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ON FINITE SIMPLE GROUPS
OF CHARACTERISTIC 2 TYPE

by DANIEL GORENSTEIN (1)

i. Introduction. — A large portion of Thompson's fundamental classification of
N-groups (nonsolvable finite groups all of whose local subgroups are solvable [5]) deals
with the case that se^; that is, SCN3(2) (2) is non-empty in the given group G and
a Sylow 2-subgroup of G normalizes no nontrivial subgroups of G of odd order. The
assumption that G is an N-group implies, in particular, that the 2-local subgroups of G
are solvable and hence are 2-constrained by Theorem (6.3.3) of [4] and the definition
of 2-constraint as given in Section (8.1) of [4]. These same two conditions: 2 is in 71:4
and all 2-local subgroups are 2-constrained appear to be satisfied by the simple groups of
Lie type defined over fields of characteristic 2 (with certain obvious exceptions of low
rank). In fact, we shall show in Section 5 that these two conditions hold in any group
with SCN3(2) non empty in which the centralizer of every involution is 2-constrained
and has no nontrivial normal subgroups of odd order. In those families of simple groups
of Lie type over fields of characteristic 2 in which the centralizers of involutions are known,
these latter conditions are satisfied and it is very likely that they hold in every such family.
For this reason we shall say that an arbitrary group in which the italicized conditions
hold is of characteristic 2 type.

However, these two properties by no means characterize the groups of Lie type
over fields of characteristic 2 among even the known simple groups, for it can be shown,
using the above-mentioned result of Section 5, that they are satisfied, for instance, by
the groups €3(3), M^, M^, M^, Suzuki's new simple group, and the large Leech-Conway
group. On the other hand, at the present time at least, only a finite number of such
examples are known. Hence it is reasonable to regard these two properties as somehow
connected with simple groups whose definitions are related to fields of characteristic 2
and serves to explain our use of the term (( characteristic 2 type ".

The enormous difficulties which Thompson overcame in classifying simple groups
of characteristic 2 type under the additional assumption that all 2-local subgroup are
solvable, together with the fact that some of the new c < exceptional 3? simple groups are
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(2) Equivalently, a Sylow 2-subgroup of G contains a normal elementary abelian subgroup of order 8.
In general, we follow the terminology and notation of [4].
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of this type, clearly indicates that a complete classification of simple groups of characte-
ristic 2 type may well be one of the major problems in the study of simple groups.

The purpose of this paper is primarily to call attention to this important family
of simple groups and at the same time to establish two elementary general properties
of such groups. The first of these generalizes a corresponding result of Thompson's
in the N-group paper and the proof is modelled after his.

Theorem 1. — If G is a simple group of characteristic 2 type, then 0(H)== i for every
2-local subgroup H of G.

Our second result, which is perhaps surprising, is the following:
Theorem 2. — If G is a simple group of characteristic 2 type, then the center of 0^(M)

is non cyclic for some maximal 2-local subgroup M of G.

Theorem 2 is an easy consequence of Theorem i and the following characteriza-
tion of the simple groups 1^(2^, Sz(2^3 and V^), which in turn is a direct corollary
of Bender's recent classification of groups which contain a strongly embedded
subgroup ([i], [2]).

Theorem 3. — If G is a simple group with only one conjugacy class of maximal 2-local
subgroups, then G is isomorphic to 1^(2^, Sz(27'), or 1^3(2^ for some n>^2.

Although this last result is very special, it may have applicability in the study of
simple groups and, in particular, those of characteristic 2 type, for in some situations
it may enable one to obtain information concerning the subgroup structure of G related
to odd primes. Indeed, assume that for some odd prime p, SCNs{p) is nonempty in G
and every maximal 2-local subgroup of G contains an element of A,(j&) for some i.
(For the definition of the sets A^), see Section (8.6) of [4]. In particular, any
^-subgroup of G which contains an elementary abelian subgroup of order p3 lies
in A^(p).) Suppose that in some particular case one is able to show that each element X
of Ai(p) is contained in a unique maximal local subgroup Mx of G and that, in
addition, Mx is a 2-local subgroup of G. If also each maximal 2-local subgroup
contains an element of A,(^), it will then follow directly that G possesses only one
conjugacy class of maximal 2-local subgroups-namely, the subgroups M^ as X ranges
over the elements ofA,(j&). Hence by Theorem 3, G must be isomorphic to 1^(2^,
Sz(2n), or U3(2n) for some n>2. However, this is impossible as SGN^p) is empty
in each of these groups for all odd p. Thus under the given hypothesis on the maximal
2-local subgroups of G, we see that there must exist at least one element X of A^Q&)
which violates the above conclusions. Under appropriate circumstances, this fact
should have consequences for the structure of the j^-local subgroups of G and, in parti-
cular, for the centralizers of elements of order p in G.

