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AUTOMORPHISMS OF ANALYTIC LOCAL RINGS
by SHREERAM SHANKAR ABHYANKAR (1)

§ i. Introduction.

Let K be any valued field. Let X^, Xg, . . . be indeterminates. For every non-
negative integer d let \ be the ring of convergent power series in X^, ..., X^ with
coefficients in K, and let A^ be the ring of formal power series in X^, . . ., X^ with coeffi-
cients in K. By an analytic local ring over K we mean an overr^ng A* of K such that there
exists a K-epimorphism A^A* for some d. (Note that K is allowed to be discrete,
and in that case: K is simply an arbitrary field; A^=A^$ and an analytic local ring
over K is exactly a complete local ring with coefficient field K).

The group G^{A^) of all K-automorphisms of the convergent power series ring A^,
for a>o, is quite large. Namely, ^l->C?(Xi), . . .,^(XJ) gives a bijection of G^A^)
onto the set of all ordered rf-tuples of elements ofA^ which constitute a basis of the maximal
ideal M(A^) in A^.

The group G(A^) of all automorphisms of the formal power series ring A^ is even
richer. Namely, any isomorphism of K onto any coefficient field of A^ can be extended,
in many ways, to an automorphism of A^. In fact, let H' be the set of all ordered
rf-tuples of elements of A^ which constitute a basis of M(A^), let H* be the set of
all monomorphisms W : K-^ such that W(K) is a coefficient field of A^, and let
H={(Y, W) : YeH' and WeH*}. Then ^(C?(Xi), . . ., ^(X,)), g\ K) gives a bijec-
tion of G(A^) onto H.

The genesis of the present investigation (including our forthcoming joint papers [3]
and [4] with Moh and van der Put) was Zariski's discovery [10] that, like formal power
series rings, saturated rings are also very rich in automorphisms.

Namely, let K' be an algebraically closed field of characteristic zero, and let B
be a one-dimensional complete local domain with coefficient field K' such that B is
saturated in the sense of [10]. Then:

I) B has infinitely many K''-automorphisms.

More precisely, given any transversal parameters Z and Z' of B (i.e., Z and Z'
are elements in B such that, upon letting D to be the integral closure ofB in its quotient

(1) This work was supported by the National Science Foundation under N.S.F.-GP-6388 at Purdue
University.
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field, we have ordi)Z==ordj)Z'=min{ordDr: reM(B)}) there exists ^eG^(B) such
that 5(Z)==Z' [10, Theorem (1.11)].

And:

II) Any isomorphism ofK' onto any coefficient field ofB can be extended to an automorphism
ofB.

More precisely, given any transversal parameter Z of B and any monomorphism
w : K'->B such that w(K') is a coefficient field of B, there exists ^eG(B) such that
^(Z)==Z and g{k)=w{k) for all AeK' [10, Theorem ( i . 16)].

Now II) is all the more striking in view of the following two well-known facts:
(') For every algebraically closed field K* we have that 0(10) is infinite and

InvG(K*)=the prime subfield of K", where Inv 0(10) denotes

{keK^ :g(K)=k for all ^eG(K*)};'
(see (2.8)).

( / /) If the characteristic of K is zero, K is not algebraic over its prime subfield,
and R is any analytic local ring over K with R=t=K, then R has infinitely many coeffi-
cient fields (see (2.20)).

We want to find out as to how far I) and II) can be generalized to analytic local
rings.

The results to be reported are positive in the direction of I), and negative in the
direction of II).

First consider II).
In § 5 we shall prove
Theorem 1. — Let L be any subfield of K such that L is finitely generated over the prime

subfield of K. Then there exists a one-dimensional analytic local domain R over K with
emdimR==2 such that for every ^eG(R) we have g{k)—keM{'R) for all keL; whence,
in particular, if ^(K)==K then g[k)==k for all keii.

In our forthcoming joint paper [4] with van der Put, the following theorem will
be proved:

Theorem 2'. — IfR is any analytic local ring over the complex number field C such that R
has a nonunit non^erodivisor, then for any ^eG(R) we have: ^(C)==C and g(r)=r for every
real number r. More generally, if t : R*—»-R is any local homomorphism of analytic local rings
over C such that ^(M^R*)) contains a non^erodivisor of R., then: t{C)==C and t{r)==r for
every real number r.

