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MINIMAL INJECTIVE RESOLUTIONS WITH APPLICATIONS
TO DUALIZING MODULES AND GORENSTEIN MODULES

by ROBERT FOSSUM, HANS-BJORN FOXBY,
PHILLIP GRIFFITH, IDUN REITEN (1)

Since Bass' original paper [5] on injective resolutions and Gorenstein rings, there
has been a number of papers following a similar theme. Perhaps the most notable is
the paper of Peskine and Szpiro [33] which blends the algebraic theory begun by
M. Auslander, Bass et al. together with the more geometric concepts of Serre and
Grothendieck to solve many outstanding problems in commutative algebra of a homo-
logical flavor as well as obtaining finiteness and vanishing theorems in the cohomology
of schemes. It is our intent in this paper to investigate further the properties of minimal
injective resolutions and to consider algebraic criteria for the vanishing of local cohom-
ology. We also study the structure of a special class of modules of finite injective
dimension introduced by Sharp [40] under the name of Gorenstein modules. And in
the same vein, we consider conditions under which a local ring has a dualizing module
(that is, a " module of dualizing differentials 39 in the sense of Grothendieck [19]). In
what immediately follows, we describe briefly our paper in a section-by-section account.

In Section i we consider, for a finitely generated module M over a commutative
noetherian ring A with minimal injective resolution M->I°->I1—^. . ., the question:
If p is a prime ideal of A and if J^o, when is p associated to the injective module P?
Although many partial answers were obtained by Bass [5] and Foxby [14], by making
use of Hochster's construction of maximal Cohen-Macaulay modules [25], we are able
to give a complete answer (this answer is independent of the characteristic of A).

We concern ourselves in Section 2 with the cohomology modules of a dualizing
complex of a local ring. (These modules are dual via Matlis duality to the local
cohomology modules of A.) And we establish a vanishing criteria a form of which
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United Slates National Science Foundation.

The third author was supported by the Alfred P. Sloan Foundation and the fourth author by Norges Almen-
vitenskapelige Forskningsraad. We take this opportunity to thank the various universities which have provided
hospitality, support and stimulating research atmosphere, namely Brandeis University, University of Illinois,
Aarhus Universitet and Kebenhavns Universitet.
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Hartshorne and Ogus [23] have used in order to show complete local, factorial rings
of equi-characteristic zero are Cohen-Macaulay.

In Section 3, after discussing pertinent facts concerning dualizing modules and
Gorenstein modules, we turn to a problem related to the central res alt of Section i,
namely: If A is a local ring with maximal ideal m and M is a finitely generated A-module,
under what conditions can Ext^—, M) be exact and nonvanishing on the category of
A-modules of finite length (denoted by oSf) ? The relation of this question to that of
Section i is that the maximal ideal m is not associated to thej-th injective I3 (in a minimal
injective resolution of M) if and only if Ext^—, M) vanishes on oSf. It turns out that
such a module M must be a Gorenstein A-module and that necessarily j = dim A.

In our investigation of the structure of Gorenstein modules in Section 4, we utilize
heavily the fact that the endomorphism ring of such a module is an Azumaya algebra.
Among other results, we show that the endomorphism ring of a Gorenstein module G
over a local ring A necessarily has order one or two in the Brauer group of A. This
yields the result: If G has odd rank r (see Section 3 (3.7) for the definition of rank),
then A has a dualizing module 0 and G^D7'.

In Section 5 we obtain complete answers to all questions of Section 3 for one-
dimensional local rings. Two facts which emerge are, firstly, that a one-dimensional
local ring has a dualizing module if and only if it has Gorenstein formal fibers and,
secondly, an analytically irreducible one-dimensional local ring necessarily has a dualizing
module.

Finally, in Section 6 we give some classical examples of Cohen-Macaulay rings
which are /z-Gorenstein but not (n+i) -Gorenstein by utilizing the properties of dualizing
modules and the Eagon-Northcott resolution [9].

An excellent source for standard but unexplained conventions and terminology is
Matsumura's book [30].

i. Minimal injective resolutions.

In this first section of our paper we wish to refine the observations made by
Bass [5] concerning minimal injective resolutions of finitely generated modules over a
noetherian ring. In this section the word ring always means a commutative noetherian
ring containing a multiplicative identity. The notation and definitions which immedi-
ately follow are standard and are used without further reference in subsequent sections.

If M is a finitely generated module over a ring A, then M has a minimal injective
resolution:

o-^M^P-^I1-^... ->?->...

It is known from Matlis [29] (or Gabriel [17]) that each injective module I3 is a direct
sum of indecomposable injectives of the form E(A/p) for some prime ideal p in the
support of M, where E(A/p) denotes the injective envelope of A/p. The main result
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MINIMAL INJECTIVE RESOLUTIONS 195

of this section (Theorem (1.1)) answers the question: For which integers j is E(A/p)
a direct summand of?'? The notation ^'(p, M) denotes the number of copies ofE(A/p)
in V. Bass [5] shows that ^'(p, M) depends only on j, p and M. If My is of finite
injective dimension over A^, say t==id^ Mp<oo, then ^(p, M)+o while ^'(p,M)==o
for j>t. The least number for which ^'(p, M)4=o turns out to be the depth of the
Ap-module My (abbreviated depth^Mp, cf. Bass [5]). So the aforementioned question
becomes: Is ^'(p, M)=t=o for all j between depth^ My and id^ My (the latter might
be infinite)? Bass gives the following result: If id^ Mp==oo, then ^'(p, M)4=o for
j>_dimAy. In [14] Foxby gives an affirmative answer to the last question in the
following special cases:

1) The ring Ay or the module My is Cohen-Macaulay;
2) For the prime p we have depth^ Ap^depth^ My; and
3) The module My has finite injective dimension.

We now provide an affirmative answer in the general case. Our proof relies
heavily on Hochster's construction of (possibly non-noetherian) maximal Cohen-
Macaulay modules (see [25]), but also uses Bass5 result and case 2) mentioned above.

Theorem (i. i). — Let A be a commutative noetherian ring and let M be a finitely generated
A-module with minimal injective resolution:

o^M-^I°->I1-.... ->?->...

Let p be a prime ideal in the support of M. Then E(A/p) is a direct summand of P' for allj such
that depth^ My<j<^id^ My. (The latter might be infinite.)

The proof of Theorem (1.1) is accomplished via the propositions which follow.
The first of these is merely a restatement of Bass' result [5; Lemma 3.5] for modules.
Its proof also follows easily from local duality as in Peskine and Szpiro [33].

Proposition (1.2) [Bass]. — If id^ Mp==oo, then

^'(p, M) >o, for all j>, dim Ay = ht p.

For the proof of the next proposition one may consult Foxby's article [14]. An
additional remark here is that, if a finitely generated module M over a local ring A
satisfies the condition depth A <_ depth M <_ id A, then depth A = depth M == id A
whenever id A < oo.

