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COHOMOLOGY OF FINITE GROUPS OF LIE TYPE, I
by EDWARD GLINE, BRIAN PARSHALL, and LEONARD SCOTT

In this paper we determine H^G, V) for G a finite Chevalley group over A==GF(y),
<7>3, and V belonging to the class of" minimal " irreducible AG-modules. The modules
under consideration are described precisely in § i; they include all the standard and
spin modules, as well as some adjoint modules and exterior products. Many occur
naturally as sections in Ghevalley groups of larger rank (1).

Our approach is thematically Lie-theoretic, and relatively free of explicit calculation.
All lower bounds on cohomology are determined by examining indecomposable modules
for G constructed from appropriate irreducible modules for the corresponding complex
Lie algebra (cf. (1.2) and (4.2^)); in particular, we never have to explicitly exhibit
any cocycles. Upper bounds are obtained by studying interactions between the <c roots 3?

and (< weights " for G which arise from their analogues in the algebraically closed case
(cf. § 2, (4.2<;), and § 5).

Many of the adjoint modules were treated by Hertzig [14], and certain of the
classical cases have been studied by D. Higman [15], H. Pollatsek [22], and 0. Taussky
and H. Zassenhaus [27]. It should be noted that these papers contain results for more
general fields than we consider, especially the fields of 2 and 3 elements. Nevertheless
for A==GF(<7), <7>3, our results include all the above with the exception of the adjoint
module of type F^ (2).

We include (cf. § 5) a proof of a result on Ext^U, V)==H\G, U®V) for
G=SL(2, 2") stated by G. Higman in his notes on odd characterizations [16] and
used there in the analysis of certain 2-local subgroups.

One can also obtain lower bounds on cohomology by means of the Cartan-Eilenberg
stability theorem [5; p. 259]. An interesting by-product of our investigation is a new
interpretation of this theorem in terms of a previously unnoticed action of Hecke algebras
on cohomology (cf. § 6).

(1) Also, they include (essentially) the modules V for which (G, V) is a quadratic pair in the sense of
Thompson [28].

(2) Since the writing of this paper, the fields of 2 and 3 elements have been treated by Wayne Jones in his
thesis. By means of an elegant theorem describing the behavior of restriction to a Levi complement in a suitable
maximal parabolic subgroup, he is able to reduce the question of upper bound to low rank cases.
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170 E D W A R D C L I N E , B R I A N P A R S H A L L , L E O N A R D S C O T T

i. Representations (3).

Let 2 be a finite root system in a Qj- vector space E endowed with a positive definite
symmetric bilinear form ( , ) invariant under the Weyl group W of S. For a, (3eE,
(a, (B) denotes the angle formed by a and p. Also, S^ort denotes the set of roots in S
of minimal length, while S^g. denotes the set of roots in S which are not short. It
will be convenient for later reference to fix the following notation for a fundamental
system A of the indecomposable root systems:

A,

B,

ai

o <^ o-

ai »2

-0
(x-/

-0

V.f

a 0 ^> 0-

ai »2

0^1

D,
as

-o ... o———o
0V

^2

E.
ai 0(3 04 ag (Xg

E, -0

a?03 OC4 05 OCgai

Eg -o
agOCi (X3 OC4 (Xg OCg OCy

F, ,Y.o———o > o———o
ai -/—- »4

ag as

Go
ai aa

(3) More details concerning the representation theory of algebraic and Chevalley groups can be found in [9],
[25], [26], and [29].
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COHOMOLOGY OF FINITE GROUPS OF LIE TYPE, I 171

For i^z<7, X^.=\ denotes the fundamental dominant weight corresponding
to the root a,eA. Recall \eE is defined by the condition that (\,aJ)==8y, where
aj==2a,./(a,, a,.) is the coroot corresponding to a,. The dominant weights are the
non-zero elements of E of the form X==S^\, n^ a non-negative integer.

i

Minimal weights

We partially order the vector space E by the relation w^v iff w—v is a non-
negative integral combination of the a,. A dominant weight X is called minimal if it is
minimal relative to this partial order. We will write A==A(2) for the set of dominant
weights in E, and denote the set of minimal elements of A by A^.

Let fi be the complex semisimple Lie algebra with root system 2 relative to a
fixed Cartan subalgebra ^ offi. Let XeA, and let 9Jt==9?l(X) denote the irreducible
fl-module of dominant weight X. Suppose (oeAu{o} satisfies o^X. Choose a weight (x/

n
of§in9Jl minimal with respect to o/^co, and write S ==co'—co== S (^, where the (3,
are fundamental roots. If G) is not a weight of 6 in 9K, then S=t=o, so

n
o<(a,S) ==(£>, S(B.),

1=1

whence (S, (B,)>o for some j. Since (ci),(^)^o for all A, (<x/, (B.)==(S+CX), (B.)>o.
This means [17; Theorem i, p. 112] that O)'—(B, is a weight of § in 9J?, contradicting
the minimality of co'. /7<sw^, co zj in fact a weight of § in SER. This slightly generalizes
—by essentially the same argument—a result of Freudenthal [12].

We can now determine the elements in A^. Let XeA^. First, consider the case
when \ belongs to the root lattice Z2 of E. From the previous paragraph, o is a weight
of§ in 9JI, whence, by irreducibility, v is a weight of ̂  in 901 for some root v. Replacing v
by a suitable W-conjugate, we can assume that veA. The minimality of X implies
then that X==v. If S has one root length, X==v is the maximal (relative to ^) root,
while if 2 has two root lengths, X==v is the maximal short root. Conversely, this shows
the maximal short root belongs to A^. We enumerate these elements of A^:

A^, \+\\ B^, \; G^, X^_i ; D^, ^_^; Eg, Xg; Ey, X^; Eg, Xg$ F^, \; Gg, Xg.

Next, suppose XeA^, X^ZS. Let ^v be the dual root system to 2 [2; p. 144],
and let ^v be the maximal root in 5^ (relative to the positive system defined by A").
Then [2; Ex. 24, p. 226] X is minimal iff (Y V ,X)==I . We can therefore enumerate these
additional elements of A^ as follows9.

A^\, i^i^; B^, \; G^, Xg; D^/X,, z = i , 2 , ^ ; Eg, X,, Xe; E^, \ (4).

(4) The weights in this list are the "minimal" dominant weights of Chevalley [7; Exp. 21].
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172 E D W A R D C L I N E , B R I A N P A R S H A L L , L E O N A R D S C O T T

For future reference we list here the maximal roots which are not minimal dominant
weights:

B^, X^_i; Cf, 2\; F4, \; Gg, \.

These roots together with the maximal short roots listed above are precisely the
elements of S n A.

