using cohomology with supports, we have a Leray spectral
sequence

Ef=H?(S, RU(Y)) => E^H^^Y).

Here we denote by R^J^ the derived functors of the functor f^.F^.
3. The same method shows that the relative De Rham homology of Y over S has

a Gauss-Manin connection. Thus we obtain a Leray spectral sequence for homology
E^=Hp(S, R,/,(Y)) =. E»=H«(Y).

where Up means H28"^ on S, s being the dimension of S.

5. Cohomology and Base Extensions.

In this section we consider the behavior of the relative cohomology and homology
sheaves of a morphism /: Y-^S with respect to base changes g : S'-^S. In particular,
we are interested in the relationship between the cohomology of the general fibre and
the special fibre of/. In general this is a very interesting and difficult problem, and

77



78 R O B I N H A R T S H O R N E

we will present only the most elementary results here. One can hope that a deeper
systematic study of the sheaves R^Y) and R^(Y) will lead to a better understanding
of the monodromy transformation, in a purely algebraic context.

Theorem (5.1). — Let f : Y—^S be a morphism of finite type of reduced schemes over k.
Then there is an open dense subset U c S such that the sheaves of relative De Rham cohom-
ology R^(Y) and homology R^(Y) are coherent and locally free on U.

Proof. — The idea of the proof is to repeat the usual proof of finiteness ofcohomology
for the generic fibre, and then show that this method can be spread out over an open set.

First of all, we may assume S is integral. Then once we show the sheaves Ry^Y)
are coherent they will automatically be locally free on a dense open set. Next, using
the Mayer-Vietoris sequence, we may assume that Y is also integral. Let aeS be
the generic point of S, and consider the generic fibre Yg off, as a scheme over k{a).
Let Y^->Y^ be a resolution of singularities ofYg. This is obtained as a finite succession
of monoidal transformations, hence it can also be thought of as a single blowing up
with respect to a suitable closed subscheme Zy of Y^. Let Z be the closure of Zy in Y,
and let Y'-^Y be the blowing-up of Z. Let W^Y' be the set of points which are
not smooth over S. Then W is closed, and does not meet the generic fibre. Hence
its image in S is contained in a proper closed subset. Thus, replacing S by a dense
open set, we may assume that Y' is smooth over S. In other words, relative resolution
of singularities is possible, provided you are willing to replace the base space by a dense
open subset.

Now we proceed as in the usual proof of finiteness (Ch. II, § 6). We use induction
on the dimension of the generic fibre, resolution of singularities, the exact sequence of
a proper birational morphism, relative homology, and embedding into a proper morphism.
In the case of relative dimension zero, we may assume Y is finite etale over S, in which
case the relative cohomology is just/^y? which is coherent.

Proposition (5.2). — Let f \ Y—»-S be a morphism of finite type of schemes of finite type
over k. Let q be an integer such that R^(Y) is coherent for i=q and i==q-}-i. Then/or
any flat base extension g : S'->S (which need not be of finite type), the natural map

^(Ry.(Y))->R^:(Y')

is an isomorphism, where ' denotes base extension.

Proof. — To calculate R^Y), we choose an embedding Y->X where X is smooth
over S. Let f also denote the map from X to S. Then by definition

R^(Y)=R^(^/s),

where ^ denotes the formal completion along Y. For each r>_dim X/S, we consider
the complex F^ defined to be the complex

^/ly^^/s/Iy-^^x/s/lY-2-
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Then ^x/s ls t[le inverse limit of the complexes F;, so by (1.4.5) we have exact sequences
for each i

(1) o-^HmWR-y^F;) -^R^(Y) ->Hm Ry,(F;) ->o.

Similarly, considering the map /' : Y'-^S', we may take the base extension X' as our
embedding of Y', and then ^xys' = I™ F^ so we have also

(2) o^HmWR-^^F;-) -.R^Y') ->^mRy/(F;-) ->o.

Furthermore, cohomology of coherent sheaves commutes with flat base extension, so
we have natural isomorphisms

(3) ^W.(F;)) -^> R^W)

for each i and r.
Next, we observe that for each r, the sheaves R^F^) are the abutment of a spectral

sequence beginning with E^= R^(F^), and these sheaves are countably quasi-coherent.
Hence the sheaves R^F^) are countably quasi-coherent for each i and r.

Now the hypothesis that R^Y) is coherent implies by (1.4.8) that

a) limR^(F;) is coherent.
So by the exact sequence (i) we have lim^R3""1/.^) is coherent, and so

by (1.4.9) we have
b) R^y^F;) satisfies (ML).
Similarly the hypothesis Rq+lf^{y) coherent implies
c ) R^F;) satisfies (ML).

Applying (1.4.10) and using a) and c ) , we get an isomorphism

(4) ^(Hm R^(F;)) ̂  Um(^R^(F;)).

On the other hand, b) implies that

(5) W1^-1/^;)^.

It also implies that the inverse system ^R^'V^F^) satisfies (ML), and so by (3) we
have also

(6) W^-y^F^o.

Finally, applying g* to (i) and combining with (2)-(6), we find that the natural map

^(R^(Y))^R^(Y')

is an isomorphism.
Of course the reader will note that the complexity of this proof arises from the

fact that in general, tensor product does not commute with formal completions and
inverse limits.