Proposition (1.3) [Foxby]. — Let (A, m, k) be a local ring and let M be a finitely generated
A-module with depth M>_ depth A. Then ^'(m, M) >o for depth M^'^id A.

The following lemma will be useful together with Hochster's construction of
maximal Cohen-Macaulay modules. For A a local ring with residue field k and maximal
ideal m, the notation M" denotes the Matlis dual of the A-module M, that is

M"==Hom(M,E(A)).
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Furthermore, if M is finitely generated, then Supp ]Vr={m} and hence m is the only
possible prime ideal in the support of Tor,(X, M") for an arbitrary A-module X.

Lemma (1.4). — Let (A, m, k} be a local ring and let N be a (not necessarily finitely
generated) h-module. Suppose .^, ...,^ is an ^-regular sequence such that ann(N/X^N)
is proper and m-primary {where X^==Q and X j= (^ , . . . , ^ ) for i<j<n). Furthermore,
let M be a finitely generated nonzero module of depth zero. Then Ext^N/x-N, M)+o for
all i and j with o^z^j.

Proof. — The argument goes by induction onj. For j==o, we have that N®A+o
since ann(N/a^N) is m-primary and since m(N/x^N)4=N/x^N. Consequently

Hom(N,A)==(N®A)"+o.

Therefore, since depth M == o is equivalent to k being isomorphic with a submodule
of M, it follows that Hom(N, M)+o as desired. With regard to the induction step,
we first note the standard duality isomorphisms give (since M=M^):

Ext^N/x^N, M)^Tor,(N/x,N, M^

for all i andj (see Gartan and Eilenberg [7; Chapter VI]). By hypothesis there is an
exact sequence:

o^N/x,_iN^N/x^N^N/x,N^o.

Now if i<j, then Tor,_^(N/x,N, M")=ho, by the inductive hypothesis, so Xj is a zero
divisor on Tor,_i(N/x^_iN, M") by the remark preceding the statement of this lemma.
The fact that Tor,(N/x,N, M")4=o now follows from the exact sequence

Tor,(N/x,.N, M') -> Tor,_,(N/x,_iN, M') -X Tor,_,(N/x,_,N, M')

which is induced by the previous short exact sequence. Q.E.D.

Lemma (1.5). — Let (A, m, k) be a local ring and let j be a nonnegative integer. If
M is an ^module and if ^(m, M)=o, then Ext^T, M)==o for all ^-modules T with
support in {m}.

Proof. — By induction on length it follows that Ext^—, M) vanishes on modules
of finite length. If T is an A-module with support in {m}, then T==limT^ where
each T^ is a module of finite length. Since the inverse limit functor is exact on the
category of projective systems of modules of finite length, it follows that

Ext^T, M^mExt^T^, M)=o

(cf. Roos [36]). Q..E.D.

We are now ready to return to the proof of our main result of this section.

Proof of Theorem (1.1) . — Using standard facts concerning the ^'(p, M) under
localization and completion which can be found in Bass [5] or Peskine and Szpiro [33],
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MINIMAL INJECTIVE RESOLUTIONS 197

it is enough to prove that ^(m, M)4=o for all j with depth M^<j<^id M under the
assumption that A is a complete local ring with maximal ideal m. Because of this
reduction we shall abuse the notation [^(m, M) by writing ^(M). To begin we assume
the contrary, that is, assume that ^(M^^o for some j with depth M<j<^id M. It
follows from the result of Bass (Proposition (1 .2) ) quoted previously that j < dim A
and from Foxby's result (Proposition (i .3)) that depth A>depth M. Now let ^, . . ., Og
be a maximal M- and A-regular sequence. Hence s == depth M. We write

G=C/(^,...,^)C

for an A-modale C. We note that [JL^(M)= ̂ ^'(M) for all i (see Bass [5; Cor-
ollary 2.6]). Hence [L^~s(M)==o. We put < /=d imA===—j+dimA.

Before concluding with the final step in our proof, we must recall the remarkable
result proved by Hochster [25]: If R is an equi-characteristic local ring of dimension t
with a parameter system x^y . . . , x ^ then there exists a (possibly non-noetherian)
R-module T such that ^, . . ., ^ is a T-regular sequence and such that T/(^, . . ., ^)T
is nonzero. Such a module is called a maximal Cohen'Macaulay module.

Once again, returning to the proof of Theorem ( i . i), we let k denote the residue
field of A and p the characteristic of k (so p is either zero or a prime number). Then
R==A/j&A is an equi-characteristic local ring of dimension either d—i or d. If
dim R = = r f — i (respectively, if dim R==r f ) let x^, . . ., ̂  (respectively, ;q, . . ., x^) be
elements in A whose images in R form a parameter system for R. In both cases let T
be a maximal Gohen-Macaulay R-module as in the preceding paragraph. If

dim R == d— i

put N ==T and if dim R -=- d put N ==T/^T. In each case ^3, . . ., x^ is an N-regular
sequence and ann^(N/xN) is m'-primary, where x=(^5 - - ' y xn) anc^ rn'==mA. From
Lemma (1.4) we have that Ext^'^N/xN, M)+o, since j—s<^d—i. Moreover, by
Lemma (1.5), it follows that Ext^'^A, M)=|=o, that is, ^""^(M^+o which gives the
desired contradiction. Q..E.D. for Theorem

Remark. — It is easy to give examples which show that Theorem (1.1) does not
hold for nonfinitely generated modules M, e.g. if N is finitely generated of depth two
and M=N®E(^), then (JL°(M)==I, [^(M^^O and ^(M^+o. However, we can
state the following partial result which is easily proved: If A is a local ring, M an
A-module and i a number greater than depth A such that ^(M^+o, then ^(M^+o
for j^i.

2,. On the vanishing of local cohomology.

After recalling some basic facts about dualizing complexes, we establish a represen-
tation (Corollary (2.3)) for the functor Ext^(E(A), —) used so successfully by Peskine
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and Szpiro [33], where s is the depth of the local ring A. We then concentrate on the
vanishing of local cohomology which subsequently yields a result of Hartshorne and
Ogus [23] on factorial rings.

