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INVARIANTS OF ANALYTIC LOCAL RINGS Q
by S. S. ABHYANKAR, T. T. MOH and M. VAN DER PUT

§ i. Introduction.

This is a sequel to [2]. In Theorems (4.2), (4.3), (5-5)? (5-6)? (5-7)? (5-8)?
(5.9)5 ^d (6.1) we shall prove several results concerning groups of automorphisms
of analytic local rings and the rings of invariants of such groups. In the statements
of all these theorems except the last one, K. is any valued field and A^ is the ring of
convergent power series in indeterminates X^, . . ., X^ with coefficients in K. In § 7
we shall make some remarks concerning fields of definition and their relationship with
fields of invariants.

Terminology. — We shall use the terminology of [2, § 2]. By card we shall denote
cardinal number. If R is any ring and S is the integral closure of R in the total quotient
ring T of R, then every automorphism of R can be extended uniquely to an auto-
morphism of S, i.e., given any ^eG(R) there exists a unique AeG(S) such that
h(r) =g(r) for all reR; (namely, since T is the total quotient ring of R, there exists
a unique A'eG(T) such that h'(r) =g(r) for all reR; since S is the integral closure
of R in T, we must have A'(S) =S, and hence we get the unique AeG(S) by taking
h(^s) ==h'[s) for all j-eS); the resulting map of G(R) into G(S) will be denoted by 1 ,̂
i.e., IR : G(R) -> G(S) is the unique monomorphism such that for all ^eG(R) and all
reR we have IR^) (r) = g(r); note that

IB(G(R))={^G(S):A(R)=R).
§ 2. Integral dependance and conductor.

Recall that if R is a ring and S is an overring of R then by definition,
the conductor of R in S

= = { ^ e R : ^ e R for all jeS}
==the largest ideal in R which remains an ideal in S.

Lemma (2.1) . — Let R be a ring and let S be an overring of R. Let G be the conductor
of R in S. Then we have the following.

(1) The work of Abhyankar and Moh was supported by the National Science Foundation under N.S.F.-
GP-6388 at Purdue University. The work of van der Put was supported by the Netherlands Organization for
the Advancement of Pure Science (Z.W.O.).
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i66 S. S. A B H Y A N K A R , T. T. M O H AND M. V A N D E R P U T

(2 .1 .1 ) Let Q^be any ideal in S, and let AeG(S, QJ and ^eG(R) be such that
h[r)==g{r) for all reR. Then ^eG(R,QnR).

(2 .1 .2) For any AeG(S, G) we have A(R)==R.
(2.1.3) Let Q ̂  a^ ideal in R. TT^TZ QG is an ideal in S. Moreover, y^r a^

AeG(S, QC) we have A(R)=R, and upon defining ^eG(R) by taking g[r)=h{r) for all
reR, ^ ̂  ̂  <?eG(R, QG).

(2.1.4) £^ Q^be any ideal in S, and let ueC. Then {uS)Q^is an ideal in R. Now
assume that u is a nonzerodivisor in S, and let AeG(S) and ^eG(R, (^S)Q) 6^ such that
h{r)=g{r) for all reR. Then AeG(S, Q).

(2.1.5) Z^ Q be any ideal in R, and let ueC be such that u is a nonzero divisor in S.
Let AeG(S) and geG(R, (^R)Q) be such that h{r)=g{r) for all reR. TA^ AeG(S,QS).

Proo/' o/' (2 .1.1) . — Obvious.
Proof of (2 .1 .2) . — For any AeG(S, G) and any reR we have A(r)—reCcR,

and hence A(r)eR. Thus for any AeG(S, G) we have A(R)cR; by [2, (2.1)] we
also have h-^G^S.C) and hence A'^cR; therefore A(R)=R.

Proof of (2.1.3). — Any element t in (QC)S can be expressed as a finite sum:
t==^iq^Si with ^eQ^eG, ^eS; now u^eC for all i, and hence teQC. This

z

shows that QC is an ideal in S. Since QCcC, we have G(S, QG) cG(S, C); therefore
the rest now follows from (2.1.1) and (2.1.2).

Proof of (2.1.4). — Clearly (^S)Q^cR and hence (^S)Q^is an ideal in R. Now
assume that u is a nonzerodivisor in S, and let AeG(S) and ^eG(R, (^S)QJ be such
that h(r)=g{r) for all reR. Given any .yeS we want to show that h[s)—^eQ. Now
useR.', since ^eG(R, (z/S)Q), and u and us are elements in R, we get

g{us)—us=uq with ?eQ, and g(u)—u-==uq' with <?'eQ.

Now g {us) — us == h (us) — us
= h{u)h{s) — uh[s) + uh{s) — us
=h{s){h{u)-u)+u{h{s)-s)
-h{s)(g{u)-u)+u{h{s)-s)

and hence u{h{s)—s)==(g{us)—us)—h{s){g(u)—u)
==uq—h{s)uq'
==u{q—h{s)q').

Since u is a nonzerodivisor in S, we must have h{s)—s=q—h{s)q' and hence h{s)—seQ^.
Proof of (2. i .5). — We get a proof of this by making the following changes in

the proof of (2.1.4): omit the first two sentences; in the third and the last sentences
change Qto QS; in the fourth sentence change G(R, (^S)QJ to G(R, (^R)QJ. Alter-
natively let Q'==QS; then Q' is an ideal in S; clearly (^R)Qc(^S)Q' and hence
^eG(R, (^S)Q'); therefore by (2.1.4) we get that AeG(S, Q').

Lemma (2.2). — Let 'R be a ring and let S be the integral closure ofR in the total quotient
ring of R. Let C be the conductor of R in S. Then we have the following.

166



INVARIANTS OF ANALYTIC LOCAL RINGS 167

(2 .2 .1) IfQ^is any ideal in S then G(S, QJn IR(G(R))(:IR(G(R, Q,n R)).
(2.2.2) G(S,G)CIR(G(R)).
(2.2.3) IfQ^is any ideal in R then QG is an ideal in S and G(S, QC) C:IR(G(R, QG)).
(2.2.4) Let Q be any ideal in S, and let ueC. Then (^S)Q is an ideal in R. If

moreover u is a nonzerodivisor in R, then I^(G(R, (^S)Q)) cG(S, Q).
(2.2.5) Let Q^be any ideal in R, and let ueC be such that u is a nonzerodivisor in R.

Then I^(G(R, (^R)Q))cG(S, QS).
Proof. — (2 .2 .1) , (2 .2 .2 ) and (2.2.3) follow respectively from (2.1.1), (2 .1 .2)

and (2.1.3). (2.2.4) and (2 .2.5) follow respectively from (2.1.4) and (2.1.5) by
noting that in the present case every nonzerodivisor in R is also a nonzerodivisor in S.

Lemma (2.3). — Let 'R be a noetherian ring with rad^o} ==•[0}. Let P^, . . ., Pg
be all the distinct prime ideals of height zero in R. Let T be the total quotient ring of R. Let R*
be a noetherian subring of T such that T is the total quotient ring of R*. (Note that then by
[i, (18.9)] we have that: P^T, . . ., PgT are exactly all the distinct prime ideals in T,
and they all have height zero; T is noetherian; (P^T) n R*, . . ., (PgT) n R* are exactly
all the distinct prime ideals of height zero in R*; rad^o} =={o}; and for i<^i<^e
we have (P,T)nR=P, and ((P,T) n R*)T=P,T.) Let S be the integral closure of R
in T. Assume that R*cS and S is integral over R*. Then we have the following'.

(2 .3 .1) For i<^ i<^ e we have

I^(G[S,(P/T)nS])=G[R,P,],
Iii(G[S, (P,T)nS])=G[R*, (P/T)nR*],

and I^(I^(G[R*, (P/T) n R*])) cG[R, Pj.

(2.3.2) Assume that the integral closure q/^R/P^ in its quotient field is a finite (R/P^) -module
for i^i^e. Let G be the conductor o/^R in S. Then G contains a nonzerodivisor o/^R.

(2.3.3) Assume that the integral closure o/"R/P^ in its quotient field is a finite (R/P^) -module
for i^i^e. Also assume that the integral closure of R*/(P^T)nR* in its quotient field is a
finite (R^P^T) n K')-module for i^z_<^. Let J be any ideal in R. Then there exists an
ideal]* in R* such that IR*(G(R*,J*))CIR(G(R,J)) and such that for i^i^e we have:
J*cP,T^JcP/T.

Proof of (2.3.1). — The second equation follows the first equation by interchan-
ging R and R*. The last inclusion follows from the first and the second equations.
To prove the first equation, given any ^eG(R) let h=I^{g). What we have to show
is that: ^(P,)=P,oA((P,T)nS)=(P,T)nS. If A((P,T) n S)=(P,T) n S then

^(P,)=A(P,)=^(Rn((P,T)nS))=A(R)nA((P,T)nS)=Rn((P,T)nS)=P,.

Conversely, suppose that ^(P^)=P^. Let h' be the unique element in G(T) such that
h'[s)=^h[s) for all seS. Since PiT, . . ., PgT are exactly all the distinct prime ideals
in T and h' is an automorphism of T, we see that A'(P^T)==PjT for some j. Now

P-^)==A'(P,)=A'((P,T)nR)=A'(P,T)nA'(R)=(P,.T)nR=P,.
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168 S. S. A B H Y A N K A R , T. T. M O H AND M. V A N D E R P U T

and hence j==i. Therefore

A((P,T) n S)=A'((P,T) n S)==A'(P,T) nA'(S)=(P,T) n S.

Proof of (2.3.2). — The quotient ring of R with respect to P, is clearly a field
and hence by [i, (19.21.2)] we get that C4:P,. This being so for i<i^e, we conclude
that G contains a nonzerodivisor of R.

Proo/o/(2.3.3) .—LetCbeconductorofRinS$by(2.3.2)wecanfind ueC such
that u is a nonzerodivisor in T, i.e., u^P.T for i<^i<^e. Let C* be the conductor ofR*
in S; by (2.3.2) we can find ueC such that u is a nonzerodivisor in T, i.e., u^T
for i<^. By (2.2.3) we know that JG is an ideal in S and G(S,JG)C:IR(G(R,JC));
since JCcJ, we also have IR(G(R,JG))C:IR(G(R,J)). By (2.2.4) we get that
(^S)(JG) is an ideal in R* and Ip*(G(R*, (^S)(JG))) cG(S,JG). Therefore upon
letting J*=(^S)(JG) we get that J* is an ideal in R* and IR*(G(R*,J*))(:IR(G(R,J)).
Now (^*T)(JT)cJ*TcJT, and uu^T for i<:i<e; therefore for i^i<:e we have:
J*cP,T^JcP/T.