Next, we study the cohomology of the closed fibres of a proper morphism.
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Proposition (5.3). — Let f: Y->S ^ a proper morphism, with S JTTZOO^ and of finite
type over k. Let P be a point of S, and let g : S'->S &<? ̂  ̂  extension to S'= Spec ^p g.
Fix afield a/representatives A(P) ^Sp^, jo ̂  Y' ̂  S' an? j^^j ozw yfe(P). Let a be
the generic point ofS, with function field K; let c be the generic point ofS', with function field K'.
Then

a) For each i we have isomorphisms

HTO^K'^HW).

b) The YJ-vector space H\Y^) has a canonical integrable k(P)-connection V, which we
may call the (< monodromy " around P.

c) For each i there is a natural map

a1: H^Yp^HTW

where the exponent V denotes the kernel of V, i.e. the <( invariant cocycles5).
d) Jw ^^A z there is a natural map

y : H^Yp^K'^HW).
Proof. — By (5. i) and (5.2) there is a dense open set U c S such that all Ry,(Y)

are coherent, locally free on U, and commute with flat base extensions. In particular,
considering the base extensions to Spec K and Spec K' gives a).

Since S' is formally smooth over A(P), we have the Gauss-Manin connection
on R^Y') for all i. Localizing at a gives the connection V on H^Y^).

Next we consider the Leray spectral sequence (4. i) of the morphism /' : Y'->S'
over A(P). It begins with

E^H^S^R^Y^V)
and abuts to E^H^Y').

By (2.2) above since/is proper, the natural maps
HW-^H^Yp)

are isomorphisms. Thus the edge homomorphism of the Leray spectral sequence gives
a map, for each i

HTO^H^R^Y^V).

Composing with the natural map of global sections to the generic stalk, which is just
H^Y^,), we obtain the map

a1 : H\Yp) -> H^Y,^.

Forgetting about V and tensoring with K' gives the map (B\

Proposition (5.4). — With the hypotheses of the previous proposition^ let r be an integer
such that R^(Y') is coherent on S' for i<_r. Then for each i<^r, R^Y') is locally free,
its connection is trivial, hence the " monodromy " connection on H^Y^) is trivial, and the maps of
and y defined above are isomorphisms.
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Proof. — First we use the well-known result that a coherent sheaf with integrable
connection over a formal power series ring in characteristic zero is locally free, and the
connection trivial. It follows that the Leray spectral sequence degenerates for i<r:
we have E^=o for q<r and p>o, so that the edge homomorphism above is an
isomorphism for i<_r. Since the connection on R^Y') is trivial, kerV is a constant
sheaf, so its global sections are the same as its generic stalk. Thus a' is an isomorphism,
and it follows that (B1 is an isomorphism.

Corollary (5.5). — Let f : Y->S be a smooth proper morphism of smooth schemes of finite
type over k. Then for each i the function

^P^dim^HTO

is locally constant on S.

Proof. — Since/is smooth, the sheaves R'/^Y) are automatically coherent. So
for any PeS, we can apply (5.2) and (5.4), and find dim^Hi(Yp)=dimKHi(YJ
where a is the generic point of the component containing P.

Remark. — This last result could also be proved using the theory of cohomology
and base extension for coherent sheaves [EGA, III, § 7].

Next we consider the relative homology sheaves and their behavior with respect
to base change. Here the results are somewhat simpler, because there are no inverse
limits involved.

Proposition (5.6). — Let /:Y->S be a morphism of finite type of noetherian schemes.
Then the relative homology sheaves R,/,(Y) are quasi-coherent, and commute with all flat base
extensions.

Proof. — Considering an embedding Y-^X with X smooth over S, we have

R,/,(Y)=R2Yn-l/.(X,^/s)•

Now using the exact sequence of local cohomology for Y in X, and recalling that higher
direct images of coherent sheaves are quasi-coherent and commute with flat base
extension, we have the result.

Proposition (5.7). — Let f : Y->S be a morphism of finite type, where S is the spectrum
of a complete regular local ring of dimension i with residue field k. Let PeS be the closed point,
let creS be the generic point, and let K==k{a). Then:

a) The K-vector space H((Y^) has a canonical integrable k-connection V, which we may
call the <( monodromy " around P.

b) For each i there is a natural map

a,: H,(YJ^H,(Yp)

where the subscript V denotes the cokernel of V.
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Proof. — Of course the connection on H((YJ comes from the Gauss-Manin
connection on R^(Y) by base extension. To define a,, we consider an embedding
of Y-^X, with X smooth over S, and use the Leray spectral sequence with supports
on X (see Remark 2 at end of § 4 above). We have

Er=H?(S, RV.(£2x/s)) - E-^H^X, Q^).

Now E^==o for j&>2, so we have an edge homomorphism

I^RU^x/^-^WQx).

On the other hand, since S—{P}={(r}=SpecK, we have a natural map

H^Spec K; RU(^x/sL) -> Hi(S; RU^x/s)).

Now let q = 2% — i, where n is the relative dimension of X over S. Then

R^/.(^x/s)o=H.(YJ,

and H^Q^H^Yp).

Combining, we obtain the map

a,: H.(YJ^H,(Yp).

Remark. — If dim S > i, the situation is a bit more complicated. We must
interpret H,(YJy to mean the cokernel of V*, where V* is the connection considered
as a map

V*: H^Y^T-^ir'CYJ

where T is the relative tangent space of K over k. Furthermore, the map a, is more
difficult to define in an invariant way.

Proposition (5.8). — With the hypotheses of the previous proposition, let r be an integer
such that R^(Y) is coherent for i<r. Then for each i<_r, R^(Y) is locally free, its connection
is trivial, the monodromy connection on H^Yg) is trivial, and the map a, is an isomorphism.

Proof. — A coherent sheaf with integrable connection on S is necessarily trivial,
because S is complete. Hence the spectral sequence above degenerates: for q>_w—r,
and j&=t=2 we have E^=o. Thus the edge homomorphism above is an isomorphism,
and we conclude that a, is an isomorphism.