Theorems i and i' relate to II) in view of (') and (").
Now we turn to I).
We start off by proving
Theorem 2. — Let R be any complete local domain such that dim R>o and R has the

same characteristic as R/M(R). Let] be any nonzero ideal in R. Let R' be the integral closure
ofR in its quotient field; (it is known that then R' is a complete local domain and R' is
a finite R-module). Assume that R' is regular; (note that this assumption is automatically
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AUTOMORPHISMS OF ANALYTIC LOCAL RINGS 141

satisfied if d imR=i) . Then G(R,J) is infinite (where G(R,J) denotes the <c inertia
group " {^eG(R) ^g(r)—r(=J for all reR}). If, moreover, F is a coefficient field of R
which can be extended to a coefficient field of R' then Gp(R,J) is infinite (where Gp(R,J)
denotes Gp(R) nG(R,J); note that if R'/M(R') is separable over R/M(R) then, by
HensePs lemma, every coefficient field of R can be extended to a coefficient field of R').

Proof. — By Cohen's theorem R' has a coefficient field E; in case F is a
given coefficient field of R which can be extended to a coefficient field of R' then
we take E to be such an extension. Let C be the conductor of R in R', i.e.,
C = = { ^ e R : cr'eR. for all r'eR'}. Since R' is a finite R-^module, we know that G
contains a nonzero element. Now CJ is a nonzero ideal in R and it remains an ideal
in R'. Since GJ is an ideal in R', we have that GE(R', CJ) is a subgroup of GE(R')
(see (2.1)). Given any geG^R^ GJ), we have ^(r')-r'eCJ for all r'eR'; since
CJcR, it follows that ^(r)eR for all reR, i.e., ^(R)cR; since GE(R', CJ) is a
subgroup of GE(R'), we have ^eG^R', CJ) and hence also ^(R^R; therefore
g{R)=R. Thus ^(R)=R for all ^eGE(R',CJ); since CJcJ, it now suffices to
show that G^(R', CJ) is infinite. By assumption R' is regular, and hence we may
regard R' to be the ring of formal power series in X^, . . ., X^ with coefficients in E,
where 7z==dimR'. For every ^e(GJ) n M(R')2 we have a unique ^eG^R') such
that ^(X,)=X,+J^ for i^i<,n; moreover, ^eG^R', CJ) (see (2.9)). Now
(CJ) n M(R')2 is clearly infinite, and hence GE(R', GJ) is infinite. ,

In (4.2), (4.3) and (4.4) we shall prove, respectively, Theorems 3, 4 and 5 stated
below; the actual versions of these theorems which we shall prove there will be more
detailed than as stated below.

Theorem 3. — Let R be an analytic local ring over K such that dim R==o and R+K.
Let J be any nonzero ideal in R. Then we have the following.

1) If K is infinite then G^(R,J) is infinite.
2) G^(R, J) ={ i} o G(R) =={ i} o R consists of four elements.

Theorem 4. — Let R be an analytic local ring over K such that dim R>o. Assume that
the ^ero ideal in R has an isolated primary component Q such that upon letting P == rad^Q^ we
have that Q,+P and:

(*) there exists a T^-epimorphism u: A^->R, for some d, such that u~l{QJ) is contained
in the second symbolic power (^"^(P))^ (^^^(P).

Let] be any ideal in R with J c): Q, Then GK(R, J n P) n GiJR, QJ is infinite (where
GK[R, Q.] denotes the c( splitting group 39 {^eG^R) : ̂ (QJ=QJ).

Theorem 6. — Let R be an analytic local ring over K. Let J, Qi, . . ., Q ,̂ (a>o), be
ideals in R such that Q^, . . ., Q^ are primary and J n Q^n. . . n Q^==-[o}. Let P^radaO^.
Let v : R->S be a K-epimorphism where S is an analytic local ring over K and Ker v=P^ n... n P^.
Assume that:

(**) there exists a 1^-epimorphism u : A^->R, for some d, such that ^^(Q^) is a symbolic
power of ̂ ^(Y^ for i<i<^a.
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Then v induces an epimorphism of

GK(R,J)nAGK[R,PJ^nGK[R,^]

onto GK(S^(J))n^nGK[S,.(P,)].