Lemma (2.4). — Let R be an analytic local ring over a valued field K. Let S be an evening
ofR. such that S is a finite R-module. Let N be any subset ofS such that N is contained in every
maximal ideal of S. Then R[N] is an analytic local ring over K.

Proof. — We can find a finite sequence of elements j^, . . .,j^ in N such that
R[N]=RD^ ...^J; now R[^, ...,A|=(R[j/i, ...,^-i])bJ for i^i^m; conse-
quently, by an obvious induction, the general case would follow from the case when N
consists of a single element^. Let X^.X^Xg, . . . be indeterminates. Since R is
an analytic local ring over K, there exists a K-epimorphism v : B->R where
B=K[<Xi, . . . ,X^>] for some nonnegative integer n. Let A=K[<X(), . . . ,X^>]
where we regard A to be an overring of B. Since y is integral over R, there exists a
positive integer e and elements ^o, . .., a^ in B with a^ =i such that

e

( i ) Sy(^)y=o.
i=0

Let d be the smallest nonnegative integer <_e such that ^M(B). Let q==e—d. Then
by the Weierstrass Preparation Theorem [i, (10.3)] there exist elements ^o, . . . , ^ ,
to, . . ., tq in B such that ^==1==^, ^eM(B) for o<,i<d, t^M^K), and

(2) s^=(S6,xy(^,xy
t==0 »=0 »==0

Now y(^)^M(R). For every maximal ideal M in S we have MnR=M(R) and
hence y(^)^M$ since by assumption jyeM, we get that ^+^J+- • • +^y^M. This
being so for every maximal ideal M in S, we conclude that ^ + t^y + . . . + 1 y ^ is a unit
in S; therefore by (i) and (2) we get that

s ,̂)y=o.
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INVARIANTS OF ANALYTIC LOCAL RINGS 169

Whence, in particular, rf>o. Let

F=2:^
1=0

and let A' be the set of all polynomials of degree <d in X^ with coefficients in B. Then
by [i, (10.3)], for every /eA there exists a unique r^eA' such that /—r^eFA. We
get a map w : A—^R[j] by taking

</)-S.(/)y for all /eA
1=0

where fo, . . •,fd-i are the unique elements in B with

r^W.

By [i, (10.3)] we also have that: r^^=^4-r^ and r^ — r^ r^ e FB [XJ for all/and/*
in A. It follows that w{^)=v{^) for all ^:eR, w is a ring homomorphism of A into
R[y] and w{A)=R.[jy] (note that if d=i then we must have J^eR). Therefore
R[jy] is an analytic local ring over K.

§ 3. Automorphisms leaving a hypersurface fixed.

Let K be a valued field, and let A=K[<X>]==K[<Xo, . . ., X^>] where
X=(XQ, . . . ,XJ are indeterminates and n>o (the statement and proof of Lemmas (3. i)
and (3.2) hold verbatim also for 7x==o).

Lemma (3.1). — Let B==K[<X, Y^, . . ., Y^>] where Y^, . . ., Y^ are indeterminates
(m>o). Let V,=V,(X,Y,, ...,YJeB with

( 1 ) V,-Y,e((Y,,...,YJB)2 fori^i<m.

Let D,eM(A) for i<,i<,m. Then there exist unique elements Ei, ...,E^ in M(A) such
that
(2) V,(X, E,, ..., EJ=D, /or i^z<m.

Moreover, we have

(3) (E,, . . . ,EJA=(D,,. . . ,DJA

and
(4) E,-D,e((D,,...,DJA)2 /.r i<z<m.

proof. — In view of (i) we see that the value of the jacobian determinant

a(V,-D....^-DJ
3(Y,,...,YJ l ' ' ;

769
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i7o S. S. A B H Y A N K A R , T. T. M O H AND M. V A N D E R P U T

equals i, and hence by the Implicit Function Theorem [i, (10.8)] there exist unique
elements E^, . . ., E^ in M(A) satisfying (2). By (i) and (2) we see that

(D,, . . . ,DJAc(E,, ... ,EJAc(D,, . . . , DJA+((E,, . . . ,EJA)M(A)

and hence by Nakayama's lemma we get (3). By (i), (2)3 and (3) we get (4).
We shall now give an alternative proof by using the Inversion Theorem instead

of the Implicit Function Theorem. In view of (i) we see that

^(Vi,...,VJI? • • - 5 v ml
————Y^, ...,
I.? • •. "> ^m)^....YJ^---'0^1

and hence by the Inversion Theorem [i, (10.10)] there exists

W,-W,(X, Y,, . . ., YJeM(B) for i<i<m,

such that for i<i<^m we have

(5) Y,=V<(X, W,(X, Y,, ..., YJ, ..., W,(X, Y,, . . . , YJ)

and

(6) Y,=W.(X, V,(X, Yi, ..., YJ, ..., V^(X, Y,, . . . , YJ).

We can write
W-W^+W^+...+W,,Y,+W:

with W^M(A), W,eA, W:e((Y,, . . ., YJB)2;

now in view of (i), by (6) we get that

Y,=W;+W^Y,+...+W^Y,+an element in ((Y,, ...,YJB)2.

Considering the above as an equation between power series in Y^, . . ., Y^ with coeffi-
cients in the quotient field ofK[[X]], and comparing coefficients on the two sides we see
that

W,'=o, W,,==i, and Wy==o whenever j '=t=z.

In other words,

(7) W,-Y,E((Y,, . . . ,YJB)2 for i<zXm.

Upon letting

(8) E, =W,(X, D,, . . . , DJ for i^ i^ m,

we get elements Ei, . . ., E^ in M(A); upon substituting Di, . . ., D^ for Yi, . . . , Y^
in (5) we get (2); by (i), (2), (7) and (8) we get (3) and (4). Conversely, ifEi, . . ., E^
are any elements in M(A) satisfying (2) then upon substituting Ei, .. ., E^ for Y^, . . ., Y^
in (6) we get (8), which proves the uniqueness.

For the formal case the following lemma was given by Samuel [3]:
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INVARIANTS OF ANALYTIC LOCAL RINGS 171

Lemma (3.2). — Let F=F(X)=F(Xo, . . . , XJeA. Let F,=BF/aX,. Let
D^.eM(A) for o^i^n, o_<j<%. Then there exist elements H(), . . . , H ^ m M(A) such
that

n n

(1) F(Xo+Ho, ...,X»+HJ=F+S^.^D,F(F,

<rorf

(2) H(- S D,,F,e((Fo, .. ., FJA) ((Doo, Doi, . . . , DJA)2 /or o^ ̂  n.
j=0

Proo/'. — Let ZQ, . . ., Z^ be indeterminates. Then
n

(3) F(X<,+Zo, ..., X«+ZJ=F+^Z.F.+V

where V is an element in K[<X, Zg, ..., Z„>] such that the order of V in Z^, ..., Z,,
is ^2, and hence we can write

(4) ^JloJio '̂ z0' • • •' zn)z<zj

with V(,(X, Zo, ..., ZJeK[<X, ZQ, ..., Z^>]. Let Yoo, Yoi, . . . ,¥„„ be (w+i)2 inde-
terminates. Upon substituting

SY^F, for Z, ,o<r<»,
s=0

by (3) and (4) we get

(5) F(Xo+;SYA ..., X^+S^FJ=F+^^V,(X, Yoo, Yo,, ..., YJF.F,

where V., = Vy (X, Yoo, Yo,, . . ., YJ is the element in B = K [< X, Yoo, Y^, . .., Y^ >]
given by

V,(X, Yoo, Yo,, ..., Y.J=Y.,+I^SV;,(X, ̂ Yo,F,, ..., S^FJY.̂ ,

and hence Vy - Y, e ((Yoo, Yoi, . . ., Y»JB)2 for o^ i^ n, o<j^ n.

By (3.1) there exist (w+i ) 2 elements Eoo, Eoi, . . . ,£„„ in M(A) such that

(6) V,(X, Ego, Ed, .. ., £„„) = D(, for o^ ̂  n, o<j^ n,

and
(7) E,j - D.,e ((Doo, Doi, . . . , DJA)2 for o< ̂  n, o<j< n.

Let
n

(8) H,= SE,J, for o^r<^.

Then Ho,..., H^ are elements in M(A) and upon substituting E,, for Y,g {o<,r<^n, o<s^n)
in (5), by (6) and (8) we get (i). By (7) and (8) we also get (2).
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Lemma (3.3). — Given FeA let F,==BF/aX,. Z^ DeM(A) be such that
DF,eM(A)2 for o<i<n. Then there exists geG^A, (DF,, . . . , DFJA) such that
^(F)=F,

^(X^-Xo+DF^D2^, . . ., D^JA,
5(X,)-X,-DFee(D2Fo, . . ., D^JA,

^ ^-X^D2^, ....D^JA /.r 2^72.

Proof. — Upon taking

Un^—1^ Doo=o=D^. for 2<j<,n,
D,o==D, D^.=o for I<^TZ,
Dy == o for 2<^ i<, n and o<:j< n,

by (3.2) we find elements H^ . . ., H^ in M(A) such that

F(Xo+Ho, . . . ,X,+HJ=F

and such that the elements Ho+DF^, H,-DFo, H^, . . ., H^ all belong to the ideal
(D2Fo, . . . ,D2FJA. In particular then H,e(DFo, . . ., DFJ cM(A)2 for o^i<,n,
and hence by [2, (2.15)] we get a unique g^G^A) such that ^(X,)=X,+H, for
o<i<n. Now clearly ^(F)==F,

^Xo)-Xo+DF,e(D2Fo, . . . , D^JA,
^(X,)-X,-DFoe(D2Fo, . . . , D2FJA,

^d g (X,) - X,e (D2Fo, . . . , D^JA for 2^ i<, n.

Since ^(X,)-X,=H,G(DFo, . . ., DFJ for O^^TZ, by [2, (2.9)] we see that
geG^A,(DF,, ...,DFJA).

Lemma (3.4). — Let o+FeM(A), LeA, EieM(A), . . ., E,eM(A) (rf>o), be such
that L(aF/aXo)<^.A for i^j^d. Let P^, . . . , P, be all the distinct prime ideals of height
one in A containing F. Let u be a positive integer. Then there exists an infinite subset G of

GK(A, (LA) n M(A)-) n G^A, PJ n . . . n G^A, PJ

with card(G)>card(K) such that for all geG we have ^(F)=F, and for all g^h in G
we have g(X,)-h(X^^A for i^j<:d.