Modules

Fix \eA^. Let U be the universal enveloping algebra of fl, and let
{X^, HJaGS, (BeA} be a Ghevalley basis for fi [26; p. 6]. U^ and U^ denote the
Z-subalgebras of U generated by the X^/w! (me7^) for oceS and aeS", respectively.
Fix v + o in the X-weight space 9?^ of§ in 2R, and set M == vU^, a U^stsib\e lattice in SR.

Let G* be the universal (or simply connected) Chevalley group over the algebraic
closure K of k defined by fi (or S). Let T* be the maximal A-split torus of G* corre-
sponding to §, and let X*(T*) be the character module for T* [i; p. 199] (5). We
identify 2 with the root system of T* in G*, so 2 c X*(T*) c X*(T*) ®%== E. For aeS,
U^ denotes the corresponding one-dimensional root subgroup (normalized by T*), and
x^ : K->U^ is the isomorphism of [26; p. 21].

Since Hz stabilizes M, G* acts in a natural fashion on the K-space

S'^K^M^KyG^KyU*-,

where U*~" denotes the unipotent radical of the Borel subgroup B*" defined by T* and
—A. S* is an indecomposable G*-module of dominant weight X, and if X* is a maximal
submodule, S^/X* is the irreducible KG'-module of dominant weight X. If X*=)=o,
let co be a maximal weight of T* in X*. Then (o^X. Since the X-weight space S^
of T* in S* is one-dimensional, X*=o and S* is irreducible when X^ZS. When
XeZS, (o===o and X* is contained in the zero weight space S^ ofT* in S*.

Assume XeA^n ZS, i.e. X is the maximal short root v in S. We claim X* consists
of the set Y* of vectors weS^ fixed by the root subgroups U^, —aeA. Indeed, T* and
the U^ generate B*"~ (this follows by a standard argument from the formulas [26;
pp. 148,151]), hence Y*=={^eS;| wB'-==w}. Clearly, X'cY*, while if w is fixed by B*-,
it is fixed by G* (the morphism G*->S* defined by g^wg factors through the complete
variety G*/B*~, and hence is constant [20; p. 104]).

Write V^S'/X*. Let S'^aeSlaisaweightofT'inV*}, and set A'==S'nA.
When S has only one root length, A'=A, while ifS has two root lengths, A' consists of
the set of short roots in A. The non-zero weights of T* in S* are precisely the elements
of S', and for aeS', the corresponding weight space S^ is one-dimensional. Also,

(5) We recall briefly the interpretation ofT* in the notation of [26; p. 43]. When G* is universal, T* is the
direct product of the subgroups {hy^(t) \ feK^} for aGA. X*(T*) identifies naturally with the lattice L^:

/ f v
if (JieLi, we view (JL as the character (A : T^-^K" defined by (JL( TI h^.(t^)= H ^•<x»).
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GOHOMOLOGY OF FINITE GROUPS OF LIE TYPE, I 173

dimS;==dim9Jto=|A'| [18; Eq. 50, p. 261]. Let G'==G(A') denote the Gartan
matrix of A'. Let r(p) denote the rank of C' modulo p, where p is the characteristic
of k. We can now state (6):

Theorem (1.1). — Let X==v, S*, X*, V* be as above. Then
diniK X* == dimK S;— dim^ == | A' [ — r{p).

Proof.—For aeA, fix o^v^eM so that Z^=Mn2)^- Because S^K^U*"
and because the U^ for oce—A, generate U*", we have by [26; Lemma 72, p. 209] that
S;;=<^X_JaeA'>. But dim S;==dim W O — I A ' I , so {^X_JaeA'} form a basis
for SQ. For a, (Be A', write z^X_^Xp==<a, (B>z/p. Then it is easy to see [21; proof
of Prop. 2] that the ^, for y62^'? can be adjusted so that the matrix —«oc, (B» is the
matrix C". Thus, S ^X^eX' (for ^eK) iff for all (Be A'

a£A'

o=( S ^X_JXp=( S ^<a,|3»^,
a £ A' aGA'

hence iff
0= S ^<a,(B>

a£A'

for all peA'. It follows that dim X*== |A' |—r(j&), as desired. Q.E.D.

For convenience we tabulate the number dim^X* for those S and p where it is
nonzero:

S A, B, G, D,, D^, Ee E, F, G,

p PV+^ 2 p\l 2 2 3 2 3 2

dim^X* i 1 1 2 i i i i i

For a yfe-subgroup H" of G* (e.g. G*, T*, U*~, B'"-, etc.) we shall denote by H the
subgroup H^ ofA-rational points ofH*. It should be noted here that since G* is universal,
G is just the corresponding universal Ghevalley group over k [26; Cor. 3, p. 65].

If W* is a K-vector space defined over k, we let W denote the A-subspace of
A-rational points W^. The G*-module S* above is endowed with a natural A-structure
S==A®M, and this induces ^-structures on X* and V*. Note V* is an irreducible
^-rational G*-module and remains irreducible upon restriction to G. This follows
from Steinberg's theorem [26; Th. 43] since here the dominant weight X=S^-\

i

satisfies o^n^q—i, except when G==SL(2, 2)3 X=ai. When we wish to emphasize
the dependence ofS, X, and V=S/X on X, we denote them by S(X), X(X), and V(X)
respectively.

(6) A similar result is stated in [3; p. 15].
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174 E D W A R D C L I N E , B R I A N P A R S H A L L , L E O N A R D S C O T T

We claim S is indecomposable when q>2. Let N be a direct summand of S which
covers V. Recall M=yllz; hence for some Vo^X, y'^y+z^eN. Since v has weight X
and q>2, there is a teT with X(^)= t= i , except when S is of type A^ and ?=3. With
this exception, N contains {i—\(t))v, whence contains v, thus N=V; otherwise X=o
by (1.1) and S==V is irreducible, so indecomposable (7).

A lower bound/or H1

Let q>2 and let S be the dual module to S. Let rt==\^\—r{p). Since S has
a unique r'-dimensional submodule, S has a unique submodule W== X1 ofcodimension r'.
Then S/W==Z is isomorphic to the dual module ofX, and hence is a trivial AG-module.
We note also that o is the only fixed point of G in S, else S would contain a submodule
ofcodimension i, which is absurd. Hence (see (2. y)) from the following exact sequence
of G-modules

o-.W-^S-^Z-^o

we get the exact sequence of cohomology groups:

o-S^Z^Z-^H^G.W).

When X=v is the maximal short root, it is stable under the opposition involution L
of A (1==—^, where WQ is the unique element in W such that Wo(A)==—A), so V*
is self-dual as a G*-module. Thus, V is self-dual as a G-module. Since W is the dual
module to S/X===V, we obtain the following, using the fact that X==o if X^ZS:

Theorem (1.2). — Let q>2 and let \ be a minimal dominant weight. Then

dim^X^dim^H^G, V(X)).

