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ON THE EXPLICIT SOLVABILITY
OF CERTAIN TRANSCENDENTAL EQUATIONS®™

by MaxwerL. ROSENLICHT

The subject matter of this paper was first treated by Liouville in the 1830’s. Its
classical exposition is due to Ritt [2]. The principal concept is that of differential field,
that is a field with a specified derivation. For the purposes of this paper very little
needs to be known about differential fields, except for two essential elementary facts.
One is that the subset of constants of a given differential field, that is elements with
derivative zero, is a subfield, the other is that any algebraic extension field of a given
differential field has a unique derivation that extends the given one; for these and other
matters related to the present paper we refer to [3]. A certain amount of the theory
of algebraic functions of one variable is used, and on this matter we refer to [1].

Lemma 1. — Let k be a differential subfield of the differential field K, with K a finite
extension of k of transcendence degree one. Then the derivation of K is continuous in the topology
of any k-place of K.

Fix a k-place P of K. We have to show that if u#eK, u+o0, and ordpu is
large, then ordp#’ is also large. For this it suffices to show that the integer
ordp #'—ordp u=ordp 4’ /u is bounded from below. If ¢ is a fixed element of K such
that ordp t=1 and we set ordp u=v, then z=1¢"s, where ord, v=o0, and we have

u ot

—=v—-—4—.

u t v
Thus we are reduced to proving that ord, ¢' remains bounded from below as v ranges
over the set of elements of K that are finite at P. The following proof of this fact has
the advantage of being valid without any assumptions on field characteristic or separa-
bility. Since the subfield of K consisting of all elements that are separably algebraic
over k is closed under differentiation, we may, if necessary, replace £ by this subfield
of K to ensure that £ is separably algebraically closed in K. We then use the Riemann-
Roch theorem (for K as a function field over the algebraic closure of £ in K) to find
an element xeK which has a zero at P and at no other £-place of K. For any &-place P’
of K, not a pole of x and distinct from P, there is a polynomial f, (x)ek[x] with nonzero
constant term such that ordp fp (x)>0. Hence for any veK such that ord, v>0 we
can find an element f(x)ek[x] such that f(o)+o0 and f(x)v has poles only at the poles
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16 MAXWELL ROSENLICHT

of x. Then f(x)v is in the integral closure of £[x] in K, a finite £[x]-module, say with
generators yy, ..., %,. Thus any »eK which is finite at P is of the form

AW £
=T

where fi, ..., [, fek[x] and f(o)=+o. Since f, 1/f,f1, -+ s Sus D15 - -5, are all finite
at P, a minor calculation shows that

ordp o' > min {ordy yi, ..., ordy y,, ordp &},

which completes the proof.

Lemma 2. — Let kcK be differential fields of characteristic zero with the same field of
constants, K being a finite algebraic extension of k(t), where teK is transcendental over k and
either t'ek or t'[tek. Suppose that ¢, ..., c,ck are linearly independent over the rational
numbers Q,, that uy, . . ., u, are nonzero elements of K, and that veK. Let P be a k-place of K, ep
the ramification at P of K over k(t). Then we have the following estimates for

n u; ,
ordp ( 26—+ ):
=1ty
S P is not apole of t (nor a zero of tif t'[tek), then this number is
ordp v—e¢p ordp v<o0
—ep if ordp v>0 and ordp u;%0 for some i=1,...,n
>—ep ordp v>0 and ordp u;=o0, i=1, ...,n;

if t'ek and P is a pole of t then this number is

Zordp v ordp v<o
<ordpv+te if ordp 1< —¢p
>0 ordp, v20;
and, finally, iof t'ltek and P is a pole or zero of t, the number is
ordpv | g ordp, v<o
y
>0 [ ordp v>0.

