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o« Introduction.

(o. i) Grothendieck's version of the Riemann-Roch theorem for non-singular pro-
jective varieties [Borel-Serre] is expressed by saying that the mapping ^l-^ch(^)^Td(X)
from K°X to H*X is a natural transformation ofcovariant functors. Here K°X denotes

f1) The first and third authors were supported in part by NSF grant GP 43128.
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102 P A U L B A U M , W I L L I A M F U L T O N , R O B E R T M A C P H E R S O N

the Grothendieck group of algebraic vector bundles on X, H* X is a suitable cohomology
theory, ch is the Ghern character, and Td(X) is the Todd class of the tangent bundle
to X; K° and H* are naturally contravariant functors, but for non-singular varieties
they can be made covariant.

A Riemann-Roch theorem for singular varieties in terms of K° and H* can be
formulated only for those maps f: X—^Y for which Gysin homomorphisms

/, : K°X-^K°Y and /, : H-X->H-Y

are available. Such a theorem can be proved when / is a complete intersection mor-
phism, and the cohomology is

1) H'X==Gr'(X)Q==the associated graded ring to the X-filtration of K°X^
[SGA6], or

2) H*X==A*XQ==the Chow cohomology ring (Chapter IV, § 3$ [App., § 3]), or
3) ITX==H*(X; QJ== singular cohomology (Chapter IV, §§ 3, 4).

With such a theorem, however, one obtains a Hirzebruch Riemann-Roch formula for
the Euler characteristic of a vector-bundle on X only if X itself is a local complete
intersection in projective space.

Our Riemann-Roch theorem for projective varieties (which may be singular) is
formulated in terms of naturally covariant functors from the category of projective
varieties to the category of abelian groups. We construct a natural transformation T
from KQ to H.. Here K()X is the Grothendieck group of coherent algebraic sheaves
on X, and H.X is a suitable homology group. In the classical case, when the ground
field is C, H.X may be H.(X; Q,)== singular homology with rational coefficients. For
varieties over any field we may take H. X to be the Chow group A. XQ of cycles modulo
rational equivalence, with rational coefficients [App., § i]. Each of these homology
theories has a corresponding cohomology theory H' with a cap product H^H.^H.;
each variety has a fundamental class [X] in H.X.

Riemann-Roch theorem. — There is a unique natural transformation T : Kg-^-H. such that:

i) For any X the diagram

K°X®KoX -®> KoX

ch®T

H-X®H.X -^ H.X

is commutative.
2) If X is non-singular, and 0^ is the structure sheaf on X, then

r(^)=Td(X)-[X].

102



RIEMANN-ROCH FOR SINGULAR VARIETIES 103

For each projective variety X, T : KoX->H.X is a homomorphism of abelian
groups. The naturality of T means, as usual, that if /: X->Y is a morphism, then
the following diagram commutes:

KoX ̂  H.X

f* f*

K,Y -̂  H.Y

(If an element 73 in K()X is represented by a sheaf J^, then/^7] in K^Y is represented
by f^==^{^im^.)

We call r(^x) the homology Todd class of X, and denote it r(X). Let s : H.X-^Q^
be the map induced by mapping X to a point. Then e(T(X))==^(X, (P^) is the
arithmetic genus of X.

Corollary. — If E is an algebraic vector bundle on a projective variety X, then

x(X,E)==s(ch(E)-T(X)).

In particular, for fixed X, /(X, E) depends only on the Ghern classes of E. Of
course, if X is non-singular, the corollary becomes Hirzebruch's formula

x(X,E)=(chE-TdX)[X].

The uniqueness assertion in the Riemann-Roch theorem can be strengthened
considerably (Chapter III, § 2):

Uniqueness theorem. — The T of the Riemann-Roch theorem is the only additive natural
transformation from KQ to H. satisfying either of the following conditions:

1) T is compatible with the Chern character, as in i) of the Riemann-Roch theorem, and
if X is a point, r(^x) == i e %= H. X.

2) If X is a projective space, the top-dimensional cycle in r(^x) ^ [X].

Neither condition mentions the Todd class of a bundle; condition 2) does not even
mention Ghern classes. This theorem holds over an arbitrary field when H.X==A.XQ,
as well as in the classical case when H.X=H.(X; QJ.

We can also deduce from our Riemann-Roch theorem (Chapter III, § i) a result
known previously only for non-singular varieties [SGA 6$ XIV, § 4]. Let Gr.X be
the graded group associated to the filtration ofKgX by dimension of support. Assigning
to each subvariety of X its structure sheaf induces a homomorphism 9 : A.X -> Gr.X.

Theorem. — The mapping 9 is an isomorphism modulo torsion:

A.XQ-^>Gr.XQ.
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(0.2) For morphisms which are complete intersections, our theory lifts to cohomo-
logy (Chapter IV, § 3). This allows us to recover the (< cohomology Riemann-Roch
theorem55 of [SGA 6], for quasi-projective schemes, with values in A^Gr^.

For a complete intersection morphism f : X->Y of complex varieties we construct
Gysin cc wrong-way 55 homomorphisms

/, : H-(X; Z) -> H-(Y; Z) and /* : H.(Y; Z) -> H.(X; Z)

(Chapter IV, § 4). The problem of constructing such maps was raised by Grothen-
dieck [SGA 6$ XIV]. This allows us to prove a cohomology Riemann-Roch theorem
without denominators for a local complete intersection XcY of singular complex
varieties (Chapter IV, § 5), as well as extend the Riemann-Roch theorem of [SGA 6]
to the singular cohomology theory.

When XcY are smooth, in any characteristic, our methods also give a Riemann-
Roch theorem without denominators for the Chow theory; this was conjectured by
Grothendieck, and proved using other methods by Jouanolou [Inventiones Math., n
(1970), pp. 15-26].

For morphisms y :X—^Y which are complete intersections, there are formulas
relating the Todd classes ofX and Y (Chapter IV, § i and § 3). In particular, if X is a
local complete intersection in a non-singular variety, its Todd class r(X) = td(Tx) ̂  [X],
where Tx is the virtual tangent bundle (Chapter IV, § i).

For general singular varieties, however, the Todd class may not be the cap product
of any cohomology class with the fundamental class (Chapter IV, § 6). One method
of attack is to find a map TT : X->X which resolves the singularities of X. Then
0^ — 7T( <^x == S n^ ffy. in Kg X, where the V^ are irreducible subvarieties of the singular

i

locus of X. So
T(X)-7T.T(X)=S^(T(V.))

where 9, is the inclusion ofV, in X. If one can find X, and calculate V, and ^, one
may reduce the problem to a lower-dimensional case. In this paper we make no use
of resolution of singularities (except in an unrelated way for surfaces in Chapter II).

(0.3) The way the homology Todd class generalizes the arithmetic genus is quite
analogous to the way the homology Chern class generalizes the topological Euler
characteristic [M 2]. (In fact our work on Riemann-Roch began with our trying to
find an analogy with this theory of Ghern classes.) However, a basic property of the
arithmetic genus is that it is constant in a (flat) family of varieties, while the topological
Euler characteristic can vary, so one cannot expect the sort of relation between them
as one has in the non-singular case (cf. Chapter IV, § 6).

We generalize this property of the arithmetic genus as follows (Chapter IV, § 2).

Theorem. — If X->C is a flat family parametrized by a non-singular curve G, then the
Todd class of the general fibre specializes to the Todd class of the special fibre.
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RIEMANN-ROCH FOR SINGULAR VARIETIES 105

Similarly the formula giving the arithmetic genus of a Cartesian product X xY
as the arithmetic genus of X times the arithmetic genus of Y generalizes to the fact that
T(XxY)=T(X)xr(Y) (Chapter III, § 3).

(0.4) We give two proofs of the Riemann-Roch theorem. Both proceed by
imbedding X in a non-singular variety M. Since a coherent sheaf on X can be resolved
by locally free sheaves on M, we are led to consider complexes E. of vector bundles
on M which are exact off X.

For such a complex E. its Chern character S^—i^ch E,— [M] eH.M restricts
i

to zero in H.(M--X), so it should come from an element in H.X. From our point
of view, an essential step in proving Riemann-Roch is to construct such a < ( localized
class" ch^E. in H.X.

Another essential step is to compare an imbedding of non-singular varieties M C P
with the imbedding of M as the zero-section of the normal bundle. This problem was
overcome in [B-S, SGA 6] by blowing up P along M to reduce to the case of a hyper-
surface, and in [A-H 2] by using a local diffeomorphism (with a suitable complex analytic
property) between the two imbeddings. Here we use a different approach which we
believe is simpler. We find a family of imbeddings which deforms the given imbedding
algebraically into the imbedding as the zero-section of the normal bundle (Chapter I, § 5).
Our construction of this deformation uses a simplified form of the <c Grassmannian graph
construction" (cf. § 0.7) which is vital to our general proof of Riemann-Roch.

(0.5) Chapter I contains the first proof, valid for complex varieties, with values in
singular homology with rational coefficients. The class ch^E. is constructed using the
" difference bundle 5? of Atiyah and Hirzebruch [A-H i], and its basic properties are
proved in §§ i, 2. More properties are deduced from those in § 3, and §§ 4, 5, 6 contain
the construction of T and the proof of Riemann-Roch.

(o. 6) In Chapter II we construct the localized class ch^E. in the Chow group A.XQ
for any closed subvariety (or subscheme) X of a quasi-projective variety M over an
arbitrary field, and a complex of bundles E. on M, exact off X. This greater generality
allows us to study local complete intersections, and also extends the Riemann-Roch
theorem to all quasi-projective varieties and proper morphisms. Once the localized
class ch^ E. is constructed, the proof of Riemann-Roch proceeds as in Chapter I, §§ 3-6.

Note that our theorem gives a Riemann-Roch theorem in any homology theory H,
for which there is a natural transformation A.-^H., where A. is the Chow theory.
In the classical case this gives another proof for singular homology.

(0.7) We say a few words about the basic Grassmannian graph construction [M i]
for a vector-bundle map 9 : E—^F of bundles on a complex variety M. The graph
of cp at each point peM is a subspace of Ep®Fp, so we have a section of a Grassmann
bundle G=GrasSg(E<9F) over M, with ^==rank E. For each complex number X, we can

105
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106 P A U L B A U M , W I L L I A M F U L T O N , R O B E R T M A C P H E R S O N

apply this to X<p, and get a section s^ of G over M. This family of imbeddings can be
completed at X = oo to get a rational equivalence. The cycle obtained at infinity
contains a great deal of information about where and how 9 becomes singular. Riemann-
Roch is only one of the applications of this construction.