Recall that dim^X(X)=dim^X*(X) is o unless X=v, in which case it is given by
Theorem (i . i) and the table which accompanies it.

2. Cohomology.

In this section we outline some basic homological results and apply these to the
cohomology of Ghevalley groups.

Let A be a finite group, and V a ̂ A-module. The first cohomology group H^A, V)
is defined to be Z^A, V^B^A, V) where

Z^V)^ : A^V|Y(^)=y(^+T(^

B^A, V)=={y : A^V[YW==y-zw for some fixed veV}.

C) When q=2, S may not be indecomposable, e.g. G=SL(2,2), X==ai . This is the only case in
which S is not indecomposable [30].
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COHOMOLOGY OF FINITE GROUPS OF LIE TYPE, I 175

The elements of Z1=Z1(A, V) are called cocycles and those ofB1 are called coboundaries.
Two cocycles y? Y' are ^id to be cohomologous (y^Y') ^ Y—T'6^1, or equivalently,
if Y and y' determine the same cohomology class [y] == [y'] m H1-

There are other ways to think of H1. For instance we can associate with each
yeZ1 a complement Ay to V in the split extension A.V by the formula

(2.1) A^={x^{x)\xeA},

and conversely each complement determines a cocycle. Two complements A^,, Ay
are conjugate in A.V iff y^T'? more precisely, A!y==A^ for an element yeV iff
y'(^)==Y(A:)+y—vx. Hence H^A, V) may be regarded as the collection of conjugacy
classes of complements to V in the split extension A. V.

For some calculations it is more useful to think in terms of the homomorphism
7y :A^Ay<A.V defined by

(2.2) f^x)==x^{x).

In general if f : A->A.V is any function such that f{x) =x (mod V) and y is defined
by (2.2), then y is a cocycle iffy is a homomorphism.

(2.3) We list some standard properties of H? (8).

a) H^A, V) is a ^-vector space in a natural way. In fact, for yeZ1 and cek
we have c^e71 defined by {c^){x)==c^{x). Clearly B1 is a k-subspace of Z1.

b) More generally if y:V->V is any homomorphism of AA-modules (9) we
can define Y^Z^A.V) by the formula {^f){x)==^{x)f. The resulting map

Z^A.V^Z^A.V')

induces a map on H1.
c ) If 9 : A'—^A is a homomorphism of groups, then 9 induces a natural AA'-module

•structure on V, and for yeZ^A, V) we can define (py^^^ V) ^ (PTK^^TC^
YeA'. The resulting map Z^A, V) -> Z^A7, V) induces a map on H1.

This map is called inflation when 9 is the natural projection of A' onto a quotient
group A, and restriction (y^) when 9 is the natural inclusion from a subgroup A' to A.

In case aeA, B<^A, and 9== a"1 : B'^-^B, then 9 does not induce a map
Z^B, V) -> Z^B", V) by the formula above, since it is required there that V be given
a "new9 5 AB^module structure (induced by 9). However the map v\->va is an
isomorphism from this (c new 9? AB^module back to the " old ". Applying paragraph b),
we obtain a legitimate map cT^^a from Z^B, V) to Z^B", V), which induces a map on H1.

(8) A general reference for the cohomology of groups is [5; Ch. 12], though the reader can doubtless supply
proofs here without difficulty.

(9) Similar statements apply if/is just a homomorphism of ZA-modules; in particular cohomology groups
of Galois conjugate modules are isomorphic abelian groups.

175



176 E D W A R D C L I N E , B R I A N P A R S H A L L , L E O N A R D S C O T T

We shall denote (T1^ by y", and record here the formula

Y^^Y^"'1)^ (^eB0).

Also we note that ^a^^ when aeB.
d ) If SeH^V) and B<A then the class s^SlgeH^B, V) has the property

of" stability59:
s\B^Ba==ea\B^Ba for ^ch aeA.

e ) If W is a AA-submodule of V we have a natural exact sequence (10)

o-^W^V^O/W-^H^A, W^H^A, V^H^A, V/W).

Also, we have an exact sequence of cocycles

o^Z^A, W^Z^A, V^Z^A, V/W).

f) If B<iA we have an exact (c inflation-restriction 5? sequence

o^H^A/B, V^-^H^A, V^H^B, V)^.

^J If B<A and the characteristic p of k does not divide the index [A : B], then
the restriction map H^A, V) -^ H^B, V) is injective. If in addition BoA, then
HP(A, V) -> H^B, V)A/B is an isomorphism (see also § 6).

h) If V is a projective ^A-module, then H l(A,V)=o.

The following two propositions extend the results of § 4 to central factors and direct
products; they play no further role in this paper.

Proposition (2.4).— Suppose V^ o and B is a subgroup of the center of A. Then (u)
a) If V^V, then H^A, V) ^ H^A/B, V),
b) If V^o, then H^V^o (12).

Proof. — By (2.3/) we have an exact sequence

(*) o^H^A/B, V^ -^H^A, V) -^(B, V)^.

If V^V, then B^V^o and Z^B, V) is just the collection of group homomorphisms
from B to V; H^B, V)^3 may be identified with the A-homomorphisms from B to V,
whence is o since V^o and B is central. Thus, H^A, V^H^A/B, V).

If V^o, then certainly ¥^=0 where B=BiXBo, B^ a p'-group and Bo a
^-group. Applying the sequence (*) with B^ in place of B gives H^A.V^o since
H^V)^^).

(10) Here ( )A denotes the fixed points of A, e.g. VA ={veV\va==v for all aeA}.
(n) I fV is irreducible then of course V° ==V or V^^o.
(12) A number of special cases of the results in § 4 can be obtained effortlessly from this fact.
(13) An alternate argument, well-known to finite group theorists, can be made from (2.1) and the fact

thatC,.,(Bi)==C^).

176



COHOMOLOGY OF FINITE GROUPS OF LIE TYPE, I 177

Proposition (2.5). — Suppose A==A^xA^ and V==V^®V^ where V^ is a kA^module
and Vg is a kA^-module. Assume V^1 == o. Then

H^AiXA^V^V^H^.V,)®^ (^).

Proof. — Again (2.3/) gives an exact sequence
o^H^A,, (V.OOV^^H^A.xA,, V^V^H^A,, Vi®V,)\

It is easily checked that (V^V^^V^Vt2, H ,̂ Vi®Vt1) ̂ H^, Vi)®V^,
and Hl(A„V,®V2)Al^(V,®Hl(A„V,))A—V^®Hl(A„V,)=o. The result follows.