There is a unique derivation on the algebraic closure K of K that extends the given
derivation on K, and this induces a differential field structure on its subfields £ and & (K).
We claim that k¥ and %(K) have the same field of constants. For suppose that cek(K)
is constant. Write

Nta N7 tag=o,

where a;, ..., ayeK and N is minimal. Differentiating gives
’ N—1 ’
a,c +...F+ay=o,

which contradicts the minimality of N unless a;=...=ay=o0. Thus each g; is a
constant in K, hence in £, and thus cek. Now it is known that there is at least one
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ON THE EXPLICIT SOLVABILITY OF CERTAIN TRANSCENDENTAL EQUATIONS 17

k-place P’ of £(K) lying over P, that the function induced on K by ord,. is just ordy,
and that ey =e¢p. We may therefore, if necessary, replace &, K, P by &, £(K), P’ respec-
tively to obtain the simplifying hypothesis k=k. That is, we may, without loss of
generality, assume that £ is algebraically closed.

By Lemma 1, the derivation on K extends to a continuous derivation on the
completion K, of K with respect to P. For any weX,; such that ord, w>0 we can
define exp w and log (1+w) by the usual series, and we get exp log (14 w)=1+w,
log exp w=w, (exp w)'=(exp w)w', (exp w,)(exp w,) =exp (w;+ w,). In the work below
we shall work with a specific xeK, (the choice of x depending on the special case we
are in) such that ord, x=1. We then have a natural identification of K, with £((x)),
the field of formal power series in x with coefficients in £, and can write

u=gx"iexp( 2 hx"), i=1,...,n
v>0
v= 2 ha"
v>y v

where each g, h;,, h,ek, g;+0, and each p,eZ. Thus

’

oS w4 S e vk
ui gi X v>0
r__ L) v—1,_/

and v _vgy(hvx +vh, 2" 1x").

In the work below we write ¢, =¢ for simplicity.

Assume now that P is not a pole of ¢ (nor a zero of ¢ if ¢'/tek). For some ack
we have ordp (f(—a)=e. In the case #'ek we choose x€K such that t—a==x"
This » will satisfy the demand ordp, x=1 of the preceding paragraph. We also have
(#°)'=t'—a/, an element of k£ that is nonzero since all the constants in K are in £,
so that ordp (x*)’=o0. In the case t'[tek, P is not a zero of ¢, so that « 40, and here
we choose xe€K, such that ¢t—a=ax’. We again have ordp,x=1, and here
(¢/a)"[(¢]a)=1¢[t—a' [z, an element of k£ which is again nonzero, since all the constants
of Kareink. Hence o=ord; (t/a)'=ord, (14 1°)'=ordp (+°)’. Thusin each of the cases
with which we are presently dealing (the first grouping of cases in the statement of the
lemma) we have ordpex*"'x’=o0, or ord,x#'=1—e¢. The expression above then gives

’ ’ n ! n 4
ordp (%— p.ix—)ZI—-e, ) ordp ( 2 c,.% ——(Z cip.i) x—)>—-e.
u; x i=1"w,  \i=1 x
no
Since ordp x'[x =—e, we get ordp Zlciu—’Z——e,
=Y
n
with the strict inequality holding if and only if izlcip.i=o, that is, p,=...=p,=o0.

Finally, consider the expression given above for v’. If A, 40 then ordpv=y. Ifin
addition we have y=+o0 then clearly ord, »’=y—e=ordp v—e. Thus we arrive at all
the estimates of the first case.

17




18 MAXWELL ROSENLICHT

Now consider the case where t'=ack and P is a pole of &. Here ordpt=—e¢
and we can choose our xeK; of order one such that t=x"°. Since a=t'=—ex"*"'&’
and a+0, we have ord, x’=¢-+1. This time we deduce immediately that ordy u;/u;,>o.
As for v, again assume £k, +0, so that ordpv=y. If in addition A, +o0, we have
ordp ’=7v. In general, the terms of order y-+e¢ in v’ are

h
by g = (K )

and if 4, is a constant then since a is not the derivative of an element of £ this last expres-
sion can be zero only if y=o0. Thusif ordp v<o we have ordy v <ordp v’ <ordp v +e.
This in effect ends this part of the proof.