Proof. — Let J be the set of integers i, . . ., d, and let y=={jej : E^.+o}. For
every jej' let ^=ord^E^. and let Ej be the unique nonzero homogeneous element of
degree r, in K[X] with E^.—EJeM(A)ry+l.

Clearly there exists an infinite set N of pairwise coprime nonconstant irreducible
homogeneous elements in K[X(), XJ (namely, if K is infinite then {^Q+kX^ : keK}
is such a set; in the general case, upon letting N, to be the set of all monic irreducible

polynomials of degree i in K[Xo] we clearly have that U N, is an infinite set, and hence
oo i=l '

^{^/(Xo/Xi) :/(Xo)eNj is an infinite set of pairwise coprime nonconstant irredu-
cible homogeneous elements in K[XQ, XJ). Moreover, for any such N we have that N
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INVARIANTS OF ANALYTIC LOCAL RINGS 173

is an infinite set of pairwise coprime nonconstant irreducible homogeneous elements
in K[X],

Therefore, we can find a nonconstant irreducible homogeneous element E, of some
degree q>o, in K[X] such that for all je]' we have Ej^EK[X].

Let W y : A->A/EjA be the canonical epimorphism.
We claim that ifj is any integer in J, V is any element in A with Wj(V) =|=o, k* is

any nonzero element in K, and b is any nonnegative integer, then
(1) ord^.^VE5) = bq + ord^,(V).

This being obvious for j^J7, suppose that j'ej' and let y=ord^)^(V). Then there
exists a nonzero homogeneous element V* of degree v in K[X] such that
(2) ^.(V)-^.(V*)+an element in M^A))"4-1.

By (2) we get
(3) ^VE^-z^V'E^+an element in M^A))6^^.

Suppose if possible that ord^^w^VJL^^bq-^-v. Then by (3) we get that
ord^^•(A:*ViltE6)>6<74-^5 ^d hence there exists EJeA such that

k^^-^eM^Ay^^1.

Since A:*V*E6 is a nonzero homogeneous element of degree bq-{-v in K[X], we must
now have

ord^=bq+v-^ and ^E^EjEf

where E-* is the unique nonzero homogeneous element of degree bq + v — r. in K [X]
such that

E^-EfelVHA)^-^1.

Now E is irreducible, Ej^EK[X], and ^VE^eEjK^X]; consequently we must have
V*eE;K[X], and hence V^EjE;* for some EfeK[X]. It now follows that
V*—EjEj^GM^A)^1, and hence by (2) we get ord^^.(V)>y, which is a contradic-
tion. This completes the proof of (i).

We can write
(4) F^F^^^F^

where
(5) ^>o, F^eA, and F(S)A=P, for i<s<,e.

For all s^t we have

F(8)^F(OA= n (F^A+I^Ar),
m= 1

and hence we can find a positive integer b* such that

(6) F^F^A+M^A)6* whenever s^t.
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By assumption w,(L(c»F/aXo)) +o for i^j<d, and hence we can find an
integer 6o>&*+M+i such that

(7) ^>ord^,(L(aF/aX<))) for i^j^d.

Given any b>by and any keK, by taking D=kLEt in (3.3) we find

g^eG^A, (ALE^F/aXg), . . . , ̂ LE^F/aX^A)
such that

(8) &,»(F)=F,

and ^(X^-Xi-ALEWaX^e^LE^^F/aXo), ..., (ALE^W^X^A;
clearly then

(9) &,,eGK(A,(LA)nM(Ay),
(10) &,^GK(A, M(AD,
and

( I T ) ^6(Xl)-X,-/;L(aF/aXo)E6eM(A)^;

in view of (4), (5) and (8) we see that there exists a permutation (H(i), ..., H(<?)) of
(i, . . ., e) and units f^ . . . , / , in A such that

g^m^^fs for i^s^e;

now in view (6) and (10) we see that H{s)==s for i<:s^e, and then by (5) we get

(^) &,^GK[A,PJn...nGK[A,PJ.

By taking V== L(BF/aXo) in (i) we get that: if; is any integer with i<j<:d, ^ is
any nonzero element in K, and b is any nonnegative integer, then

(^ ^.(^(^(BF/a^E^^^+ord^^^^

It only remains to note that in view of (7), (n) and (13) we have the following:
Let b and b' be any integers with b^bo and b'>_ b^ Let k and k' be any elements
in K. Assume that either: V-=h and K 4= k, or: 6'> & and k 4=0. Then

o^ .̂(̂  ,(X^) -^ (Xi)) - ̂  + ord,^,(L(aF/aXo))<oo

and hence <?M(X,)-&^(X^E,A.

Lemma (3.5). — Let v : A->R be a K-epimorphism where R is an averring ofK with
radR{o}={o}, and Kery=FA with o=t=FeM(A). Z^Pi,...,P, be all the distinct
prime ideals of height j^ero in R. Let] be any ideal in R such that] contains a non^erodiuisor ofR,.
Assume that y(^F/BXo) is a non^erodivisor in R. Then there exists an infinite subset G of

GK(R, J) n GK[R, PJ n... n G^R, PJ

with card (G);> card (K) such that for all g^h in G we have g{v{X^)—h{v(X^(f:P,
for i<z<^.
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Proof. — We can take LeA such that v(L)eJ and ^(L) is a nonzerodivisor of R.
Now ^(P^), . . ., ̂ (PJ are exactly all the distinct prime ideals of height one in A
containing F. We can take E^eM(A) with E^A=y - l(P^) for i<^i<e. Clearly
L(^F/^XQ)^E^A for i^i<e. Therefore by (3.4) we can find an infinite subset G* of

GK(A, LA)nGK[A, v-\P,)]n.. .oG^A, v-1^)]

with card (G°1)^ card (K) such that for all geG* we have g(F)=F, and for all g^=h
inG*we have g^-h^^v-1^,) for i<,i<,e. Let w : G^A, Ker v] -> GK(R) be
the homomorphism induced by v. Now G* cG^[A, Ker v] and upon letting G===w(G*),
in view of [2, (2.2), (2.4)3 (2.5)], we see that G is an infinite subset of

GK(RJ) n GK[R, PJ n... n GK[R, PJ

with card(G)==card(G*)>card(K) andforall g ^ h inGwehave g{v{X^)—h{v{'X.^)e'P
for i^i^e.

§ 4. Separable generation.

Let K be any valued field. Let XQ, X^, Xg, . . . be indeterminates. For every
nonnegative integer m let A^=K[<X^, . . . ,X^>] . We shall tacitly use [2, (2.14)].

Lemma (4.1). — Let R be an analytic local ring over K with dimR==7z>o and
radR{o}=={o}. Let P^, . . .3 P^ be all the distinct prime ideals of height ^.ero in R. Assume
that dimR/P^=7z for i^i^a. Let ^: R->R/P^ be the canonical epimorphism. Let]
be an ideal in R such that J contains a nonzerodivisor of R. Assume that

(') for i^i^a: R/P^ is analytically separably generated over K, i.e., equivalently,
there exists a local 'K.-monomorphism v^: A^-^R/P^ such that R/P^ is integral over y,(AJ and
the quotient field of R/P^ is separable over the quotient field of ̂ (AJ.

Now, for i^i^a, let v^ be any such and take any ^eR with ^(^)=^(Xi). Then
there exists an infinite subset G of

GK(R, J) n GK[R, P,] n. . . n G^R, PJ

with card(G)^>card(K) such that for all g=^h inGwehave g[x^—h[x^V^ for i^i^a.
Proof. — Let T be the total quotient ring of R, and let S be the integral closure

of R in T.
By [i, (18.9)] we see that: P^T, . . . , P g T are exactly all the distinct prime

ideals in T, and they all have height zero; (P/T)nR=P, for i^r<^; T is
noetherian; and if T' is any noetherian subring of T with total quotient ring T then
(P^T) n T', . . . , (P^T) n T' are exactly all the distinct prime ideals of height zero in T',
((PlT)nT /)n. . .n((P,T)nT')=radT-{o}={o}, and ((P,T) nT)T=P/T for i^i^a.

For i^'^a, we have (TP^) n K = P ^ n K = { o } and hence we can take an
overring T^ of K and a K-epimorphism w^: T->T^ with Ker ^=P^T. By [i, (18.9)]
we now see that w^@ . . . @w^ : T -> T\<3.. . €)T^ is an isomorphism, and T^ is the quotient
field of ^(R) for i<^i<a. Let S^ be the integral closure of ^(R) in T^ for i^i^a.
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Because of (') we have that the integral closure of R/P. in the quotient field of R/P
is a finite (R/P.)-module for ,<i<a, i.e., S, is a finite ^(R)-module for r<i<a.
Therefore by [i, (19.23)] we see that S is a finite R-module and
(1) s=";^l(Sl)n...n^-l(S„).

Let ^:R/P;->T< be the unique monomorphism such that t't-( y} = w-( v) for
all jeR. Let v^t^. Then for ^i^a we have that: .:': A-.T is a
K-monomorphism; w^)=v',(X,); T. is a finite separable algebraic extension of the
quotient field of ..'(AJ; S. is the integral closure of ..'(AJ in T<; and S, is a finite
o, (A J-module.

Let B be the quotient field of A,.. Then there exists a unique monomorphism
?. : B-^T. such that q^)=v,{y) for all jeA,, Since T. is separable over q.(B), there
exists o^'eT, such that T^(B)^J. Let ^[T.: ̂ (B)], and let//(X,) be the
momc polynomial of degree d, in X, with coefficients in B such that upon applying q.
to the coefficients of/;.'(Xo) we get the minimal monic polynomial of^' over .̂-(B). We
can take elements Zy in an algebraic closure of B such that

y;'(Xo)=(Xo-^)...(Xo-^) for i^i^a.

Since ^+o, ...,^+o, we must have ^+o for all i , j ; consequently, since B is an
infinite field, we can find nonzero elements ^, ...,^ in B such that b.z-^b-^-
for all i , j , i',j' with i^i'. Now we can find o^eM(AJ such that upon letting * *'

/.(Xo)=w^.y/(Xo/(^))
we have

(2) ^(Xo)-X^(M(AJ)[XJ for i^i^a.