(0.8) In the classical case the Riemann-Roch map T: K()X-^H.(X; Q^) factors
through topological homology K-theory KJ^X) with integer coefficients. In fact the
construction becomes more natural in this context (cf. [A-H 2] for the non-singular
case). The Todd class r^x)6-^01^ becomes an orientation class for X in topological
K-theory.

If one regards Riemann-Roch as a translation from algebraic geometry to topology,
the K-theory version is the most natural and precise way to formulate it. On the other
hand, factoring through the Chow group shows that the Todd class is an algebraic cycle
which is well-defined up to rational equivalence (over Q^). The relations between
these theories are made clearer by the commutative diagram

Ko —^ K^

T Ch

A.Q -^ H.( ; %)

where the maps out of Ko are the maps we construct in our Riemann-Roch theorems,
the right vertical map is the homology Ghern character, and the lower horizontal map
takes an algebraic cycle to its homology class. This should be thought of as (< dual "
to the diagram

KO __„ -K-O
——> -^top

ch | ch
y ^
AQ —> H-( ; %)

where the horizontal maps are the natural maps from algebraic objects to topological ones.
All four of these pairs of natural transformations are compatible, as in i) of our

Riemann-Roch theorem. The horizontal maps translate algebraic geometry to topology.
The top maps are with integer coefficients, and the bottom maps are induced by maps
with integer coefficients. All the vertical maps become isomorphisms over Q^ (provided
we take just the even part of the homology and cohomology) (Chapter IV, § i and
[App., 3.3]).

We will give the K-theory version of Riemann-Roch in another paper.

(0.9) The methods of this paper extend to give a Lefschetz fixed point theorem for
singular varieties which specializes to [P. Donovan, The Lefschetz-Riemann-Roch
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RIEMANN-ROCH FOR SINGULAR VARIETIES 107

Formula, Bull. Soc. Math. France, 97 (1969), pp. 257-273] in the non-singular case. We
also obtain explicit contributions to the Lefschetz number at isolated (possibly singular)
fixed points. For an automorphism of finite order, this extends the Atiyah-Bott formula
([M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes, I,
Annals of Math., 86 (1967), pp. 374-407], [M. F. Atiyah and G. B. Segal, The index
of elliptic operators: II, Annals of Math., 87 (1968), pp. 531-545]) to singular varieties.
This will be the subject of another paper.

It also appears that this Riemann-Roch map is just the zero-th part of Riemann-
Roch maps K^X—K^X, where K,'X is the higher K-group of Quillen [Higher
algebraic K-theory, Algebraic K-theory I, Springer Lecture Notes in Mathematics, 341 (1973)].
For non-singular varieties this question is not difficult; for singular varieties we have
a proposed definition of these maps. We plan to report on this later.

(0.10) Notation:

If X is a subspace of Y, and i : X->Y is the imbedding, and A'eH.X, jyeH'Y,
we write y — x instead of i*y—x, for any of our homology-cohomology theories.

If E is a vector bundle on a space X, we write P(E) for the bundle over X whose
fibre over a point in X is the set of lines in E over that point, as in [G], not [EGA];
similarly for Grassmann-bundles. We often use the same letter to denote an algebraic
vector bundle and the associated locally free sheaf, saying " the bundle E ", or " the
sheaf E " to distinguish the concepts when necessary. We write £ for the dual bundle
(or, sheaf).

The Todd class of a bundle E is denoted td(E). If M is non-singular, we write
Td(M)=td(T^)

for the Todd class of its tangent bundle T^.

(0.11) An outline of our Riemann-Roch theorem, using differential-geometric
methods, appears in [Baum], The main results were also announced at Arcata [F],
where a preliminary version of this paper was distributed.

We are grateful to M. F. Atiyah and A. Landman for helpful comments and
suggestions.
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CHAPTER I

RIEMANN-ROCH BY DIFFERENCE-BUNDLE

In this chapter we use singular homology and cohomology with rational coefficients;
we write H.X for H.(X; QJ and H-(A, B) for H-(A, B$ QJ. The Grothendieck group
of topological vector bundles on a compact space X will be denoted K^p(X). When
X has a base point the reduced group will be denoted by K^ (X).

i. The Localized Class ch^E. by Difference-Bundle.

Let X be a compact complex analytic subspace of a complex manifold M. Define
K°(M, M-X)=HmK°(M/G)

where the limit is over all closed subsets C of M—X.
Atiyah and Hirzebruch have shown [A-H i] how to construct an element rf(E.)

in K°(M, M—X) from a complex E.:

o->E,-d>E^-^...->Eo^o

of topological vector-bundles on M which is exact off X. We recall their construction.
Let F,==Ker(^) and choose splitting isomorphisms E^F,®F,_i on M—X.

This gives isomorphisms
E^SE^SF,

k »

Eodd-SE^^SF,.^odd—^-^fc+l-^ffc i

Composing the first with the inverse of the second gives an isomorphism a : E^^E^
on M—X. Choose an isomorphism of E^<i©F with a trivial bundle e^ for a suitable
bundle F on M. Then

E^F-^E^OF^

trivializes E^®F on M—X. Therefore E^®F defines a compatible collection of
bundles on M/C, G closed in M—X, and so E^QF—e1^ determines the desired
element rf(E.) in the limit group K°(M, M—X).

If we note that H*(M, M—X)=HmH'(M/G), the Chern character gives a
mapping

ch : K°(M, M-X) ->H-(M, M-X).

108



RIEMANN-ROCH FOR SINGULAR VARIETIES 109

The Lefschetz duality isomorphism H"(M/C)^H.(M—C) for C a neighborhood
retract (cf. [Spanier, Algebraic Topology, McGraw-Hill (1966), p. 297]) passes to the
limit to give an isomorphism

L : IT(M,M-X) -^>H.X.

We then have K°(M, M-X) -^ H-(M, M-X) -L> H.X.
Define ch^E. ==L(ch(rf(E.))).

2. Basic Properties of ch^E..
•

We list six fundamental properties of this construction. Except for a variation
in (2.5), X, M and E. will be as in § i.

Property (2.1) (Localization).

( a ) If XcYcM, where Y is another compact analytic subspace of M, and j
denotes the imbedding of X in Y, then

^ch^E.=ch^E..

( b ) If (' is the imbedding of X in M, then

i.ch^E^chE.—CMj^^-i^chE.—CM].
i

Property (2.2) (Additivity). — If E. is a direct sum of two complexes E.' and E^',
then

ch^E.=ch^E:+ch^E:'.

Property (2.3) (Module). — If F is a vector-bundle on M, then
ch^(F®E.)==chF—ch^E..

Property (2.4) (Excision). — If XcUcM, with U open in M, then
ch^E.=ch^(E.[U).

Property (2.5) (Homotopy). — Let X c M as in § i. Let C be a connected complex
manifold, D a complex manifold, TC : D—^G a smooth (1) mapping, and i : MxC->D
a closed imbedding so that

MxC r { > D

(1) In this context "smooth" means a holomorphic mapping such that for each peM the induced map of
tangent spaces TpM —>T^C is surjective. For general algebraic varieties we refer to [EGA IV, 17.5].
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commutes, where p is the projection. Let E. be a complex of bundles on D, exact off
XxG. Then for each teC, E. induces a complex E.( on D^-n:'"1^) exact off
X^==Xx{^}=X, and the resulting class ch^(E^) in H.X is independent of t.

Property (2.6) (Pull-back). — Let p : P->M be a smooth, proper mapping, and
let Q^^^X), q : Q -̂̂ X the restriction to X. Then ^(E.) is a complex on P exact
off Q, and

^(ch^E.)==ch^E.)

where q* : H. X -> H. Q^ is the homology Gysin map.
(When H. is singular homology, we define the homology Gysin map

f: H.X^H.Q,

for simplicity, by requiring commutativity in the diagram

H-(M,M-X) ~^> H-(P,P-QJ

L n L n

H.X ———^——> H.Q

If X is non-singular, this agrees with the map obtained by using Poincard duality.)

The first four properties are easy consequences of the definition. For the homotopy,
we may replace G by a compact disk. Then by standard techniques of extending ^(x>

vector fields, the product structure on MxC extends to a neighborhood U of MxC
in D, U==Uo X C. Let ^ inject Uo as U"o X t and let [UJ^ be the Borel-Moore homology
orientation of Uo given by the complex structure on Uo induced by ^. If we apply
the construction o f § i t o XxGcD and E., then ch(</(E.)) maps to ch^(E.() by the
composite

H-(U,U-XxC) -^ jET(Uo,Uo-X) -^[uo^ H.(X).

But these are equal since the ^ are homotopic and the [Uo]< are determined by homotopic
complex structures.

Property (2.6) follows from the fact that ^E.)=^(E.)) in K°(P, P-QJ,
and the above description of the homology Gysin map.

3. More Properties of ch^E..

We prove several more facts about this construction. Although some of these
could be proved directly and easily from the definition—the reader is invited to do
so—we prefer to show how they can be derived from the basic Properties (2.1-2.6).
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RIEMANN-ROCH FOR SINGULAR VARIETIES m

When we construct a localized class algebraically in Chapter II which satisfies Proper-
ties (2.1-2.6), we will then be able to conclude that it satisfies all the other properties
of this section, and that Riemann-Roch is true for the Chow theory.

Proposition (3.1). — Let o->E^-°>E.->E^->o be an exact sequence of complexes on M,
each exact off X. Then

ch^E.=chp:+ch^E:\

Proof. — We deform the exact sequence into the split exact sequence. Let
p : MxC->M be the projection, and define a surjection of complexes on MxC

h : ^E.e^E:'->^E:'

by h{e, (?")==(B((?)—^" if e and e" are in fibres over a point (m, t)eMxC, teC. Let
E. be the kernel of A. Then E. is exact off XxC, and E. restricts to E.'®E^ at t==o,
and to E. at t==i, so the result follows from Properties (2.5) and (2.2).

Lemma (3.2). — Let F. be the complex obtained by shifting E. one place to the left:
F^==E,_^ (with corresponding boundaries). Then

ch^F.=-ch^E..

Proof. — Construct the « algebraic mapping cylinder » G., where
G,=F,CE,=E^®E,, and d^e)==(df, de+^iyf).

Then G. is exact on all of M, so ch^G.=o (Property (2.1) for 0cXcM). Since
there is an exact sequence

o—E.->G.->F.->o

we can conclude by Proposition (3.1).

Proposition (3.3). — Let E. be a complex of bundles on M, exact off X, and let F. be
any complex of bundles on M. Then F.0E. is exact off X, and

ch^(F.®E.)=ch(F.)-ch$E..