2. Proof of Theorem i. — We carry out the proof in a sequence of lemmas.
First of all, the Thompson transitivity theorem (Theorem (8.5.4) of [4]) holds in G
for the elements ofSGN3(2) inasmuch as all the 2-local subgroups ofG are 2-constrained
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by assumption. Since a Sylow 2-subgroup of G normalizes no non-identity subgroups
of G of odd order, we obtain the following basic result as a corollary of the transitivity
theorem:

Lemma 1. — If AeSCN3(2), then A normalises no non-identity subgroups of G of odd
order.

Following the terminology of [i] and [5], if S is a Sylow 2-subgroup of G,
^(S) denotes the set of normal abelian subgroups B of S of type (2, 2) subject to the
condition that BcZ(S) ifZ(S) is noncyclic. Moreover, ^(2) denotes the set of elements
of^S) as S ranges over the Sylow 2-subgroups of G. We note that, by Lemma (8.9)
of [i], any element of ^(S) is contained in some element of SCN3(S). Moreover, it
follows at once from the definition of ^(2) that if Be^<(2), then Be^(S) for any
Sylow 2-subgroup S of N(B) and S is a Sylow 2-subgroup of G.

We now prove
Lemma 2. — If Be ̂ (2), then:

(i) BCO^C(b)) for each b in B^;
(ii) B centralizes every subgroup of G of odd order that it normalises.

Proof. — We first prove that (i) implies (ii). Indeed, if Q is a B-invariant
subgroup ofG of odd order, then CI==<GQ(&) | 6eB^> by Theorem (6.2.4) of [4] as B
is a noncyclic abelian group of order prime to that of Q .̂ But C Q ( & ) C C ( & ) and
BcO^C(b)) by (i), which we are assuming; so [GQ^), B]CQn 0^{C{b)) = i.
Hence B centralizes C^{b) for each b in B^ and so B centralizes Q, thus proving our
assertion.

We turn now to (i). We let S be a Sylow 2-subgroup of G for which Be^(S) and
we let A be an element ofSCN3(S) containing B. Now choose b in B^ and set C =C(&).
Then AcG as A is abelian. Since A normalizes 0(C), it follows from Lemma i
that 0(C)==i. Since G is 2-constrained, we conclude that C^O^C^CO^C).

Now let R be a Sylow 2-subgroup of G containing S n G. By definition of B,
Cg(B) has index at most 2 in S and so |R : (SnG)|^2. Moreover, if equality holds,
then R is a Sylow 2-subgroup of G. Setting P =02(0)3 we have that PcR and
that Cc(P)CP. Hence if BcZ(R), then BcCyP), whence BcP and (i) holds.
In particular, this will be the case if either BCZ(S), in which case R == S, or if R== S n G
is of index 2 in S, in which case R==Cg(B). Thus we can assume henceforth without
loss that Z(S) is cyclic and that either R=S or R D S n C .

Suppose first that R=S, in which case < & > =^i(Z(S)). Setting C=G/<^> and
using bars for images in G, we have that B is of order 2 and is normal in S, so BcZ(S).
Thus B centralizes P and consequently B stabilizes the chain: P ^ < ^ > D i . Since each
member of this chain is normal in G, so also is its stabilizer K. But K/Gc(P) is a 2-group
by Theorem (5.3.2) of [4]. Since Go(P)CP is also a 2-group, K is thus a normal
2-subgroup of G, whence KC02(C)==P. However, as we have. argued, above, BcK
and so BcP in this case as well.
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Assume finally that R D S n C , in which case R is a Sylow 2-subgroup of G,
<6>==Qi(Z(R)) , and ^Z(S). It will suffice to show that B is normal in R, for then
Be^(R) as R is a Sylow 2-subgroup of G and Z(R) is cyclic and hence the argument
of the preceding paragraph can be repeated verbatim with R in place of S to yield the
same conclusion BCP.