Corollary (5.9). — Let f : Y—^S be a morphism of finite type, where S is a finite type
curve over k. Then there exists a non-empty open set U c S such that the functions

^(^dim^HTO
and y;(P)=dim^p)Hi(Yp)

are locally constant on U.
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Proof. — We use induction on the dimension of the generic fibre of/. We resolve
the singularities of Y generically over S, use the exact sequence of a proper birational
morphism, and thus reduce to the smooth case, where it is sufficient to consider homology.
Then using (5.1)3 (5.6) and (5.8) we have the result.

Remark. — Surely this result holds for dim S > i also. We would only need to
generalize (5.7).

6. Cohomology at a non-closed point.

As an application of the results of the preceding section, we will prove a theorem
about the local cohomology at a non-closed point.

Let Y be a scheme of finite type over A, and let QeY be a (not necessarily closed)
point ofY. Let A(QJ be the residue field of Q^, and consider a choice

e:W)->^.Y
of a field of representatives for the complete local ring fi^y. Having chosen 6, we
can consider the local De Rham cohomology

H^Spec ̂ Y; 9)

which is a finite-dimensional ^(QJ-vector space. We will say 6 is a good field of represen-
tatives if it makes ^(QJ a finite extension of the field 6(A(Q^))n^Y. Since we can
lift algebraically independent elements of^(QJ into 0^, it is clear that good fields of
representatives exist.

Proposition (6.1). — In the above situation., the dimension of

H^Spec ̂ Y; 6)

is independent of the good field of representatives chosen.
Hence by abuse of notation we will denote this space HQ(Y), and consider it as

a k (QJ -vector space, even though strictly speaking the vector space itself depends on 6.
Note that this notation does not conflict with the previously introduced notion of local
cohomology with respect to a closed subset. For if Q^ is a closed point, then the two
definitions coincide because of the strong excision theorem (3.1).

Theorem (6.2). — Still in the above situation^ let Z =={Qj'~. Then there is a non-empty
open subset U^Z such that for all closed points PeU, and for all z, we have

dim^H^^-dim^Q^H^2^^

where r = dim Z.
We will prove both propositions at the same time. Fix a good field of represen-

tatives 6. Then it will be sufficient to prove the second proposition using that 6, and
the first will follow. Pick algebraically independent elements ^, . . ., ^.£6(A(QJ) n OQ y
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Using them, and replacing Y by a suitable neighborhood of Q, we can define a map
of Y to S==A[ such that Z is generically finite over S. Then shrinking S, we may
assume Z is ^tale over S. Finally, we make the base change Z->S, and choose a
section Z — Z X g Y lying over the original Z in Y. Now an etale base change does
not affect our problem, because everything is computed on complete local rings. Thus
we have reduced to the case where Y admits a map/to a scheme S (namely Z) which
induces an isomorphism /: Z->S.

Next, we consider the relative De Rham cohomology sheaves of/ with supports
in Z, which we denote RZ/(Y). Applying (5.1) and (5.2) to Y and Y-Z, and using
the exact sequence of local cohomology, we find that there is a dense open set U c S
such that all RZ/(Y) are coherent, locally free on U, and commute with flat base changes.
We may also assume U is smooth over k.

Now let PeU be a closed point, and consider the base extension g : S'-^S where
S'= Specks. We consider Y', Z', S' as schemes over A(P). The Leray spectral
sequence with supports (§ 4, Remark 2) gives us a spectral sequence

Er=Hg(S'; RI^Y')) => E^H^Y').

Since the sheaves R^//(Y') are coherent, they are locally free, and their connection is
trivial, so the spectral sequence degenerates. Indeed, for a free rank one module E
with trivial connection we have

H^S^E.^^H^S^I0 z + 2 r

[^(P) l=2r.

So from the spectral sequence we find
dim^H^Y7) = rank R^/^Y') = dim,^ HQ-^Y) .

Finally, by strong excision we have Hi>(Y')=H'p(Y), so we are done.

Remarks. — i. This statement is slightly weaker than the one in the announce-
ment [27], because of the restriction to (( good " residue fields. However, it should be
sufficient for most purposes.

2. Since we have shown that the cohomology of Spec C^y is independent of the
choice of field of representatives A(QJ, one might be tempted to ask whether the analytic
isomorphism class of ^Q y as a A(QJ-algebra is also independent of the choice of field
of representatives. However, this is not so, as we will show by example.

Let A==A[[^,j/]] be a power series ring in two variables over a field k. An
algebroid curve defined by an equation g==o, geA, is said to have an ordinary r-fold
point if g ==/.../ where /em—m2 for each z, and where the tangent directions

/,em/m2 are all distinct. Now allowing automorphisms of A which leave k fixed, one
can easily show that any two ordinary double points are equivalent, and any two ordinary
triple points are equivalent. If g == o has an ordinary four-fold point, then g can be
written in the form

g==xy{x+jy){x+qy)
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with aek, a+o, i, and a is uniquely determined once one fixes the order of the branches.
Thus there is a one-dimensional family of ordinary four-fold points, parametrized by a,
which is the cross-ratio of the tangent directions.

Using Schlessinger's theory of deformations of singularities, one can show that
there are two two-dimensional families of ordinary five-fold points, up to analytic
isomorphism. There are the <( straight " ones, which can be written in the form

g == xy{x +jQ {x + ay) {x + by}

with a, bek, a, &=t=o, i, a^b, and where a and b are uniquely determined, if the order
of the branches is fixed. Then there are the (c curly " ones, which can be written

g'=g+h

where g is as above, and h is anything which is not in the ideal generated by the partial
derivatives g^ g y . Here the isomorphism class is determined by a and b, and is inde-
pendent of A. Finally, by considering families of the form g-}-eh, as s->o, one sees
that the curly ones specialize to the straight ones. This exhibits a jump phenomenon,
because for e+o the singularities g+zh are all isomorphic to each other.