For the last part, where t'/t=ack and P is a pole or zero of ¢, we first note that
if P is a zero of ¢ then P is a pole of 1/t and that (1/t)'/(1/t)=-—ack, so that we may
restrict our attention to the case where P is a pole of ¢. As before, for a suitable xeK,
we have t=x"°, and we take this x to be our specific element of order one. Here
, so that x'=—axfe. Since a=o, ordp x#'=1. Using the
power series above we see immediately that ordpu;/u;>o0, i=1,...,n, and that
(provided A, =0) ordp v’ >y=ord; », with the term of order y in »" being

V=—ex" "X =at=ax""°

h
B x4 yh 271 = (Iz; — h'a) 7.
e
This is not zero if y+o0, for otherwise (¢#'/h})'=o0, again contradicting the assumption
that all constants of K are in £. This completes the proof.
Theorem. — Let kcK be differential fields of characteristic zero having the same field
of constants, with k algebraically closed in K and K a finite algebraic extension of k(t), teK being

transcendental over k and such that either t'ek or ¢ [tek. Suppose that ¢y, ..., c, are constants
of k that are linearly independent over the rational numbers Q , that u,, ..., u, are nonzero elements
of K and that veK. Then if
n u’

2~ 4v'ek

1=1 U,
we have uifuy, ..., ulu,, v'ek; furthermore, in the case t'ck we have wu,, ...,u,ck and
v=ct+d where ¢ is a constant of k and dek, while in the case t'[tck we have vek and there
exist integers vo, vy, . . ., V,, With vy nonzero, such that ul[t ek, i=1, ..., n.

Consider the differential fields % c£(K), as in the first paragraph of the proof
of Lemma 2. It is shown there that the constants of k(K) are those of %, so that all
of our assumptions hold for the pair of fields &, £(K). If the theorem holds for this
latter pair of fields then we deduce that }[u,, ..., u,/u,, v’eknK =k Inthe case t'ck
we also deduce that u,, ...,u,cknK=Fk, and that there exists a constant cek and
an element dek such that v=ct4d; since for any K-automorphism o of the normal
extension field £(K) of K we have ¢t4d=v=1°=¢°t+d° which implies, since ¢ is
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ON THE EXPLICIT SOLVABILITY OF CERTAIN TRANSCENDENTAL EQUATIONS 19

transcendental over %, that ¢°=¢, d°=d, we infer that indeed ¢, dek. In the case
t'[tek we get immediately that o, /¢, ..., #°/f"ekn K=k Thus we get everything
we wish to prove for £, K from the knowledge of the theorem for k, £(K). Thus we
may assume from now on that £ is algebraically closed.

Let P be a £-place of K. First suppose that P is not a pole of ¢ nor, if ¢ [tek, a
zero of ¢ Since

n ! n !
u,; U,
2~ +vek we have ordP(E c,-—'—}—v’):o or oo,
=1 u; i=1 u;
From Lemma 2 we deduce that ord, v>0 and ordp #,=...=ordp u,=o0.

Now let P be a pole of ¢, and consider the case where #'=ack. As in the proof

e

of Lemma 2, write {=x""° for a suitable x in the completion K;, and use the power

series expansions given there for u,, ..., u,, 0. We get

p c:ﬁ—l—v'——- > 61(54_%&_;_ > (}z;\,x"—l—v/zi\,x"_lx’))—[— 2 (B -vh,x' "),
i=1 "y i=1\g X v>0 v>y

v

e—1,7

Since t'=a=—ex"*"'x’, we have x'=—(afe)x**!. The coefficient of #° in the above

expansion, which must be zero, since we have an element of &, works out to be
a n n a n n
-3 (Ela-w) + iglcih:le + 4. Hence z (i§1ci ) = (igloihie +4)"

n
If .21%’%‘*0: then a is the derivative of an element of %, so that ¢ differs from an
1=

element of £ by some constant, also an element of £, contrary to the assumption

n

n
that ¢ is transcendental over k. Thus Zlcipi——-o. From the fact that ¢, ...,¢
1=
are linearly independent over Q we infer p,=...=p,=o0. As a consequence, the
order of each u; at any k-place of K is zero. Thus u,, ..., u,ck. Hence also uek,
so 4 [u;ek, therefore also v'ek. Now resume the consideration of a pole P of t. The
statement of Lemma 2 tells us that ord, v>>—e¢, so we can write

v+e
= % (h;xv— ”—h—”x—) ck.

v>—e 14
It follows that A ,=o, so k_, is a constant. Furthermore, if we write
a=min {veZ : h,+0 and v=—¢, 0},

**¢ respectively the quantities 4,

the above expansion gives as the coefficients of x* and «
and &, ,—ah,afe, and both of these are necessarily zero. From this we deduce that %,
is a constant and « the derivative of an element of %, a contradiction. Thus « cannot
exist, and therefore v=#h_,x"°*+hy=~h_,t+h,, which ends this part of the proof.