Notation. — For the rest of this section, G denotes, as in § i (see especially footnote 5),
the group of ^-rational points of a universal Ghevalley group G* over K. Similar
conventions hold for B, T, U, U^ (aeS). Thus, B is the semi-direct product T.U,

T^JU^iyi^eA^, i<^<^}, U is a Sylow ^-subgroup of G, and V^=={x^)\?,ek}.

Weights ofT; Galois equivalence

Let X(T) denote the collection of homomorphisms (or "weights") o^T-^.
For <x)eX(T) we let (as in § i) V^ denote the associated (< weight space55

{veV\vt==^{t)v for all teT}.

We think of X(T) additively, so for example Vo denotes the weight space associated
with the trivial weight <*)(^)==i (teT).

A root ae2 determines an element, still denoted a, of X(T) by the formula
•^(S)^^0^)^ ^ek^ ^T. In § 3 the extent to which this notation is ambiguous is
exactly determined, that is, when distinct elements of S determine the same element
of X(T).

We shall say two weights <x^, <x)2eX(T) are Galois equivalent ((01^(02) ^ ^=^2
for some automorphism o of k, or more precisely, if ^(t)°=^(t} for all teT. The
importance of this concept lies in the following result.

Proposition (2.6). — Let L be a kTV ̂ -module which is i -dimensional over k and on which
T acts with weight co. Then

I T
,. r-yl/TT T \T I 1A ^^adim.Z^U^L)^ .

o otherwise.

Proof. — U^ acts trivially on L of course, since L is i-dimensional. Thus Z^U^, L^
is the collection of ^T-homomorphisms from U^ to L, where Ao==GF(^). In all cases
U^ is an irreducible AgT-module, so k®^U^ is a sum of distinct Galois conjugates.
Thus Z^U,, L^Hom^U,, L) ^Hom^(A®^U^ L) has dimension i or o over k,
depending on whether co^a or not.

(u) Suitably interpreted this result is just a very special case of the Kunneth formula [19; p. 166].
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i-parameter cohomology

The result just established readily yields information concerning the cohomology
of ATU^-modules L of arbitrary finite dimension.

Lemma (2.7). — Let L be a finite-dimensional kTV ̂ -module. Then

a) dim^U^L^^dim^

b) dim.B^U^^^dim.Lo/^,
c) dim.H^U^L^^Sdim.L.-dim.Lo/L^.

(n)~ OC

Proof. — c) is of course a trivial consequence of a) and AJ, and the fact that T is
aj&'-group.

a) is trivial if L==o. So assume L=)=o and let M be a maximal ^TU^-submodule
of L. By (2. y) we have an exact sequence

o->Z\U^ Mf^Z^U^ L^Z^U,, LIMf.

M has codimension i, since U^ is a ^-group and all irreducible yfeT-modules have
dimension i. Applying (2.6) we obtain easily that

dim^U^L/M)^ S dim.L,- S dim.M,,
<«)~a <o~a

from which a) follows by induction.
To prove b) we observe that the map L^B^U^ L^ which sends ̂  in 1̂  to

the coboundary u^i^—i^u {ueU^) is surjective (the result then follows since the kernel
of this map is obviously L^): Let u\->l—tu be an element of B^U^, L^; thus

t—iu^-itur^t

for each ^eT, weU^, or i—tt={t—U}u. Hence ^ is a fixed point ofT modulo L^.
Since T is a j&'-group there exists /oeL^Lo with l—f^e^, that is, the original
coboundary u^l—lu is equal to the coboundary u^^—l^u. Thus LQ-^B^U^, L)11

is surjective.

Upper bounds for H^G, V)

We can now prove the main theorem of this section.

Theorem (2.8). — Suppose ^^^ is a set of roots whose corresponding root groups
generate U, that is, U==<UJae^>. Then

dim.H^V)^ S dim.Z^U^^-dim.Vo+dim.V^15).
a G (̂

Proof. — The defining formula T^^TWj^+T^) for elements y of Z^U^V)
and the fact that U==<UJae^> insure that the natural product of restriction maps

(15) Usually VB=o in this paper in view of (3.5) and [26, Theorem 46, p. 239].
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COHOMOLOGY OF FINITE GROUPS OF LIE TYPE, I 170

Z^U, V) -̂ n^U,, V) isinjective. Hence Z\U, Vf^^Z^U,, Vf is injective,

and dim,, Z^U, V)^ S dim,, Z^U., V^ (16).
ae1!'

On the other hand, the map Vo-^ B^U, V)'1' which takes <, in Vg to the coboundary
uh-^—^M has kernel V^V", hence din^Vo—dimfcV^dim^B^U.V)'1'. Thus

^ (2.35)
dim,, H\G, V) ̂ dim^ H^B, V) == dim^ H^U, V)1'

== dim,, Z^U, V)1' - dim, B^U, V)'1'

^^dim, Z^U,, V^-dim, V, +dim, Vs.

Q,.E.D.
For ae2u{o} set n,= 2 dim^V^.

co /v a

Corollary (2.9). — £/ra<fer ̂  hypothesis of (2.8), if V"=o ^cn

dim.H^V^S »,-»<, (").
a6^

Proo/. — Apply (2.7^) and (2.8).

3. Restrictions of roots and Galois equivalences (18).

As in § i, G* denotes the universal Chevalley group over K defined by 2 $ X*=X*(T*)

is the free abelian group generated by the fundamental dominant weights. Since T*

is A-split, T has exponent q—i, hence any homomorphism ^T^K^ maps T into kx,
and so there is a natural restriction homomorphism p : X^T*) ->• X(T) f19).

Proposition (3 .1 ) (20). —Assume S is indecomposable, and q>^. Let p+y be elements
of 2u{o}. Then one of the following holds:

a) p(P)+p(r);
b) ?=4, 2 is of type Gg, p, y are long, and (p^)^27';

o

(le) Similar considerations appear in Hertzig [13].
(1?) In particular H^G, V)==o if all n^s are o. We mention here that T. A. Springer has obtained a

splitting criterion (for exact sequences of modules of a semisimple simply connected algebraic group over an
algebraically closed field of characteristic p) which also is described in terms of weights in the modules involved
[24; Proposition 4.5].