Let R be a Gorenstein local ring of dimension d and let A be a homomorphic
image ofR, say A=R/3. Let ̂  and p denote the maximal ideals ofR and A, respect-
ively, and let k be the common residue class field ofR and A. In the minimal R-injective
resolution of R, i.e. the dualizing complex for R (see Grothendieck [19])

o->R->I^->I^->...-^->o,

thej-th injective module IR is of the form UE^R/Q), where the sum is taken over all
prime ideals Q in R of height j, that is (since R is Gohen-Macaulay) all primes JQ in R
with dimR/Q=fi?—;. In particular I^E^A). Applying the functor Hom^ ( A , — )
to this injective complex IR we obtain a complex I^Hom^A, iy of injective A-modules,
the dualizing complex for A. We note that, for j^ dim R— dim A, the module
Ij[==HomR(A, lR)=llE^(A/q), the sum being taken over the prime ideals q in A with
dim A/q= dim A—;. With regard to the cohomology of this latter complex, we have
that ExtR(A,R)==o if j<dim R—dim A or if j> dim R— depth A and that

ExtR(A,R)+o

in case j=d imR—dimA and j==dimR—depthA (see Grothendieck [19]). More-
over, Grothendieck's local duality theorem which is stated in Section 3 shows that the
A-modules Ext^A, R) are independent of the Gorenstein ring R (except of course for
the superscript "j") of which A is a homomorphic image. Consequently, dividing R
by an appropriate R-regular sequence in the ideal 3, we may assume (and do hereafter)
that rf=dimR==dimA. Setting 0.{==Ex.t^{A, R), we see from the discussion above
that n^+o, tl^+o, for ^ == rf—depth A, and finally that 0.{=o for j>t. Returning
to the dualizing complex of A, o->I^-^->... ->Jj[->o, described above and letting B
denote the t-th coboundary module in this complex and W^ the corresponding cocycle
module, we obtain the following diagram with exact rows and column:

Jt-2 ___„ Jt-1 ___. D ___. -
IA ———> IA ———> D ———> 0

[
o^w^—*Il^...—»I;-^Et(*)—*o

I
Q'

I
0.

Diagram ( 2 . 1 )
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MINIMAL INJECTIVE RESOLUTIONS 199

We observe, for q a prime ideal in A, that

I i for 7= d—dim A/a—1> o
(^W,0=

o, otherwise,

and that id W^ == ^ == depth A. In particular, if A is Cohen-Macaulay, then ^==W^
and pi(q, ^0==S,,htq- In general the Gohen-Macaulay locus of A is the (pairwise)
disjoint union of the Zariski open sets

LT,=={qeSpecA :^=o for i+j}.

Proposition (2.2). — Let A be a complete local ring and let M be a finitely generated A-module.
Then there are functorial isomorphisms

Exti+^E^), M)^Ext{(WA, M)

for all j\ where s = depth A.

Proof. — Since A is a complete local ring, then via the Cohen structure theorem [8]
A is the homomorphic image of a Gorenstein local ring R. (Hence, we shall make
use of the notation and general set up preceding the statement of this proposition.)
If q is a prime ideal in A which is not maximal and ifL is an A-module of finite length,
then Ext^(E(A/q), L)==o for all i>_o, since there must be some xeA—q which acts
as an automorphism on E(A/q) and such that xL=o. Since M is of finite type and
complete (so M==Um (M|pnM), where p is the maximal ideal of A), there is an exact
sequence

o-^M-^^(M/pnM)-^^(M/pnM)->o,
ft n

where here M is identified with lim^M/^M). This exact sequence together with the
preceding discussion gives the result

Ext^A/q^M)^ for all i>_o.

We now use the middle row of diagram (2.1) to further obtain the isomorphism
Ext^^E^), M^Ext^W^ M). Q.E.D.

Corollary (2.3). — Let A be a complete local ring and let M be a finitely generated A-module.
Then:

f°? if J<^'
Exti(E(A),M)==

[Hom(al,M), for j=s.

Proof. — The fact that Extj[(E(A), M)==o for j<s== depth M is a result ofPeskine
and Szpiro [33]. By Proposition (2.2) we have that Ext^(E(^), M)^Hom(WA, M).
Again refering to Diagram (2.1), if B+o, then B is the homomorphic image of the
injective I^~1 which is a direct sum of injective A-modules of the form E(A/q), where
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q is not maximal. Since Hom(E(A/q), M) == o as above, it follows that Hom(B, M) ==o.
Thus, the column of Diagram (2 .1) now gives that Viom(0f, M)^Hom(W^, M).

Q..E.D.
We next turn to the vanishing of the modules Q^ which in turn implies the vanishing

of local cohomology. If A is a local ring with maximal ideal m and residue field k
which is a homomorphic image of a Gorenstein ring, then the precise connection between
the local cohomology of A with respect to m and the cohomology modules ^ is a
consequence of Grothendieck's Theorem on local duality which gives

H^(A)^(nir,
where d==dimA, where M^ denotes the Matlis dual of M and where

H^/M) ==ln^ Ext^A/m^ M).

If ^{==0 for J>o, then of course A is Cohen-Macaulay and conversely. In fact, it
is our intention here to establish criteria in order that a ring be Cohen-Macaulay
(especially in case the ring is factorial).

Lemma (2.4). — If^ ls a normal local domain which is the homomorphic image of a
Gorenstein ring, then ̂  is a diuisorial ideal. In particular, if A is factorial, then 0°^A.

Proof. — As usual let A==R/3 where R is a Gorenstein local ring of dimension
rf==dimA. Since ^=Hom^(A,R) is easily seen to be a reflexive R-module, we
have, for p a prime ideal, the inequality

depth^(^)^ = depth^(Qi) ̂  min(2, dim A,),

where ^B is the prime ideal of R such that p=^5/3. So Q^ certainly satisfies Samuel's
condition (a^) (that is, every A-regular sequence of length two is an ^-regular sequence)
and is therefore a reflexive A-module.

We also remark that £2^ is necessarily isomorphic to an ideal of A since, if K is
the field of quotients of A, then ^K^I^^K^K^^K^K. Q.E.D.

From Lemma (2.4) one may easily deduce Murthy's result [31] that a factorial
ring which is the Gohen-Macaulay homomorphic image of a Gorenstein ring is itself
Gorenstein. In fact, one may draw a slightly stronger conclusion, namely: If A is a
factorial ring which is the homomorphic image of a Gorenstein ring, and if A has a
Cohen-Macaulay ideal, then A is a Gorenstein ring. One need only observe that a
Cohen-Macaulay ideal is necessarily divisorial.

Proposition (2.5). — Let A be a local ring which is a factor ring of a Gorenstein ring and
which satisfies the following two conditions:

(1 ) Supp Q^ == Spec A.
(2) The localizations Ay are Cohen-Macaulay for all prime ideals p with depth (fl^)p<^.

Then 0.{=o for iSj^~2-
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MINIMAL INJECTIVE RESOLUTIONS 201

Proof. — We proceed by induction on n. And since there is nothing to prove
for n<_2, letus assume ^2^3 and (by the inductive hypothesis) O.^==o for ^^j^n—3.
Also we may assume that Q^""2 is of finite length; otherwise, we would apply the induction
hypothesis on d==dim A in order to obtain a contradiction. As usual, we assume
A=R/3, where R is a Gorenstein local ring and dim A=dim R. Let P. be an R-free
resolution of A and let M*==Hom^(M, R) denote the R-dual of M. We obtain a
complex of R-modules

o->^->P;->... -^_^P^->P^

of length n. Here depth^fl^^n (for otherwise A is Gohen-Macaulay and there is
nothing to prove) and depth^P^=fi?=dim R for all i. Furthermore, the only possible
nonzero homology module is ^~2 which is of finite length. Therefore, we can apply
the Acyclicity Lemma of Peskine and Szpiro [33; Lemma 1.8] to get 0^~2==o as
desired. d.E.D.