Let ^=(^(^))^ for ^•^ Then/,(Xo),...,/,(X,) are pairwise distinct
nonconstant monic irreducible polynomials in B[Xo], and for i^i^a we have that
T.=?.(B)[^] and upon applying q, to the coefficients of/i(Xo) we get the minimal
momc polynomial of ^ over y.(B); by (2) we see that .̂eS. for i^i^a. Let
M.:B[X()]^T, be the unique homomorphism such that y,(Xo)=^. and u.(y}==q.(y}
forallj,eB; then "<(B[Xo])=T., Ker ..=^(Xo)B[X<,], and ^)==^) for all j,eA,

-Liet
(3) ^^(Xo)...^^)

and consider the homomorphism

MI® ... ®a, : B[XJ -^ Ti®... ®T,.

Since /i(Xo), .. .,^(Xg) are pairwise distinct nonconstant monic irreducible polynomials
in B[XJ, we see that

Ker(^®...®aJ=FB[Xo] and («,®.. .@u^(R[X^])=T,@.. .®T,.

Since ^©.. .9^ : T^ T,®.. .®T^ is an isomorphism, we get a unique homo-
morphism u: B[XJ ->T such that (w,®... ®<) («(^)) = (^©... ®^) (̂  for all.̂ B[X<,].
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It follows that: ^(B[Xo])=T;Ker^=FB[Xo];^^(^))==yKJ /) for all j^eA^ and all i
with i<z<f l ; ^is a K-homomorphism; and w,(^(Xo))=^ for i^'<fl.

Since ^ is separable over ^(B), we have that ^(Xo)/aXo^/,(Xo)B[XJ for
i < z < f l $ by (3) we get

aF/aXo= S/,(Xo).. ./,_i(Xo)(a/,(Xo)/aXo)/^,(Xo).. ./,(x,);^0— /"Jl^-^- • -Ji-1
t==l

since/i(Xo), . . .,faQ^o) are pairwise distinct nonconstant monic irreducible polynomials
in B[Xo], we get that aF/aX^(Xo)B[Xo] for i^r<a; since ^(B[Xo])=T and
Ker u==f^Xo). . .^(Xo)B[XJ, we conclude that ^(BF/aXJ ^ a nonzerodivisor in T.

Let any ZeA^[XJ be given such that u(Z) is a zerodivisor in T; since ^(B[XJ) ==T,
there exists Z'eB[XJ such that ZA(Z')+o=^(Z)^(Z') ; since Ker^=FB[Xo], we
must have Z'^FB[XJ; we can find o+Z'eA^ such that Z'Z*eAJXj; clearly
Z'Z^FB[Xo], and hence ^(Z'Z*)4=o; also u{Z)u{ZfZ^=o, and hence u{Z) is a
zerodivisor in ^(AJXo]). We conclude that every nonzerodivisor in z/(AJXJ) remains
a nonzerodivisor in T. Given any YeB[XJ, we can find o=(=Y*eA^ such that
YY*eAJXJ, and then ^(Y)^(Y*)e^(AJXo]) and ^(Y*)eAJXJ; since /,(XJ is a
nonconstant polynomial in B[XJ, we must have Y^/^X^BIXo] for i<:i<:a', since
Ker ^=/i(Xo). . ./,(Xo)B[Xo], and/i(Xo), . . .,/a(Xo) are pairwise distinct nonconstant
monic irreducible polynomials in B[XJ, we conclude that u(V) is a nonzerodivisor
in ^(B[XJ). Since M(B[XJ)=T, it now follows that T is the total quotient ring
^(AJXo]).

For i<i<a we have ^(AJXo]))=^(AJfcL ^(AJ cS,, and ^eS,. There-
fore w^(AJXo]))cS, for i<i<a, and hence by (i) we get ^(AJXo])cS.

Given any seS, by (i) we have w^eS, for i<:i<a', since S, is integral
over yK^) and y^/(An)=w^(^(An))5 there exists a nonconstant monic polynomial E,(X)
in an indeterminate X with coefficients in ^(AJ such that ^(E,(J))=o; let
E(X)=E^(X). . .E^(X); then E(X) is a nonconstant monic polynomial in X with
coefficients in ^(AJ, and w,(E{s))=o for i<:i<a; consequently E(^)=o, and hence s
is integral over ^(AJ. This shows that S is integral over ^(AJ, and hence S is integral
over M(AJXJ).

Thus upon letting R^^AJXJ) we have that: R* is a noetherian subring ofT;
T is the total quotient ring of R*$ KcR^cS; and S is integral over R*. Whence, in
particular, (P^T) n R*, .. ., (P^T) n R* are exactly all the distinct prime ideals of height
zero in R*. For i^i<,a we have that: ^,(R*) = ̂ (AJ fclcs^ T^ is the quotient
field of ^(AJ [^]; S, is the integral closure of^(AJ in T,; and S, is a finite ^ (A J-module.
It follows that for i<i<a, the integral closure of R*/(P,T)nR* in the quotient field
of R*/(P,T)nR* is a finite (R*/(P,T) nR*)-module. By (2.3.3) we can now find an
ideal J* in R' such that J*ct= P,T for i^i<:a, and

(4) lR.(GK(R\r))clR(GK(RJ)).
177
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Let d= d^+... + <4, let A' be the set of all polynomials of degree <d in Xy with
coefficients in A,,, and let A=K[<Xo, ..., X^>] where we regard A to be an overring
of A,,. By (2) and (3) we know that F is a monic polynomial of degree d in Xg with
coefficients in A,,, and F -X^e (M(AJ) [XJ. Therefore, by the Weierstrass Preparation
Theorem [i, (10.3)], for every /eA there exists a unique r/eA' such that /—r/eFA.
We get a map v : A^T by taking v{f)=u^) for all /eA. By [i, (10.3)] we also
have that: r^p=r,+r^ and r^-r^eFAJXJ for all / and /* in A; and
/—r/eFAJXJ for a]l/eA,.[XJ. Since Ker K=FB[X(,] and clearly (FB[XJ) nA'={o},
we deduce that: v{f) = u{f) for all /eA,,[Xo]; v is a ring homomorphism of A into T;
Ker»=FA; and p(A)=y(A^[Xo]). Since v(f)=u{f) for all /eA,,[XJ, we also get
that w,(y(X,))=W((M(Xi))=^(Xi)=w^.) for i^i^a.

Thus v : A->T is a K-homomorphism such that: Kery=FA; »(3F/()XJ is a
nonzerodivisor in T; o(A)=R*; and w.(z'(Xi))=w.(^,) for i^i^a. Let

Go = GK (R, J) n GK [R, P,] n... n GK [R, PJ,
and G;== G^(R*, J*) n G^R*, (PiT) n R*] n.. .n GK[R*, (P,T) n R*].

Ky (3-5) we can now find an infinite subset G* of G^ with card (G*)^ card (K) such
that for all g " d p K in G* we have g* (v(X^)) - h\v{X^ ̂ T for i^i^a. Let
G=IB1(IR*(G*)). Then by (4) and (2.3.1) we see that G is an infinite subset of Gg
with card(G)^card(K).

Finally, let any g d p h in G and any i with i^i<a be given. We shall show that
then g{Xi)—h(x,)iPf and this will complete the proof. Let g'==ls{g) and A'=Ig(A).
Then g'eIy{G*), A'eL^G*), and g ' ^ h ' ; consequently g'W^-h'^X^^T, i.e.,
(5) w.(^(Xi)))-w..(^(X,))) +o.

Now g'eI^Go) and A'eL^Go), and hence by (2.3.1) we see that

^eGK[S,(P.T)nS] and ^'eG^S, (P.T) nS].

In view of (i), we get a K-epimorphism w,' : S^S<, with Ker W(=(P,T) n S, by taking
^y)=w^) for all j»eS. Let w, : GiJS, Ker w;] ̂  G^S,) be the homomorphism
induced by w\. Now

^8^) - h{x,)) = ̂  (^'(^) - A' (̂ .))

=^(^(^)-^(^(^))
=^(,g')(^(^))-w:W(w;(^))
-^(^(^(^Xi)))-^^'^^^^^)))
=w^g'(u(X,)))-w',(h'(v(X,)))
+o by (5),

and hence ^(.V,)—A(.V()^P,.

Theorem (4.2). — £e< R 6c ara aTta/yftc foca/ ring over K w^A dim R>o. Let
Q.I » • • • » Q,o (^>o), be any distinct isolated primary components of {0} w R jwA fAaf
dim R/Qi =... = dim R/CL. Let ra==dim R/Q,,. Let P. = radaO,.. Zef t,: R^ R/P;
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be the canonical epimorphism. Let Q^, . . ., Q^ (&>o), be any finite number of ideals in R
such that for i<^i<a and i<j<6 we have Q^j^P^. Assume that

(*) there exists a VL-epimorphism u: Aj->R, for some d, such that u~l{Q^^ is a symbolic
power of u~l(P^ for i^i^a.

Also assume that
(') f^ l<^^<^a: R/PI is analytically separably generated over K, i.e., equivalently^ there

exists a local K.-monomorphism v^: A^—^R/P, such that R/P^ is integral over ^(AJ and the
quotient field of R/P^ is separable over the quotient field of ̂ (AJ.

Now, for i^i^a, let v^ be any such and take any ^eR with ^(^-)==^(Xi). Then
there exists an infinite subset G of

H^R, %) n^lG^R, Q,.] un^ER, QJ nAG^R, Pj

with card (G)^ card (K) such that for all g^=h in G we have g{x^)—A(^)^P^ for i^i^a.
(For an intrinsic formulation of (*) see [2, (3.6)]. Note that (*) is automatically

satisfied in case Q^=P^ for i^i^a, because then we can take u to be any
K-epimorphism A^->R. Also note that (*) is automatically satisfied in case
endimR=7Z+i? because then we can take u to be any K-epimorphism A^^_^->R;
(see [2, (2.16)]). Finally, note that if (^, . . ., ̂ J is any basis of M(R) and i is any
integer with i^i^a, then there exists an integer q with i<^q^m and an infinite
subset G' of G with card (G');> card (K) such that for all g^=h in G' we have
g{^q)—^(^)^P^ namely, from the existence of G, the existence of q and G' is easily
deduced by using [2, (2.3) and (2.11)].)

Proof. — Since Q^, . . ., Q^ are isolated primary components of {0} in R, there
exists an ideal Q^ in R such that Q,n Q^n. . .n Q^={o} and Q+P^ for i<^i^a.
Let J==Q,nQ;in...nQ;^. Then Jn Q^n. . .n CL^o} andJcf:P,for i<i<a. We
can take an overring R* ofK and a K-epimorphism v : R->R* with Ker v=~P^ n. . . n P^.
Let T=v(J). Let

GO-GK(R,J) n^nGK[R, Pj n,nGK[R, QJ,

and G;=GK(R*,J*) n^nGK[R*, ^(P,)].