In (3.4) and (3.6) we shall give intrinsic formulations of the above conditions (*)
and (**) respectively.

In our forthcoming joint paper [3] with Moh and van der Put, we shall prove
several other results about automorphisms of analytic local rings. There, in addition
to the methods of the present paper, we shall use Samuel's [7] technique by which he
proved the algebraicity of an algebroid hypersurface with an isolated singularity. The
following two theorems are a sample of the results which are proved in [3]:

Theorem 2'. — Let R be an analytic local ring over K such that dimR>o. Assume
that there exists an isolated primary component P of{o] in R such that P is prime andR.I'P is analyti-
cally separably generated over K (for definition see (2.21)). Then G^(K) is infinite.

Theorem 3'. — Assume that K is perfect (the characteristic of K may or may not be
zero), and let R be any analytic local ring over K such that radR{o}=={o}. Then
InvGK(R)=K.

§ 2. Terminology and preliminaries.

I) Splitting and inertia groups. — For a ring (commutative with identity) R and a
subring K of R we set:

G(R) =the group of all automorphisms of R;
^K(R)=the group of all K-automorphisms of R

={g€G{R):g{k)=k for all keK}.

By analogy with Hubert's ramification theory, for any ideal Q^in R we set:

^̂  QJ = ̂ e splitting group of Q in R
=UeG(R):^(QJ=Qj;

^K^ Q,]==the splitting group of Q in R over K
=GK(R)nG[R,QJ;

G(R, QJ ==the inertia group of Q in R
={^eG(R) :g{r)-re(^ for all reR};

GK^R) QJ=the inertia group of Q, in R over K
=GK(R)nG(R,QJ.

Clearly G[R, Q] and GK[R, QJ are subgroups of G(R) and GK(R) respectively. We
claim that also

(2.1) G(R, QJ is a subgroup of G[R, QJ.
Namely, for any geG{R, QJ we have g{r)— re Q for all reR, and hence ^(r)eQ,

for all reQ. Thus ^(QJ cQ, for all ^eG(R, QJ. For any ^eG(R, QJ and any reR,
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AUTOMORPHISMS OF ANALYTIC LOCAL RINGS 143

upon letting s==g~\r), we have seR and 5 - l( r)— r=<?~ l( r)—^ - l( r))=^—<?MeQJ
consequently ^^(R.QJ, and hence .^(QJcQ,; since ^(QJcQand ^(QJcQ,
we get ^(Q,)=Q,. For any g and h in G(R, QJ and any reR, we have
(^)(r)-r-(^(r))-A(r))+(A(r)-r) and ^(r))-A(r)eQ and A(r)-reQ, and hence
W^—re^ consequently gheG(R, QJ. Thus G(R, QJ is a subgroup of G(R), and
G(R,QJcG[R,QJ.

It follows that also GK(R, QJ is a subgroup of G^[R, QJ. Also note that:
(2.2) If Q* is any ideal in R with Q*cQ, ̂  ̂ ^ G(R, Q*)cG(R, QJ ^

GK(R,Q:)CGK(R,QJ.
We remark that the splitting groups and inertia groups of the galois theory of

local rings [i, § 7] are special cases ofGj^R, QJ and G^(R, Q,) respectively; also, Hilbert's
higher ramification groups [8, chapter V, § 10] are special cases of Gg^R, Q,).

We may now restrict our attention to G^(R), G^[R, Q,], G^(R, QJ, because the
case ofG(R), G[R, Q^], G(R, Q )̂ would then follow by taking K to be the prime subring
(i.e., the smallest subring) of R.

Let v : R->S' be a ring homomorphism, let S=z/(R), and let L=y(K) (note
that if K is the prime subring of R then L is the prime subring of S). For any
^eGg^R, Ker v] we have a unique g'^G^S) such that: ^(v^^^v^g^r)) for all reR;
we say that g ' is induced by g. Thus we have a unique map w : G^[R, Ker y] —> G^(S)
such that: w{g){v{r))==u{g{r)) for all ^£G^[R, Ker v] and all reR; we again say
that w is induced by v.