(18) Parts of Propositions (3.1) and (3.3) in this section are contained in Chevalley [8; Lemma n].
(19) For aeScX*(T*), p(a)(Q is a(?) as defined in § 2 (see footnote 5 and [26; Lemma 190, p. 27]).
(20) The fibres of p restricted to So==Su{o} partition SQ as SQ =OQ^' • • ^Og, with O G O o . When q==2,

j==o, S==OQ. When ^==3, the situation—now more complicated—entails the following alternatives: i) 2 is of

type B^ (£^.3), s==—^-t-, Oo={o}, o»={±a2, ±(2^-}-oL^)}w for some weW, i:0'̂ (0, and 0^-={±a} for

some a short, ({)<j^s; 2) S is of type Q (̂  i), ^=(()+i, Oo={o}u2^, 0,=={±aa, K^+a^w for
some weW, for i>i; 3) S is of type Df (^3), s==({), Oo=={o}, o,=={ ±y.^ ±^}w for some weW, i>i;
4) S is of type F^, ^==15, Oo={o}, Oi={±ai}<^, w^w for some weW, i=i, 2, 3, 0 , = { ± a } for some
short a, j>3; 5) S is of type Gg, s==3, Oo={o}, o^ =={ ±a^ ± {^+2^)}w for some weW for i>5; 6) in the
remaining cases s == | S |/2 and each 0̂ - is of the form { ± a}. A proof of this statement can be based on the fact that
the fibres o fpon 2 form systems ofimprimitivityfor the action ofW. All such systems can be easily determined,
since the stabilizer W^ of ^ = maximal long or maximal short root is generated by the fundamental reflections
it contains.
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c) (21) y-4, 2 is of type Ag, <^Y>=2^/3;
d) ^==5, 2 zj o/%^ C^, (B==—Y ^ fo^-

Proo .̂ — Since ker(p)==(y—i)X*, we need only consider the map
p : X-->X-/(?-i)X-.

Write ^eX* as a Z-linear combination of fundamental weights
^=Sm,,.\ (m^=(^<))

1

then p(^)==o iff w^ =o (mod <7—i) for each i.
Let ae2, and (Be2u{o} be distinct elements such that p(a)==p((B). We may

assume a is a dominant weight (see the lists in § i). Clearly p(a)+o, and if 2 is not of
type Gg or A^, the congruences m^ ̂ '=m^, (mod q—i) for all i, together with ^>3,
imply (3 is a multiple of a, hence (B=—a. Evidently this implies m^'>i for the non-
zero m^ ^ so by inspection 2 is of type C^, a==2X^=—p, ?=5 and^ holds. If 2 is of
type Gg, b) follows by inspection. If 2 is of type A^, ^>i, then ^=m^\-\-m(\(
where 77^=1 (mod q—i) for i ==!,/'. This implies ^^^ and TT^—i==o or —3,
whence either (B==—a or ^e{\—2\,\—2\}. Clearly p ^ — a , and since X^—sX^,
X^—2X1 are roots only when ^==2, ^J holds. Q.E.D.

The Galois equivalence relation on X(T) induces a similar relation on X*, viz.,
for X, (JL e X*(T*) we say X is Galois equivalent to (JL (X^pi) provided p(X)^ /p(pL) in the
sense of § 2. If X~^ji and q==pn, then
(3.2) P^^i^^^i (mod^—i) for some j, o<_j<n, all z.

We proceed to determine Galois equivalences among roots.

Proposition (3.3). — Assume S is indecomposable and <7>3. ^ a, (BeS ^r^ distinct
Galois equivalent roots, then one of the following occurs:

a) ^==4, 2 zj not of type Gg or Ag, <x==—p;
b) ^==4, 2 ^ of type G^, a==—P or a, (B ar^ 6(?^A long (all long roots are equivalent

here);
c) ?==4) 2 is of type Ag, all roots are Galois equivalent',
d) ^=5, 2 is of type G^ a==--(B is long;
e) q==Q, 2 ^ of type C^ (^i), a==—p z'j /OTZ^.

Proo/.—If q is prime, S^i; iff p(^)===p(^), since A=GF(y) has no non-trivial
automorphism; hence d ) holds if <7==5. If q==4 and 2 is of type Gg or Ag, &^ and ^
hold by inspection. We may assume henceforth ^+5 and 2 is not of type Gg or Ag
when q =4.

(21) The authors thank the referee for pointing out this case.
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Also we may assume a is a dominant weight, and (3 ̂  a via a non-trivial auto-
morphism of GF(^).

Suppose m^<i for all z. Then (3.2) reads
( p 3 if m^==i

^p , ,== l (mod^—i), for some o<j<n.
[ o otherwise

Since | w p J < 2 when S is not of type Gg, P must be a multiple of a; hence (B=—a,
j^+i =o (modj^—i), j==i , 7Z==2, ^==2, and ^ holds.

Otherwise S is of type C^ and a==2X^; then (3.2) reads
( 2 p 3 if i=/'

^3.1= ., . (mod^-i),[ o if t + (

for some o<j<n. Since |^p,i[<:2, P must be a multiple of a, so (B==--a, and either
a) or ^ holds. O.E.D.

Now we consider the Galois equivalences between roots and minimal dominant
weights. We may assume the minimal dominant weight X is not in the root lattice.
Then X==\ is fundamental and S is not of type G^. Thus for aeS, \m^ - |<2. If
we assume y>3, the congruences m^==o [mod q—i) for j^i imply a==wX for
m==±2 . By the lists in § i, 2 must be of type G( (^i). Since p3 —m==o (mod^—i)
for some o<j<n, p==2. If m = — 2 , necessarily yz==2. We summarize:

Proposition (3.4). — Ay^w<? 2 ij indecomposable and q>^ (22). ^ XeA^, X^ZS,
andif \r^y,e^, then^ is of type Cf ̂ >,i), X=^, and p==2. If ̂ =4, a=±2^, wAz^
t/ ^>4, a =2^.

(3-5) ^e remark here that, for y>3 and XeA^, X^o. It follows that
^^V^dim^Vo

where V^ is as in § i and V^ is as in § 2.

4. Examples.

With the bounds developed so far, it is an easy matter to compute H^G, V) for
irreducible ^G-modules V==V(X) where X is a minimal dominant weight. We have
the following possibilities for X:

(4.i<z) X is not Galois equivalent to a root;

(4.16) X is not a root, but is Galois equivalent to a root;

(4.1^) X is the maximal short root.

(22) When A==GF(3) the Galois equivalences are covered by footnote (20).
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If ^==2, G* is universal of type C^ (^^i), and G* is universal of type B^; let
i, : (y-^G* be the isogeny defined by the special isomorphism X^T*)®^^ X*(T*)®Q,
given by 9(04)== 20^ and (p(a^)==a, for i>i [7$ Exp. 18, 23]. Then (p(X^)==X^ if
l>i, while <p(Xi)==2X^=='o4 if ^==1. Also, the restriction o f i t o G is an isomorphism
from G onto G. Now by (3.4)3 (4.16) occurs only when p==2, S is of type Gf and X=X^ ;
hence in order to treat case (4.16), it suffices to consider the cases when G is of type B^^ and
X==X^ for Oi, or of type A^"), X==2Xi==o4 for l==i. This reduces (4.1^) to (4.ic).