Let w : G^[R, Ker v] -> G^(S) be the homomorphism induced by y. Then by
[2, (4.4)] we have w(Go)=G^; note that clearly

GK[R, PJ n. . . n GK[R, PJ CGK[R, Ker .]

and hence it makes sense to talk about w{G^). Also note that, in view of [2, (2. i), (2.2)],
we have GoCG^(R, Q^cG^R, Q ]̂ for i^j^b. Now J* contains a nonzerodivisor
ofR*, and hence by (4.1) there exists an infinite subset G* ofG^ with card (G*)^ card (K)
such that for all g ^ h in G* we have g{v{^))—h{v{x^))^v{'P^ for i_<z_<6Z. Since
w{Go)=G^ for each geG* we can fix ^'eGg with w^g^^g'y now it suffices to take
G-U':^G*}.
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Theorem (4.3). — Let R be an analytic local ring over K with dimR>o and
radR{o}={o}. Let P^, . . . , P, be all the distinct prime ideals of height ^ero in R. Let T
be the total quotient ring of R, and let S be the integral closure of R in T.

(Note that then (see [i, (18.9)]): P^T, . .., P,T are exactly all the distinct prime
ideals in T, and they all have height zero; (P,T)nR=P, for i<:i^e; T is noethe-
rian; and if T' is any noetherian subring of T with total quotient ring T then
(P^T) n T, . . ., (P^T) n T' are exactly all the distinct prime ideals of height zero in T',
((P,T)nT')n.. .n((P,T)nT')=rad^{o}={o}, and ((P,T) nT)T=P/T for i^i^e.

For i^ i<, e, we have (P,T) n K= P, n K={o} and hence we can take an overring T,
ofK and a K-epimorphism w,: T->T, with Ker^=P,T. By [i, (18.9)] we now see
that Wi®.. .®^ : T-> TI®. . .®T, is an isomorphism, and T, is the quotient field
of^(R) for i<:i<,e.)

Assume that

(') for i<:i<:e : R/P, is analytically separably generated over K, i.e., equivalent,
there exists a local K-monomorphism v,: A^-^w,(R), where 7^= dim R/P,, such that w,(R)
is integral over y,(AJ, and T, is separable over the quotient field ofy,(AJ.

Now, for i<i<:e, let v, be any such and take any s,eS with ^(^)==^(Xi).
Let R' be a subring ofT. Assume that: R' is noetherian; K cR' C S; S is integral over R';

T is the total quotient ring of R'; and the integral closure of R'/(P,T) n R' in the quotient field
of R'/(P,T)nR' is a finite (R'/(P,T) nR')-^^^/^ i<,i<,e.

(Note that in the presence of('), in view of [i, (19.23)] we see that these assumptions
on R' are automatically satisfied in case RcR'cS.)

Let J' be an ideal in R', and let a be an integer with i<^a<,e. Assume that
dim R/PI = = . . . = dim R/P, and J'4:P,T for i<,i<,a. Then there exists an infinite
subset G of

GK^DHGKER', (PlT)nR/]n...nGK[R/, (P,T)nR']

with card(G);>card(K) such that for all g^h in G we have IR'(<?)(^)—IR.(A)(^)^P,T
for i<r<a.

Proof. — By (2.3.3) we can find an ideal J in R such that J 4: P, for i< i< a, and

W I^R^CIRWJ').
Let

GS-GK(R,J) nGK[R, PJ n. . .nGJR, PJ,

and Go^G^R'J^nGKER', (P^T) nR'] n.. .nGK[R', (P,T)nR'].

We can take ^eR with ^(^)=y,(Xi) for i<,i<^a. By (4.2) we can now find an
infinite subset G" of G^ with card (G*)^ card (K) such that for all g ^ h ' in G* we
have g\x,)-h\x,)^ for i^i^a. Let G^I^I^G')). Then by (i) and (2.3.1)
we see that G is an infinite subset of Go with card (G)^ card (K).

Let any integer i with i<, i<, a and any elements g and h in G with g =t=A be given;
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^t g'=lw(g) and A'=IR,(A). We shall show that g ' {s,}- h' (^ P. T and this will
complete the proof. Clearly

(2) ^)=" î).

Now g'=I^g") and h'=I^{h") where ^* and A* are elements in G* with g ^ h " ; conse-
quently .̂)-A*(̂ P..; since ,̂)=.?*(̂ ) and h'(x,) = h\x,), we conclude that
g'{x,)-h'(x,)^, i.e.,

(3) ^'(0)+^(A'(^).

By (2.3.1) we have IR(GK[R, P.]) cG^S, (P,T) nS], and hence g ' and h' are in
^[^ (P.T)nSJ. We get a K-epimorphism w\ : S->w,{S), with Ker ^=(P,T) nS,
by taking w'^s) = w,(s) for all seS. Let w; : GJS, Ker w;] -> GK(».(S)) be the homo^
morphism induced by w[. Then

^te')(WiM)=w.(^(J)) and w;(A')(w^))=w,(A'(;r)) for all jeS;

consequently by (2) and (3) we get that w.(̂ .)) +W.(A'(J.)), and hence
^<)- .̂Wr.

§ 5. Perfect fields.

Let K be any valued field. Let Xg, X^, Xg, ... be indeterminates. For every
nonnegative integer m let A^=K[<X^ ...,X^>]. We shall tacitly use [2, (2.14)].

Lemma (5. i). — Assume that K is a/characteristic p^o. Let

V(Xo, ..., XJeK[<Xo, ..., X»>], (»>o),

Ac such that V(Xo, .. ., XJ^K[[Xo, Xf, .. ., X^]] W

V(X,, ..., XJ=X^+^V.(X,, ..., XJX^-1

where d>o, V.(X,, ..., XJ eM(K[<Xi, .. ., X» >]) /or i< ̂  rf, and V,(X,, ..., XJ +o.
TACT ^rc exists an integer s with i^s<^m, and positive integers u^ ..., u,_^, u , ... u
such that upon letting Y,=X, and Y,=X,+X:'/or t==i, .. .,s-i,s+i, s.. ̂  we haw that

V(X<>, Y,, . . . , YJ=D(Xo, ..., XJW(X,, ..., XJ

where D(Xo, ...,XJ and W(Xo, ...,XJ are elements in K[<Xg, ...,X»>] such that
D(o, ..., o) +o, W(Xo, ..., X^K[[X<,, ..., X,.,, X?, X,^, ..., XJ], W

W(Xo,...,XJ=X:+^W,(X<„...,X,_„X,^,...,X„)X^<

with e>o and W,(X<,, ..., X,_,, X,,,, .. .,XJeM(K[<X<,, ..., X,_,, X^, .. .,X«>])
/or i^i^e. Moreover, if V(Xo, ...,XJ is irreducible in K[<Xi, ...,X«>]PC()] then
W(X<,, ..., XJ is irreducible in K«X(,, . . . , X,_^, X,^, . . . , X^»[XJ.
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Proof. — Since V(Xo, .. ., XJ^K[[Xo, Xf, . .., X^]], there exists an integer j
with i^j^d such that V,(Xi, ...,XJ^K[[X?, ...,Xa]. Now

V,(X,,...,XJ=^H»(X,,...,XJ

where H,(Xi, . .., XJ is an element in K[Xi, . .., XJ which is either zero or is homo-
geneous of degree a. Since V,(Xi, .. ., XJ^K[[Xf, ..., X^]], we must have
H<,(Xi, ..., XJ^K[[X^, . .., X^]] for some a; let b be the smallest such value of a.
Now we must have H(,(XI, .. ., XJ^K[X^, . .., X,_i, Xf, X^i, . .., XJ for some s
with i^^re. Since V^X^, . . . ,XJ=|=o, by a standard argument [4, p. 147] we
can find integers M( > i for t=i, ..., s— i, s-\-i, .. .,n, such that upon letting Yg = X,
and Y(=X(+X^' for t=i, ..., s—i, s+i, .. ., n, we have that
(i) V,(Yi, . . . ,YJ^(Xi, ...,X,_,,X,^, ...,XJK[pCi, ...,XJ].

We get an element V*(XQ, ..., XJ in K[<Xg, ..., X«>] by setting
V(Xo, . . . ,XJ=V(XO,YI, . . . ,YJ.

By (i) we see that
(a) V*(Xo, ...,X^(Xo, . . . ,X,_i ,X^i, . . . ,XJK[[Xo, . . . ,XJ]

and hence by the Weierstrass Preparation Theorem [i, (10.3)] we have
(3) V(Xo, ..., XJ=D(X,, ..., XJW(Xo, ..., XJ

where D(Xg, .. ., XJ and W(Xg, ..., XJ are elements in K[<Xo, ..., X^>] such that
(4) D ( o , . . . , o ) + o

and W(Xo, .. ., XJ=X^SW.(Xo, .. ., X,_^, X,+i, ...,XJX:-

with e>o and
W,(Xo, . . . ,X,_i,X,+,, . . . ,XJeM(K[<X<,, ..., X,_i, X^i, . . . ,X«>] )

for i^i^e; by [i, (10.3) and (10.7)] we also know that if V(Xo, . . ., XJ is irreducible
in K[<Xi, ..., X»>][X<,] then W(X<,, ..., XJ is irreducible in

K-«Xg, ..., X,_i, Xg^i, ...,Xn»[XJ.

Let E be the set of all polynomials of degree <d in Xg with coefficients in
K[[Xi, .. ., XJ]. Let V:(Xi, ..., XJeK[[Xi, . .., XJ] be denned by setting

V:(X,,...,XJ=V.(Y,,...,YJ.

Then V(X,, ..., XJ=X^+^V:(Xi, . . ., XJX^-1

and V;(Xi, ...,XJeM(K[[Xi, ...,XJ]) for i^i^d; consequently by the uni-
queness part of the Preparation Theorem [i, (10.3)] we see that

En(V*(Xo, ...,XJK[[Xo, ...,XJ])={o},
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and hence by (3) and (4) we get

<5) En (W(X,, . .., XJK[[Xo, . .., XJ])={o).