Since ^Z(S), SnC=Cs(B) in the present case. Thus BcZ=ai(Z(Sn C)).
Since S n G is of index 2 in R, S n C is normal in R and, as Z is characteristic in S n C,
we see that Z is normal in R. Hence we are done if B = Z, so we may assume that
B C Z, in which case Z is elementary abelian of order at least 8. We shall derive a
contradiction in this case by arguing that Z(R) is noncyclic. Indeed, if ^eR-(SnG),
then ^eSnG and so x2 centralizes Z. Thus x acts on Z, regarded as a vector space
over the field with two elements, as a linear transformation of order 2. Since the
dimension of Z is at least 3, x must therefore have at least two Jordan blocks and so
Zo=Cz(^) has order at least 4. But Zo centralizes both Sn G and x and so centralizes
R==<SnC,;0. Thus ZoCZ(R) and, as Zgis noncyclic, so also is Z(R). This completes
the proof of (i) and the lemma.

Now let H be an arbitrary 2-local subgroup of G, so that H=N(P) for some
non-identity 2-subgroup P of G. Note that 0(H)P==0(H) xP as 0(H) and P are
normal subgroups ofH ofcoprime orders. In addition, we let S be any Sylow 2-subgroup
of G containing P and fix this notation for the balance of the proof.

Lemma 3. — If 0(H)P is contained in a 2-local subgroup K of G for which 0(K) = i,
then 0(H)=i .

proof. — Let K be such a 2-local subgroup of G and set Q^O^K). Since K
is 2-constrained, C^QJ^Q,. In particular, Co^QJ^i- Hence if we apply
Theorem (5.3.4) of [4] to the action of 0(H) X P on Q, we conclude that C()(H)(Q^) = i,
where QO=CQ(P). On the other hand, Q^CH=N(P), so [0(H), QJCO(H) nQ=i.
Thus Q^ centralizes 0(H) and, as CO(H)(Q,()) = I? we obtain the desired conclusion
0(H)=i.

Lemma 4. — If H contains an element B of ^(S), then 0(H) == i.
Proof. — Suppose B is an element of ^<(S) contained in H and set K==N(B).

It will suffice to prove that K contains 0(H)P and that 0(K) = i, for then the desired
conclusion will follow from the preceding lemma.

We have SCK as B is normal in S. But S normalizes 0(K) and so 0(K) = i
since 2 £7^4 by hypothesis. Furthermore, B normalizes 0(H) and so B centralizes 0(H)
by Lemma 2. Thus 0(H)CK. Since PCSCK, K satisfies all the required conditions
and the lemma is proved.

Lemma J. — If P has order greater than 2, then 0(H) = i.
Proof. — Assume | P| > 2 and let B be an arbitrary element of ^(S). Since Cg(B)

has index at most 2 in S and PCS, it follows that Cp(B)=)=i . However, Cp(B) is
normal in P as P normalizes B and therefore Z = Cp(B) n Z(P) + i. Setting K = N(Z),
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it follows that K is a 2-local subgroup of G containing both B and P. Since ZCS,
we can apply Lemma 4 with K, Z, B in the roles of H, P, B respectively to conclude
that 0(K) = i. On the other hand, ZCP and P centralizes 0(H), so also 0(H)CK.
Now Lemma 3 yields the desired conclusion 0(H) == i.

Lemma 6. — If P has order 2, then 0(H) = i,
Proof.—Assume |P =2, so that P=<^>, where A; is an involution, and H==G(;v).

Since G is simple, Lemma (5.38) of [5] implies that x centralizes some element B of ^(2).
(However, we do not know that Be^S).) Let R be a Sylow 2-subgroup of C(B)
containing x and let T be a Sylow 2-subgroup of N(B) containing R. As we have noted
earlier, T is a Sylow 2-subgroup ofG and Be^(T). But BCC(A;)==H and P=<.v>CT.
We can therefore apply Lemma 4 with T in place of S to conclude that 0(H) = i.