(2.3) Clearly w : G^[R, Ker v] -> G^(S) is a group homomorphism,

and Ker w == G^(R, Ker v).

(2.4) Let P be any ideal in R. Then

^(GK[R, Ker .] nG^R, P)) cG^(S, .(P)),
and ^(GK[R, Ker .] n G^R, P]) cG^S, .(P)].

If moreover Ker v c P then
^(GJS^P^cG^P),

and w-\G^v(V)-\)cG^^

Namely, everything except the last inclusion is obvious. The last inclusion follows
by noting that for any ^G^R, Ker y], assuming KerycP, we have the following:
i) if w{g){u(P))cv(P) then clearly ^(P)cP; 2) if ^(^eGJS, y(P)] then, since w
is a homomorphism, also w{g)~l==w{g~l)eG^[S, ^(P)].

(2.5) Let J be any ideal in R with KerycJ, and let G be any subset of
G^[R, Ker v] such that for each g ^ h in G we have g(x^)—A(^)^J for some A:^eR.
Then upon letting yg)l=v[xqu)^ f^ ^^V S^^ in G we clearly have J^S and
^(;(^)(J;^)—w(A)(^)=y(^(^)—A(^))^^;(J)• Whence, in particular, w induces an injec-
tion of G.
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(a. 6) Let u : A—-R be a ring epimorphism and let K/ be a subring of A such
that M(K')==K. Let t : GK-[A, Ker u] ->• G^(R) be the homomorphism induced by u.
Let v'===vu and let w' : G^[A, Ker v ' ] ->• GJS) be the homomorphism induced by v\
Then for any heG^,[A, Ker u] n GK'[A, Ker y'J ^ ^r^/ A^ t{h) eGjJR, Ker y], ^W
w(t{h))=w\h).

For any subset H of G(R) we set:

InvH={reR:^( r )=r for all gefi}',
note that then

(2.7) Inv H is a subring of R; moreover, if T is any subfield of R then (Inv H) nT
z'j a subfield of R.

Namely, for any o4=A:e(Inv H) nT and any geH we have:

I^=(I/^(I)=(I/^(W(I^))=(I/^(^(I^)=(I^)(^(I^)=^
and hence i fxe (Inv H) n T.

(2.8) Let E be an algebraically closed field, let F be a subfield of E, and let F*
be the algebraic closure of F in E. Then we have the following:

1) InvG^cF*, and if F* is separable over F then InvGp(E)=F.
2) If F*4=E then Gp(E) is infinite. If F* is separable over F and [F* : F]=oo

then Gp(E) is infinite.

[Note that it follows that if F is the prime subfield of E then Inv Gp(E) == F and Gp(E)
is infinite.]

To prove i) and 2), take any transcendence basis {^J^p °f E over F*. Let g be
any element in Gp^F") (for instance ^=the identity). Given any o+/eF'16, there exists
a unique hfeGp{F\{x^^)) such that hf{r)==g{r) for all reF* and h^)=fx^ for
all &eB. Since E is an algebraic closure of V*{{x^}^^), there exists gfCGp(E) such
that g^r)==hf{r) for all reF\{x^}^^). Now F* is infinite, and hence we see that if
F^+E (i.e., if B is nonempty) then Gp(E) is infinite; since we may assume that the
transcendence basis {^}^B includes any given element in E which is not in F*, it also
follows that Inv Gp(E) cF*. We have just seen that given any ^eGp(Filt) there exists
^eGp(E) such that gi{r)==g{r) for all reF*; therefore the proof is now completed by
noting that by ordinary galois theory we have the following: if F* is separable over F
then Inv GF(F'lt)=F; if F* is separable over F and [F*:F]=oo then Gp(F*) is
infinite.

For any ideal Qin a ring R, by radjaQ^we shall denote the radical of Qin R.