Proof. — If the boundary maps in F. are all zero this follows from the lemma and
Properties (2.2) and (2.3). For the general case let p : MxC-^M, and consider the
complex F.®j&*E. on MxC, where F,==^*F, but the boundary maps of F. over a
point (m, t) e M x C are t times the boundary maps of F.. This gives a homotopy
between the zero-boundary case and the general case.

Proposition (3.4). — Let E. be a complex of bundles on M exact qffX, and let n : N-^M
be a vector bundle over M, with M regarded as a subspace ofNby the zero-section. Let A*TT*N
be the Koszul-Thom complex on N (cf. [A-H 2, Prop. (2.5)]). Then A'^N^^E. is exact
<on N—X, and

ch$(A•7^+N®7^+E.)=td(N)~ l—ch^(E.).
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Proof. — The exactness on N — X results from the fact that a tensor product of
complexes is exact where either of the complexes is exact.

Imbed N in its projective completion P=P(N©i) (cf. [G, § 5]), let p : P—M
be the projection, and let q : Q^=^~1(X)==P((N®I) [ X)-^X be the restriction over X.

On P we have an exact sequence
o^H->j&*(N®i)-^p(i)-^o.

Since J&*(N<^I)=^ ! l i(N)<^I, projection on the second factor gives a homomorphism
of sheaves

H-̂ p

which is surjective off M. Such a homomorphism from a locally free sheaf H to the
trivial sheaf fflp gives rise to a Koszul complex A*H on P, exact off M. This complex
restricts to A^N on N. By the excision Property (2.4)

ch^A-T^N^^E^ch^A-H^E.).

Let s : X-^Q^ be the zero section. Then
^(ch^(A-H®^E.))=ch^(A-H®^E.)

by the localization Property (2.1). But j^E. is exact off Q, so by Proposition (3.3)

ch^(A-H®^E.)-ch(A-H)—ch^E.).

Now ch^(^*E.)==^ch^(E.) by the pull-back Property (2.6), and q^== identity.
Therefore (cf. [App., § (3.1)])

^(ch(A-H) - ̂ ch^E.) ==A(ch(A-H)) - ch^E..

Putting all this together, we are reduced to proving the formal identity

A(chA-H)=td(N)-1

or, by the projection formula,

A(chA-H—^td(N))=i.

We use the basic identity [B-S; Lemma 18]

chA-H=^(H)td(H)~1

where e === rank H = rank N. From the exact sequence defining H we see that

^td(N)=td(^N®i)==td(H)td(^(-i)).

Therefore ch(A'H) .^td(N)==^(fi) . td(^(—i)), so we are reduced to showing that

^^(H)td(^(-i)))==i.

Let z==c^{ffl{i)). Since

o=^+i(N©i)-^(H).q(^(-i))=-^(H),
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and td (^ (—i ) )—i is a multiple of z, we are reduced to showing
A(^(H))=i.

Finally, since
.(H)=^(N)/,((P(-i)),

e

^(H)=^^^(N)^~\ so ^(H^A^-I.

4. Coherent Sheaves.

Let X be a projective variety, and imbed X in a non-singular quasi-projective
variety M. If ^ is a coherent sheaf on X, let E. be a complex of vector bundles on M
that resolves '̂3 and define

chj^=chlE..

Proposition (4.1). — ch^J^ <fo^ 7^ <fe^rf on the resolution E..

Proo/. — Since two resolutions are dominated by a third [B-S; Lemma 13], if E."
is another we may assume there is an exact sequence o->E^->E.->E."-^o, where E^
is exact on all of M. Then ch^E. = ch^E:' + ch^E: = ch^E:' by Proposition (3.1) and
Property (2.1).

Since an exact sequence of sheaves can be resolved by an exact sequence of
bundles [B-S; Proof of Lemma 12], we likewise deduce the following fact:

Proposition (4.2). —If o->^r'->^:'-^^r"->o is an exact sequence of sheaves on X, then
ch^- ch '̂4- ch ĵF".

Therefore ch^ defines a homomorphism from K^X to H.X. We can see from
Proposition (3.4) how this homomorphism depends on the imbedding, at least in a
special case.

5. Deformation to the Normal Bundle.

Proposition (5.1). — Let McP he an imbedding of non-singular quasi-projective varieties^
and let N be the normal bundle. Then there is a non-singular variety D, an imbedding M X C c D,
and a smooth morphism TT : D->C which restricts to the projection MxC->C on MxC:

MxC c———^-D

For each teC we get an imbedding

M==Mx{t}c^l{t)=D,
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with the following properties':

1) For ^4=0, the imbedding McD^ is isomorphic to the given imbedding of M in P.
2) For t==o, the imbedding McD^ is isomorphic to the imbedding of M as the zero-

section of N.

Proof (1). — Imbed P as a locally closed subvariety of a projective space P^ and
choose homogeneous polynomials F^, . . ., F, (in N+i variables), with deg F,=^, which
define M (scheme-theoretically) in P. Let E be the bundle over P whose sheaf of sections
is Wi)©...©C?p(</,), and let s : P->E be the section determined by (F^, ...,F,).
The fact that F^, . . ., F, define M scheme-theoretically means that (F^, . . ., F,) maps
the sheaf E=®^(-^) onto the ideal-sheaf ^ of M in P. Restricting to M gives
ElM—j^/J^-^o. This is dual to an imbedding of the bundle N in E|M.

Throughout the proof we regard McPcE by means of the zero-section of E;
thus M^.?""^?) as a scheme.

Let C'^C—^}, and consider the imbedding

P x C ^ E x C

by the map (p, t)->^s{p), tY Let D be the closure of PxC in ExC, n : D—C
the projection.

We first notice that the product imbedding MxCcExC imbeds MxC in D,
since s is the zero-section on M.

If ^=t=o, D^=-^(P)x{^}, and the imbedding Mc-^(P) is isomorphic to the

imbedding of M in P, proving (i).
To check (2) and smoothness, we study the situation locally on P. We assume P

is an affine subvariety of {(^, . . ., ̂ GP^+o}, so the ideal of M is generated by
^==F,(i, x^ . . ., x^) in the coordinate ring of P. Shrinking P if necessary, and

renumbering the /„ we may assume /„ . . .,/, define M in P, and /,= S a^ for

i>k; k is the codimension of M in P, and a^ are regular functions on P. Since ffl{i)
is canonically trivial on {(^, . . ., ̂ ) l^o+o}, E is trivial over P; let^, . . .,j/, be fibre
coordinates for E. We claim that in ExC^PxCxC the equations for D are

tyi^fi î, ...,^

Vi^^^Y, i=k+i, ...,r.

(1) Note added in proof. S. Kleiman and I. Vainsencher have pointed out that this construction may be done
intrinsically, as in [M. Gerstenhaber, On the deformation of rings and algebras: II, Annals of Math., 84 (1966),
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To see this let D' be the subscheme of ExC defined by these equations. The
Jacobian criterion shows D'->C is smooth, with fibres of the same dimension as P.
It is clear that D^==D( for t^=o. And D^ is defined by the equations

f,==o i==i, ...,k
k

yi^^^ijVj i==k+i, ...,r.

But these equations define the normal bundle N in E | M.
Since D'-^C is smooth and all the fibres are connected, D' is non-singular and

irreducible; since D' agrees with D where t+o, D'=D. This finishes the proof.

Remark. — Even if P is projective (complete), the variety D is not proper over C.
If one takes the closure D of D in P(E® i) x C the fibre DQ has two components P(N® i)
and P==P blown up along M, which meet transversally along P(N) (see Chapter IV, § 3).

Lemma (5.2). — With M, P, D, MxCcD as in Proposition (5.1), let p : MxC->M
be the projection. Let ^ be a coherent sheaf on M, and let E. be a resolution ofp^y by vector
bundles on D. Then for all teC, E.^ is a resolution of y by vector bundles on D^.

Proof. — Let TT : D->C be the projection. The natural resolution of 0^ by
locally free sheaves is

O-^D^^D^^-^O-

Since TV—I is not a zero divisor on J^^^^'^^^Mxc? tensoring the above sequence
with p^ shows that Torf0^^, Q^=o for i>o. Since Torf"^^-, ̂ ) is the
i-th homology of E.^==E.®^^p this proves the lemma.

Proposition (5.3). — Let XcM, McP be closed subvarieties, with M and P non-
singular. Let N be the normal bundle of M in P. Then for any coherent sheaf y on X

ch^== td(N)-1—ch^.

Proof. — Take MxCcD as in Proposition (5.1), and a resolution E. of p^
as in Lemma (5.2). Then the homotopy Property (2.5) reduces it to the case where
M is embedded as the zero section ofN. And this case is covered by Proposition (3.4),
since if E. resolves ^ on M, A'7r*N®7T*E. resolves ^ on N.

6. Construction of T and Proof of Riemann-Roch.

Fix a projective variety X. For any imbedding of X in a non-singular quasi-
projective variety M, and sheaf y on X, define

T^) =Td(M) — ch^)
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where Td(M) is the Todd class of the tangent bundle to M. By Proposition (4.2),
T1^ defines a homomorphism from Kg X to H. X. We will show that T == ̂  is independent
of the imbedding and satisfies the conditions of the Riemann-Roch theorem (§ 0.1).
We do this in several small steps.

( i ) If X c Y c M, and j is the imbedding of X in Y, the diagram

KoX
TM

H.X

KoY H.Y

commutes. This follows from Property (2.1).
(a) If XcMcP, with M and P non-singular, then ^:vl=^J'. This follows from

Proposition (5.3) and the identity

Td(P)—td(N)-l=Td(M) in H'M.

(3) If p : P->pt. maps a projective space to a point, then the diagram

K,P -̂ -̂  H.P

P* P*

Ko(pt.) TP1- H.(pt.)

commutes. This is an easy formal calculation, since K^P is generated by powers of
the hyperplane bundle [B-S$ Prop. 10].

(4) If F is an algebraic vector-bundle on M, and ^ is a sheaf on X, XcM as
above, then

^(F^^^ch F—T^).

This follows from the module property (2.3), since if E. resolves ^ on M, then FOE.
resolves F®^.

(5) If XcM as above, and P is a projective space, then the diagram

KoXOKoP ^X H.X0H.P

Ko(XxP) ^-> H.(XxP)
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commutes, where the vertical arrows are Kiinneth maps. For KoP==K°P is generated
by vector bundles, so by (4) we are reduced to showing

T^^j^T^xCrdP—IT])

where ^ is a sheaf on X, and q : XxP—^X is the projection. But this follows from
the pull-back property (2.6) applied to p : MxP->M, and the fact that

Td(M x P) ==Td M x Td P.