Theorem (4.2). — Assume ?>3. T^X satisfies

a) (4. iff), ^2 H^G.V^o;
b) (4. i b), then H^G, V) ^ X(X) wA^r^ X==^ zj a fundamental weight of the dual

system of type B^ (see the above paragraph);
c) {^.ic),then H^G, V) ̂  X(X), or q==^ and G==A^) in which case HP(G, V)

is i-dimensional.

Proof. — Since X is minimal, every nonzero weight of T in V is W-conjugate to X.
If X satisfies (4.1^) and [BeS, then n^==o and (2.9) implies H^G.V^^o.
For the remaining cases, we assume first that ^^4, and if q == 5 or 9, G ^y TZ<^ oftype A^.

Since we have shown that (4.1^) reduces to (4. if), we assume X is the maximal short
root in 2. By (i .2)

dim, X(X) ̂ dim^ H^G, V).

If 2 has two root lengths and y^ioii^ (3-3) implies n.y==o, while if yeSg^^?
^==1 by (3.3). Hence by (2.9) (23), if A'=AnS^

dim.H^G.V)^ S n^-n^.
8£A'

By (1.1) and (3.5), ]A' | ==^o+dim^ X(X); hence
dim^ X(X)^dim^ H^G, V)^dim^ X(X).

A^ow assume q == 4 and G is not of type Ag. We show
f i if aeS,̂ ,.,

(4.3) dim,Z^(U»,V)^ , .
-'short 3

o otherwise.

If aeS^, (4.3) follows from (3.3). Assume aeS^. Let G^==<U^, U_<,> and
V^^V^G^, then V^ cV_^<9Vo®Va, and every proper G-submodule of V^ is
contained in (V/^)o; consequently V/^ has a unique maximal proper submodule
X^(V^)o. By (2.7<3), Z^U^, X)T==o, hence (2.3^) yields an injection

o-.Zl(U„V^)^^Zl(U„V^)T

(23) Here we are using the fact that U=<(UQ( ]a(=A)> when y>3. It suffices to consider the rank 2 case.
It is almost trivial for Ag and Cg, while it follows for Gg by (3.3) and the fact that T normalizes <(UoJa£A)>..
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where V^=V^/X. By (2.7^) again, Z^U^, V/V^^o, hence (2.3^) yields
Z^.V^Z^.V^,

so it suffices to show
(4.4) dim^U^V^i.

Now V/^ is an irreducible AG^-module. Since the torus T^===TnGa acts with
weight a on V^, it follows V^ is 2-dimensional. Set V^==(V^)^.

If yeZ^U^ V^)^ the homomorphism u\-^u^(u) of (2.2) yields {u^(u)Y==i,
whence u fixes ^(u). Writing Y(M)==ya(M)+y-a(") where v^^u)eV^^^ we see that
y-a(^) ls fi^d by ^ since z^^) is automatically fixed by u. Since T acts irreducibly
on U^, ^-a(^) ls fixed by U^. But since V^^ is 2-dimensional and U^ is non-trivial,
U^ fixes a unique line in V^. Necessarily y_^(u)=o for all ueU^. By (2.3^)

o^Z^U,, VJ^Z^U,, V^^Z1^, V^/VJ7

is exact. We have just shown TC is the zero map, so (4.4) follows from (2.6).
By (2.8)

din^H^V)^ S dim^Z^U^V^-Bo.
aeA'

Hence din^ H^G, V) ̂  | A' | - n^ == dim^ X(X).
For the remainder of the proof, we consider the exceptional cases Ag(4), A^)

and Ai(g). Assume first that 0=^(4), X=Xi+X2. Let ysZ^U.V)^ The homo-
morphism (2.2) and the fact that Up has exponent 2 imply v^p^^eY^ for each
peS, ^eA. This yields the following form for ^:

Y(^oJS)) = ̂ ,, o(S) + ̂ ,, a,(S) + 2^, a,+ a.(S) + ̂ ,, -a.(S),

(4.5) Y(^(S))==^,o(y+^,a.(y+^,a.4-a,(S)+^,^(S),

Y(^4-a.(S))==:ya,+a..o(S)+ya,+a..a,+a.(S)+^+a,.a,(S)+^4-a..a,(S),

where for each appropriate pair (B,veSu{o}

^^^^(V:),
is an additive homomorphism which, because of the T-stability of y? satisfies

(4.6) ^v(P(^)=v(^p,v(S) for teT.

Thus, v^ Q == o for (3 > o.
Next consider the maps 6^ ^ : (V^)^->(Vy^ defined for (B>o, ^e^ by

Qp^C^^^—^p^) for ^<v;)&-
If (3>o and ^^ekx, then

ker(6p^)==ker(ep,j4=o

while
ker(e,^)®ker(e,^)=(V;),.
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It follows that we may adjust y by a T-stable i-coboundary to eliminate ^ „ and
y^^; thus

Y(^(S))=^,a^a/S)+^,-a.(S),

(4-5') T^a.M)-^^^^^)^-^,-^^).

Y(^4-a.(^))=^+^^^^^T)+^+a,,a,(^)+^+a,,a,(^),

for ^3 re k.
If we assume v^ ,-^.+o, and compute the V^-component of y([^ (^), ̂  (r)])

using (2.2), (4.5'), (4.6) and [26, Lemma 72, p. 209] (or the fact that we know explicitly
the action o f G o n V here), we obtain a non-zero vector weV^ and constants A, B, C
with B+o such that

^ + a,, a.(^) = (A^T> = (B^T +C^)w

for all ^, reA. This is a contradiction, hence y^ _^=o. A symmetric argument
shows v^ _^=o.

Since V^^gV0, a recomputation of Y([^(^), ^(r)]) shows y=o on U^+^,
thus

T^a/S))-^,^^-^^),

(4.5") T(^(S))-^,a^a.^),

T(^+a.(S))=o, for SeA.

Now let [^JeH^G, V), and choose 7 so its restriction y to U is T-stable, hence,
after adjustment by a T-stable coboundary, so that y satisfies (4.5"). By (2.3^),
^ ^ l u n u ^ ^ y l u n u ^ ^ every weW. Let w==w^^; then

UnU^U^ and ^=(7--7)|^

is a T-stable coboundary, hence there exists a vector z/eV such that
^x^))==v-vx^) for ^A,

and vt—ve'V^ for ^eT.