II) Local rings. — For a (noetherian) local ring R we set: dim R== max n such that
there exists a chain PoCP^C. . . cPy, of distinct prime ideals in R $ M(R)=the maximal
ideal in R; endim R =the vector space dimension ofM(R)/M(R)2 as a vector space over
R/M(R). Recall that for any NcM(R) we have: NR=M(R) ̂ NR+I^R)2^]^);
whence, in particular, emdim R = the number of elements in any irredundant basis
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AUTOMORPHISMS OF ANALYTIC LOCAL RINGS 145

of M(R). For any xeR we set: ord^x=msixj such that ^eM^R)^; recall that:
ord^x=coo x=o. Recall that: dim R =min d such that there exist d elements in R
which generate an ideal which is primary for M(R); whence, in particular,
emdim R^>dim R; recall that by definition, R is regular o emdim R == dim R. By a
system of parameters of R we mean a sequence (^, . . ., x^) of elements in M(R) such that
d=dim R and (^, . . ., ^)R is primary for M(R). Given a homomorphism v of R
into another local ring S, we say that u is local if y(M(R)) cM(S).

Note that clearly G(R) ==G[R, M(R)^ for all z; whence, in particular, the canonical
epimorphism R->R/M(R) induces a homomorphism G(R)->G(R/M(R)).

By a coefficient field of R we mean a subfield K of R such that K gets mapped onto
R/M(R) by the canonical epimorphism R->R/M(R).

(2.9) Assume that R has a coefficient field K. Let NcR be such that NR==M(R),
let J be an ideal in R, and let ^eG^(R) be such that g{x)—xe] for all A:eN. Then
^GK(RJ).

Proof. — By induction on m {m any positive integer) we shall show that if x^, . . ., x^
are any elements in N then g{x^.. .^)—^.. .^ej; by assumption this is true for
m=r, so now let m> i and suppose true for m—i; upon letting x ' = ^ x < ^ . . . x ^ we
have g{x^)—x^e] by assumption, and g { x ' ) — x ' e ] by the induction hypothesis; now

g^r • ̂ J-^r • ̂ m^g^iW)-^
-g^gW-g^x'+g^x'-x^
=gW{gW-^+^(gW-^i).

and hence g{x^. . .^)—^. . .^ej. Since g is a K-automorphism, it now follows that
g{y)—jy^] for all j/eK[N], Let any ^;eR be given. Given any nonnegative integer i
we can find j^eK[N] with ^—^eM(R)1; now g^—^ej and ^(M(R)^)==M(R)^;

whence g^-^J+ M(R)\ Thus g^-^^^J+M{R)^)=J.
(2.10) Assume that R has a coefficient field K. Then T^-\-rsid^{o}=the integral

closure of K in R (where, as usual, K+rad^o} denotes {k-}-x : ̂ eK, ̂ erad^{o}}).
Whence in particulars K is integrally closed in RoR has no nonzero nilpotent element.

Proof. — For any ^erad^o} we have ^=o for some positive integer d, and
hence ^ is integral over K; since every element in K is certainly integral over K, it follows
that every element in K+rad^o} is integral over K. Conversely, let any j^eR be
given such thatj/ is integral over K. Since j^eR and K is a coefficient field ofR, we can
write y==k-\-x with keK. and A:eM(R). Now k is certainly integral over K and by
assumption^ is integral over K; consequently x is integral over K. Therefore there
exists a positive integer n and elements A;o, k^ . . . , k ^ in K with A;o=i such that
kQXn-{-k^xn~~l-\-. . . -\-k^==o. Let e be the largest nonnegative integer <_n such that
A;g=t=o. Now o=[=A:g£K and

k^-^-k^x6"1-}-... +^e==^e+an element in ^R
=A;g+an element in M(R)

145
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and hence k^ +^l•ye~ l+ • • • +^e is a unit in R; since kQXnJ^k^xn~l-{-. . . 4-^=0, we
must have e^n, i.e., TZ—e^>o. Now

^-<'(^+^-i+ . . ̂ k,)==k,xn+k,xn-l+ . . . +k,
=o

and ^o.^+A^A;6'"'"1^-. . . +^e 1s a unit in R, and hence .^"^o. Therefore ^erad^o},
and hence j^eK+rad^o}.