Lemmas 5 and 6 together imply that 0(H)= i. Since H was an arbitrary 2-local
subgroup of G, Theorem i is therefore proved.

3. Proof of Theorem 3. — We denote the set of maximal 2-local subgroups ofG by
^ and we let S be a fixed Sylow 2-subgroup of G. We divide the proof into three short
lemmas.

Lemma 1. — S is contained in a unique element of ̂ .
Proof. — First of all, N(S) is clearly a 2-local subgroup of G and so is contained

in some element M ofe^f. Suppose then that also SCN with N in ^K. Since the
elements of^ are all conjugate in G by assumption, we have N= M? for some g in G.
Since S is a Sylow 2-subgroup of G, it follows that S and Sg are each Sylow 2-subgroups
of W and so, by Sylow's theorem, they are conjugate by an element of MP. Thus

(s^=s
for some m in M. Since gmg==mg, this yields that Smg=S, whence w^eN(S). But
meM and N(S)CM by definition of M, so geM. Thus N=]VP==M and therefore M
is the unique element of ̂  containing S.

Lemma 2. — If M and N are distinct elements ofe^, then M n N has odd order.
Proof. — Suppose this is false and choose M and N so that a Sylow 2-subgroup T of

M n N has maximal order. Since the elements of^ are all conjugate in G and since S is
contained in some element ofe^ by Lemma i, we can assume without loss that SCM.
Replacing S by a suitable conjugate in M, we can also suppose that TCS. If T==S,
then also SCN. But then M=N as S is contained in a unique element of ̂  by
Lemma i. However, M=t=N by hypothesis. Thus TcS.

Now let L be an element of J( containing N(T). Then Ng(T)cL. But
Bg(T)DT as SDT, so MnLDNg(T)DT. Our maximal choice of M n N thus
forces M = L. Similarly a Sylow 2-subgroup R of N containing T is a Sylow 2-subgroup
of G and TcR. But now arguing with N and R as we have just done with M and S,
we conclude that N = L. Therefore M = N == L, giving the same contradiction as in
the preceding paragraph.
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Lemma 3. — If Me^, then M is strongly embedded in G.
Proof. — As above, we can assume without loss that SCM. Then N(S)CM by

Lemma i. Furthermore, if x is an involution of M, C{x) is a 2-local subgroup of G,
so G(A:)CN for some N in ̂ . But ^eMnN, so M n N is of even order, whence
M==N by the preceding lemma. Thus C(A:)CM for any involution A: of M. Finally
not every involution of G is contained in M as G is simple and M is a local subgroup
of G. We conclude therefore from the definition that M is strongly embedded in G.

Theorem 3 is now an immediate consequence of Bender's theorem ([i], [2]).
Indeed, since G is simple and contains a strongly embedded subgroup, his theorem
implies that G is isomorphic to ^(2^), 87(2^3 or L^^, n^2.

4. Proof of Theorem 2. — Again we denote the set of maximal 2-local subgroups
of G by ̂  and let S be a Sylow 2-subgroup of G. We assume the theorem is false and
first derive the following three lemmas:

Lemma 1. — If M.EJK and MnS is a Sylow 2-subgroup ofM, then M=N(Z(S)).
Proof. — Since M is a 2-local subgroup of G, we have 0(M)== i by Theorem i.

Hence if we set P=C>2(M) and use the fact that M is 2-constrained, it follows that
CM(P)CP.

On the other hand, M = N(T) for some nontrivial 2-subgroup T of G. Moreover,
TC S n M as T is normal in M and S n M is a Sylow 2-subgroup of M by hypothesis.
Thus Z(S)CSnM. But P C S n M for the same reason that T is, so Z(S) centra-
lizes P. Hence Z(S)CP and therefore Z(S)CZ(P). However, Z(P) is cyclic since
we are assuming Theorem 2 to be false. Hence Z(S) is characteristic in Z(P) and conse-
quently Z(S) is normal in M. Thus MCN(Z(S)) and now the maximality of M
yields the desired conclusion M==N(Z(S)).