Now for our example. Let

y==Speck[x^,t]l^+x^+tf)

and let Q be the generic point of the subvariety x==jy==o. Then k{Q^)==k{t). For
the obvious choice of field of representatives, we have

ff^kW^x^l^+x^+ty6).

However, if we take t'==t-{-y as our representative of t, then we find

^Y^AOTE^^l/^+^+Q5-^).

Nowj/6 is not the ideal generated by the two partial derivatives of ^-\-x^y-\-t'y9^ so
the latter is a curly ordinary five-fold point, which cannot be made isomorphic to the
earlier straight one by any isomorphism extending the isomorphism k{t)-^k{t') which
sends t to t9.

7. The Lefschetz Theorems.

As an application of the theory developed so far, we will give a proof of the
Lefschetz theorems on the cohomology of a hyperplane section of a projective variety.
An earlier version of these results appeared in [24, Gh. Ill, Theorems 7.4 and 8.6].
Now we give a purely algebraic proof also in the case of a scheme with singularities.
Recall that the cohomological dimension of a scheme U is the least integer cd(U)=7z such
that H^U, F)=o for all i>n and all coherent sheaves F.
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Theorem (7.1). — Let X be a proper scheme over k, of dimension n, and let Y be a closed
subscheme. Assume that X—Y is smooth, and that cd(X—Y)<r for some integer r. Then
the natural map of De Rham cohomology

H^X) -> H^Y)

is an isomorphism for i<n—r, and is injective for i==n—r.

Proof. — We first show that H l(X—Y)=o for i>_n+r. Indeed, X—Y is
smooth, so we can use the differentials on X—Y to calculate the De Rham cohomology:

H^X-^^H^X-Y.^-Y).

This hypercohomology is the ending of a spectral sequence which begins with

E^=IP(X--Y,^_Y).

Now X—Y has dimension n and cohomological dimension <r, so E^==o if p'>n
or q^r. Hence the abutment H^X—Y) is zero for i^_n-\-r.

Now since X—Y is smooth, we can interpret this in terms of homology:
H^(X —Y) == o for j<_ w — {n + r) == n — r. Then by the exact sequence of homology of
the closed subset Y, we find that the natural maps

a,: H,(Y)->H,(X)

are isomorphisms for j<n—r, and surjective for j==n—r. Finally, since X and Y are
both proper over k, we obtain the conclusion of the theorem by duality.

Corollary (7.2) (Lefschetz). — Let X be a protective variety of dimension n, and let Y
be a hyperplane section of X. Assume that X —Y is smooth. Then

H\X) -> H^Y)

is an isomorphism for i<n—i, and is injective for i==n—i.

Proof. — In this case X—Y is affine, so has cohomological dimension zero.

Corollary (7.3). — Let Y be a sub scheme of dimension s in P^ which is a set-theoretic
complete intersection^ and which may have arbitrary singularities. Then

H^Y)^^^
t o for i odd

for all o<_i<^s.

Proof. — In this case cd(Pn—-Y)=y^—j•—I, and the cohomology of Pw is known
to be k for i even, o for i odd, for o<_i<^2n.

In the local case, we have the following analogous result.
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Theorem (7.4). — Let X be the spectrum of a complete local ring containing k, of dimension n.
Let Y be a closed subscheme ofX, and let P be the closed point. Assume X—Y is smooth, and
cd(X—Y)<r for some integer r. Then the natural maps

H^^-^H^Y)

ure isomorphisms for i<n—r and injective for i==n— r.

Proof. — Reread the proof of Theorem (7.1), and use local duality at the end.

Corollary (7.5). — Let X==SpecA, where A is a complete local ring of dimension n
containing k. Let teA. be a non-zero-divisor, and let Y be the locus t==o. Assume X—Y
is smooth. Then

H^X^H^Y)

is an isomorphism for i<n—i, and is injective for i==n—i.

Corollary (7.6). — Let Y==SpecB, where B is a complete local complete intersection
of dimension s. Then

H^>(Y)==o for i<s.

Proof. — Embed Y in a regular local scheme X of dimension n. Then
€d(X—Y)==n—j—i, so we apply the theorem, together with the observation that
since X is regular, H^(X)==o for i<2n.

Remark. — Ogus [43] has recently shown that one can replace the hypothesis
^ non-singular 9? in the above results by a suitable local topological condition. Let Y
be a scheme of finite type over k. For each (not necessarily closed) point PeY we
denote by H^(Y) the local De Rham cohomology of the complete local ring ofP, which
was considered in the last section. Then Ogus [43, 2.12] defines the De Rham depth
of Y by

DR-depth Y^rfo for all PeY, H'p(Y)=o for all i<d-dim{P}-.

Note that one always has DR-depth Y^dim Y. IfYis non-singular, or more generally
is a local complete intersection, then DR-depth Y== dim Y.

Then Ogus proves the following fundamental result relating DR-depth to local
cohomology of coherent sheaves:

Theorem (Ogus [43, 2.13]). — Let Y be a closed subscheme of a smooth scheme X of
dimension N. Then

DR-depth Y^doH^(V)==o for all coherent sheaves F on X, and all z>N—rf.

From this result, using the spectral sequence for De Rham cohomology, one sees
easily that if U is a scheme with cd(U)^r and DR-depth U >_d, then H,(U)==o
for i<d—r. In particular, if U is affine, then H(U)==o for i<d.