( 2 . 1 1 ) Assume that R Aa^ a coefficient field K. Z^ N be any subset of R with
NR==M(R). Let S be any other local ring with coefficient field K. Let u: R-^S ^yzrf
y : R^S ^ any local VL-homomorphisms such that u(x) == v(x) for all ^eN. Then u = v.

Proof. — Now u{x)==v{x) for all ^eK[N]; also ^(M(R)1) cM(S)1 and
^(M^R^cM^S)1 for all i. Let any j^eR be given. Since K is a coefficient field ofR,
given any nonnegative integer i we can find ^eK[N] with y—^eM(R)^ by what

on

we have just said we now get u{y)—y(j^)eM(S)\ Thus u(y)—v(y)e D M(S)\ and
hence u[y)=v{y).

In the following two Remarks we recall some known facts about the uniqueness
of coefficient fields.

Remark (2.12). — Assume that R/M(R) is a perfect field of characteristic ^=t=o,
and R is of characteristic p. Then R has at most one coefficient field.

Namely let w : R^R/M(R) be the canonical epimorphism, and let K and K'
be any coefficient fields of R. Given any ^eR/M(R), let xeK. and x''eK' be the
unique elements such that w[x}==^-==w{x'). For any positive integer n we have
^""eK^'^eK', and w(xp~n)=^~n==w{xfp~n)', consequently, ^—^""eM^R); now
x—x'^^—x'^V, and hence x—x'eM^Ry^ This being so for all 72, we must
have x—x'==o, i.e., x=x\ Thus K==K'.

On the other hand:
Remark (2.13). — Assume that R is henselian (for definition see [2, § i2A]),

M(R) =t={o}, R has the same characteristic as R/M(R), R/M(R) is not algebraic over
its prime subfield, and R/M(R) possesses a separating transcendence basis over its prime
subfield (note that the last assumption is automatically satisfied if R/M(R) is of characte-
ristic zero). Then R has infinitely many coefficient fields\ In fact, let w : R—^R/M(R) be
the canonical epimorphism, and take any subfield L of R and any nonempty family
{xa}ae^ of elements in R such that the elements {w(^)}^^ are algebraically independent
over w(L) and R/M(R) possesses a separating transcendence basis {^}^^B over

w(L){{w{x^)^^^)). Let D={r^^ be any family of elements in M(R) (with the same
indexing set A). Then there exists a coefficient field K^ o/R such that L[{^+r^}^^^] cK^.
(Namely, take ^e^"1^), and let L'=L[{^+rJ^^ U^GB]; Aen for every
o=t=jeL' we clearly have w[s} =(=o and hence s is a unit in R; consequently R contains
the quotient field L* of L'; by Zorn's lemma, L* is contained in a maximal subfield Kp
of R; now R/M(R) is separable algebraic over w(J^) and hence, since R is henselian,
by a standard argument (see the proof of [9, Corollary 2 on page 280]) we see that K^
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AUTOMORPHISMS OF ANALYTIC LOCAL RINGS 147

is a coefficient field of R.) Now M(R) is infinite and hence there are infinitely many
distinct families D=={rJ^ of elements in M(R). Moreover, if D={rJ^A and

D'={r^}^A are ^Y two famihes of elements in M(R) then for any aeA we clearly
have that: ^ + ̂ a^D <>ra==ra'

III) Analytic local rings. — Let K be a valued field, and let X^, Xg, . . . be indeter-
minates. For every nonnegative integer m we set:

K[[Xi, . . . . XJ] ==- the ring of formal power series in X^, . . . . X^ with coefficients in K;
K((X,, . . ., XJ) =the quotient field ofK[[Xi, . . ., XJ];
K[<Xi, . . ., X^>]==the ring of convergent power series in X^, . . ., X^ with coefficients

in K;
K«Xi, . . . , X ^ > ) = the quotient field of K[<Xi, . . . ,X^>] .