(6) If XcM, and P is a projective space, so X x P c M x P by the product, then
the diagram

Ko(XxP) -ZM^ H.(XxP)

P* P*

KoX
-rM

-> H X

commutes. Here p is the projection. We can see this by fitting a (< cube " over this
square, whose top square is

KoX®KoP --^M0T^ H.XOH.P

i®p* i®p*

T-M (5?) rP1*

KoXOOKo(pt.) ———> H.X®H.(pt.)

and the maps to the bottom square are all Kiinneth maps. The top commutes by (3),
two sides commute by (5), and the other two commute by natural properties of the
Kiinneth maps. Since KoX®KoP -> Ko(Xx P) is surjective [B-S; Prop. 9], the bottom
square must commute.

(7) Let XcP, YcQ, be imbeddings of varieties X and Y in projective spaces P
and Q,. Let /: X->Y be a morphism, and regard

XcXxYcPxYcPxQ,

by means of the mapping x \-> {x,f(x)). Then the diagram
T^Q

K()X ——> H.X

KoY
TO H.Y
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commutes. For this diagram is obtained by fitting together the diagrams

K^X T P X Q > H.X

Ko(PxY) ̂  H.(PxY)

P* p*
^ ^

KoY ——^-^ H.Y

and the top of this commutes by (i) , and the bottom by (6).
(8) The mapping r^^- is independent of the imbedding. For by (2) we need

only consider imbeddings in projective spaces. And if XcP, XcQ, were two such
imbeddings, apply (7) to the identity map on X to conclude that T^^T^ and by
symmetry ^ == ̂  x Q == T^

(9) The mapping T is natural. For if /: X->Y is an imbedding, just imbed
Y in a non-singular M and use ( i) . If/is a projection PxY-^Y, it follows from (7).
A general/is a composite of two such mappings, as in (7).

(10) The mapping T gives the right formula on a non-singular variety X. Thi&
follows from (2) above, with X==McP.

(n) The module property follows from (4) and the fact that a vector-bundle
on any quasi-projective variety is the restriction of an algebraic vector-bundle on some
non-singular M containing X [App., § (3.2)].

Remark. — If one assumes all the results of [A-H 2], this proof of Riemann-Roch
may be shortened considerably. The construction of T and proof of naturality is as
given in this section, but using only imbeddings in projective spaces. The fact that
T gives the right answer for non-singular varieties is the content of [A-H 2$ § 3].
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CHAPTER II

RIEMANN-ROCH BY GRASSMANNIAN-GRAPH

In this chapter we work in the category of quasi-projective schemes over an
algebraically closed field k of arbitrary characteristic. In fact k need not be algebraically
closed. We leave to the reader interested in that case the verification that all the cycles
constructed are rational over the ground-field. The reader in the opposite camp may
read <( variety " wherever we write " scheme ".

For such a scheme X, we let A. X be the Chow group of cycles modulo rational
equivalence, graded according to dimension. This "Chow homology theory" is
discussed in the appendix [App.], where a (< cohomology " theory A' is constructed
to go with this, with the usual formal properties—cap products, projection formulae,
Poincard duality for non-singular varieties, Gysin homomorphisms, Ghern classes, etc.

Write H.X==A.XQ=A.X®%, H-X==A-XQ. There is the Ghern character
ch : K°->HT [App., § (3.3)]. We will prove:

Theorem. — There is a unique natural transformation T : K.o->H. of covariant functors
from the category of quasi-projective schemes and proper mappings to the category of abelian groups
satisfying:

(i) For any X the diagram

K°X®KoX -®-

ch®T

K^X

H'XOH.X H.X

is commutative.
(2) If X is non-singular

r((Px)=Td(X)-[X].
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(3) V U is an open subscheme of X, the diagram

K^X —> H.X

KoU —> H.U

is commutative^ where the vertical maps are restrictions [App., § (i .9)]. (Chapters III and IV
contain more properties of the map T.)

To prove this we will construct localized classes satisfying properties analogous to
(and more general than) those in Chapter I, § 2. (The construction gives an alternate
approach to the case with singular homology; for non-compact varieties Borel-Moore
homology [Michigan Math. /., 7 (1960), pp. 137-159] should be used.)

In this chapter A^* and P" denote affine and projective space over k.

i. The Localized class ch^E. by Grassmannian Graph.

Let X be a closed subscheme of an irreducible variety M. It is not necessary to
assume M is smooth over A, but the smooth case will suffice for the Riemann-Roch
theorem and most applications. (In fact the construction goes through with little change
even if M is not irreducible or reduced, but for simplicity here we take M to be a variety.)

For each complex E. of bundles on M, exact offX, we will construct a class ch^E.
in H. X by using the Grassmannian graph construction. The notation of this section
will be used throughout the rest of Chapter II.

Suppose our complex is
_ ___„ T' dr ^ V dr-! dl U do 17o —> i^ —> ̂ _i —> ... —> EQ —> E_i==o.

Let e, be the rank of E,, and let G,=Grass^(E,®E,_i) be the Grassmann bundle
(over M) of ^-dimensional planes in E,©E,_i. Let ^ be the tautological bundle
on G,; it is the subbundle of E,®E,_i (pulled back to G,) whose fibre over a point
in G, is the subspace represented by that point.

Let G = G, XMG,^ x . .. X^GQ, TC : G-^ M the projection. The bundles ̂  pull
back to bundles on G, still denoted ^, and we take

^=^-^+^-...+(-1)^.

to be the <c virtual tautological bundle " on G.
Any bundle map 9 : E^->E,_i determines a section J(<p) ofG, over M; the value

of ^(9) at meM is the graph of 9 in the fibre over m. Thus

.(9)(m)=={(.,9(.))[.e(E,L}eG,.

For each \ek we obtain a section s^ : M->G by taking the section s{\d^) in the
factor G^, where ^ : E,-^E,_i is the boundary map in the complex E..
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Regard A^P1 by X h ^ ( i : X ) as usual, so Pl=Alu{ao}, oo==(o : i). The
mapping {m, \) \-> {s^(m), (i : X)) gives an imbedding

MxA^GxP1.

Let n be the dimension of M. Let W be the closure of M x A1 in G x P1 under this
imbedding. Let Z^ be the yz-cycle cut out by W at 00$ i.e. let <p : W->P1 be the
projection, and let Z^x{oo}==9*([o)])=W.Joo] ([S; V], [App., § 2]). If M is non-
singular, Z^x{oo} is the intersection-cycle of W and Gx{oo}.

Lemma ( 1 .1 ) . — The cycle Z^ has a unique decomposition Z^=Z+[MJ, where
(1) M» is an irreducible variety.
(2) n maps M^ birationally onto M, isomorphically off X.
(3) TT maps the cycle Z into X.

Proof. — Since the construction of Z^ restricts naturally to open subsets of M,
we may reduce to the case where E. is exact on all of M. We show in this case how
to extend the imbedding MxA^GxP1 to an imbedding MxP^GxP^ from
which it will follow that Z^=[MJ^ [M].

Now Ker(^) is a subbundle of E^. We imbed MxP1 in GxP1 by assigning
to a point (m, {\ :\)) in MxP1 the point (H, (\ :\)) where H is the subspace
of (E^©(Ker^_i)^ defined by the equations

^O^-l^^l^i

where z,_^e(Ker ^_i)^, ^e(E,)^. If XQ+O, this gives the same subspace of
(E,L®(E,-iL

^4V^o /

but if Xo==o we get the subspace (Ker fl?,)^®(Ker ̂ i)^, still of the right dimension.
One checks that this imbeds MxP1 in GxPS and so concludes the proof.

The cycle Z determines a class in H^Tr'tX), which may also be denoted Z. Then
ch S^^ZeH^TT'tX), and we define

ch^E. = 7T,(ch S— Z) in H.X.

In Chapter IV, § 3 all these cycles and classes are determined explicitly in the case
where X is a local complete intersection in M and E. resolves a locally free sheaf on X.

2. Basic Properties of ch^E..

We prove stronger versions of the properties stated in Chapter I.

Property (2.1) (Localization). — (a) If XcYcM, where Y is another subschema
of M, and j denotes the imbedding of X in Y, then

^ch^E.=ch^E..
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(b) If i is the imbedding of X in M, then
z,ch^E.=chE.-[M].

Proof. — (a) is clear from the construction. We prove (b). Let Z^==^(M)cG.
Then W gives a rational equivalence between Zo and Z^. So ch S^Zoo==ch i;^Zo
in H.G. When X==o, X^ is the zero map, so i; restricts to S(—i)'E, on ZQ^[M].
So 7r,(ch^ZJ==chE.—[M] in H.M. '

To finish the proof we must show that 7r^(ch ̂ ^ [MJ)==o. In fact we will show
that ^ restricts to zero on M^.

Let k^ be the rank of Ker(^) on M—X, where it is a bundle. Define
G, == Grassy XM .. . XnGrass^Eo.

There is a closed imbedding G^ c G of bundles over M which assigns to the collection
of subspaces S^ of E, the collection of subspaces S,®S^_^ of E,®E,_i. Then the
virtual tautological bundle ^ restricts to zero on G».

There is a section
j:M-X->G,

which assigns to a point m in M—X the collection of subspaces (Ker d^ of (E,)^.
If we look at the proof of Lemma ( i . i), and consider how G^ is imbedded in G, we
see that s{M.—X) agrees with M^ over M—X. Since G, is closed in G, M, (being
the closure of s(M.—X)) must be contained in G^, so i;|M^==o, as desired.

Remark. — Although the construction of ch^E. is rather delicate, the above proof
shows one fortunate way in which it is not. With Z^ as in § i, we may take any cycle
M^cG, such that Z^ and M^ agree over M—X. Then if we set Z '^Z^—M^,
ch^E. =7^(ch ^^Z7). This fact will be crucial in the proof of the homotopy property.

Property (2.2) (Additivity). — ^E. is a direct sum of two complexes E^ and E^', then
ch^E.=ch^E:+chiE:'.