Since T is a 2'-group, we may choose v so that ^e(V^)^, whence
(x(UJ^(V-J,,

However, direct computation of (JL shows pi(UJ c (V'!_J^+(V^+J^ hence (JL=O.
Now from (4.5")

7"(UJ-7(UJ <= (VlJ.n (V:^J,=o,

so ^lua,"0- Sy a symmetric argument, 7[^=o, so it follows from (2.3^) that
H^G, V)==o completing the proof in this case.

Suppose next G==Ai(5), and \==^. By (2.9) and (3.3), we have

dim.H^G.V)^-^!.

On the other hand, a computation shows that the module S(6X) formed as in § i is
indecomposable, and has a unique submodule J of dimension 4 which contains V. J is
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indecomposable and an application of the long exact sequence (2.3^) as in (i .2) yields
a lower bound of i on dim^H^G, V) completing the proof in this case (24).

Finally suppose G==Ai(9), and X=ai. Let Y^O^VV. Then by (2.3.?) it
suffices to show y^0- As in the case G=A^), write

T^))-^)+v^)+v_^)

where ^-'^-^(V^ is a function satisfying ^{oL^t)^)==^{t)u^), for ^e^, teT.
Since V/(V^ +VS)/c ls a fri^l U-module, v_^ is additive. If 9 is a primitive 4th root
of unity in GF(g) and if we write ^=a-\-bQ (a, 6eGF(3)), then

^(S)==(^+^-1)^(I)=^^(I).

By computing the component of T(•ya(S+T)) ln (V^)k m two ways for ̂  reGF{Q),
we obtain

^+^==^^)+^(T)+^T^(I)X^.

If y_^ (i)=t=o, y_a ( I)X^ =|=o, hence by the symmetry of VQ^-^-^) in ^ and T, ^r^r3^
for all ^, reA, a contradiction. Hence y_^==o. Also VQ is a Z3(T)-homomorphism,
hence ^==0. For some ^e^x, we may choose ^o6^^/^ such that

-r{x^))==v^)^v,-v^).
By T-stability, T(A:ax(p)) :=^;o—^o^(p) for a11 P? so T^0- Q.E.D

We summarize our results in a table:

TABLE (4.5)

C
Type

AI
2^q

arbitrary
A, {£>!) [l-

(f+i,p)==p

har ^ ==p
?>3

2

?=5
?>5

+1,/')==!

Do mi

a!

a!

a!

P-

nant Weight

=2X,(Xi)

=2X,(X,)

==2\{\)

\

=\+x/
(A

dim,,. V

2

3(2)

3(2)

(T)
(/+I)2-!

(^I)2^

dim^ ?(0, V)

i(i)
1(0)

0(0)

0

0

I

(24) An alternate proof in this case is as follows: IfR denotes the permutation representation ofA^(5) on 5 letters
over A=GF(5), then its restriction to a Sylow 5-subgroup is evidently the regular representation, hence R is
indecomposable. It evidently contains unique submodules M and m of dimensions i and 4 respectively, and
M/wr^V. Now the exact sequence (2.2) applied to R/w yields a lower bound of i for the dimension ofH^G, V)
as in (i .2).
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TABLE (4.5) (suite)

Type

B/ (^>2)

C/(/>i)

(/,/>)== I

D/ (/>3)

D^

D2/+1

Eg

(3^)=i

£7
(2,/>)-I

E8

F<

Ga

Char k ==p
?>3

arbitrary
2

odd

2

odd

^P)=P

arbitrary

odd

2

2

arbitrary

3

arbitrary
2

arbitrary

3
(^3)== i

2

(A 2)= I

Domin!

\
v

x/
v =

\; z

t^=

X

P-

(1

^

v

v

int Weight

-X/

V

^

=^-1

v

==1,2,^

==^-1

^

I1

19 \

==\

^

^

-\

^

==^8

=^

V

=X2

V

dim^V

s^
2/

2^+1

2t

2{

(/-I)(2/+I)-I

(^-I)(2/+I)

2/; t=^

2/-l; i+/

(2/-I)/

2/(4/—l)—2

(2^+l)(4/+l)- I

27

77
78

56
132

^3

248

25

26

6

7

dim.H^V)

0

i
0

i
0

I

0

0

0

0

2

I

0

I

0

0

I

0

0

I

0

I

0
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5. A result on Ext for SL(a, a").

Let G==SL(2, 2"), n>_i. Let a be the automorphism of G induced by the field
automorphism t^->t2, tek = GF(2n). Let p be the irreducible representation ofG over k
defined by the dominant weight X==X^ (§ i), and set p,=po<j1 for o<_i<n. Let M,
be the AG-module corresponding to p^.

Theorem (5.1) [16; p. 29]. — Ext^M,, M^.)=o, for all i,j.

Proof. — Since Ext°(V, V) ̂ Hom^V, V) ̂ (Ve^^H^G, V®V) for all
finite dimensional AG-modules V, V, we have Ext^V, V) ^ H^G, V®V) by a standard
dimension shift. Since each of the modules M. is self-dual

Ext\M,, M,) ^H^G, M,®M,).

Assume first that i=^j, say i>j. The weights of T in M, are ±2t\ hence the
weights of Tin V=M,®M^. are p4==(2 i+2 j)X, (Jl2==(2^—2 j)X, (13==—^ (A4=—^r
This module V is the irreducible AG-module defined by the dominant weight (2 l+2J)^
([26; Thm. 43] or [25]). Since i>j,

(5.2<z) (ii^ai=a;

(5-2&) ^2^0^(13 iff w==2, i=i, andj'==o(25).

Since V is self-dual, it has [9; Cor. 1.5^] unique AU^-submodules w==V^ and M of
dimensions i and 3 respectively. If H^G.V)^, the same is true of ?(1 ,̂ V)1'
by (2.3,?). Since T is a 2'-group, there exists a non-zero T-stable cocycle y : Ua->V.

If cek, (A-aMT^aM))2^1 by (2.2), hence y(^(<:)) lies in the centralizer C^(x^c)).

(5-3) If ^+o, Cv(^(c)) is not T-stable.

Otherwise, for teT, Cv(^M)<=Gv(^(^)<)=Cv(^(a^)^)), hence

Cv(^M)=Cv(UJ=m

for every c^o. Now -f :V^m is in Z^U^, 771)T, contradicting (2.7^) and (5.20).
We leave the exceptional case w = = 2 , z=i , j==o of (5.26) to the reader (26),

and assume henceforth (i^oc for some ^ = 2 or 3. By (5.3) (or by tensor product
considerations) V is not a uniserial ATU^-module, and so there is a 2-dimensional
ATU^-submodule V^ of M with (M/V^ = M/V^. Now y(^(c)) lies in Cy^)) c M,

(25) If p.i^a, then 2^(2 l+27)=I (mod2n—I) for some f, o<_£ <n. If r, s are least residues of i-\-{ and
j+{ respectively, then 2 r+2 s—I=o (mod 2n—I). This implies r==s and i=j(modn), whence i=j,
a contradiction.