Since every subgroup of a cyclic group is cyclic, our argument also yields :
Lemma 2. — Z(S) is cyclic.
Lemma 3. — If Me^, then M==N(Z(S))^ for some g in G.
Proof. — Let T be a Sylow 2-subgroup ofG such that Mn T is a Sylow 2-subgroup

of M. By Lemma i, M == N(Z(T)). Since T = S9 for some g in G by Sylow's theorem
and since N(Z(T)) =N(Z(S^)=N(Z(S))^, we conclude that M=N(Z(S))^, as asserted.

But now the theorem follows directly from Theorem 3. Indeed, by Lemma 3,
G has only one conjugacy class of maximal 2-local subgroups, so G is isomorphic to
L^"), Sz(2n), or U3(2n) for some n^2 by Theorem 3. However, as is well-known,
the center of a Sylow 2-subgroup of each of these groups is elementary of order 2n and
so is non cyclic. On the other hand, S is a Sylow 2-subgroup of G and Z(S) is cyclic
by Lemma 2. This contradiction establishes the theorem.

5. Sufficient conditions for characteristic 2, type. — The following result,
which is valid for arbitrary primes, facilitates the task of showing in a particular group
that its 2-local subgroups are all, in fact, 2-constrained.

10
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Theorem 4. — Suppose that one of the following two conditions holds in a group G for some
prime p:

a) Every maximal p-local subgroup of G is p-constrained; or
b) The centrali^er of every element of order p in G is p-constrained.

Then every p-local subgroup of G is p-constrained.
Once again we divide the proof into a sequence of lemmas. Let H be an arbitrary

^-local subgroup of G, let Qbe a Sylow j^-subgroup of0^p(H) and set K=QG(QJ.
We fix this notation.

Lemma 1. — The following conditions hold:

(i) Q+i;
(ii) K=QCH(QJ and K is a subgroup of H;
(iii) Qp.(H)K is a normal subgroup of H;
(iv) Q is a Sylow p-subgroup of Qp/^(K).

Proof. — We have H == N(T) for some non-identity ^-subgroup T of G as H
is a j^-local subgroup of G. Since T is normal in H and Q is a Sylow ^-subgroup
of Q^p(H), clearly TcQ. In particular, Q,4= i and (i) holds. Furthermore,
K=QG(Q)CN(T)=H, so K is a subgroup of H and hence K^QC^QJ, proving (ii).
This last result implies that K is normal in Ng(QJ. But H==O^(H)NH(Q^) by the
Frattini argument, and therefore Op,(H)K is normal in H, so (iii) also holds.

Finally (iii) implies that 0^(K)cQp,(H) and 0^p(K)CO^(H). Thus every
Sylow ^-subgroup of Qp^p(K) is contained in one of Qp^p(H). But Q^ is normal in K
by definition ofK and so Qis contained in a Sylow j^-subgroup R ofQp.p(K), whence
RCS for some Sylow ^-subgroup S of0^p(H). However, Q^CS and Q is a Sylow
^-subgroup ofQp.^(H) by definition, forcing Q^== R=S. Hence CHs a Sylow ̂ -subgroup
of O^p(K), proving (iv).

Now define M to be a maximal j&-local subgroup of G containing H if condition a)
holds and to be the centralizer of an element y ofZ(QJ of order p if condition b) holds.
Observe that KcH by Lemma i and that K=QG(QJcG(^) as ^eZ(QJ. Therefore
KcM in either case. We let P be a Sylow ^-subgroup of M containing Q and set
R=PnQp^(M), so that R is a Sylow j^-subgroup of O^^(M) and R is normal in P.
In particular, Q^ normalizes R. We fix this notation as well.

Lemma 2. — The following conditions hold:

(i) KCM;
(ii) M is p-constrained'y
(iii) CR(QJCQ.

Proof. — We have already noted that (i) holds. Furthermore, (ii) is an imme-
diate consequence of the definition of M and the hypothesis of Theorem 4. As
for (iii), set RO=CR(QJ, so that RoCK==QG(QJ. But RoCRcO^p(M) and hence
RoCO^p(M)nK. However, KcM by (i) and so clearly 0^(M) n KCOp^(K).