Corollary (2.6). — Suppose A is a local ring which is a factor of a Gorenstein ring and
let n be a positive integer. Assume that A satisfies Sorrows condition (SJ and further assume that
^ satisfies Samuel's condition (aj and 8upp^=8pecA (e.g. if n^A as is the case
when A is a factorial ring). Then £2j[==o for i^J^^—2. In particular if it is the case
that depth A -\-n—2^ dim A, then A is Cohen-Macaulay.

Although there are local factorial rings in characteristic p'>o (of dimension not
exceeding four) which are not Gohen-Macaulay (see Bertin [6] and for complete local
rings see Fossum and Griffith [12]), the situation in characteristic zero is quite different.
Indeed, Raynaud, Boutot, and Hartshorne and Ogus [23] have shown that a complete
local factorial ring with residue field algebraically closed and of characteristic zero
necessarily satisfies Serre's condition (83). And with the aid of the following lemma,
Hartshorne and Ogus [23] show that such a ring is Cohen-Macaulay if its Krull dimension
does not exceed four.

Corollary (2.7) (Hartshorne and Ogus). — Assume that A is a factor of a Gorenstein
ring which satisfies the condition (83). If A is factorial and in addition satisfies the condition:

depth Ap^ihtp+i,

for any prime ideal p of A, then A is Cohen-Macaulay (and thereby Gorenstein).

Proof. — By induction on n it will be proved that A is (8J for all n. 8ince there
is nothing to prove for n<_^ we assume that ^^4 and that A is (8^_^). Let p be
a prime ideal in A with depth Ay ==n—i. Then htp<_2{n—i)—2 ==2n—4 and
therefore ht p—depth Ay<_n—^; so f2{ ==o for j>^—3. On the other hand £l{ ==o
for i^J^^—3 by Proposition (2.5) or by Corollary (2.6). Q.E.D.
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3. Dualizing modules and Gorenstein modules.

In order to facilitate the discussion that follows, we shall assume until further
notice that A is a local ring with maximal ideal m and residue class field k. Moreover
oSf denotes the category of A-modules of finite length. While our main theorem of
Section i (Theorem ( i . i)) can be viewed as conditions as to when Ext-^—, M) vanishes
on JSf (that is, as to when (< holes " in the injective resolution of M can appear for lack
of E(A) as a direct summand), in this section of our paper we concern ourselves with
the more general question of the exactness of Ext^—, M) on JSf. This question is in
turn related to Grothendieck's Theorem [19] on local duality which states that

Ext^-, A)=Hom(-, H^(A))=Hom(-, E(A))

is a natural equivalence of functors on JSf for A a rf-dimensional Gorenstein ring. More
generally our discussion here is related to the so-called Gorenstein modules, which are
those for which their Cousin complex gives a minimal injective resolution (cf. Sharp [40],
but also Hartshorne [22]). The structure and properties of Gorenstein modules have
been studied by Hartshorne [22], Sharp [37], [38], [39], Foxby [14], [15] andReiten [34].
Since we shall be concerned with Gorenstein modules in one fashion or another throughout
the remainder of this paper, it is convenient to elaborate here on the properties of
Gorenstein modules and dualizing modules needed for subsequent discussion. The
definition of a Gorenstein module in terms of its Cousin complex really states that such
a module G (always assumed finitely generated and nonzero) has a <( nice " injective
resolution in that. [i^p, G)=t=o if and only if ht p ==j. This property turns out to be
equivalent to the following ones:

Definition (3.1) [15$ Foxby]. — The module G has finite injective dimension and
[ protective, if j=o

Ex^G.G^r' J J

[o, if j>o.

(3-2) [37$ Sharp]. — The module G satisfies depth G== id G.

(S-3) [37$ Sharp] [15; Foxby]. — The finitely generated A-module G is Gorenstein if
and only if each regular A-sequence x is a regular G-sequence and G/xG is a Gorenstein Af^A-module.

Some further properties of Gorenstein modules which will prove useful are the
following:

(3-4) [37$ Sharp]. — If A has a Gorenstein module G, then both A and G are Cohen-
Macaulqy and Supp G == Spec A.

(3-5) LI5^ Foxby]. — If G is a Gorenstein A-module and if x is an A-regular sequence,
then End^G/x End^G ̂  End^(G/xG).
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(3.6) [37; Sharp] [15; Foxby]. — IfG is a Gorenstein A-module and if in is a maximal
A-regular sequence, then G/xG^E^ where E is the A^A-injective envelope of k. Then
^(rankEndG^-^G^dim^Ext^G), where d=dimA.

After Sharp [37] we call this common integer the rank ofG (as a Gorenstein module).
In the situation that A is an integral domain it is easily seen that the usual notion of
rank (that is, diniK(K®G) where K is the field of quotients of A) is the same as the
Gorenstein rank of G. Finally, we mention that it is straightforward to globalize the
notion of a Gorenstein module. However, we do require that G^ 4= o for each maximal
ideal m.

Classically, the notion of a Gorenstein module must go back to Grothendieck
(see [18; pages 94, 95] and [19]) and the so-called module of dualizing differentials (also
see Section 5 (Remarks ofSerre) of Bass [5] and also Sharp [40; Theorem 3.1]). Indeed,
the classical example [19] is simply Q^ (as defined in Section 2) under the assumption
that A is Gohen-Macaulay. In this instance 0^==o for j>o. Moreover, there is a
natural equivalence of functors

Ext^-, ^)=Hom(-, E(A))

on modules of finite length. For this reason we call such a module a dualizing module
for A. One observes from Sharp [37] that this is equivalent to the notion of a Gorenstein
module of rank one (if A is Gohen-Macaulay the notion of a dualizing module is also
equivalent to that of a canonical module in Herzog and Kunz [24]). We state a final
observation concerning dualizing modules before coming to the central theorem of this
section.

(3.7) [Reiten [34] and Foxby [15]]. — The trivial extension A^O. is a Gorenstein
ring if and only if A is Cohen-Macaulay and 0. is a dualizing module for A.

Here A K 0- denotes the ring obtained through componentwise addition and
multiplication given by: (^, x) . (b,y}=={ab, ay-\-bx). From this fact and the preceding
discussion we see that A has a dualizing module if and only if it is the homomorphic
image of a Gorenstein local ring. Thus, via the Cohen structure theory [8] we see
that every complete Cohen-Macaulay local ring has a dualizing module. In [13]
Fossum, Griffith and Reiten developed and used the theory of trivial extensions to deduce
properties of dualizing modules from the properties of Gorenstein rings as in Bass [5].
For a discussion of the global theory of dualizing modules see Sharp [38].