Note that if K is discrete then K[<Xi, . . ., X^>]=K[[Xi, . . ., XJ].
By an analytic local ring over K we mean an overring R of K such that there exists

a K-epimorplrsm of K[<Xi, . . ., X^>] onto R for some q.
For properties of analytic local rings see [2]. It should be remarked that

although in [2] we assumed K to be complete, in all the relevant (algebraic as
opposed to the function theoretic) material this assumption was never used; alter-
natively it suffices to note that, upon letting K* to be the completion of K, we
have K[<X,, . . ., X,>]=K*[<X,, . . ., X,>] nK[[X,, . . ., XJ]. In particular then
K[<Xi, . . . ,X^>] is an ^-dimensional regular local ring with coefficient field K.
We also remark that in case K is discrete, an analytic local ring over K is exactly a
complete local ring with coefficient field K.

Now let R be an analytic local ring over K. Clearly then R is a local ring with
coefficient field K.

For every nonnegative integer m let A^=K[<X^, . . ., X^>],
We observe that given any finite number of elements ^, . . ., ̂  in M(R) there

exists a unique local K-homomorphism v : A^R with y(X,)=^ for i<,i<,n.
Namely, the uniqueness follows by (2.11). To see the existence, note that by definition
there exists a K-epimorphism s : A^R for some q\ take /,(X^, . . ., X^e.T"1^)
for i^i^n', now define v by taking

.(/(X,,..., XJ)=.(/CA(X,, ..., x,),.. .,/,(x,,..., x,)))
for all /(X,, . . ., XJeA,. For any /(X^, . . ., XJeA, we define f{x,, . . ., ^) to be
y(/(X,, . . . ,XJ);alsowe^: K[<^, . . .,^>]=y(AJ and K«^, .. .,^»= the total
quotient ring of K[<^, . . ., ^>]. For the case of a complete local ring with coefficient
field K we may denote the corresponding objects by f{x^ . . ., A:J, K[[^, . . ., xj], and
K((^, . . ., 0) respectively.

Note that given any finite number of elements ^, ...,^ in M(R) and any
nonnegative integer e<,n, upon letting v : A^->R and t : A,->R to be the unique
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local K-homomorphisms with v(X,)=x, for i<i<,n and ^(X,)=^ for i<i<_e,
we clearly have t(f)==v{f) for all /eA,.

The following lemma is quite useful.
(2.14) Given any finite number of elements x^ . . ., x, in M(R), let t : A^R be the

unique local K-homomorphism with t(X,)==x, for i_<r<<?. Then we have the following:

1) (^, . . ., ̂ )R ^ primary for M(R)oR ^ m^W o^r K[<^, . . ., ̂ >]oR ^ a
finite K[<^, . . ., x ̂ -module.

2) ^ (^i? • • • 5 ^)R ^ primary for M(R) ^/z: dim R==^o^ is infective.
3) (^i, . . ., ^)R==M(R)o^ is surjective.
4) ^/R "> ^ ^wam and {x^ . . ., ^) ^ a system ofparameters of R, then, for any ^eM(R),

^TZ fc^'^ F(X) ^ &^ ̂  minimal monic polynomial of^ over K«^, . . ., A:,» (where X is an
indeterminate) and D to be the degree o/'F(X), we have F(X)-XDeM(K[<^, . . ., ^>]) [X].
(Note that by i) we know that if R is a domain and (^, . . . ,^) is a system of
parameters of R, then the quotient field of R is a finite algebraic extension of
K«^, . . . ,^».)

Proof. — Take a basis (^, . . ., A:J of M(R) and let v : A^->R be the unique
local K-homomorphism with v(X,)=x, for i<,i<,n. Now i), 2) and 4) follow by
applying [2, (23.3) and (23.10)] to the ideal Ker v in A^ To prove 3), note that if
(^, .. . ,^)R==M(R), then, upon letting R'=K[<^, . . ., ^>] we clearly have
R==R/+M(R')R as R'-modules and by i) we have that R is a finite R'-module, and
hence R == R' by Nakayama's lemma. d.E.D.

(2 .15) Given any nonnegative integer n and any basis (Y^, ...,YJ of M(AJ, upon
letting h:A^A^ to be the unique local K-homomorphism with A(X,)==Y, for i<i<n,
by (2 .14) we have that AeG^AJ. Thus we have a bijection of G^AJ onto the setofall
ordered n-tuples (Yi, . . ., YJ of elements in M(AJ with (Y^, . . ., YJA^== M(AJ.