Proof. — We denote by one or two primes the spaces, bundles, cycles, and mappings
constructed for E^ and E^ as in § i. The natural imbedding G^Xj^G^cG, gives a
closed imbedding G^^G'^G under which ^ restricts to ^/®^", where ̂ ' is the pull-
back of^' to G'XnG", and similarly for ̂ ' . Since the imbedding of MX A1 in GxP1

maps it into G'XMG"xP1, we may regard W as a cycle on G'X^G^xP1. Let
p ' : G'x^G^xP1-^ G'xP1 be the projection. Since p ' is the identity on MX A1,
J^r^l^r^'] as cycles. Since the push-forward of a rational equivalence is a rational
equivalence [App., § i.8], ^Z,,==Z^. Also j^[MJ==[M^], since M,->M^->M is
birational. So j^Z==Z', and likewise ^'Z=Z / /. Therefore

ch^E.^ch^'e^-Z)
==7r,(ch^-Z)+^(ch^'-Z)
= 7^:(ch^ - Z) + O; (chf' - Z)
=7r:(ch S'—Z')+<(ch ^—Z)
=ch^E:+ch^E:\

122



RIEMANN-ROCH FOR SINGULAR VARIETIES 123

Property (2.3) (Module). — IfF is a vector-bundle on M, then
chj(F®E.)==chF—ch^E..

Proof. — Let f=== rank F, and let

G,=Grass^.((F®E,)©(F®E,^)), G=G,XM .. . xGo.

There is a natural imbedding of G in G which maps a subspace S, of E,®E,_i to the
subspace F0S, of (F®E,)C(F®E,_i). The virtual tautological bundle^ on G restricts
to TrT®^ on G. In the imbedding of MX A1 in 6xP1 used in constructing
chj(F®E.), we see that

MxA^GxP^GxP1.

It follows that the cycle^Z is the same as the corresponding cycle constructed for F® E., so
ch^(F®E.)^(ch^Z)

=7r,((ch7T*F—chS)—Z)
==chF—7r,(ch^Z)
=chF—ch^E..

Property (2.4) (Excision). — Let MQ be an open sub scheme ofM, Xo=Xn M^. Then
ch^E. restricts to ch^(E. | My) under the restriction H.X—H.XQ.

Proof. — This follows from the fact that the entire construction restricts to MQ.
It is also a special case of property (2.6) below.

Property (2.5) (Homotopy). — Let C be a smooth (geometrically) connected curve over k.
Suppose X is a closed subscheme of M, and f : M->G is a flat morphism whose restriction g
to X is also flat. Let E. be a complex of bundles on M, exact off X. For each teC we get
an imbedding of the fibres X^cM^, and a complex E.< on M^ exact off^. If ^ : X^->X
is the inclusion, then

ch^E.^ch^E.

where ^ :H.X->H.X< is the Gysin homomorphism [App., § 4].

Remark. — In the language of specialization [App., § 4.4], this implies that the
localized class ch^E.< for the general fibre X^ specializes to the localized class ch^E.g
for the special fibre Xg.

Corollary. — If X==YxC in the above, g is the projection to C, and C is a rational
curve, then all the classes ch^E.^ are equal in H.Y.

Proofs. — The corollary follows since all the maps
^:H.(YxC)^H.(Yx{Q)=H.Y

are the same if G is rational [App., § 4.3].
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To prove the homotopy property, let n : G->M, ^, WcGxP1 be as constructed
in § i for E. on M. Examples show that the projection W-^GxP1 may not be equi-
dimensional (i.e. some fibres may have bigger dimension than the generic fibre), so
W does not determine a family of cycles parametrized by C X P1. We will overcome
this difficulty by blowing up G X P1 so that W becomes equidimensional (cf. claim below).

Let p : V->GxP1 be a birational, proper morphism from a non-singular surface V
onto C X P1 which is an isomorphism over G X A1. For such V, and any subvariety S
of V, and any scheme T over C, we denote by

Tg=TXcS

the fibre product, where S maps to C by the composite ScV-^GxP^G. A similar
subscript is used for morphisms between schemes over C. Note that if a point yeV
maps to a point teC, then T^=T< is the fibre of T over teC. The following diagram
may clarify the situation.

Gg —> Gy —> GxP1 —> G

[ 4\ 1 [n
v • \ ' T

Mg —> My 1 ^ MxP1 —> M

S —> V —> CxP1 —> C
P

If S==V, then Gy maps birationally onto GxP1, under which an open subscheme
ofGy becomes identified with G x A1. Thus for example the imbedding M x A1 c G x A1

of the Grassmannian-graph construction may be regarded as an imbedding MxA^Gv.

Claim. — There is a proper birational p : V->GxP1 from a non-singular surface V
onto GxP1 which is an isomorphism over C X A!, so that if W is the closure of M X A!
in Gy, then the morphism 9 : W->V induced by the projection p : Gy->V is equi-
dimensional.

Before discussing the claim, we show how it can be used to conclude the proof.
Let M^ be the subvariety of G constructed in Lemma (i . i). Then M,y->V is equi-
dimensional, since it pulls back from M^->G. Set

z=[^]-[M^],

an (w+i) -cycle on Gy (%=dimM).
Fix teC, let D be the non-singular rational curve on V which maps isomor-

phically by p to {^}xP1, and let VQ be the point on D that maps to {Qx{oo}. Let G'
be the non-singular curve on V that maps isomorphically by p to Gx{oo}, and let ^
be the point on G' which maps to {Qx{oo}. Since p is a birational proper morphism
between non-singular surfaces, p'~ l({^}x{oo}) is a connected collection of rational
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curves L^, ..., L^ which meet transversally. (Cf. [Zariski, Introduction to the problem
of minimal models in the theory of algebraic surfaces. Mathematical Society of Japan, 1958].)

The idea of the proof is as follows. If we restrict z first to D, and then to z^, we
obtain the cycle needed to calculate the localized class for E.( . By the equidimensionality
assumption, using Serre's intersection theory, this restriction can be done directly from V
to VQ . Similarly, restricting z to G', and then to ̂ , gives the cycle for ^ch^E. Travelling
from Vy to ^ along the lines L, will give the required rational equivalence between them.

Since V is non-singular, for any cycle w on Gy whose components are all equi-
dimensional over V, and any cycle T] on V, the intersection cycle w T] on Gyis defined
([S; V], [App., § 2]).

Now [W»pD] is the " W-cycle " used in computing the localized class of E.(,
since it agrees with the desired cycle over {^}xA1. Therefore (1) FW]»[VQ\ is the
Z^-cycle used for this construction. Since [^•p[yo] ^d [M^v]^[^o] agree over
M(—X(, and M^yCG^y? we may use the remark in § 2.1 to deduce:

(1) ch^E.,=7r^(chS-(^pk])) in H.X, (where we identify G^==G<, X^=X,).
Similarly, with G'^C, X^=X, we get

(2) ch^E.^TTo^ch^-^G'])) inH.X.

Consider the fibre square

7T
—1

(^o)
Joo

"D^XD) Gr

^
»»»

-^ XD C MD

Then ^(^.p[D]) = z.^], so

^,(ch^(2.J^]))=7r^(chS-(^p[D]))=^y(ch^(z.p[D]))

(1) If v is a point on a non-singular curve S on V, then w »p[»] = (w •p[S]) p^v] (cf. [App., §2.2, Lemma 4]).
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[APR., § 4.2]. Therefore from (i) we get
(3) ch^E.,=^^,(ch^-(^p[D])).

The same argument, using ^eL^ in place of z^eD shows that the right-hand side
of (i) is also equal to the Gysin pull-back of ^(ch S— (^•p[LJ)) under the imbedding
xvo==xtcxt^=xtXLl' Now if we let v vary in L^, these Gysin pull-backs will not
vary [App., § 4.3]. We move similarly through the curves L^, ..., L^, until we arrive
at the equation
(4) ch^E.<=^,(ch^-(^,[^])).

And the same argument applied to z^eG' shows that the right-hand side of (4) is equal
to the Gysin pull-back of 7ic,.(ch ̂  (^•p[C'])) under the imbedding ^ of X^=X^
in X=X(y. By (2) this completes the proof.

The claim is a consequence of Grothendieck's construction of the Hilbert schemes.
This construction gives us a birational morphism p^ : V^ -> C X P1, isomorphic over
C x A1, and a subscheme V^^ of Gy which extends M x A1 and is flat over V^. (See [R;
Chapter 4, § 2] for a discussion of this as well as generalizations to the non-projective
case.) If V->Vi is taken to resolve the singularities ofV^, then the composite

V->Vi->CxP1

will satisfy the conditions of the claim.

Property (2.6) (Pull-back). — Let p : P->M be aflat morphism, and let Q^-^X),
q : Q,->X the restriction to X. Then ĵ E. is a complex on P exact off Q, and

<r(ch^E.)=ch^E.)

where q* : H.X->H.Q^ is the Gysin map [App., § 1.9].

Proof. — We claim that the entire construction for ^"E. on P is obtained by pulling
back the construction for E. on M. Denote the corresponding spaces for E.^^E.
by G, etc. We have a fibre square

G==GXMP -^> P

? p
i ^
G ——> M

TC

^==P*^, W^^^W, so Z^=p*Z^ since rational equivalence pulls back [App., § 1.9].
Also M.=^*M., so Z=yZ, where q ' : 'S-^QJ ̂  TC-^X). Therefore

ch^E.=%.(ch(^)-^Z)
=?r.(^*(chS-Z))
=/7r.(ch^-Z)
=?*ch^E.

where we have used [App., § 3.1].
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3. Proof of Riemann-Roch.

Since §§ 3-6 of Chapter I used only these six properties of the localized class
(together with formal properties ofhomology and cohomology), we see that the Riemann-
Roch theorem as stated at the beginning of this chapter is true. The additional
condition (3) on restricting to open subschemes follows immediately from the strengthened
form of the excision Property (2.4).
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CHAPTER III

UNIQUENESS AND GRADED K

i. The Chow Groups and Graded K-Groups.

Let X be a quasi-projective scheme over a field. Consider the filtration on KgX
by dimension of support [SGA 6]. Filt^KoX is generated by classes of sheaves whose
support has dimension ^A, or by the structure sheaves of subvarieties of dimension <^k.
The associated graded groups Gr^X define a theory closely related to the Chow
groups A^X. If we assign to a subvariety Y of X the class of its structure sheaf ^y
in K.oX, we obtain [App., § 1.9] a natural surjective transformation

A.^Gr.

of functors from the category of quasi-projective schemes and proper morphisms to the
category of graded abelian groups. Even if X is non-singular, <p may not be an iso-
morphism [SGA 6; XIV, 4.7]. Grothendieck showed in the non-singular case that
9 is an isomorphism modulo torsion [ibid., 4.2]. Our Riemann-Roch theorem enables
us to extend this to the singular case, with a somewhat simpler proof.