Finally we consider the case t'[t=ack. Lemma 2 tells us that » cannot have a
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20 MAXWELL ROSENLICHT

pole at any pole or zero of . Thus v has no poles at all. Therefore vek. Since also
v'ek, we are reduced to

n u’

% ¢;— k.

i=1 'y
Fix a pole P of . As in the proof of Lemma 2, write t=x"°, for a suitable x in the
completion K;, and use the power series expansions given there for uy, ..., u,. Our
proof will be complete if we can show that all of the quantities /4, are zero. Since
x¥'=—ax/e, the expressions for u,, ..., u, give

(‘& e + X (h§v~ %’a) x“) ek.

g e v>o0

11t

Therefore for each v>o, (2 c;h, )’=E 2 ghy,.

i=1 " ei=1

n
From this it follows that (X2 ¢;hy)e/t) =o.

i=1
Since each constant of K is in £ and ¢ is transcendental over £ we deduce that

n
i§1 C,‘h,iv =0.
Defining {,—expe 2 h,x'eKp for i=1,...,n, we have {=ult"i/gicK. Now for
v>0

any wekK, such that ord, w>o0 and any cekt we can define (1+4w)‘=exp(clog(1+w)),
and a number of more or less obvious identities will hold for such irrational powers.
In particular, the above relations on the #;’s imply

2R Crn=1.
Our proof will be complete if we can show that each {;=1. To do this, let D be a

nonzero k-derivation of K, that is, a derivation of K that is zero on £. By Lemma 1,
D extends to a continuous derivation of K,. We thus get

n DC@
El Gy =0
Hence we have an equality for differentials of the algebraic function field K over &
noJz.
)y ci—c‘ =o.
i=1 " g
In particular, the sum of the residues at any given #-place of K of ¢, d(, /¢, .. ., ¢, dC,[C,
is zero. But the residue at any £-place of K of d{/C; is the order at that place of ;.
Since ¢y, ..., ¢, are linearly independent over Q, the order at any £-place of K of each {;

is zero. Hence ¢, ...,¢,ek. Since ordp({—1)>0 for i=1,...,n, we have
{=...=¢,=1, and this ends the proof.

20



ON THE EXPLICIT SOLVABILITY OF CERTAIN TRANSCENDENTAL EQUATIONS 21

The preceding theorem is a powerful tool for finding elementary solutions, if such
exist, of certain types of transcendental equations, or for proving their nonexistence.
As a simple illustration of its use, we give the following specific application.

Recall that a liouvillian extension of a differential field £ is a differential field K of the
type K=k(t, ¢, ...,t), where for each i=1,2,...,v, either #ek(¢,t, ..., 4_,),
or ¢ [tek(t,, b, ..., t_4), or t is algebraic over k(¢ %, ...,%_;). In other words,
a liouvillian extension of a differential field is an extension field obtainable by a repeated
adjunction of antiderivatives, exponentials, and algebraic elements.

Proposition. — Let k be a differential field of characteristic zero and let y,, 95, . . ., Vs

Zis 2oy - - - 2, be elements of a liouvillian extension field of k having the some subfield of constants
as k. Suppose that

J=z, i=1,...n,
and that k(py, ..., D 21> -+ -5 Ry) 15 algebraic over each of its subfields k(y,, ...,»,) and
k(zyy ooy 2. Then yyy ooy Yy 24y - - -5 2, are all algebraic over k.