Thus in (7.1), (7.2) and (7.4) above, the hypothesis " X — Y smooth55 can be
replaced by c( DR-depth X—Y ==n 5' [43, 4.10 and 4. n].
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CHAPTER IV

COMPARISON THEOREMS

In this chapter we consider the case k ==C, and show that the algebraic De Rham
cohomology groups studied in this paper are isomorphic with well-known topological
invariants of the corresponding complex-analytic space. These results generalize the
original comparison theorem of Grothendieck [i6], which was for the case of a smooth
scheme of finite type over C. The global comparison theorem (1.1) was proved by
Lieberman and Herrera [29] in the proper case, and by Deligne (unpublished) in the
general case. Deligne also proved a local comparison theorem and a relative comparison
theorem in the smooth case. As a by-product of our methods, we prove the (< formal-
analytic Poincare lemma " which implies that the singular cohomology of complex-
analytic subspace Y of a complex manifold X can be calculated using the formal
completion of the holomorphic De Rham complex on X.

i. The Global Case.

Let Y be a scheme of finite type over C, which admits a closed immersion Y->X
to a scheme X which is smooth over C. Let Z be a closed subset of Y. Then we have
defined the algebraic De Rham cohomology of Y with supports in Z to be

HZ,DR(Y)=H^X,%).
Let Y^, X^ be the corresponding complex-analytic spaces, and Z^ the corresponding

closed subset (see Gh. I, § 6). Then we can define the analytic De Rham cohomology
of Y^ in a similar way. Let ti^/i be the complex of sheaves of holomorphic differential
forms on X^, let 0,^ be its formal completion along Y^. Then we define

HZ ,̂ DR (YJ == ̂ Zh^h 3 °'Xh) ?

and according to general principles (Ch. I, § 7) there are functorial maps

^: H^(Y)^H^R(Y,).

On the other hand, the natural map C->0.^ induces a map Cy^->^x;p anc^ hence
maps of cohomology

(31: H^(Y,,C)^H^(Y,).

88



ON THE DE RHAM COHOMOLOGY OF ALGEBRAIC VARIETIES 89

Theorem (1.1) (Global comparison theorem). — With the hypotheses and notations
above, the natural maps a1 and (B1 are isomorphisms for all i.

Corollary (1.2). — With the same hypotheses, we have natural isomorphisms
H^Y^HP^C)

of the algebraic De Rham homology of Y with the Borel-Moore homology of Y^.

Proof of Corollary. — Indeed, if Y->X is an embedding ofY into a smooth scheme
of dimension n, we have

H^Y^H^X)
and HPT^C^H^X^C)

so the result follows immediately from the theorem. See [6] for definition and properties
of the Borel-Moore homology, also called (( homology with locally compact supports ".

Before proving the theorem, we need to make some general remarks about analytic
De Rham cohomology. If V is any complex analytic space which admits a global
embedding V->W into a complex manifold, we define its analytic De Rham cohomology by

HDRC^H'CW,^).
Proposition (1.3). — IfVis an embeddable complex-analytic space, its De Rham cohomology

is independent of the choice of embedding. Analytic De Rham cohomology is a contravariant functor
in V.

Proof. — We copy the proof of (II. i .4) with a few modifications. As in (II. i. i),
the important case is when V^W^U where U is another complex manifold, and W
is a submanifold defined locally by a single equation z = o. The question is local, so
we may assume W is an open subset of C ,̂ and U is open in G14'1. Then taking
A=r(U,6\j), B=r(W,^ we have A^B[[^]]. Thus (II. 1.2) is unnecessary, and
it doesn't matter that A and B may not be noetherian. The rest of the proof is the same.

Of course we can define analytic De Rham cohomology with supports, and we
have the long exact sequence of local cohomology. We also have a Mayer-Vietoris
exact sequence.

Proposition (1.4) (Mayer-Vietoris sequence). — Let Y be an embeddable analytic space,
which is a union of two closed sub spaces Y^ and Yg. Then there is an exact sequence of analytic
De Rham cohomology

... -^(Y) ̂ HTOCHTO -^H^nY^-^H^^Y) ->...

Proof. — Embed Y in a complex manifold X. The proof is practically the same
as for the algebraic case (II. 4. i), but we must be careful, because the rings ofholomorphic
functions on open sets U c X need not be noetherian, so that we cannot apply KrulPs
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theorem there. Let 1^, Ig be coherent sheaves of ideals defining Y^, Yg. For each n,
we have an exact sequence, as before,

o -> ̂ /(ir n i?) -> (^x/i?) ® (^x/i?) -> ̂ x/(ir +1?) - o.
Now (Il+I2)n3I^+I^3(Il+I2)2n, so the two corresponding topologies on 0^ are
equal, as before. On the left, we will show that for any open subset U c X, whose
closure U is compact^ the {I^nl^} and {(Iinl^} topologies are equal in the sheaf(?xlu-
This will be sufficient to give the exact sequence of sheaves in the completion, as above.

For each point A;eX, the local ring 0^ is noetherian. Hence we can apply KrulFs
theorem, and we find that for each n, there is an m=m(n, x) such that

(i.ni^irnir
is the local ring (9^ Since these are coherent sheaves of ideals, the same is true in a
neighborhood V^ of A;. We do this for each xeV. Since U is compact, a finite number
of the V^ cover U. Hence there is an m=m(n) which works for all xeU, and afortiori,
for all xeV.

The remainder of the proof is the same as in the algebraic case.

Next we need the analytic analogue of (11.4.4), namely an exact sequence of a
proper birational morphism. Unfortunately, we do not know how to prove an analytic
analogue of Grothendieck's < ( fundamental theorem of a proper morphism " [EGA,
III, 4. i . 5], concerning the compatibility of higher direct images of coherent sheaves
with formal completion along a subspace. Hence we cannot establish the analytic
analogue of (11.4.4) in general. However, for our purposes it will be sufficient to
prove the result for analytic spaces which come from schemes.

Proposition (1.5). — Let f : X' -> X be a proper morphism of schemes of finite type over C,
let Y be a closed sub scheme of X, let Y'^/^Y), and assume that they satisfy the hypotheses of
(II. 4.4). Then there is an exact sequence of analytic De Rham cohomology

. . . -^ H^(X,) -> HUX,) CH^(Y,) -> H^(Y,) -> HLnW ->...