Theorem (3.8). — Let A be a local ring with maximal ideal m and residue class field k.
Let JSf denote the category of A-modules of finite length. If M is a finitely generated A-module
and if t is a nonnegative integer such that Ext^—, M) is a nonzero exact functor on oSf, then M
is a Gorenstein module and t = dim A.
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Proof. — As usual we may assume that A is complete. Let R be a Gorenstein
local ring such that A is a homomorphic image of R, say A = R/r. We may assume
that dim R==dim A=d. Since Ext^—, M) is left exact on JSf, we have

Ext^L, M)^Hom(L, H^(M))

for all modules L in JSf, where H^(M) denotes the t'th right derived functor of the section
function with support in {m}, that is, H^(M)==lim^ Ext^A/W', M) (cf. Grothen-
dieck [19]). The identity Ext^-, M)^Hom(-, ffJM)) also holds on all modules
with support in {m} because the inverse limit functor is exact on projective systems
over jy and both functors carry direct limits into inverse limits. Now by the local
duality theorem (Grothendieck [19; Theorem 6.3]) the local cohomology group
H^M^Extil-^M.R)^. Since htR(r)=o we can choose a prime ideal q in R
containing r and also of height zero. Since (R/q)^ is an artinian A-module, we have
the isomorphisms:

Ext^R/q)-, M)^Hom((R/qr, ffJM))
^Hom((R/qr, Ext^(M, RH
^((R/qroExt^M.R))'
^Hon^Ext^-^M, R), (R/q)^)
^Hon^Ext^M, R), R/q).

Since (R/q)" has support in {m}, there is an exact sequence o->^->(R/q)", and since
Ext^(—-, M) is also right exact on modules with support in {m} this gives the exact
sequence

Ext^R/q)', M^Ext^, M)->o.

By our assumption Ext\k, M)4=o, and hence

Hom(Ext^(M, R), R/q)==Exti((R/q)-, M)+o,

that is, annRExt^-^M, R)cq which is of height zero. On the other hand R is
Gorenstein and therefore grade Ext^-^M, R)>_d—t (Bass [5]). Hence d<_t. Since
Ext^^—, M) is necessarily left exact on JSf, we have Ext^"^—, M)^Hom(—, H^M))
on JSf. But H^l(M)==o since t+i>d=dimA (cf. again Grothendieck [19;
Theorem 6.4]). So H^M^o, and hence idM<^+i (Bass [5]). Now we know
that t = id M == depth A == dim M == dim A = d. In particular A is Cohen-Macaulay.

To complete our proof, we recall from the proof of Theorem (i .4.10) in Peskine
and Szpiro [33] that Ext^E^), M)==o for j<d. Since Ext^-^—, M) is right exact,
we deduce from the exact sequence o->A->E(A) that ^d~l(M) =o. From Theorem (i . i)
(or repeating this process) it follows that depth M=d=id M. From property (3.2) it
follows that M is a Gorenstein module. O.E.D.

We remark that the converse of the preceding theorem is well-known and easy to
prove (see Sharp [37] or Fossum, Griffith and Reiten [13; Chapter 5]).
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Corollary (3.9). — Let M be a finitely generated module of depth s. Then M is a Gorenstein
module if and only if H (̂M) is an inJective module.

Examples. — It is easy to give examples of modules M that are not Gorenstein
but such that H^(M) is injective (and of course non-zero) for a suitable t. If A is
Gorenstein of dimension fi?^2, then H^(m)^Hom^(m, A)^Hom^(A, A)^E(A); or
if A is a factorial local domain of dimension d that is not Gohen-Macaulay (and such
exist), then H^(A)==E(A).

4. Structural results on Gorenstein modules.

The investigation into the structure of Gorenstein modules over local rings which
was initiated by Sharp [37] has generally been centered around the question: If the
local ring A has a Gorenstein module G, must then A have a dualizing module 0. such
that G^t^ (the direct sum ofn copies of Q.) for n>_i ? With regard to this question,
Sharp [38] showed that a dualizing module is unique up to isomorphism and that, if
the local ring A has a dualizing module £1, then the Gorenstein A-modules take the
simple form Q^ for TZ>O. These facts follow easily from the main result (Theorem (4.5))
of this section. By utilizing the Brauer group of a commutative ring we provide an
affirmative answer to the above question for Henselian local rings or under the assumption
that the Gorenstein module G has odd rank. In Section 5 we establish an affirmative
answer in case A is a local ring with dimA^i. Finally, it is shown here that a local
ring A having a Gorenstein module necessarily has a minimal Gorenstein module M
(unique up to isomorphism) such that all Gorenstein A-modules take the form M^, for
n>o. We refer the reader to Section i and Section 3 for relevant definitions and
terminology.

The first glimpse of the role of the Brauer group in determining the structure of
Gorenstein modules can be seen in our very first result. We use the notation Br(A) to
denote the Brauer group of the commutative ring A and M^(A) to denote the ring of
n X n matrices over A. We refer the reader to the papers of Auslander and Goldman [3]
and Azumaya [4] for basic concepts concerning the Brauer Group.

Theorem (4.1). — Let A be a Cohen-Macaulay local ring with maximal ideal m and residue
class field k. If A has a Gorenstein module G, then the following statements hold for A==End G:

(1) The A-algebra A is an Azumaya A-algebra.
(2) For each A-regular sequence x, the residue ring A/xA^End(G/xG).
(3) Let x be a maximal A-regular sequence. Then A represents an element in the kernel of

the map Br(A) -> Br(A/xA) and consequently in the kernel of the map Br(A) -> Br(A).
(4) If any primitive idempotent of A/mA lifts to A, then A has a dualizing module.
(5) There is a finite separable free A-algebra S having connected prime spectrum which

splits A and which consequently has a dualizing module.

205



206 R. P O S S U M , H . - B . F O X B Y , P H . G R I F F I T H , I . R E I T E N

Proof. — Part (2) of this result was observed in Section 3 (3.5). Let n be the
rank of the Gorenstein module G. Let x be a maximal A-regular sequence and let E
be the A/xA injective envelope of k. From remarks (3.3) and (3.6)3 the sequence x
is a G-regular sequence and G/xGc^E". Hence by part (2) the residue ring

A/xA ̂ End(En) ̂  M^A/xA),

since End(E)^A/xA. Since A is a free A-module by (3.1) it follows easily that the
natural map A—^Z(A), where Z(A) is the center of A, is a monomorphism. From
the preceding discussion and Nakayama's lemma it follows that A->Z(A) is a bijection.
Hence A is a central A-algebra such that A/ntA^M^(A) is an Azumaya A-algebra.
By a result ofAuslander and Goldman [3; Theorem 4.7], we have that A is an Azumaya
A-algebra. It remains to establish parts (4) and (5) But the hypothesis of (4)
insures the existence of a Gorenstein module of rank one and thus a dualizing module.
Theorem (6.3) ofAuslander and Goldman [3] provides the existence of a finite free
A-algebra S with connected prime spectrum which splits A. We have the isomorphisms
Ends (S ®G)^S®AEndAG=S®AA^ Ends (A01^ and A0? is a free S-module. Moreover,
ids(S®^G)=id^G since radS==mS (see Corollary (4.4^) of this paper.) From
these statements we may conclude the existence of an S-direct summand Q of S(x)^G
with Ends^^S and with ids^==id^G. Moreover, since S is a finite free A-algebra,
it follows that depths (Op)==depth^G==dim A==dim S for all maximal primes p in
Spec S. Thus (3.2) and (3.6) show that Q is an S-dualizing module. Q^.E.D.