Since K(>I for f== i , ..., s—i, s+i, .. .,n, we see that

H^(YI, . .., YJ=Hi(Xi, .. ., XJ+terms of degree>& in (X^, .. ., XJ

and hence

V;(X,,...,XJ=J|^(Y,,...,YJ

=j,H»(Yl '••• 'Yn)+H,(X„... ,X„)

+ terms of degree>^ in (X^, ..., XJ;

since H^X^, .. ., XJeK[Xf, ..., XJ for i^a<b and

H,(X,, . . . , XJ^K[X,, ..., X,_,, X?, X,^, .. , XJ,

we conclude that

V;(X,, ..., XJ^K[[X,, ..., X,_,, Xf, X^,, ..., XJ],
and hence

(6) 3V;(Xi....,xj/ax,+o.
Now 3V*(X<,, . . . , XJ/3X,=^S(W:(X,, ..., XJ/^XJX^-

and hence by (5) and (6) we get that

(7) 8V*(X<,, ..., X^)/5X^W(Xo, ..., XJK[[Xo, ..., XJ].

By (3) we have

0V*(Xo, ...,xj/ax,=(0D(x,, ...,xj/axjw(x,, ...,xj
+ D(X<,, ..., xj (aw(Xo,..., xj / ax,)

and hence by (7) we get that
aW(X,, ...,XJ/aX,+o,

i.e., W(X,, . . . , XJ^K[[Xo, . . . , X,_,, Xf, X,^, .. . , XJ].
Lemma (5.2). — Assume that K M a perfect field of characteristic pdpo, and let R

be an analytic local domain over K with dim R=n>o. Let T be the quotient field of R.
Let (A-i, . . . , x ^ ) be a system of parameters of R, let RO=K[<^, ..., ̂ >], anrf let
To=K«^i, . .., ̂ ». Z^ ^:€M(R) ^ ^cA that either: (i) ^^T", or: (2) z is inseparable
over To. Then there exists a basis (^, .. ., ̂ ) o/ M(Rg) ^A ^a^ (̂ , ̂ , .. ., ̂ ) ^ a system
of parameters of R W ̂  ^ separable over K«^, ^3, .. ., ̂ ».

Proo/'. — Let

/(X^X^/^-^... +/„ with ^eTo,
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be the minimal monic polynomial of ^ over To. Then ^eM(Ro) for i<:i<:d, and
/^4=o. Let V,(Xi, . . . ,XJ be the unique element in K[<X^, . . . ,X^>] such that
V,(A:i, ...,^)=/,, and let

V(Xo, . . ., XJ^+S^X,, . .., XJX^-1.

Then V(XQ, . . ., XJeK[<Xo, ...,X,>], V,(X,, . . ., XJeM(K[<X,, . . ., X,>]) for
i^i<^V,(Xi, ...,XJ+o, andV(Xo, ..., XJ is irreducible in K[<Xi, . . ., X,>][XJ.

Suppose if possible that V(XQ, . . ., XJ eK[[Xo, Xf, . . ., X^]]. Since K is perfect,
by [i, (24.1)] we then have /(Xo)eRg[Xo]. If also /(Xo)eTo[Xg] then we would
get /(Xo^eTopCo] and /(Xo)=(/(Xo)l/p)p, which would contradict the fact that/(Xo)
is irreducible in To[Xo]. Consequently, /(Xo^TJX^], and hence ^ is separable
over To. Therefore ^T^. Now ^ ' p satisfies the equation

W+f,llpWl+ ' . • +/^=o

of degree d with coefficients /^, . . ̂ f^ in To, and hence
[To(^):To]^^=[To(^):To].

Consequently ^eT^) cT, and hence ^E^. This is a contradiction.
Thus we must have V(XQ, . . ., XJ^K[[XQ, Xf, . . ., X^]]. Therefore by (5 .1 )

we can find s, u^ . . ., u,_^ u,^, .. ., ̂ , Y,, . . ., Y^, D, W, e, W^, . . ., W, as des-
cribed there. Let j^^ and yt==xt~xust for t=i,..., j—i,^+i, ...,^; let
//=W^,^, ...,^-1,^+1, ...,^) for i^z^; and let

/'(X,)=X^+/l/Xrl+...+/;.

Then (j<, . . .,^) is a basis of M(Ro), and /'(^)=o. It follows that

(^J<. •••^s-l .^+15 •••^n)

is a system of parameters of R, and/'(X,) is the minimal monic polynomial ofy, over
K«^J<, . . .,^-1,^+1, . . .,X». Since

W(Xo, . . . , XJ^K[[Xo, . . . , X,_,, X^, X^,, ... . X,]],

we also have thatj^ is separable over K«^, . . .,^-1,^+1, . • ^jO)- It ^w suffices
to take (^, . . ., ̂ J^O^i, . . •5^-15^+1? • • -^n)-

Z^wmfl (5.3). — Assume that K ^ a perfect field of characteristic p ^ p o , and let R be an
analytic local domain over K with dimR=^>o. Let T be the quotient field of R,
let (^, .... A:J &<? a .y^wz of parameters of R ^A ^^ T is separable over K«^, . . ., ̂ »,
a^ /^ ^eM(R) be such that ^^T^. Then there exists a basis (^ i , . . . , ^ ) of
M(K[<^, . . ., ^>]) ^^ ^^ (^, ̂  • • •^n) z>y a ̂ ^ of parameters ofR. and T is separable
over K«^2, ...,^»-

Proq/; — By (5.2) there exists a basis (^, . . .,^) ofM(K[<^, . . .,^>]) such that
(<S;, %, . . . , ̂ ) is a system of parameters of R and ^ is separable over K«^, ^2, . . . , ̂ ».
It follows that T is separable over K«^, ̂  ..., ̂ ».
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Lemma (5.4). — Assume that K is perfect, and let R be an analytic local domain over K.
Then R is analytically separably generated over K.

Proof. — Let n = dim R, T == the quotient field of R, and p = the characteristic
ofK. We have nothing to show if either p=o or n=o. So suppose that j&=f=o and
n>o. In [i, (24.5)] we have given a proof in this case under the additional assumption
ofK being infinite. As an application of (5.2) we shall now give a proof which is inde-
pendent of this additional assumption. Namely, it suffices to show that given any system
of parameters (^, . . ., ̂ ) of R such that T is inseparable over K«^, . . ., ̂ », there
exists a system of parameters (^, . . ., ̂ ) of R such that

( T ) [T : K«^, . . . , ̂ »],< [T : K«^, . . . , ̂ »],

where [ ], denotes the degree of inseparability. So let (^, . . ., x^) be any given system
of parameters of R such that T is inseparable over K«^, . . ., A^». We can take
^eM(R) such that ̂  is inseparable over K«^, . . ., A^», and then by (5.2) we can find
a basis (^ ̂ , . . . ,^) of M(K[<^, . . . ,^>]) such that (^, ̂  • • • ^ n ) is a system
of parameters of R and ^ is separable over K«^, ̂ , ...,^». Now we clearly
have (i).

Theorem (5.5). — Assume that K ^ J^T/^, and let R ^ ̂  analytic local ring over K
with dimR>o and radR{o}={o}. Let P^ . . . , P , be all the distinct prime ideals of
height ^ero in R. Let T be the total quotient ring of R, and let S be the integral closure of R
in T.

Note that then (see [i, (18.9)]): P^T, . . ., P,T are exactly all the distinct prime
ideals in T, and they all have height zero; (P,T)nR=P, for i<^i^e; T is noethe-
rien; and if T' is any noetherian subring of T with total quotient ring T then
(P^T) n T', . . ., (PgT) n T' are exactly all the distinct prime ideals of height zero in T',
((PiT)nT')n. . .n((P,T)nT')==rad^{o}={o}, and ((P/T) nT)T=P,T for i^i<,e.

For i<i<e, we have (P,T) nK==P,n K={o} and hence we can take an overring T,
of K and a K-epimorphism w,: T—T, with Ker^=P,T. By [i, (18.9)] we now see
that ^C...®^ :T-^T^®. . .®T, is an isomorphism, and T, is the quotient field
of ^(R) for i<^i<e.

Let S, be the integral closure of w,{K) in T,for i<i<:e. By (5.4) we know that R/P,
is analytically separably generated over K for i<:i^e, and hence S, is a finite
^(R)-module for i<:i<e; consequently by [i, (19.23), (20.6)] we see that S is a
finite R-module, S^^-^S^) n . . .n ̂ -^SJ, and S, is a local domain for i^i^e.

Let R' be a subring of T. Assume that: R' is noetherian', KcR'cS; S is integral
over R'$ T is the total quotient ring of R'; and the integral closure of R'/(P,T) nR' in the
quotient field of R' /^(P,T)nR' is a finite (R'/(P,T) nR')-module for i<,i<e.

(Note that, in view of what we have said above, these assumptions on R' are auto-
matically satisfied in case RcR'cS.)

Let K' be the integral closure of K in T, and let K, be the integral closure of K in T.for
^^i^e. Then we have the following.
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(5.5.1) K, is a coefficient field of'S, for i<:i^:e, and K'=wf l(Kl)n.. .n^;- l(KJ.
Given any elements ^, . . ., x^ in S, there exists yeS such that for i^i^e we have: w^y)^Vi^
and if w,{x,)(f:K, then w^y)=w,[x,).

(5.5.2) Let ] ' be an ideal in R', and let a be an integer with i^a<^e. Assume that
dim R/PI = = . . . = dim R/P^ and J' cj: P^T for i <zX a. Let any elements x^, .. ., ̂  in S
be given, and let W be the set of all integers i with i<^i<,a such that w^x^K^. Now take
any elements y^, . . . , ja in S such that w^y^K, for i^i^a, and w^y^=w^x,) for all
zeW (note that by (5.5.1) we can actually find yeS such that w^y)^, for i<i<^e,
and w^y)==w^Xi) for all zeW). Then there exists an infinite subset G of

G^R'J^nGKER', (P ,T)nR / ]n . . .nGK[R / , (P,T)nR']

with card (G)>_ card (K) such that for all g^h in G we have IR^)C^)—IR'(A)Q^P,T
for i^i^a, and IR^)(^)-IR^)(^P,T for all zeW.

(5-5-3) ^et J' be any ideal in R' such that ] ' contains a non^erodivisor of P.'. Then

Inv GK(R', J') n GK[R', (P,T) n R7] n . . . n G^R', (P,T) n R'] cK'.

Proof of (5.5. i). — By HenseFs lemma [i, (20.6)] we see that K, is a coefficient
field ofS, for i^i^e.

To show that K'== w^^K^) n. . . n ̂ (K,), let any teT be given. If teK' then
clearly w^eK, for i<:i<:e, i.e., tew^1^) n. . .n ̂ (KJ. Conversely suppose
that ^e^^Ki) n. . .nz^r^KJ; then ^(^)eK^ and hence there exists a nonconstant
monic polynomial ^(Z) in an indeterminate Z with coefficients in K such that
^{fiW^0^ kt /(Z)==^(Z). . ./g(Z); then/(Z) is a nonconstant monic polynomial
in Z with coefficients in K, and w,(f{t))=o for i^i<e; consequently /(^)==o, and
hence teK'.