Theorem. — For all quasi-projective schemes X over a field:

(a) <p induces an isomorphism A.Xq^Gr.Xq.
(b) The Riemann-Roch map T induces an isomorphism

K-o XQ —> A, XQ •

Proof. — We show that the associated graded map to the map in (b) gives the
inverse to the map in (a). If Y is a subvariety of X, i : Y->X the imbedding, and
we regard ffy as a sheaf on X, then r^y) = ̂ .T(Y) is contained in ^(A.Yq), by naturality
of Riemann-Roch. Therefore T maps Filt^KgX into

Filt,(A.X,)=^X,.

Thus T induces a mapping Gr.X ->A.XQ of associated graded groups. Both (a) and (b)
will follow if we show that the composite

A.XQ^G^XQ-^A.XQ

is the identity, and this is an immediate consequence of the following lemma, applied
to irreducible subvarieties of X.
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Lemma. — IfXis an irreducible variety, then the top dimensional cycle in r(X) is [X].

Proof. — This follows by restricting to the non-singular part X^ of X, where it
is clear by (2) of the Riemann-Roch Theorem. Or one may let X be a projective closure
of X, and apply naturality to a finite map X—^P" to reduce it to P".

2. Uniqueness Theorems.

We consider only projective varieties over a field. (If T is determined on these,
it is determined on all quasi-projective varieties by condition (3) of the theorem, and
on schemes by applying naturality to injections of irreducible subvarieties.) A.Xg is
the Chow group with rational coefficients.

In our first uniqueness theorem no mention is made of Todd classes or Chern
classes of bundles. We see that the Todd class, and the Riemann-Roch formula for
a non-singular variety, are completely determined if we want any kind of natural
theorem. The Todd class does, however, naturally enter into the arguments at several
points (see Chapter I, Proposition 3.4 and Chapter IV, Proposition 1.3). For an
explicit differential-forms approach to the inevitability of the Todd class see [Baum],

Theorem. — There is only one additive natural transformation T : KO->A.Q with the
property that if 7 is a projective space, the top dimensional cycle in T(<Pp) is [P].

Proof. — Let TQ : K()Q-^A.Q be the map induced by T.
We have constructed one such T. Suppose T' were another. Then by § i, we

get a natural transformation
a=TQoT^1 : A.Q-^A.Q

which takes [P] to [P] +lower terms, for P a projective space. But the only such natural
transformation is the identity [App., § 5].

Remark. — If y is a sheaf on an irreducible variety X, then the top-dimensional
cycle in T(e^) is rank(^'). [X], Of course, this property also determines T uniquely.

If we include compatibility with the Ghern character in our conditions for T,
then it only needs to be normalized on a point.

Corollary. — There is a unique additive natural transformation T : K.o->A.Q satisfying

(1) Tj^E is a vector bundle on X, then r(E)=ch E^r^x)-
(2) IfX is a point, then r(ffx)==i in <^==A.XQ.

Proof. — We must show r(^pn) =[?"]+lower terms. If p is a point in P", the
Riemann-Roch theorem for the imbedding i: {^}->Pn gives ch(^Cr .) — [1 ]̂= [j^].

Since z^^eKoP^ by (i) we must have T(^6^)=ch (^{p}) ^T(^pn). By natu-
rality and (2), ^{i^{p})=h[p]' These two equations imply that T(Cpn)=[Pn]+lower
terms.
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Remark. — The theorem and corollary also hold for complex varieties with values
in singular homology with rational coefficients. As in the proof of the theorem, we
get a natural transformation

a:A.^H.( ;%)

such that a[P]=[P]+lower terms for P a projective space. And the only such natural
transformation is the one induced by the usual cycle map A.->H.( ; Z) [App., § 5].

3. Cartesian Products.

Theorem. — Let X, Y be quasi-projective schemes. Then the diagram

KoX®KoY ̂  A.XQ®A.YQ

Ko(XxY) -^ A.(XXY)Q

commutes9^ the vertical maps are the usual Kunneth maps.

Corollary. — For any quasi-projective schemes X, Y

T(XxY)=T(X)xr(Y).

Proof. — By § i, the horizontal maps are isomorphisms when tensored with Q^.
Consider the mapping

6 :A.XQ®A.YQ^A.(XXY)Q

obtained by going around the diagram (®QJ from upper right to upper left to lower
left to lower right. This 6 is an additive natural transformation of functors from
pairs (X, Y) of quasi-projective schemes and morphisms to abelian groups. We must
show 6 is the usual Kunneth product.

Since 6 is compatible with restriction to open subschemes, we may restrict attention
to projective schemes. Note also that 6([X]®[Y])=[XxY]+lower terms for var-
ieties X, Y ,(§ i, Lemma). It is not difficult, following Landman's proof for single
spaces [App., § 5] to show that there is only one such natural transformation 6.
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CHAPTER IV

THE TODD GLASS AND GYSIN MAPS

For a quasi-projective scheme X, let T(X)==-r(<Px) be its Todd class. Write
T(X)=ST.(X), T..(X)eA.(X),.

I

i. Mappings.

If f : X->Y is a morphism, it is natural to compare the Todd classes of X and Y
in terms of properties of/. This section contains four facts of this type. All of these
are special cases of a conjectured formula, which will be stated in § 3. From part (3)
of the Riemann-Roch Theorem in Chapter II we obtain the following fact:

Proposition ( 1 . 1 ) . — ^X is an open sub scheme ofY, then the Todd class of Y restricts
to the Todd class of X.

This determines T^-(X) for all k bigger than the dimension of the singularities
of X. For example, if X is a projective normal surface, then deg T()X==^(X, 0^),
T^(X)=—K/2 where K is a canonical divisor on X, and T2(X)==[X].

Corollary. — Let f : X->Y be a birational proper morphism, and let Z be closed in Y
such that/maps X—y^Z) isomorphically onto Y—Z. Then ^T^X=T^Y for all ^>dimZ.

Proof. — In fact, /,rX and rY agree in A.(Y-Z), and A^(Y) -> A^Y-Z) is
an isomorphism for A>dim Z [App., § 1.9].

Proposition (1.2). — Let g : M->N be a smooth morphism of non-singular varieties,
Y a closed subvariety of N, X^^'^Y), f : X->Y the restriction of g to X. Then

T(X)=td(T,)-/*T(Y),

where Ty is the relative tangent bundle of f.

Proof. — From property (2.6) of Chapter II, we deduce f*ch^0^==ch^(P^. Then

T(X) = td(TM) - ch^x = td(T,) .^(td T^) -/-ch^
=td(T,) -/-(td T^-ch^-td^) -/^(Y).

This applies for example if X=P(E) is a projectivized vector-bundle over Y,
giving the Todd class of X in terms of the Todd class of Y and the Ghern classes of E.
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Proposition (1.3) (Adjunction formula). — Let X be an effective Cartier divisor on Y,
i : X->Y the inclusion. Let x^c^O^X^eA^ be the class determined by X. Then

^(X^i-^-^Y) mA.YQ.

Proof. — From the exact sequence

o->^(--X)->^->^x->o

we see that ch^^x)^1—^- Therefore
i^X)=^W={l-e-x)-^Y).

Proposition (1.4). — Let X be a local complete intersection in a non-singular variety Y,
i : X-^Y the inclusion^ N the normal bundle, Ty the tangent bundle to Y. Let

Tx==i*Ty-N£K°X

be the virtual tangent bundle of X. TA^ r(X)==td(Tx) ̂ [X].

Proof. — To prove this it is enough to show ch^x == td(N)~1^ [X], This follows
from Proposition (5.3) of Chapter I (with X==M, y==0^ Y==P). Note that the
non-singularity of M was not used in Chapter I, § 5. In fact, the results of Chapter I,
§ 5 hold for any local complete intersection XcY. In § 3 we will discuss this case in
more detail.

Remark. — The virtual tangent bundle is independent of the imbedding in Y
[SGA6; VIII].

2. Families.

Let G be a smooth (geometrically), connected curve, and let f: X->G be a flat
morphism. (If X is an irreducible variety, flatness means only that f does not map X
to a point.)

Theorem. — For each (closed) point teC, let i^: X^->X be the inclusion of the fibre f^^^t)
in X. Then

T(X<)=i:T(X)

where i\ :A.XQ->A.X^Q is the Gysin map [App., § 4].
In particular, the Todd class of the general fibre specializes to the Todd class of

the special fibres [App., § 4.4].

Proof. — Factory into an imbedding X->PxG, where P is smooth, followed by
the projection to G. Let E. resolve 0^ on PxG. Then, for all teG, E.( resolves Q^
on P(==PX{^}. Therefore by the homotopy property (2.5) of Chapter II

ch^-W^x.

Since ^Td(PxG)=Td(P(), the theorem follows.
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It follows that if ^eA^X, the numerical function deg{z ̂  T^(X()) is a constant
function of t.

3. Local Complete Intersections.

Let i : X->Y imbed a scheme X as a local complete intersection in a quasi-
projective scheme Y, with normal bundle N. Let F be a vector bundle on X, and
E.->^(F) a resolution by vector bundles on Y.

We will compute explicitly all the cycles and bundles involved in the Grassmannian
graph construction (Chapter II, § i). This will show how in this case ch^E. liftsy^/
canonically to a <( cohomology 5? class ch^E.. From this we will be able to prove some
" cohomology 5? Riemann-Roch theorems (cf. [SGA 6]) for quasi-projective schemes.

Here we take H.X=A.XQ=Gr.XQ, and H-X^A-XQ^G^XQ (cf. [App., § 3]);
or, for complex varieties, H.X=H.(X;Q), H'X=H'(X$%), ordinary singular
homology and cohomology.

Let TT : G->Y, S? <P ; W->P1 be as in the construction of Chapter II, § i for
the complex E. on Y= M. In this section, however, we let Z^ be the scheme-theoretic
fibre (p"^); we regard Z^ as a Carrier divisor on W, instead of a Well divisor (cycle).
(IfY is not reduced, the scheme W is not defined by its underlying set; the local equations
for W will appear in the proof of the following proposition.)

Proposition. — (i) The Cartier divisor Z^ has a unique decomposition Z^==Z+Y, where
Z and Y^ are Cartier divisors on W, TC maps Y^ birationally onto Y (Y, is the blow-up of Y along X),
and TC(Z)==X.

(2) There is a commutative diagram

P==P(NCi) -^> G

X ———> Y

where j maps P isomorphically onto Z, and j^="L (—lyTVH^j&T in K°P, with H as in the
proof of Proposition (3.4.) in Chapter L

(3) Z X^Y, is a Cartier divisor on Z and Y^; W is a local complete intersection in G X P1.