Proof. — Using (1.6.2) in place of [EGA, III. 4.1.5], the proof proceeds exactly
as in the algebraic case (11.4.4).

We are now ready to proceed with the proof of Theorem ( i . i). In the course
of the proof, we will use various functorial properties of usual singular cohomology.
These results are all well known, except possibly for the exact sequence of a proper
birational morphism, so we will prove it.

Proposition (1.6). — Let y:X'->X be a proper map of polyhedral topological spaces.
Let Y^X be a closed subset^ Y^^'^Y), and assume that f maps X'—Y' isomorphically
onto X—Y. Then there is a long exact sequence

. . . -^H^X, C) -^H^X', qeH^Y, C) -^H^Y', C^H^^X, C) ->.. .
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Proof. — Let o->Cx'->P be an injective resolution of the constant sheaf C on X';
let o-->Cy->r be a resolution of C on Y', and let ?->? be a map compatible with
the restriction Cx,->Cy,. Then we have a diagram

o —> Cx —> /.!• —> Q- -^ o

o —^ CY —> /J- —> R- —> o

To copy the proof of (11.4.4), we need only know that for all i, R^Cx.) [Y=Rl/»(Cy,).
To prove this, it is sufficient to show that for any point jeY, the stalks R^(Cx^ and
R^/^CY')^ are equal. But since y""1^) is a compact polyhedron, both of these are
isomorphic to H^/'"1^), C). (See Spanier, [48], pp. 281, 291, where he shows W==W
for compact polyhedra.)

Proof of theorem. — Using the exact sequence of local cohomology and the five
lemma, it will be sufficient to consider cohomology H^Y) without supports. We use
induction on the dimension of Y. We may assume Y is reduced, and by the Mayer-
Vietoris sequence, we may assume Y is integral. Let f: Y'->Y be a resolution of
singularities of Y. Then using the exact sequence of a proper birational morphism,
and the induction hypothesis again, we reduce to the case Y smooth.

If Y is smooth, then the analytic Poincar^ lemma says that fly, is a resolution
of the constant sheaf C on Y^. Thus the map (B1 is automatically an isomorphism.
In fact, for any closed subset Z^cY^, the map

y : HyY,,C)->H^^(YJ

is an isomorphism. So letting Y^==([B l)~' la l, we have maps

Y1 : H^(Y)^H^(Y,,C).

We will now prove that for any smooth scheme Y, and any closed subset Z, the
maps y1 are isomorphisms. Note that for this proof, we no longer need functorial
properties of analytic De Rham cohomology: we deal only with the algebraic cohomology
of Y, and singular cohomology of Y^.

First, we use induction on the dimension of Y. Next, if Z =Y (i.e. for the case
of arbitrary supports), we consider an embedding of Y as an open dense subset of a
smooth proper scheme Y', and let Z'^Y'—Y. Now for Y' we can apply Serre's [GAGA]
to the sheaves 0.^,, and we deduce immediately that y^Y') is an isomorphism for all i.
Thus by the exact sequences of local cohomology, it is sufficient to consider H^(Y').

In other words, we have reduced to proving y1 is an isomorphism for Y smooth
and Z=|=Y. In this case, keeping dim Y fixed, we use induction on dim Z. If Z is
smooth, we have

H^Y^H1-2^),
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where r==codim(Z, Y), so the result follows by the first induction. I fZ is not smooth,
let W== Sing Z. Then we have an exact sequence of local cohomology

. . . ->H^(Y) ^H^(Y) ̂ H^(Y-W)^...

Now dim W<dim Z, and Z—W is smooth, so the result follows by the five lemma
and the second induction.

Remark. — One can also ask the purely analytic question: let V be a complex
analytic space, and let Z be a closed subset. Are the maps

(B1: Hz(V,C)-^H^(V)

always isomorphisms ? Our proof shows that it is true if there are schemes X 3 Y such
that V=X^ and Z==Y^. On the other hand, Liebermann and Herrera [29] have
proved this result if V is compact and Z ==V. In the next section, we will show that
this result is true in general, by establishing the formal analytic Poincare lemma.

2. The Formal Analytic Poincare Lemma.

Theorem (2.1). — Let X be a complex manifold, let Y be a closed analytic subspace, let
0.^ be the complex of sheaves of holomorphic differential forms on X, and let (l^ be its formal
completion along Y. Then 0,^ is a resolution of the constant sheaf Cy on Y.

Corollary (2.2). — With the hypotheses above, let Z be any closed subset of Y. Then
we have isomorphisms

H^(Y,C)->H^X,^)
for all i.

The general idea of the proof is to resolve the singularities of Y locally. This
is a purely algebraic operation, so using suitable GAGA-type comparison theorems for
coherent sheaf cohomology, we can apply the algebraic techniques developed earlier
in this paper.

First we need a notion of relative scheme in analytic geometry. Let S be an
analytic space, and PeS a point. Consider the category %p of schemes of finite type
over Spec^Ppg. If XpG^p is such a scheme, it is defined locally by polynomial
equations with coefficients in ^g- These coefficients are all holomorphic in a suitable
neighborhood U of P, so using the same local equations and patching data, we can
construct an analytic space X^ over U. It may not be unique, but given two such,
their restrictions to smaller neighborhoods of P become isomorphic.

Definition. — A morphism f \ X—^S of analytic spaces is a relative scheme at PeS
if there exists a scheme XpC^p, and a neighborhood PeU such that X^ is defined
on U, and X[u^X^. Note that if f : X->S is a relative scheme at P, then it is also
such for all points Q^in a neighborhood of P. We say y:X->S is a relative scheme if
it is such at all points PeS. Similarly, we say a coherent sheaf F on X is relatively
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algebraic over S if for each PeS, it comes from a suitable coherent algebraic sheaf on
the scheme Xp.