The corollary that follows provides a characterization of those local rings having
Gorenstein modules.

Corollary (4.2). — The local ring A has a Gorenstein module if and only if A is Cohen-
Macaulay and some finite free (separable) A-algebra is a homomorphic image of a Gorenstein
ring of finite dimension.

Proof. — If A has a Gorenstein module, then Theorem (4.1 (5)) guarantees the
existence of a finite free and separable A-algebra S which has a dualizing module Q..
As observed in (3.7) S IX 0. is a Gorenstein ring. Now suppose that A is Cohen-Macaulay
and that S is a finite free A-algebra which is the homomorphic image of a Gorenstein
ring B of finite dimension. Then t2=Ext^(S, B), for rf=dimB—dim S, is (locally)
a dualizing module for S. Furthermore, since S is a finite free A-algebra, it is elementary
that id^tKoo and that H is a maximal Gohen-Macaulay A-module. From (3.2) we
have that Q is a Gorenstein A-module. Q,.E.D.

Before getting to our main theorem of this section we need two elementary results
concerning injective dimension. The proof of the first is based on a proof ofAuslander
and Buchsbaum [2; Proposition 2.2] for commutative rings. We include a proof here
for the sake of completeness.
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Lemma (4.3). — Let A. be a semi-local commutative ring and let A be a finite A-algebra
such that rad A==(rad A) A. If M is a finitely generated left A-module such that

Ext^A/rad A, M) = o for i>n,

then id^ M < n.

Proof. — We suppose that id^M>7z. Then there is a left ideal 3 of A maximal
with respect to the property Ext^(A/3, M)=f=o for some i^>n. Since A/rad A is
necessarily semi-simple and Ext^(A/rad A, M)==o for i^>n, it follows that rad A $3.
Hence there is some central element ^erad A==(rad A) A with cf3. We note that
(A/3)/^(A/3)^A/((;, 3), where {c, 3) denotes the left ideal of A generated by c and 3.
By definition of 3, we also have Ext^(A/(^ 3), M)==o for all i'>n.

If c is not a zero divisor on A/3, then the exact sequence

o->A/3-^A/3->A/(^ 3)->o

induces the exact sequence

Ex4(A/3, M)^Ex^(A/3, M)->o,

for i>n. By Nakayama's Lemma this last statement implies that Ext^(A/3, M)==o
for i>n. Hence it must be the case that c is a zero divisor on A/3. So let

3=={XeA:^e3}.

Since c is central in A and since c is a zero divisor on A/3, we have that 3 ls a 1̂  ideal
of A which properly contains 3 and that A/3^(^ 3)/3. Hence we have an exact
sequence

o->A/3-^A/3->A/(^ 3)^o

from which we obtain the exact sequence
o=Ex4(A/3, M)^Ex4(A/3, M)->Ex4(A/(^ 3), M)=o

for i^>n. Once again we have reached a contradiction. Thus id^M<^. Q.E.D.

Parts ( a ) and ( b ) of the next corollary are an easy consequence of the preceding
lemma and faithfully flat base change while the proof of part ( c ) is identical with
Kaplansky's proof [27; Theorem 217].

Corollary (4.4). — Let A be a semi-local ring and let A be a finite faithfully flat A-algebra
such that rad A = (rad A) A.

(a) If M is a finitely generated A-module, then id^M==id^(A®^M).
(b) If M is a left A-module with id^M<oo, then id^M==id^M.
(c) If M is a left A-module such that id^M<oo and if N is a finitely generated left

A-module, then Ext\(N,M)=o for i > depth A— depth N.

The key result of this section now follows.
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Theorem (4.5). — Let (A, m, K) be a Cohen-Macaulay local ring and let A be an Azumaya
A-algebra such that A/xA^M^(A/xA) for some maximal A-regular sequence x and positive
integer r. Suppose that G and H are left A-modules of finite A-injective dimension. Further,
suppose that G and H as A-modules are Gorenstein of ranks s and t, respectively, with s<_t. Then
id^G==id^H== depth A and G is isomorphic to a direct summand of H as a left A-module.

Proof. — The proof will be accomplished via induction on dim A. For dim A==o
our hypothesis implies that A^My(A). Since A is Morita equivalent to A, there is
an injective left A-module E (unique up to isomorphism) such that all finitely generated
left A-modules of finite injective dimension are of the form E^ for n^o. Thus G^E8

and H^E^ and id^G==id^H== depth A=o.
We now suppose that dim A>o and let x be the first element in the A-regular

sequence x. First we note that id^G==id^H= depth A is a consequence of Cor-
ollary (4.4 ( b ) ) and Bass' result [5; Lemma 3.3]. Since GfxG and H/xH are Gorenstein
A/^A-modules (see Section 3 (3.3)) and since the result holds over AfxA by our inductive
assumption, it follows that there is a A-epimorphism <p : H -> GfxG. Further

ExtX(H,G)=o

since depth H == depth A (see (3.2) and (3.4)) by Corollary (4.4 ( c ) ) . Hence, we
have an exact sequence

o->Hom^(H, G)^Hom^(H, G)->Hom (̂H, G/̂ G^ExtJ^H, G)==o

from which it follows that there is a A-homomorphism ^ : H—>-G such that 7]4'==9?
where T] : G-^GfxG is the natural map. Clearly G ==xG-\- Image ^. By Nakayama's
Lemma ^ is necessarily an epimorphism and so we obtain the left A-exact sequence

o^K-^H->G->o.

The facts depth^H==depthAG= depth A and id^H=id^G= depth A imply that
depth^K==depthA and (using Corollary (4.4 ( b ) ) that id^K== depth A<oo. Thus
(3.2) of Section 3 gives that K is a Gorenstein A-module. By Corollary (4.4 ( c ) ) , the
group Ext^(G, K)==o and thus G is isomorphic to a left A direct summand ofH.

Q.E.D.

Corollary (4.6). — Let A be a local ring having a Gorenstein module. Then A has a
minimal Gorenstein module Q, which is unique up to isomorphism and such that all Gorenstein
A-modules are of the form Q^yfor n>o.

Proof. — Choose 0. to be the Gorenstein A-module of least rank and apply
Theorem (4.5) in the situation A==A. Q.E.D.

Corollary (4.7) [Sharp, 38]. — Let A be a local Cohen-Macaulay ring which is a
homomorphic image of a Gorenstein ring. Then A has a dualizing module Q and all Gorenstein
A-modules are of the form Q^^for %>o.
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Proof. — This is a special case of Corollary (4.6). Q^.E.D.