(4) ch^E.=diiE.—[X], where ch^E.=A(ch(A•H®^F))=td(N)-l—ch(F) and
A=H"P-> H*X is the Gysin map (cf. § 4 and [App., § 3.4]).

Proof. — We first construct the map j of (2). The restriction E.|X of E. to X
is a complex whose homology sheaves e^^Torf^x, F) are canonically isomorphic
to A^NOF ([B-S, § 15], [SGA6; VII]). The inclusion HC^N®! of bundles on
P==P(N©i) gives rise to an inclusion

A'HcA^Ne^AyNQA'-yN.
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Tensoring this with p*F gives

^VL@p^cp^,@p^i_^

By the universal property of Grassmannians, this induces a morphism

P(NCi) -> X Grass (n^®^_i)

where e == rank N, f== rank F.
Let J^=Ker(^®^x)? ^==Im(^®^x)- since ^e ^ are locally free on X,

so are the Jf^ and ^, and the surjections Jf^->J^ give an imbedding

X Grass (^(e^®J^_i) -> XGrass^(^CJ^_i).

(Note that the tautological bundles in the i-th factor differ by ^®^_i.)
The imbedding J^ c EJ X gives

XGrass^.(^®^_i)cXGrass^.(EJXeE,_i|X)=G|X.

The composition of these maps is the morphism j : P=P(N®i) -> G\ X. By
construction ^^S^—^WH®^ in K°P. (Note that the extra factors ^®^_i

i

cancel when we take the alternating sum on P(N<9i).)
The other assertions in (i)-(s) are local on Y.
We assume that Y is affine and small enough so F and N extend to (trivial)

bundles F and N on Y, and that there is a section s : Y->N whose zeros define X scheme-
theoretically. (In terms of coordinates for N, s is given by a regular sequence of functions
defining X.) Let A*N^ be the Koszul complex defined by the section s. By the local
uniqueness of resolutions (cf. [S$ IV, App. I]) we may assume E.==E^<9Ey, where
E:=A-N"®F, and E:' is exact on all of Y.

We first define a morphism

7: P(N®I)xP l ->GxP l

which restricts to j over Xx{oo}. Corresponding to the decomposition E.==E^®E^
we have an inclusion G'xG^cG, where

G' =XGrass(e^((A iNV®F)®(A^- lN"®F))

G'^XGras^.^^E^eE;.,)

and j will factor through G' X G"x P1. Thus j will be determined by constructing two
mappings

^=P(N®i)-->G'

^==P(N©I)xP l->G / /xP l .

Then J[x,jy) ==j^{x) XJ^(x,jy).
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The first morphism

j^: P(N®i)->G'

comes from the <( Koszul complex" A'H®^*F on P(N®i), where H is defined by
the exact sequence

o^H-^(5r©i)-^(i)->o
(cf. the construction ofj). The second mapping j^ factors:

P(N©i)xP1 ̂  YxP1 —> G"xP1

where the second is the map constructed in the proof of Chapter II, Lemma (1.1),
for a complex E^' exact on all of Y.

If we define finally
YxA^NxP'

by (j^ ^) ->- (^(j^)? ( I ? x))) the composite
YxA l->NxP lcP(N®I)xP14.GxP l

is exactly the morphism constructed in the Grassmannian-graph construction for E on Y.
It follows that W is the closure of YxA1 in P(N®i)xP1. We have studied

this closure in Chapter I, § 5 (here Y==M, X==i /^) . If we choose coordinates^, . . .,j^
which trivialize N, soj/o, . . .,j/g are homogeneous coordinates for the fibre of P(N®i),
and s{x)==^f,{x)y^ then local equations for W in P(N©I)xP l=YxPexP l are

^z^i/iW^o z=i, ...,^

^ifjW^jfiW ij==^ " " > e .

Then Z^ is defined by adding the equation Xo==o, which is the sum of the two divisors
Z=XxP6 and Y^cYxP6"1 defined by the equations j^.==j^, i.e. Y, is the blow-up
of Y along X. And Zx^Y^^XxP6"1. The remaining assertions of (i)-(s) can be
verified by looking at the local equations; we leave this to the reader.

The assertion (4) follows from the identification of Z and ^ [ Z in (3), and the
formal fact that ^(chA'H)==td(N)~1 in ITX, which was proved in Chapter I, Prop-
osition (3.4).

Let f: X->Y be a projective complete intersection morphism of quasi-projective
schemes. This means [SGA6; VIII] that f factors

X-^YxP-^Y,

where P is a projective space, i imbeds X as a local complete intersection in Y, and
p is the projection. If N is the normal bundle of the imbedding i, and T is the relative
tangent bundle of p, then the "virtual tangent bundle of/9'

T^Tp-N in K°X

is independent of the factorization [SGA6; VIII, Cor. 2.5]. (Our T .̂ is dual to that
in SGA 6.)
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Corollary 1 (Berthelot, Grothendieck, Illusie et al.). — I f f ' . X—^Y is a complete
intersection morphism as above, and xeK°'K, then

ch(/^)-/.(ch(^).td(T,))

in H'Y, where /, : H-X->ITY is the Gysin map (cf. § 4 and [App., § 3.3]).

Proof. — The case of a projection is quite formal (cf. [B-S], [SGA 6]), so we confine
ourselves to the case where f== i is an imbedding. We may assume x is the class of
a bundle F on X. Since ch(^F) = ch(E.), where E. is as at the beginning of this section,
we are reduced by (4) of the proposition to showing

i,(c%E.)==chE..

This is a cohomology version of our localization property (2.1) (b) of Chapter II.
We prove it as follows. In the notation of the proposition

WE. = i.A(chj^) - TrJ.chCn).

Let j\ : Z^->G be the inclusion. Since TVJQ is an isomorphism of ZQ with Y,
under which j^ corresponds to S(—i)^,, we get ch E. ==^Jo^{ch{j^)). So it
suffices to show that

j,ch(j^)=^chU^ in H-G.

We claim first that

(1) 7o.(i)=L.(i) i" H-G.
It is enough to show that all Z^ define the same cohomology class in H'W, since j\ factors:
Z^W-^GxP^G. In the Chow theory IP==GrQ this follows from the fact that
the Z^ are all linearly equivalent Cartier divisors on W. For the singular theory see § 4,
Proposition (4.2) c ) .

Let k be the inclusion of Y, in G. We claim secondly that

(2) J^W=J\W+W mH-G.

In the Ghow theory this follows from the exact sequence
O^Zoo^Z^Y.-^ZxwY^O

and the fact that the Gysin maps are determined by the corresponding sheaves; note
that Z X^Y^ is a local complete intersection of lower dimension, so it does not contribute
[SGA 6; VII, 4.6]. For the singular case see § 4, Proposition (4.2) e ) .

Since ^ch(j*S)==ch ^.j^(i), and similarly forj^^ and k^y we deduce
j^chU^)=J.ch{j^+k^chk^

but k*^ == o in K°Y^ (cf. proof of property (2. i) in Chapter II) which concludes the proof.

Corollary 2. — Let f : X->Y be a complete intersection morphism as above. Then
/^(X)=/,(td(T^))-T(Y).
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Proof. — Set x==i in Corollary i, and cap both sides with r(Y) to get
ch(/,i)^T(Y)==/,(td(T^))^T(Y). By the module property and naturality

ch(/,l)-T(Y)=T(/.l)=/,T(X),

as desired.

This contains Proposition 3 of § i as a special case. When one has a Gysin
map f* : H.Y->H.X for a complete intersection morphism f : X->Y, one expects the
stronger

Conjecture. — r(X) = td(T^) —/'r(Y).

We proved some cases of this in § i; see also Chapter III, § 3.
In the singular homology theory for complex varieties we will construct such

Gysin maps in the next section, but the conjectured formula has not been proved in
this context (1).

4. Gysin Maps in the Classical Case.

Let f \ X->Y be a proper complete intersection morphism of possibly singular
quasi-projective schemes over the complex numbers. In this section we define a
cohomology push-forward map f^ : H'(X; Z) -> H*(Y; Z) which generalizes what in
various cases has been called the Gysin homomorphism, the Umkehrhomomorphism, or
integration over the fiber. We also define a dual homology pull-back

/*: H.(Y;Z)->H.(X;Z).

The definitions and proofs apply to any pair of extraordinary cohomology and homology
theories in which a complex vector bundle E has a canonical orientation (or Thom
class in H'(E, E—{o}) , where {0} is the zero section). For example topological
K-theory provides such a pair [B-F-M],

The main tool is an appropriate definition of a generalized Thorn class
UxYeIP(Y,Y-X)

where X is included in Y as a local complete intersection and dim Y== dim X+TZ. Note
that the pair (Y, X) will not in general be locally homeomorphic to (A x R2", A x o)
for any A. Even when it is, Uxy "^y not be the classical Thom class if X is not reduced.

Let X cY be a local complete intersection. Choose an algebraic section s : Y->E
of a vector bundle E over Y such that X^^'^o}) as a scheme. This can be done
similarly to the construction of Chapter I, § 5. Then as in Chapter I, § 5 the normal
bundle N to X in Y sits naturally in the restriction of E to X. Choose a classical
neighborhood V of X in Y and choose a topological complex vector bundle C over V

(1) Note added in proof. — J.-L. Verdier has constructed these Gysin maps for the Chow homology and
proved the conjecture in general [Seminaire Bourbaki, n° 464, Feb. 1975].
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contained in E such that C restricted to X is a complement to N in E. This can be
done by an argument using Urysohn's lemma. Let Q^ be the quotient topological
vector bundle E/C over V. Note that Q identifies canonically with N over X. Let
s : V->Q^ be s followed by the quotient map.

Lemma (4.1). — Shrinking V to a smaller neighborhood of X if necessary, J maps the
pair (V, V—X) to the pair (Q, Q^—{o}).

Proof. — We may work locally in Y. Locally as in Chapter IV, § 3, N extends
(algebraically) to a subbundle N o f E s o that s maps V to N. Since being a complement
is an open condition, C is a complement to N in E on a possibly smaller neighborhood V
of X. Then over V, the quotient map q :N->Q, is an isomorphism of topological
vector bundles. Since s takes V—X to N—{o}, 7 takes V—X to Q,—{o}.

Definition. — The generalized Thorn class V^e H^V, V—X) (which is IP(Y, Y— X)
by excision) is given by

UXY-^UQ)

where UQ^H^Q, Q—{o}) is the Thorn class determined by the complex structure
on the vector bundle Q^.

The pullback of Uxy to Y will be {X}, the cohomology class cc carried by " X,
or Z, i where i is the inclusion of X into Y.