Finally, let any elements x^ . .., x^ in S be given. Now S^ is a local domain
with dim S,=dim ^(R)>o and hence we can find ^'eS, with ^K,. Since
S === ̂ F^Si) n. .. n w^^SJ, there exists a unique yeS such that for i< i< e we have:
^(y)==w,(x,) if w,(^)^K,, and ^(j/)=A:; if ^(^)eK,.

Proof of (5.5.2). — Let R*=R[N] where

N=^- l(M(Sl))n... 0^-^(8,)).

Now Wi®. . .®w, :T-^TI©.. .®T, is an isomorphism, S ̂ ^^(Si) n. . .n ̂ (SJ,
and S, is a local domain for i<:i<:e; consequently by [i, (18.8)] we see that
z^(N) = M(S,) for i^ ̂  ̂ , and N == the intersection of all maximal ideals in S; whence,
in particular, RcR*cS. Since S is a finite R-module, by (2.4) we now get that R*
is an analytic local ring over K. It follows that: T is the total quotient ring of R*;
S is the integral closure ofR* in T; (P^T) nR*, . . . , (P,T) nR* are exactly all the distinct
prime ideals of height zero in R*; ((P,T) n R*)T == P,T for i^ i<, e', T, = the quotient
field ofw^R*) for i<:i<^e\ and for i<i<e we have that w^fC) is an analytic local
domain over K with dim ^(R*)==dim R/P, and ^(M(R*))=M(^(R*))==M(S,).
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Also note that by (5.4) we know that R*/(P.T) nR* (i.e., ^,(R*)) is analytically sepa-
rably generated over K for i<i^e.

Sy (5 • 5 • i) we know that K, is a coefficient field ofS, and hence there exists a unique
A;,eK, such that w,(7;)—^eM(S.); note that now o+Wi(j,)—^eM(S.)=M(w,(R*))
for i_< r< a.

Let »=dimR/Pi; note that then n>o and dimw.(R*)=7z for i<,i<,a. Let?
be the characteristic exponent ofK, i.e., p=i ifKis of zero characteristic, and/»=the
characteristic ofKifK is of nonzero characteristic. We claim that for every i with î  i^_ a,
there existe a nonnegative integer b, and a local K-monomorphism v,: A^-^ro.(R') such
that w.(R*) is integral over y,(AJ, T. is separable over the quotient field of^AJ, and

^) ^(X^^O'.)-^, where q,=p\

Case ofp=i. — Upon letting ^=w,(^)-^ we now have that w.(R*)/^w.(R*) is
a local ring of dimension n-1, and hence we can find elements ̂ , ..., ̂  in M(w,(R*))
such that (^, . . .̂ , <:J is a system of parameters of w,(R*); it suffices to take \==i
and f. : A»-^w,(R*) to be the unique K-homomorphism with ^(Xj.)=^.. for i^j^n.

Case^ofp^i. — Now S. is integrally closed in T,, o+w,(^,)-yi:;eM(S,), and
JJ^M(S,)'»={o}; consequently there exists a unique nonnegative integer b, such that
upon letting <y.==^ and ^=(w^)-k^lv we have that ^eM(S,) and ^.^T?;
since M(S.)=M(w.(R*)), we have ^eM(a;,(R*)); now by (5.3) and (5.4) we can
find elements ^, . .., ̂  in M(w.(R*)) such that (^, . .., ̂ J is a system of parameters
ofw.(R) and T, is separable over K[<^, .. ., ̂ >]; it suffices to take v,: A^w.(R*)
to be the unique local K-homomorphism with y,(Xj)==^. for i<^j<_n.

This completes the proof of the claim. For i_<r<a we can take ,?.eS with

(2) w.^)=y,(Xi).
Upon taking R* for R in (4.3) we now find an infinite subset G of

GK(R'J') n GK[R', (P,T) n R'] n ... n G^R', (P,T) n R'j

with card (G)^ card (K) such that for all g^h in G we have IB-€?)(.?<)-IE'(A) (^P^T
for î  i^ a. Henceforth let; be any integer with î  i^ a, let g and h be any elements
in G with g+h, and let g'=~ls'(g) and h'=\,{h}. We know that then
g'{\)-h'.(s,)^T, i.e.,

(3) »'<(^))+^(^)).

We want to show that: ^'(^)-A'(^)^P.T; and if zeW then g'{x,)-h'{x^P,T.
Thus, what remains to be proved is that

(4*) '̂(A))+ '̂(j;,)),

and

(5*) if ^(J.)=w,(^) then w,{g'(x^ ^w,(h'(x,)).
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Now w,{S)=S, and hence we get a K-epimorphism w\: S->S^ with
Ker^==(P,T)nS, by taking w[{s)==w,(s) for all jeS. Let w\: GK[S, Ker ̂ ] -> GK(S,)
be the homomorphism induced by z^. Now ^'==I^(^) and A'=I^(A), and ^ and h
are in GiJR', (P/T) n R']; hence by (2.3. i) we see that^ and A' are in GiJS, (P/T) n S].
Let g=w[{g1) and A*=^(A'). Then

(6) ^GK(S,) and ^(.?'M)=^(^M) for all seS,

and

(7) A*£GK(S,) and w,{h\s)) = ̂ (^M) for all ^eS.

Ky (2), (3). (6) and (7) we get that

(8) ^(Xi))+/^(X,)).

In view of (6) and (7) we also see that (4*) and (5*) are equivalent to asserting that:
g\w^,)) •^h\w^y^). We now proceed to show that

(9*) g{^i))-h'(w^))^

and this will complete the proof.
Now y,(Xi)eM(w,(R*))==M(S,); since ^ and A* are automorphisms of S,, we

have ^(M(S,))=M(S,) and A*(M(S,))=M(S,); consequently

^(XJ)eM(S,) and A^(Xi))eM(S,).

Therefore by (8) we get that

(Io) o+^^(Xi))-A*(^(Xi))eM(S,).

Let
Z=^^(X?))-A*(.,(X?)).

Then by (i)

(!I) §^i))-h\w^))=Z+g\k,)-.h\k^
Now Z=(^(^(X,))-^(^(X,)))^-

and hence by (10) we get that

(12) o+ZeM(S,).

Now K, is the integral closure of K in S,, and g* and A* are K-automorphisms of S,$
consequently we must have ^(KJ=K, and A'(K,)=K,; therefore g'^eK, and
A*(A;,)eK,, and hence

(13) gW-h\k,)eK,.

Sy (5-5- 1 ) we ^ow that K, is a coefficient field ofS,; therefore by (n), (12) and (13)
we get (9*).

Proof of (5.5.3). — Follows from (5 .5 .1 ) and (5.5.2).
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Theorem (5.6). — Assume that K is perfect, and let R be an analytic local ring over K
with dim R>o. Let Qi, . . . , Q^ (<z>o), be any distinct isolated primary components of {0}
in R such that dim R/Q^= . . . =dim R/Q^. £^ p^rad^. £^ Q:i, . . ., Q:& (^o),
be any finite number of ideals in R. such that for i<,i<,a and i<:j<^b we have Q^P..
Assume that:

(*) r̂<? exists a K-epimorphism u : A,->R, for some d, such that ^(Q^), is a symbolic
power of u~~1 (PJ /or î  ̂  a.

Z^ a^ elements x^ . . . , x ^ i n M(R) &<? given. Clearly there then exist elements^, . . .,ĵ
^ M(R) j^A ^/or i^<a w^^: ĵ P,, ^z/ ^P, then y^x^ now let y^ ...,^
^ a^ such. Let W ̂  ^^ set of all integers i with i^ i<, a such that x^P,. Then there exisU
an infinite subset G of

,nGK(R, %) r^UG^R, Q:,.] nn^K[R, QJ ̂ UG^R, P.]

with card (G)^ card (K) such that for all g^h in G we have ,?(j',)—A(j',)^P, for i^i^a,
and g{x,)-h{x,]i^ for all ?eW. * ' - - '

(For an intrinsic formulation of (*) see [2, (3.6)]. Note that (*) is automatically
satisfied in case Q.,=P. for i<:i^a, because then we can take u to be any
K-epimorphism A^R. Also note that (*) is automatically satisfied in case
emdimR=ra+i where w=dim R/Q,i, because then we can take u to be any
K-epimorphism A^^i^R; see [2, (2.i6)].)

Proof. — Since Q,i, ..., Q.(, are isolated primary components of {0} in R, there
exists an ideal Q, in R such that Q,n^n . .. nQ^={o} and Q,4:P, for i^i<a.
Let J=Qn Q;i n ... n Q,̂ . Then J n Q^ n . .. n Q.<,={o} and J <<: P( for i< i^a. We
can take an overring R* of K and a K-epimorphism v : R^R* with Kery=P^n nP
Let J*=y(J). Let '" "'

GO=GK(R,J) n,nGK[R, P.] n^nGK[R, QJ,

and G;=GK(R^J•)n.nGK[Rt, .(P.)].

Let w : GK[R, Kero] -> Gg(R*) be the homomorphism induced by v. Then by
[2, (4.4)] we have w(Go)=G^; note that clearly

GK[R, Pi] n ... n Gg[R, PJ CGK[R, Ker v]

and hence it makes sense to talk about w(Go). Also note that, in view of [2, (2. i), (2.2)],
we have GoCG^R, Q:,) cGiJR, Q:,.] for i^j^b.

Let ^ : R* ->• R*/y(P,) be the canonical epimorphism. Then for i^ i<^ a, in
view of [2, (2. io)], we have that t,{v{y,}) is not integral over ^.(K), and: I'eW^^y^..))
is not integral over f.(K) ^> t,{v(^))=t,(v(x,)). Also clearly J*cl:a(P.) for i<i<,a.
Therefore by (5.5.2) there exists an infinite subset G* of G^ with card (G*)^ card (K)
such that for all g^h in G* we have ^(o(^))—A(p(j.))^z>(P;) for i<,i<a, and
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gW)-h{v{x,))i:v(P,) for all zeW. Since w{G,)=G^ for each geG^ we can fix
g'eGo with w{gt)=g, now it suffices to take G={^' :^eG*}.