11
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Thus RoCOp^y(K). Since also Q^CO^p(K), we see that RoQ, is a ^-subgroup of
Qp^p(K). On the other hand, Q^ is a Sylow j^-subgroup of Op.p(K) by Lemma i and
RoQ^Q/ Thus K-oQ^Q, and so RO^Q,, proving (iii).

We need one additional result:
Lemma 3. — If K has a normal p-complement, then H is p-constrained,
Proof. — Suppose K has a normal ^-complement. Since Qp,(H) is a normal

^'-subgroup of Qp/(H)K, it follows that Qp/(H)K also has a normal ^-complement.
But Op.(H)K is normal in H by Lemma i. Together, these two properties of Qp/(H)K
imply that Qp,(H)KcQ^(H). Since K^QG^QJ by Lemma i, we conclude
that Cji(QJcQp/p(H) and so by definition H is ^-constrained.

We can now easily establish the theorem. We need only prove that H is
^-constrained inasmuch as H is an arbitrary j&-local subgroup of G. We proceed by
contradiction. In view of Lemma 3, K does not have a normal ^-complement. Hence
there exists a ^'-element A: in K with ^^0^(K). Since KCM by Lemma 2, certainly
^Qp/(M). Thus the image ~x of x in M == M/Op/(M) is a non-trivial j^'-element of M.
Let Q^, R be the respective images of Q, R in M, so that R==Qp(M). But M is
j^-constrained by Lemma 2 and this implies that G^(R)CR. We conclude that ~x does
not centralize R.

We shall now contradict this conclusion. Indeed, we know that 'x centralizes Q
as x is a ^'-element of K=QC(QJ. But CVQJ CQ by Lemma 2, so C^QJcQ.
Thus ~x centralizes 0^(0,). Theorem (5.3.4) of [4] now yields that ~x centralizes R,
the desired contradiction. This completes the proof.

As a corollary of the theorem, we have the following sufficient conditions for a
group to be of characteristic 2 type:

Theorem 5. — Let G be a group with SGN3(2) non empty, which satisfies one of the following
two conditions:

a) Every maximal 2-local subgroup of G is 2-constrained and has no non-trivial normal
subgroups of odd order:, or

b) The centrali^er of every involution of G is ^-constrained and has no non-trivial normal
subgroups of odd order.

Then G is of characteristic 2 type.

Proof. — In view of Theorem 4, every 2-local subgroup of G is 2-constrained.
Since SCN3(2) is non empty by assumption, to prove that G is of characteristic 2 type,
we need only show that a Sylow 2-subgroup S of G normalizes no non-trivial subgroup
of G of odd order.

Suppose this is false and let K be a non-trivial S-invariant subgroup of G of odd
order. If B is an element of ^(S), then B normalizes K and so K=(G^b)\be^^ by
Theorem (6.2.4) of [4]. Hence L = G^{b) =1= i for some b in B^. If condition a) holds,

12
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let M be a maximal 2-local subgroup ofG containing G(&); while if condition b) holds,
set M==C(&). In either case, L and R==Gg(6) are contained in M.

By hypothesis, 0(M) == i and M is 2-constrained. Therefore, if we set Q^O^M),
we have Ci^(QJcQ. In particular, 0^(0,)=!. We shall now contradict this conclu-
sion by showing that, in fact, L centralizes Q.

First of all, [L, R n QJ C Q^ as Q is normal in M and L C M. On the other hand,
[L,RnQjcK as LCK, RnQCS, and K is S-invariant. Since Q, and K are of
coprime orders, it follows that [L, R n QJ == i and so L centralizes R n Q. But R = Cg (&)
is of index at most 2 in S and so is of index at most 2 in a Sylow 2-subgroup of M
containing R. This implies that RnQ, is of index at most 2 in Q^ Hence RnQ, is
normal in Q^and L acts on Q7(Rn QJ, which is of order at most 2. Thus L centralizes
Q/(R n Q) and so L stabilizes the chain: Q^R n QD i. Theorem (5.3.2) of [4] now
yields that L centralizes Q. This contradiction completes the proof of the theorem.
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