We will also need to use the following result about some special subsets of an
analytic space, which was announced by Hironaka [30, footnote, p. 136], and has been
proved by Frisch [n, Thm. I, 9] (see also [36]).

Theorem. — Let K. he a compact subset of an analytic space S, which is semi-analytic (i.e. which
can be defined by a finite number of real-analytic equalities and inequalities), and which has a
fundamental system of open neighborhoods which are Stein spaces. Then the ring A= r(K, (Pg)
of germs of holomorphic functions in a neighborhood of K. is a noetherian ring. Furthermore, the
map 7\-> r(K, F) gives an equivalence of categories between germs of coherent sheaves in a neighbor-
hood of K, and finite type ^.-modules. Finally, for each PeK, the local ring (Pp g is a flat
A-module.

We will call the compact sets of the theorem special compact subsets of S. If K
is a special compact subset of S, we consider the category ̂  °^ schemes of finite type
over Spec A. As in the case K===a point, treated above, if X^G^K ls sucn a scheme,
we can define its associated analytic space X^ in a suitable neighborhood U of K. If
f: X->S is a relative scheme, then for any point PeS we can find a special compact
neighborhood K of P, and a scheme X^G^K? an(^ a neighborhood U of K such that
x^x|u.

Now we have the following result of GAGA-type.

Proposition (2.3). — Let S be an analytic space, let f '. X->Y be a proper morphism
of relative schemes over S, and let F be a relatively algebraic coherent sheaf on X. Let K be a
special compact subset ofS such that f : X-^Y comes from a morphism of schemes f: X^-^Y^
in ^K? anc^ ̂  comes from a coherent sheaf ̂  on X^. Then there is a neighborhood U ofK. and
isomorphisms

Rm^R'OTIu
for all i.

Proof. — Since we have the functor h from %^ to analytic spaces over a neigh-
borhood of K, the proof proceeds exactly as the proof of the normal relative GAGA
theorem [19, XII, Thm. 4.2, p. 327]. Note that for any particular sheaf F, the
d^vissage of the proof involves only finitely many other sheaves, so the whole proof
extends to a suitable neighborhood of K.

Proposition (2.4) (Fundamental theorem of a proper morphism of relative schemes).
— Let S be an analytic space, let f : X'->X be a proper morphism of relative schemes over S,
let Y be a closed relative subscheme of X, let Y'==/""'^Y), and let ¥ be a relatively algebraic
coherent sheaf on X'. Then the natural map

R^(F)^Ry:(F)

is an isomorphism for all i, where ^ denotes formal completion along Y (resp. Y').
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Proof. — The question is local on S, so for each PeS we choose a special compact
neighborhood K ofP such that X', X, Y, F all come from XK, XK, YK, F^e^- Copying
the proof of (1.6.2), we use [EGA, 111.4.1.5], in the category ^5 ^d ^d ^at the
inverse system {R*/*(FK^)} satisfies (ML), and that the kernel and cokernel of the map
of inverse systems

R^FK^XK/I^R'/^K.r)

are essentially zero.

Using the previous proposition does not give the analogous result for the analytic
sheaves on any open neighborhood of K, but at least it does give the analogous result
over the interior of K, which is still a neighborhood of P. Thus the rest of the proof
is the same as that of (1.6.2).

Proposition (2.5) (Exact sequence of a proper birational morphism). — Let S be
an analytic space, let f : X'->X be a proper morphism of relative schemes over S, let Y be a closed
relative subscheme of X, and let Y'=/''"'^Y). Assume that f maps X'—Y' isomorphically
onto X—Y. Assume furthermore that there exist closed embeddings X->Z and X'->Z' of X
and X' into complex manifolds Z, Z', which are relative schemes over S, and that there exists a
proper morphism g : Z'—^Z such that g\y==f, and g maps Z'—^"^(Y) isomorphically
onto Z —Y. Then there is an exact sequence of analytic De Rham cohomology

... ->H\X) -^H^X^OH^Y) -^(Y') ̂ H^^X) ->...

where we calculate the De Rham cohomology using the embeddings into Z and Z': thus
H^X^H^Z.O;), etc.

Proof. — Using the fundamental theorem of a proper morphism just proved, and
the analytic Mayer-Vietoris sequence (1.4), the proof proceeds exactly as in the algebraic
case (11.4.4).

Proof of Theorem (2.1). — Given the complex manifold X and the analytic sub-
space Y, it will be sufficient to show that for all PeY, and for all sufficiently small
neighborhoods U of P, we have isomorphisms

H^u.cy^H^u.Qy.
In fact, we will prove the following apparently more general result. Let S be

an analytic space, and PeS a point. Let Y—^X be a closed immersion of relative
schemes over S, where X is a manifold. Then for all sufficiently small neighborhoods U
of P, the natural maps

H^YI^q^H^Xl^Ox)
are isomorphisms. In particular, taking S == X gives the theorem.

We prove this result by induction on dim Y. If Y is smooth, then there is a
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quasi-isomorphism ^x-^v (^e 1.3 above). Thus the result follows from the usual
analytic Poincare lemma. In particular, if dim Y== o, we may assume Y is reduced,
hence smooth, so this starts the induction.

I fY is not smooth, we consider the scheme Ype^p over Spec ̂ g and a neigh-
borhood U of P such that Y^Y[u. We may also assume that there is a regular
scheme XpG^p such that X^Xju. Let Wp==SingYp. We can apply resolution
of singularities in the category ^p, so we find a proper morphism g : Xp-»Xp of
manifolds, such that g maps Xp—^-^Wp) isbmorphically to Xp—Wp, and such
that the proper transform Yp of Yp is regular. Let Wp^-^Wp) nYp.