Theorem (5.7). — .4^m<? ̂  K is perfect, and let R be an analytic local ring over K.
Let 0.1 ? • • • ? CL ̂  ̂  ̂  fifo^'^ isolated primary components of {0} in R. Z^ P, == radi^.
z^ Q'l) - • • ? Q.6 (^o), beany f inite number of ideals in Vi such that for i<i<_e and i<j<b
we have O^P,. Assume that ~ ~

(*) ^?^ rn ĵ a K-epimorphism u : A^->R, for some d, such that ^(Q^) is a symbolic
power qfu~l(P^for \<^i<,e.

Let

G==H^R, Q,) n^nGK[R, Q,] r.n^[R, QJ n^nGK[R, PJ.

Then Inv GcK+rad^o}.
(Note that by [2, (2.10)], K+radR{o}=the integral closure of K in R.)
(For an intrinsic formulation of (*) see [2, (3.6)]. Note that (*) is automatically

satisfied in case Q^=P, for i<,i<:e, because then we can take u to be any
K-epimorphism A^-^R. Also note that (*) is automatically satisfied in case
dim R/PI = . . . = dim R/P, and emdim R == n +1 where n = dim R/P^, because then
we can take u to be any K-epimorphism A^^—R; see [2, (2.16)].)

Proof. — Follows from (5.6).
Theorem (5.8). — Assume that K is perfect, and let R be an analytic local ring over K

with radR{o}={o}. Let P^ . . . , P, be all the distinct prime ideals of height ^ero in R. Let
Qj.5 • • • ? Q'& (^o) be any finite number of ideals in R such that for i<,i<^b we have that Q/.
contains a non^erodivisor of R. Let

G^nGA %) n^.nGJR, %] 0^^ PJ.

Then InvG==K. Moreover, if G' is any subset of G(R) with GcG', then Inv G' is a
subfield of K.

(Note that by [2, (2.10)] we know that K=the integral closure ofK in R.)
Proof. — By (5.7) we get that Inv G = K. The second assertion follows from this

in view of [2, (2.7)].
Theorem (5.9). — Assume that K is perfect, and let R be an analytic local ring over K

with radR{o}={o}. Then InvGK(R)=K, and Inv G(R) is a subfield of K.
(Note that by [2, (2.10)] we know that K==the integral closure of K in R.)
Proof. — Follows from (5.8).

§ 6. Local rings in which every nonunit is a zerodivisor.

Theorem (6. i). — Let R be a local ring with coefficient field K. Let n= emdim R.
Assume that n>o (i.e., R + K). Also assume that every element in M(R) is a zerodivisor of R.
Let Ro=K[X]/X2K[X] where X is an indeterminate. Then we have the following:
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(1) If n>i then card(GK(R));>card(K"-1).
(2) If n=i and M^K)2^^} then card (G^R))^ card (K).
(3) ff n=i and M^R^^o} then card (GK (R) )> card fK)—i
(4) G^(R)={i} y- ^ .

o?z=i, card(K)=2, and M(R)2={o}
ocard(K)=2 and R is K-isomorphic to Rg
ocard(K)=2 and R is isomorphic to Rg
ocard(R)=4
oG(R)={i}.

Proof. — Now M(R) is an associated prime ideal of {0} in R, and hence there
exists o+?'eM(R) such that (^R)M(R)={o}.

First suppose that ^eM(R)2. Take a basis (^, ..., ̂ ) of M(R). Now every z
m R can uniquely be expressed as

Z=^+^+...+ZnX^+^' with Zo, ...,Zn in K and ^'eM(R)2.

For every a={a^, ..., aJeK" we get a K-homomorphism & : R-^R by setting:

&(^) = Z + (^ fli +... + ̂ ajjy for all ^eR.

Upon letting -a=={-a,, . .., -a,), we have g,g_, =g_^= the identity map of R
and hence ^eG^R). Clearly &+^ for all a^b in K». Thus we have shown that:

(5) If j'eM(R)2 then card(GK(R))^card(K").
Next suppose that ^M(R)2 and n>i. Let x^y. We can find elements

Xi, • •., ̂ i in M(R) such that (^, . .., ̂ ) is a basis of M(R). Again, every z in R
can be uniquely expressed as

^==^o+^^+...+^A+^ with ^, ...,,€„ in K and -s'eM(R)2.

For every a==(a,, ..., a^^eK"-1 we get a K-homomorphism & : R^R by setting:

,?«^)=^+(^ffi+...+^_ia»_i)^ for all ^eR.

Upon letting -a=(-^, ...,-.„_,), we have ^_ ,=^&= the identity map of R,
and hence &eG^(R). Clearly &+^ for all a^b in K"-1. Thus we have shown
that:

(6) Ifj^M(R)2 and n>i then card (Gg (R))^ card (K"-1).
Finally suppose that j^M(R)2 and H=I. Now M(R)=jR and

M(R)2=yR=={o}.

Consequently, every z in R can uniquely be expressed as w^,y with ̂  and ̂
mK For every o+<,eK we get ^eG^R) by setting: ̂ )=^+^ for all ^eR.
Clearly &+^ for all o+a+^+o in K. Thus we have shown that:

(7) If^M(R)2 and »=i then M(R)2={o} and card(GK(R))^card(K)-i.
(i), (2) and (3) follow from (5), (6) and (7). (4) follows from (i), (2) and (3).
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§ 7. Remarks on fields of definition.

Let R be a local ring, let S=R/M(R), and let t : R—S be the canonical
epimorphism; now G(R)=G[R, M(R)], and hence t induces a homomorphism
^:G(R)->G(S). Let V'=InvG(R) and V=Inv ^(G(R)). Let ^ be the charac-
teristic of S, where p may or may not be zero.

(7. i) ^(V) cV, and ^(V) and V are subfields of S. If p+o and y is any element
in S with yeV then j^eV; whence, in particular, if S is perfect then so is V.

Obviously ^(V) cV. By [2, (2.7)] we have that V is a subfield of S. If p^o
andjy is any element in S with yeV then clearly jeV. To see that ^(V) is a subfield
ofS, let any ^eV with t(x)^=o be given; now A^M(R) and hence i/^eR; for any
^eG(R) we have

^x=^lx)gW-{ilx)g{{x){ilx))=(ilx)g{x)g(ilx)={ilx){x)g(ilx)=g^
thus i/^eV and clearly ^(i jx)=i ft{x).

(7.2) If 1^ has a coefficient field K ^A ̂  ^(K)=K /(?r all ^eG(R), ^ ^W^
^(KnV')=^(V')=V (note that by [2, (2.7)] we know that KnV is a subfield of K,
and hence now t induces an isomorphism of K n V onto V). Note that by [2, (2. i2)]
we see that: if S is perfect with p+o and R, has a coefficient field K, then g(K)==K for all
^eG(R). Finally note that by (5.9) we know that: if radR{o}={o} and R is an
analytic local ring over a perfect valued field K, then V is a subfield of K, and hence t induces an
isomorphism ofV onto ^(V).

Henceforth assume that R is complete, R is of characteristic p, and S is algebraically
closed. For any field H and any nonnegative integer a let H^ denote the ring of formal
power series in indeterminates X^, . . ., X^ with coefficients in H. By Gohen's theorem
we know that R has a coefficient field, i.e., eqaivalently, there exists an epimorphism b:
S^->R for some a, such that t{b{s))=s for all jeS. Let E(^) be the set of all epimor-
phisms b: S^->R such that t(b{s))=s for all seS. For every beE{a) let D(^, b) be
the set of all subfields H of S such that ((Ker b) n HJS^ == Ker b, and let D'(a, b) be the
set of all subfields H' of R such that H'=^(H) for some HeD(a, 6). Let

D=U UD(^), D'= U U D'(^),
a=06GE(a) v /-' a=0&£E(a) v 5 n

D*={HeD : H is perfect}, D'*={HeD' : H is perfect},
F - n H, F'- n H, r= n H, p*= n H.RET) HED' 5 H£D* ? HGD'*

One might designate every member of D* (or D, or D'*, or D') to be a field of definition
of R, and F* (or F, or F'*, or F') to be the field of definition of R. Note that clearly
FcF*, F'cF'*, f(V) cF*, and ^(F') cF; in view of [2, (2.12)] we also see that if p^o
then ^F")=F* and ^F')==F.

Thus, to R we have attached the six subfields: ^(V), V, ^(F'), F, ^(F'*), and F*
of S. It would be interesting to investigate the properties of these fields and their
relationships. For instance, one may ask: i) FeD?; 2) F^eD*?; 3) are these various
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fields, < c in some sense ", finitely or countably generated over their prime subfield?; etc.
In this connection we only offer the following two remarks (7.3) and (7.4):

(7-3) VcF". Moreover, if HcV for some HeD* then H==F*=V.
The second assertion follows from the first. To prove the first assertion, let any

perfect subfield H of S and any epimorphism b: S,—R be given such that t{b{s))==s
for all seS and ((Ker b) nHJS,=Ker b; also let any ^eS be given such that j^H.
We want to show that then j^V. By [2, (2.8)] there exists A'eG^S) such that
h\f) ̂ y. We get AeG^SJ by taking

A(S4,,^.. .X?)=SA'(^,JX?. . .X?
for all

S4,^X?...X^eS, with ^,,,eS.

Since ((Ker b) nHJS,=Ker b, we see that heG^, Ker b]. Let

&':GH[S,,Ker^G,(H)(R)

be the homomorphism induced by b, and let g=u(b'{h)). Then geu{G(K)) and
g{y}==h\y)^y. Therefore j^V.

(7.4) Let K be any algebraically closed field of characteristic p, where p may or
may not be zero. Let KQ be the prime subfield of K. Let ^, . . ., ̂  be any given
finite number of elements in K with ^=1. Let L==Ko(^, . . ., ^). In other words,
let L be any subfield ofK such that L is finitely generated over KQ. Let L*= L if p==o,
and L^L^ if p^o; note that if p^=o then: L* is finitely generated over K(^L
is algebraic over K. We can take positive integers m, n, q, d such that: q+qe<m;
m+q+qe<n; n is not divisible by p; n+m+q+qe<d; and n and d are coprime. Let X
be an indeterminate, and let

e
Y^^n+w_^_ ^ ̂ .X^^'^'^+X^.

Upon taking R^K^X^Y]] we clearly have that R is a one-dimensional complete
local domain with coefficient field K and emdim R=2. Let S, t, V, etc., be as above.
Ky^, (5.3)] we have that t(L) cV and hence by (7. i) we get that t(L') cV. Clearly
t(L') eD*, and hence by (7.3) we get that ^(L*) = F*= V. In view of (7.2) , we now also
see that, if p^o then V'^L*.

Purdue University, Lafayette, Indiana, U.S.A.
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