For suppose that y;, ..., 2, ..., 2, are elements of the liouvillian extension
field K of £, where K and £ have the same field of constants. Then we have a chain of
differential fields £cKy cK,c...cK,=K such that K, is algebraic over £ and for
each i=1, ..., v, the field K is either algebraic over K;_, or algebraic over K;_,(#),
for some #eK; such that either # or ¢;/t;isin K;_,. Replacing each K; by its algebraic
closure in K, we may assume that each field K;_, is algebraically closed in K;. Repla-
cing k by K,, if necessary, we may assume that £=K,. Eliminating repetitions in the
chain Ky cK;c...cK,, we may assume that each K; is transcendental over K;_,.
Thus each field K, _, is algebraically closed in K;, which has the same subfield of constants
as K;_, and is a finite algebraic extension of K, ,(#) for some ¢#€eK, such that  is
transcendental over K;_, and either ¢/ or ¢/ is in K;_,. Using induction on v, we
are reduced to proving the proposition in the special case that the liouvillian extension
field K of £ which contains y,, ..., 3, 2, . . ., 2, satisfies the conditions on the extension
field K of the theorem, and in this case we have to show that y;, ..., 9,, 21, - - -, 2,€k.
If in the statement of the theorem the hypothesis #'€t holds, then the theorem implies
that y,, ..., 9,6k, while if the alternate hypothesis ¢'/tek holds, then we get
21y -5 k. Since k(py, ...y ¥ 215 - - -5 Z,) i algebraic over both £(y,, ...,%,) and
k(zy, ..., z,) and one of these latter fields is £, we get each »,; and each z; algebraic over %,
hence in £. Thus the proposition.

The condition that £(y,, ..., %,, 2y, ..., Z,) be algebraic over each of its subfields
k(p1, ..., »,) and k(24, ..., z,) comes about as a matter of course in at least two special
cases of practical moment. In one case, there is a y, in some extension field of
k(915 « s Pn> 215 -+ +» Z,) such that p, and z; are algebraically interdependent over &
(that is, 2, is algebraic over k( y,) and y, is algebraic over k£(z,)), », and z, are algebraically
interdependent over £( y,), , and z, are algebraically interdependent over &( 95, 9,); -« +s Yu—_1
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22 MAXWELL ROSENLICHT

and z, are algebraically interdependent over k(9,5 - .., ¥,_s), and finally y, and y,
are algebraically interdependent over £(,%,, ..., %,_,). In the other case, there is
a Z,,, in some extension field of k(y;, ..., %,, 21, ..., Z,) such that z,,, and y, are
algebraically interdependent over %, z, and y,_, are algebraically interdependent over
k(z,.1)s --., 2 and y; are algebraically interdependent over £(z,,{, Z,, - .., 2s), and
finally 2, and z,,, , are algebraically interdependent over £(z,, z,_;, ..., 2,). Both these
cases are illustrated below.

Of greatest interest are differential fields of meromorphic functions of a complex
variable #, that is, fields of meromorphic functions on a region of the x-sphere which are
closed with respect to the usual derivation d/dx and which contain G. These fields all
have G as their subfield of constants. Their most notable examples are the field G
itself and the field G(x) of rational functions of the variable x. In applications one
often uses the fact that if #, » are meromorphic functions on a region of the x-sphere that
are algebraic over G(x) and z=exp v, then necessarily u, veC. (This fact comes from
the case k=G, n=1 of the proposition. More directly, it is easily proved by looking
at the residues of the exact differential dv=du/u at the various places of the field C(x, u, ).
For any place P, o=res, dv=resp dufu=ordp u. Therefore u has no zeros or poles,
hence is constant. Hence also v is constant.)

Thus as a special consequence of the proposition there is a large class of trans-
cendental equations connecting variables x and y that have no solution in any field of
meromorphic functions of x that is a liouvillian extension of G(x). Specific examples
that were considered by Liouville himself are the equations

),=gy/x
and y—asiny=x, acC, a+o

(Kepler’s equation, [2, p. 56]). A more complicated example, worse than anything
considered by Liouville, is

y(log(x +/7))*+ 5 log((x—2) P+ (w4 log (x 4 4/5))#) = 1725 5%
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