Applying the functor A, this whole situation is transported to the category of relative
schemes over a suitably diminished neighborhood U of P. Now we apply the exact
sequence of a proper birational morphism just proved (with slightly different notation),
the five-lemma, the induction hypothesis, and the corresponding topological exact
sequence (1.6) to reduce to the smooth case which was already proved.

3, The local case*

Theorem (3.1). — Let S be an analytic space, and let P be a point of S. Then there are
natural isomorphisms

H^S,C)^H^R(Spec^g).

Corollary (3.2). — With the same hypotheses there are isomorphisms

^(S.^p^HP^Spec^s)

where the group on the left is the stalk of the Borel-Moore homology sheaf of S.

Proof. — To prove the theorem, we will consider a slightly more general situation.
Using the terminology and notations of the previous section, let X be a relative scheme,
proper over S, and let Y^/'^P). Let Xp, YpG^p be the corresponding schemes
over Spec ffly g • Let ' denote the base extension to Spec (Pp g. Furthermore, choose
a special compact neighborhood K of P, such that X comes from a scheme X^e^K-
Then we have a continuous map of topological spaces

9 : XI^-^XK.

Now we have natural maps of cohomology

HY^DB^K) —^ H^Di^Xp) —> HY^DR(XP)

HW^K) —^ H^B(X) ^- H^X,C).

In this diagram, the top row consists of algebraic cohomology, and the bottom
row of analytic cohomology. The maps a and [B are excision maps. By the strong
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excision theorem (III, 3.1) which applies also in this case, (B and p. a are isomorphisms.
Hence a is also an isomorphism. The map y comes from the continuous map 9 above.
The map 8 is an isomorphism by the usual excision theorem, and s is an isomorphism
by the result (2.2) of the last section.

Using these isomorphisms, we obtain a natural map

6 : H^(Xp)-^HV(X,C)

which we will show to be an isomorphism.
The proof proceeds along familiar lines, using the functorial properties of the

cohomology theories on both sides. We use induction on the dimension of Xp. By
the Mayer-Vietoris sequence, we may assume Xp is integral. Then we apply the
resolution of singularities to Xp, and as before extend the resolution over a suitable
neighborhood U of P. Then using the exact sequence of a proper birational morphism
(with supports) we reduce to the case where Xp is a regular scheme. In this case, if
n==dimXp, we have duality theorems

H^Xp^CH^-^Yp))'

and Hy(X, C) ̂  (H^-^Y, C))'.

Now the maps 6 are compatible with duality; Yp is a scheme of finite type over C, and
Y^Yp, so the isomorphism follows from the global case (1.1).

We leave the proof of the corollary to the reader.

Remark. — In the case of an isolated singularity, P. Deligne proved by a different
method (unpublished) that

H|>(S,C)^H^R(Spec^s).

In fact, he proved more generally that if Y is an analytic subset of S such that S —Y
is smooth and PeY, then

(^(S,C))p^HV,DR(Spec^s).

4. The relative Case.

Let y:Y->S be a morphism of schemes of finite type over C. Then we wish
to compare the sheaves of relative De Rham cohomology R^Y) on S with the sheaves
of relative complex cohomology R^j^C) on S\ One sees immediately that unless the
sheaves R^/^Y) are coherent, there is not much hope for a reasonable comparison
theorem. So we will show that under suitable conditions, when these sheaves are
coherent, we have a comparison theorem.

In any case, we have natural maps

a1: R^Yy^RyOT
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of the algebraic De Rham cohomology into the analogously defined analytic relative
De Rham cohomology. On the other hand, the natural map of the complex numbers
into the relative De Rham complex induces maps

(B1: Ry?(C)®^s^RVW.
Proposition (4.1). — Assume that f is proper. Let r be an integer such that R'/^Y) is

coherent/or i===r and z = = r + i . Then o^ is an isomorphism.

Proof. — We will adapt the proof of (III, 5.2), with the continuous map g : Sh->S
in place of the base extension there. The fact that g* commutes with formation of
cohomology of coherent sheaves is the relative GAGA theorem (quoted in Ch. I, § 6).
Furthermore, (1.4.10) and its proof apply equally well to the functor g* instead of the
functor ®E in the original statement. The rest of the proof of (III. 5.2) carries over
without change.

Proposition (4.2). — Assume that f is proper, and S smooth. Let r be an integer such
that R^Y^) is coherent/or i<_r. Then the sheaf RV»(C) is locally constant, and (B1 is an
isomorphism, for i <_ r.

Proof. — We will use an analytic analogue of (III. 5.4) suitably adapted. First
note, as in the algebraic case, that R^Y^) has an integrable connection. Now a
coherent sheaf with integrable connection on a complex manifold is locally free, and
the connection is locally trivial, so considering a neighborhood of any point PeS\ we
may assume Ry^Y^) is free with trivial connection for i<_r.

Next we note that the Leray spectral sequence (III. 4.1) holds equally well in
the analytic case, so as in the proof of (III .5.4) we find an isomorphism

HDR(Y^RV:WP

where Yp ̂ J-^P). On the other hand, one knows that the stalks of the sheaf R^(C)
give the cohomology of the fibre:

HW,C)^R^(C)p.

Finally, the global comparison theorem tells us that
H^(Y^HW,C).

We deduce that the natural map
Ry^COp-^R^Y71)?

is an isomorphism, whence the result of the proposition follows by tensoring with G^h.

Corollary (4.3). — Assume that f is proper. Then there exists an open dense subset U c S
such that a* and (B1 are isomorphisms over U, for all i.

Proof. — Apply (III. 5.1).

Remark. — This Corollary was proved by Deligne in the case of a smooth morphism/,
not necessarily proper [10, Thm. 6.13, p. 106].
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