The next result shows that a Henselian local ring has a Gorenstein module if and
only if it has a dualizing module. In the case of complete local rings this result was
first observed by Sharp [39]. Let (A, m, k) be a local ring. If /eA[X], then fek[X]
denotes the polynomial obtained by reducing the coefficients of / modulo m. The
Henselization of A will be denoted by A\ A standard ^tale neighborhood of A is a
local ring of the form (A[X]//)p, where/is a monic polynomial in A[X] such that/'(o)
is a unit in A [f is the derivative of/) and where p is a prime ideal which corresponds
to the kernel of the homomorphism g\->g{y), for yek a simple root of f(x)ek[X].
We note that A^ is a (directed) direct limit of standard ^tale neighborhoods of A.
(For details see Iversen's lecture notes [26]).

Corollary (4.8). — If the local ring (A, m, k) has a Gorenstein module, then some standard
etale neighborhood and also A^ have dualizing modules. In particular, A11 is the homomorphic
image of a Gorenstein ring.

Proof. — Suppose that G is a Gorenstein A-module. Then the c( usual " base
change arguments show that depth G== depth (A11 ® G) == id^G == id^A^ ® G), that is,
Ah®G is a Gorenstein module for A\ Let A^End^A^G). Since, for Henselian
rings, the map Br(A^) -> Br(^) is monic [Azumaya, 4], we have from Theorem (4.1)
(3 and 4) that A'1 has a dualizing module Q. Furthermore, since A11 is faithfully flat
over the standard ^tale neighborhoods of A and since A^ is a direct limit of the same,
we may descend Q, to £2' a dualizing module for some standard ^tale neighborhood of A.

We remark that the example of Ferrand and Raynaud [n] provides an example
of a one-dimensional local domain A with no Gorenstein module since the formal fibres
of A are not Gorenstein (see Theorem (5.2)). In fact the integral closure of this A is
the ring of convergent power series in one variable over the complex number field C.
Hence the Henzelization A^ is a faithfully flat A-subalgebra of the integral closure of A,
and thus A==A\ So A is a Henselian local domain which is not a homomorphic image
of a Gorenstein ring.

Our final theorem of this section is a decomposition result for Gorenstein modules
of odd rank.

Theorem (4.9). — Let A be a local ring with maximal ideal m and residue class field k.
Suppose A has a Gorenstein module G. Then the order of A== End^G in the Brauer group of A
is one or two. Thus, if the rank of G is odd, then A is trivial in Br(A) and A has a dualizing
module 0. such that G^O1', where r==rankofG (as a Gorenstein module).

Proof. — Let x be a maximal A-regular sequence. Then x is a G-regular
sequence (3.3) and G/xG^E^ where E is the A/xA-injective envelope of k and
A/xA^End(Er)^M,(A/xA) (see 3.6). Itfollows that G/xGis an injective A/xA-module
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and via successive applications of Kaplansky's Theorem 172 [27] that id^G<oo. At
the same time the Gorenstein A-module H==A®^G has the property id^H==id^G<oo
by Corollary (4.4 ( a ) ) . Now the Gorenstein rank of G is r and the Gorenstein rank
of H==A®G is r3. An application of Theorem (4.5) yields that A^G^G^ as left
A-modules. Thus, we have the ring isomorphisms

A^A^^^End^G^End^A^G^End^G'2)
^M^(End^G)^M^A)

since it is easily seen that End^G^A. It follows that A^A is trivial in the Brauer
group of A, that is A determines an element of order one or two in Br(A).

If r == rank G is odd, then the preceding discussion shows that A = End G is
trivial in Br(A) since the order of A divides r (see Grothendieck [20$ Proposition 1.4]
and Knus and Ojanguren [28]). In case A is trivial in Br(A), Theorem (4.1 (4))
gives the existence of a dualizing module Q and Corollary (4.7) shows that G ̂  Q7'.

Q..E.D.
5. Descent of dualizing modules for one-dimensional local rings.

Although the results in this section hold for rings of dimension zero, they generally
have trivial consequences in this case. Hence, we shall confine ourselves to the one-
dimensional case, the higher dimensional cases as yet being unresolved.

A ring A will be called one-Gorenstein if its total quotient ring, denoted K(A), is
Quasi-Frobenius, that is, K(A) is selfinjective. For the definition and general properties
of 72-Gorenstein rings see Fossum and Reiten [35]. If (A, m, k) is a local ring and if
peSpecA, then k{p) denotes the residue class field of Ay and the ring A®^(p) is
called the formal fiber of A at p, where A (always) denotes the completion of A in its
m-adic topology.

Lemma (5.1). — Let A be a one-dimensional Cohen-Macaulay local ring. Then A is
the homomorphic image of a Cohen-Macaulay^ one-Gorenstein local ring B of dimension one such
that A and B have isomorphic formal fibers.

Proof. — Let S denote the set of regular elements of A. Then K(A)=S-1A
is a commutative artin ring. Hence S~1A has a finitely generated injective module I
such that Homg-i^(I, I^S^A. Furthermore, there is a finitely generated A-module M
such that S^M^I and such that the natural map M-^S^M^I is monic. It follows
easily that the trivial extension AixM (see Section 3 (3.7)) has depth one and is
therefore a one-dimension Cohen-Macaulay ring. The set Sxo consists of regular
elements on B = A K M and there is a natural isomorphism

(Sxo^B^S-^AlxS-1]^.

A result ofGulliksen [21] shows that B is one-Gorenstein. Finally, since B^A ix M
and since the primes in B are of the form pxM, where peSpec A, one easily observes
that the formal fibers of A and B are isomorphic. Q.E.D.
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The next theorem was proved by Hartshorne [22] in the case of Gorenstein rings
and was generalized by Sharp [41] for the case of Gorenstein modules.

Theorem (5.2). — If the local ring A has a Gorenstein module., then A has Gorenstein
formal fibers.

The central result of this section now follows. It gives an affirmative answer to
the question concerning the structure of Gorenstein modules mentioned at the beginning
of Section 4 for the case of one-dimensional local rings. Moreover, it establishes that
the dualizing module for the completion of the local ring A descends to A exactly when
the formal fibers are Gorenstein. The latter statement remains open for higher dimen-
sional local rings.

Theorem (5.3). — Let (A, m, k) be a one-dimensional Cohen-Macaulay ring. Then the
following statements are equivalent:

(a) The ring A has a Gorenstein module.
(b) The formal fibers of A are Gorenstein.
(c) The formal fibers of A are one-Gorenstein.
(d) The ring A has a dualizing module 0. and hence all Gorenstein A-modules take the

simple form Q^ for n>o.