Suppose ^a^00^^? then for some o<^_£, m<n, we have 2^(2^—2^)=^ 1=2^(2^—21) (mod 2n—i). Setting
e==i—ja.ndf==\{—m\ weobtain 2 e —I=2 M (mod2 n —I) for some o<_u<n, and (2^+i)(26—1)^0 (mod 2n—I).
The first congruence implies 2^4-iso (mod 2n—I), whence since o^f<n, f==i and so n==2 as required.

(26) Actually it is obvious that W(G, V)=o here, since V is the Steinberg module, which is projective [10].
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and by (2.7^) the projection ofy on M/V^ is o, whence y takes values in V^. Because
°f (5-3)5 we must have V^nGv(^(^))==m. But now y takes values in m, again contra-
dicting {2.70) and (5.2^).

Assume ?=;, and q>2 (we leave the case y = = 2 to the reader (27)), then
V=M,®M, is a Galois conjugate of Mo®M:o==Mo®Mo^Hom^(Mo, Mo). By foot-
note 9 (or (2.3^)) it suffices to treat the case V==Hom^(M:o, Mo). Evidently V has
unique submodules m and M of dimensions i and 3, and M/m is a Galois conjugate
of Me. Applying (2.3^) to o-^-^V->V/m->o gives o-^H^G, V^H^G, V/M)
exact. Applying (2.3^) again to the sequence o^M/w->V/m->V/M->o yields
dim^H^V/^-dim^H^G^M/w)-!. By (4.2^) dim^H^G, M/^)==i (28). Q.E.D.

6. Action of Hecke algebras on cohomology.

Let A be a finite group and V a ^A-module. When B is a subgroup of A whose
index [A : B] is not divisible by the characteristic p of k, the restriction map
H^A, V) -> H^B, V) is injective and its image consists of stable classes, as mentioned
in (2.35, d). Denote here the collection of stable classes in H^B, V) by H^B, V)^73.
Then the stability theorem of Gartan-Eilenberg [5; p. 259] asserts

H^A.V^H^B.V)1^^;

indeed Gartan-Eilenberg prove the analogous result for n-dimensional cohomology,
neZ.

Our notation suggests that the stable classes are the c( fixed points " for an action
of the Hecke algebra on HP(B, V). In fact the Hecke algebra B\A/B does act naturally
on H^B, V) for all integers n, all subgroups B of A, and all ZA-modules V. If, as in
the present case, V is a^-group and J&-T [A : B], then the stable classes may be interpreted
as <( fixed points " of this action.

We sketch the details. The Z-linear combinations in the rational group algebra OA

of elements _— B^B form a Z-algebra B\A/B. Here BaB denotes the sum of all members
1 1 ——

of the B, B double coset BaB of A. For (leH^B, V) define ^(^BaS}^^,^,
\\B! /

where |B is corestriction (defined in dimension o to be a sum of multiplications by coset
representatives) (29). It is easily checked that this defines an action ofB\A/BonH°(B, V)
for all V, also H°(B, V), hence on H^B, V) by dimension shifting.

When V is a j&-group and j&-f[A : B] the stable classes may be interpreted as
"fixed points" for B\A/B in the following way: There is a natural homomorphism

(27) Again this case is immediate since Mp is the Steinberg module.
(28) It should be noted that, for q>4, the upper bound in (4.2c) depends only on (2.8).
(29) A similar definition appears in Shimura, Introduction to the arithmetic theory of automorphic functions, Prin-

ceton University Press, 1 9 7 1 .
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from the Hecke algebra B\A/B into Z which may be obtained from the augmentation

QA->Q^; the value of this homomorphism on 7^7 BaK is [B : B^ B], So if M is any
[B |

module for B\A/B it is reasonable to call weM a " fixed point?? for B\A/B provided

m[—, BflB I == [B : y n B]m for all <zeA. Now observe that in case M is the set of
\ | B | / ^

B-fixed points of an A-module V we have m[ ̂ T^^]^K}==m\A [g for any meM (in
\ a l ^ l /

the sum a ranges over a set of B, B double coset representatives). It follows easily that

multiplication by SFo-iBflB is the same as ^[g on H^B, V) for any n. So if meH^B, V)
a \D\

is a < c fixed point " for the action of B\A/B we have m \A | g == S; [B : B0 n B]m = [A: B]m.
Ct

In the present case [p -r [A : B]) this implies that m is the restriction of an element oflP^A, V),
and so certainly a stable class. On the other hand all stable classes are obviously cc fixed
points " for the action ofB\A/B, since restriction followed by corestriction is multiplication
by the index. Thus we have shown that, when V is a p-group and p^ [A : B], the stable classes
are precisely the "fixed points " of the Hecke algebra B\A/B.

The homological <c explanation " for this Hecke algebra action seems to be the
fact that Ext^T^, V) ^ Ext^(T, V^). Here [A and [g denote induction and restriction.
Ext^Tj^V) is obviously a Hom^T^, Tj^-) module. In case T=Z with trivial
B-action, Hom^T^, T^) is well-known to be isomorphic to the Hecke algebra, while
ExtSC^VI^H^VlB).

Finally we mention that there seems to be no corresponding Hecke algebra action
for algebraic K-theory. It is of course possible to formally reproduce the definition

Hi—~\ ̂ a^ \=== ̂ a I B° n B I B but this simply does not define an action of the Hecke
\ \ D \ /

algebra B\A/B—not even on Ko(CB) where C == complex numbers, B == cyclic group of
order two, A == symmetric group on three letters.

We conclude this section with an application of the Hecke algebra action. A
somewhat less obvious proof can be given directly.

Corollary (6.1) (^.—Z^G be a finite group with a EN-pair (see [2; Chapter IV]),
and let V be a kG-module. Let W=N/(BnN) be the Weyl group ofG, and let {z^JaeA be

the associated set of fundamental reflections. Assume that the characteristic p of k does not
divide [G : B].

Then a necessary and sufficient condition that a class

(zeH^B, V)

be stable [^^^^^^ ̂  for all weW) is that ^\^^=^\L\^^ for aeA.

(30) This result has been obtained independently by George Glauberman.
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Proof. — The hypothesis implies

J-Bw^\ ̂ B^nB-a]^
\B———/

for each aeA. Hence (A is a (< fixed point" for the subalgebra generated by the various

.—.Bw^B. It is an easy exercise (31) to show from the axioms for a BN-pair that thisj BJ ———
subalgebra is in fact the full Hecke algebra. Q.E.D.
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