We will sometimes use the subscript XY on objects (E, V, G, Q, s, s~) relating to
the construction of Uxy In particular Vxy denotes an arbitrarily small classical
neighborhood of X in Y.

Proposition (4.2):
a) UXY ^ independent of the choices.
b) For X cY cZ, if r : Vxz-^Vxy is a retraction and j : Vxz ->Vyz is an inclusion, then

Uxz-fU^-r-Uxy.

c) If X --> Y

Lx L
y ^

X ^-^ Y

is a fiber square such that n is flat and the inclusions are local complete intersections, then
7T Uxy==Uxy

d) If M is non-singular and ^ ' : X c Y = = X x M is the graph of g : X->M and
n : YXY —^^TM is a tubular neighborhood homeomorphism sending ^'(X) to the zero
section, then

A*U^-ir^==UxY
where U^-ir^ is the classical Thorn class.
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e) The generalized Thorn class of the sum of two Cartier divisors is the sum of their Thorn
classes. In particular, if X and Y are of codimension one in W and have no component
in common, then

Ux UY,W = 9*Ux,w + ̂ Uy,w
where 9 and ^ are the evident inclusion of pairs.

Proof:
a) Let E', j', c'\ be different choices and let T] : Q,'-^Q, be a topological isomorphism

extending the identification of Q^ with N with Q '̂ over X. (Here as always, shrink V
when necessary.) We show that ^(7)+(i—^)^' maps (V, V—X) to (Q,? Q,—{o})
and thus provides a homotopy from one situation to the other. Working locally as in
the proof of the lemma above, we have the diagram

Cl-t———.Q'

•ft-
V

and we must show that
t.s+^i—^^-^q^.s^o

off X. Introduce a norm || [| on N. Since s — s ' is given by functions in the
square of the ideal of X, for any s>o, V can be shrunk so that [ l . y — ^ ' l ^ e l l . y ' l l .
Since q~^r\q is the identity on X, we can also have || q ' ^ r ^ q ' s ' — s ' \\<z\\s' ||. With
e<^ i /2 the result follows.

b) By adroit choices, we can arrange things so that over Vxz we have the following
commutative diagram with an exact sequence of topological vector bundles accross the top

0 ——> Q.XY ——^ Q.XZ ——> Q,YZ ——> °

Y Z'
Now our equality for the triple of spaces (Z, Y, X) can be pulled back from the cor-
responding known equality for the triple (Q,xz? Q.XY? {°})-

c) We can make choices so that QJQ^^^Q-XY an(^ the following diagram
commutes

Q.XY ——> Q-XY

»x? ^XY

Vx? -^ VXY
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d ) Since all classes in H^Y.Y-X) are multiples of W^^ by the Thorn
isomorphism, we can use c ) to reduce to the case where X is a zero dimensional scheme.
Here one checks that the following diagram can be made to commute:

Q VxT^Y

vXY W

e ) Since we are dealing with divisors, we have the global algebraic commutative
diagram

PYPX
Q.XW©Q<YW- "̂  Q,YWQ.xw^

where t takes x@y to x^y. Our equality is then the pullback by s of the relation

AUQ^+^u^=ru^^
in H-(Qxw®Q.yw. Q^O^-^o}).

But this relation is true because both sides agree when restricted to

H-(Q.XW®Q.YW-{O}; QXW^QYW-^^O})

and this implies that they are equal by the long exact sequence of the triple

(Q.XW®Q.YW. Q.XW©Q.YW-{0}, Q^W^Q.YW-^O}).

If /: X->Y is an arbitrary proper complete intersection morphism, i.e./lifts to
an inclusion as a local complete intersection in YxM for some smooth M, construct
the following diagram:
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Here V is a neighborhood of X in Yx M that retracts by r onto X. (For example
V could be a regular neighborhood with respect to a triangulation of the pair (Yx M, X).)
D is a disk of dimension at least 4 dim M+4 in which M is differentiably embedded;
W is a tubular neighborhood of V in YxD; r is the retraction. Orient D and the
fiber of r' so that the orientations add in the natural decomposition

T.D^T.M®!^1^) for meM;

let Uj) and U^ be the corresponding Thorn classes.

Definition. — The cohomology Gysin homomorphism

/,: H-(X;Z)-^H-(Y;Z)

is the composition

H-(X) ^X H-(W) ^——^ > H-(W,W-X)

H-(Y) UD^ H-(YxD,YxBD) ^°^ H-(YxD, (YxD)-X).

Two special cases of this map are more classically known. If Y is non-singular
and X is reduced then this is the Umkehrhomomorphism f^(c) =Poincard Dual/(^^ [x]).
If/is a fibration, then this is integration over the fiber [Borel and Hirzebruch, Charac-
teristic Glasses and Homogeneous Spaces, I, Am. J . Math., 80 (1958)5 p. 482].

Proposition (4.3). — The homomorphism f^ is independent of the choices involved.

Proof. — The homomorphism is independent: of the imbedding of M in D since
for D this large all embeddings are isotopic; of U^ since to change it would produce a
cancelling change in U^; of the map r o r ' since all such are homotopy inverses to the
inclusion of X. It remains to show independence of the factorization of/ through
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YxM. Since any two such factorizations are dominated by the product, we reduce
to the special case

YxM/i
X c Y

By applying the fact that the Thorn class of a direct sum vector bundle is the product
of the Thorn classes pulled up, we reduce to showing the following fact. Let

r : Y^Y x M ~^ Yx,x x M

be a retraction and p : Vx^yxM^Yx^ be the projection and h : V^xxM^^'^M be
as in Proposition (4.2) d ) . Then

^YXM^O^U^TM^^UXY.

But this follows easily from Proposition (4.2) b ) , c ) and d ) .

Proposition (4.4):

a) The Gysin homomorphism is functorial, {fog)^=f^.
b) The projection formula holds

f^-f^-f^-^

Using Proposition (4.2), the proof is entirely parallel to that for the classical
Urnkehrhornornorphisrn as in [Dyer, Cohomology Theories, Benjamin, 1969, p. 47].

Definition. — The homology Gysin homomorphism

r : H.(Y;Z)-^H.(X;Z)

where H. is hornology with closed support (Borel-Moore hornology) is the composition

H.(X) t0-̂  H.(W) ^UX^M-UW)- H.(W,W-X)

excision

H.(Y) ̂  H.(YxD,YxBD) m(^ H.(YxD, (YxD)-X).

It has similarly proved independence of choices and functoriality.

5. Riemann-Roch Without Denominators.

In this section we work in either of the following contexts:
(i) Complex quasi-projective schemes; H' denotes singular cohomology with

integer coefficients.
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(s) Smooth quasi-projective varieties over an arbitrary field; H* denotes the Chow
ring with integer coefficients.

If N is a vector-bundle of rank don X, let P=P(N©i), j&:P->X be the projective
completion, and let

o->H^^(Nei)->^(i)-^o

be the universal exact sequence on P.
For any bundle F of rank/on X let P(F, N)=j^(A-H®^F)) in H-X. (For

a complex E., its Chern class ^(E.) is II ̂ (E^"1^). The calculation of P(F, N) is purely
formal. The component P^(F, N)=^(^(A'H®^F)) in HP-^X may be written

P/F, N)==P,(/, q(F), ..., ^,,(F); .,(N), ..., ^_,(N))

where P^(To, . . ., T^_^; U^, . . ., U^_^) is a universal polynomial with integer coefficients.
This may be extended to any FeK°X with /=e(F).

Theorem. — Let i : X-^Y imbed X as a local complete intersection in Y, with normal
bundle N of rank d. Then for FeK°X

^F)=^(P,(F,N)) in H^Y

where i^VLq~dX-^Ilqy is the Gysin map.

Proof. — We may assume F is a bundle. Let E. be a resolution of z,F by bundles
on Y, and let

P -^ G'[ \-
X —» Y

t

be the diagram constructed in § 3, Proposition (2)5 for E. on Y. Then ^(z,F)==(;(E.),
and z,P(F, N)==7^^^(A'H®^;ltF)=•^;,J^O'llt^). Then the proof proceeds exactly as in
the corollary in § 3, replacing " ch " by " c ".

Remark. — A formal calculation shows that P^(i, N)^—!)^""1^—!) !eH°X.
It follows that ^(^x)^^1)^"'1^—1)1^1) in HdY- In the classical case, even
for X a point on a three-dimensional Y, this was unknown before [SGA 6; XIV, § 6].

6. Examples.

(i) We first give an example to show that the Todd class is not always in the
image of the <c Poincare duality " mapping H*X->H.X given by ay->a^ [X], We
construct a three-dimensional normal variety X with one singular point, such that
T2(X)eH4(X;%) is not in H^X^—EX].
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Let GI, €2 be non-singular projective curves of genus i, o respectively, and let
Li, Lg be negative line bundles on G^, Gg of degrees — d ^ y —d^. Let S^CiXCg,
L==Li®L2 (a negative line bundle on S), P=P(L©i) the projective completion ofL,
f :V->S the projection. Regard LcP as usual, and ScL by the zero section. By
Grauert's criterion (cf. [EGA II, 8.9.1]) we may form the variety X=P/S obtained
by blowing S down to a (singular) point; let TT : P->X be the collapsing map.

Let ^^(^eH^P). The standard formula H"P==H"S©H'S.^, and the split
exact homology and cohomology sequences of the pair (P, S) allow us to compute the
homology and cohomology of X. In particular z gives a basis for H^X, and

Tl=^(/-l(G,x{pt.})) and ^=^f-\{pt.}xC,)

give a basis for H^X. The relation [S]dual==^+/^l(L) in H2? [G; § 5, Lemma 3]
implies that z ̂  [X] ==d^T^-\- d^T^.

From the standard formula for the tangent bundle to a projectivized bundle we
see that <:(Tp)=,(/-(L €1)0^(1)) ./^(T,), i.e. <Tp)=(i-^-^(i+^(i+2T,)
Since TgX^Tr^TgP) (Gor. to Proposition 1.1), we deduce that

T2X-i(-^T,-^T2+2^[X]+2l\)

=^-[X]+T,,

which is not in H^X; %) — [X]==%. [z— [X]).
(2) In the above example TgX^^X, where ^X is the homology Ghern class

of X [M 2], since the singularities of X have dimension <2; but such a relation cannot
be expected in general. To see this, fix a curve C of genus ^>2, and an integer d
between g and 2g. For each line bundle L on G of degree — d, let Xj^ be obtained by
blowing C down to a point in P(L©i). Then the arithmetic genus

To(X2)=^+dimH°(G,L-),

which varies with L, but the Ghern classes depend only on the degree of L.
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