Proof. — The fact that ( a ) implies ( b ) is of course a restatement of Theorem (5.2)
for one-dimensional rings and the fact that ( b ) implies ( c ) and ( d ) implies ( a ) is obvious.
In view of Corollary (4.7), it remains only to show that A has a dualizing module under
the assumption that the formal fibers of A are one-Gorenstein. We begin this proof
under the additional assumption that A is a one-Gorenstein ring. By [35; Proposition i]
of Fossum and Reiten, it follows that A is also one-Gorenstein. As noted in Section 3
(3.7), the completion A has a dualizing module which we denote by ti. Let S denote
the set of regular elements of A. From Sharp [37] it follows that S"1^^ II E(A/p)
is injective, where as usual E(A/p) denotes the injective envelope ofA/p for peSpecA.
Since A is one-Gorenstein, we also have that S^A^ II E(A/p). But the relation

htp=0 v " /

S^A^S"^ and the fact that Q. is finitely generated imply that Q can be realized as an
ideal in A. Hence by Herzog and Kunz [24; Lemma 2.10], the ring A also has a dualizing
module. (The ideal 0. descends to A since it is necessarily primary to the maximal ideal
of A when dim A<^i). In the general case we let B be the one-Gorenstein local ring of
dimension one with A as a homomorphic image as described in Lemma (5.1). Then
B has one-Gorenstein formal fibers and our preceding discussion shows that B has a
dualizing module, that is B is the Gohen-Macaulay homomorphic image of a Gorenstein
ring. But then A is also the Gohen-Macaulay homomorphic image of a Gorenstein
ring and thus has a dualizing module (see Section 3 (3.7)). Q.E.D.

A somewhat amusing corollary of Theorem (5.3) is the following one.
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Corollary (5.4). — Suppose that A is a one-dimensional local Cohen-Macaulay ring such
that the dualizing module of its completion A is an ideal (e.g. in case A is an integral domain).
Then A has a dualizing module and consequently Gorenstein formal fibers.

Proof. — Let 0. be the dualizing module for A which is in addition an ideal. As
in the proof of Theorem (5.3), the module Q. is primary for the maximal ideal of A
and thus descends to A. Now apply Theorem (5.3) ( b ) and ( d ) . Q^.E.D.

6. Examples and applications.

Finally we give some examples of commutative rings which are m-Gorenstein but
not (w+i) -Gorenstein. The rings we use are classical. They are the local rings at the
vertex of the cone for the Segre embeddings p lxpw->p2m+ l. It is well known that
these rings are Gohen-Macaulay of dimension m+2, but not Gorenstein if m>i
(see Eagon [10] for example). But these rings are regular outside of the maximal ideal
so they are (m-\- 2) -Gorenstein but not (w+3)-Gorenstein. Here we are using the condi-
tions : The (local) Noetherian ring A is A-Gorenstein if and only if for all p in Spec A
the inequality depth \<k implies \ is Gorenstein. (See Fossum and Reiten [35].)

For completeness and in order to demonstrate the usefulness of the module of
dualizing differentials or the canonical module, we give a proof of the next proposition
which is independent of the proof given in Eagon [10], but which uses Eagon and
Northcott's resolution [9]. Before stating the proposition, we establish some notation.

Let {X^.} with i <i<_s, i <_j<_r, s<r, be a set o{rs indeterminates over a field k.
Let M be the maximal ideal generated by the indeterminates in the ring of poly-
nomials A[{X^.}] and let B be the localization A[{X^.}]^. Then B is a regular local
ring of dimension rs. Let 3 be the ideal generated by the sxs minors of the matrix (Xy)
and let A be the local ring B/3. According to Eagon and Northcott [9] and North-
cott [32], the ideal 3 is perfect, that is

depth^B = pdfiA == r— s 4-1

and there is a minimal free resolution

o-^P,_^->... ̂ P^B^A-^o

of A by free B-modules (complex 3.4 and Theorem 2 of Eagon and Northcott [9]).
Furthermore, the rank of Py_s+i is equal to the order of the set

{(v^ . . . ,^) : y,eZ, y^o and ^+. . . +v,=r—s}.

Keeping these things in mind, we now state part of the result ofEagon's Theorem [io],

Proposition (6.1). — If i<s<r, then A is Cohen-Macaulay but not Gorenstein (dim A=
rs—r+s—i).
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Proof. — The factor ring A is Cohen-Macaulay since Ext^A, B) vanishes every-
where except at i==r—s+i. If i<r—s+i, the extension group vanishes since

grade^B^—j+i,

while, for i > r— s +15 it vanishes since pdp A = r— s+i. In fact the dual of the above
resolution gives a minimal resolution of the canonical module QA==ExtB~'8+l(A, B) and
this complex is:

o^B*- -P;- -P:r-s+l-^A-^O.

Now A is Gorenstein if and only if Q,^A. But Q^ is cyclic as a B-module if
and only if rk P,._^i==i. But this rank is more than i for the given values of r and s.

Q.E.D.
We would like to know the Gorenstein locus of A, which is just the set

{peSpec A : (^)p ls free}. This also can be determined in general, but for our purposes
it is enough to do so for the very special case s= 2. In this case A is the local ring of
the vertex of the cone for the Segre embedding

pl><p»-l^p2r~l.

So geometrically it is clear that the singular locus of A is the maximal ideal. However,
this fact can also be seen in a purely algebraic fashion.

Suppose peSpec A—{m}, the ideal m being the image of M in A. There is at
least one element x^ which does not belong to p. Let ^3 be the inverse image of p in B.
Then X^^}. Now let A^.. be the ring of quotients of A with respect to the multipli-
catively closed set { i , x}^ A:|, ...}. Then Ap is the localization of A^. at some prime
ideal. Now Ap ==Bx../3Bx... The claim is: The ring A^. is regular.

The ideal 3 is generated by the elements
Xi.X^-XiA, for j^k.

We can assume X^==X^. The ideal 3Bx^ is generated by the elements

x^x^xn^Kxn1^) fo: ^=i, 2,.... r.
Hence the ring B^/3Bx^==A[Xi2, X^, ..., X^][:X^, X^1] which is clearly a regular
ring. This establishes our next result:

Proposition (6.2). — Let r>2. Then the ring

(^[X,, ..., X,, Y,, . . . , YJ/({X,Y,-X,YJ))^.,^

has dimension r+i, is Cohen-Macaulay, is not Gorenstein (and hence not (r+2)-Gorenstein)
but is {r+i)-Gorenstein.

Proof. — We let X^==Xj and Xgj=Yj. Then the ring is the A considered
above. Q.E.D.
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Since this ring is regular outside the maximal ideal it is normal but cannot be a
unique factorization domain.

So there is a local ring A of dimension n which is Cohen-Macaulay and Tz-Gorenstein
but not (yz+i)-Gorenstein. (If dimA=n and A is (w+i)-Gorenstein, then it is
Gorenstein). Now the polynomial ring A[T] is also n-Gorenstein, but not (%+i)-
Gorenstein by results in Fossum and Reiten [35]. Thus all possible combinations
of Krull dimension and the Gorenstein property appear.
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