It may be remarked that the Implicit Function Theorem [2, (10.8)] and the
Inversion Theorem [2, (10.10)] can be deduced directly from (2.15).

Another immediate consequence of (2.14) is that:
(2 .16) There exists a K-epimorphism A^->Ro^emdim R.
Moreover, all these epimorphisms can be derived from one of them in the following

manner:
(2.17) Let v : A^->R and t : A,—R be any K-epimorphisms where n is any nonnegative

integer and ^=emdimR. Let b : A^A, be the K-epimorphism defined by taking
&(/(Xi, . . ., XJ) =/(X,, . . ., X,, o, . . ., o) for all /(X^, . . ., XJ eA^. Then there exists
heG^A^) such that tbh==v. (Note that if n==e then we get th=v.)

Actually, we shall prove the following slightly stronger version of (2.17):
(2.18) Let v : A^-^R and u : A^->R be any K'epimorphisms where n and m are any

nonnegative integers with n>m. Let b : A^A^ be the K-epimorphism defined by taking
A(/(X,, . .., XJ) =/(Xi, ..., X,, o, ..., o) for all /(X,, ..., XJ eA,. Then there exists
A€GK(AJ such that ubh==v. (Note that if n=m then we get uh==v.)
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Proof.—Let ^=^(X^) for i^i^m, and let ^=emdimR. Since u : A^-^-R
is an epimorphism, we have (^, . .., ;vJR=M(R) and hence there exists a permutation
(a(i), . . ., a(m)) of (i, . . ., m) such that (^, . . ., ^))R==M(R). Since v : A^—R
is an epimorphism, we can take Z^)£M(AJ with v{Z^)=x^ for i^i^e; now
the elements A:^), . . ., x^ are K-independent modulo M(R)2, and hence the elements
Z^), . . . ,Z^ are K-independent modulo M(AJ2; consequently there exists a basis
(Zi, . . . ,ZJ of M(AJ such that Z^=Z^ for i^'<^. By (2.15) we can now
take A'eG^AJ such that A'(X,)—Z, for I^Z^TZ. Now ^ /: A^->R is a
K-epimorphism and yA'(X^)=^ for i<,i<,e. Let ^ : A,-^R be the unique
local K-homomorphism with t(X^==x^ for i^i^e. By (2.14) we know that t is
surjective, and hence there exist

F,(X,, . . ., XJeM(AJ and /,(X,, . . ., Xj£M(A,)
such that

Fz(^(l). •••^a(.))==^ /(x^) for 1-̂ ^

and ^(^), . . ., ̂ )) = ̂  for i^ z< m.

Let
X,-F,(X^,...,X^) for m<z<^

Y,- X, for ie{a(i), ...,^)},
X,-F,(X ,̂ . . ., X^)+/,(X^, . . ., X^) for i^Km with î (i), .. .^(.)}.

Then clearly (Yi, . . ., YJ is a basis of M(AJ, and

yA'(YJ==^ for i<^i<,m, and yA'(Y,)=o for m<i<^n.

Since (Y^, . . ., YJ is a basis ofM(AJ, by (2.15) we can take /TeG^AJ with A*(X,) =Y
for i_<^^, and then we have

vh'h* (K^) == x^ for i^i^m, and yA'A*(X^)==o for m<i^n.

Let A=A*-1^'-1 , and let X,'=^*(X,) for I^Z^TZ. Then A£GK(AJ, (Xi,...,X^)
is a basis of M(AJ,

^/(X;)=^/A*(XJ=^=^(X,)-^/^(X,/) for i^^m,

and v{X,)=vhfh\'K,)=o=ubh{X,) for m<i<7z.

Thus Z/&A : A^-^R and v : A^->R are both local K-homomorphisms,

(•K[,...,X^A^M{A^,

and ^(X^^^X^) for i<^^; consequently by (2.11) we get ubh==v.
Using (2.17) we shall now prove
(2.19) Let v : A^->R be any Y^-epimorphism where n is any nonnegative integer^ let J

be any ideal in A^, and let w : G^[A^, Ker v] -> G^(R) be the homomorphism induced by v.
Then ^(GK[A,, Ker .] HGK(A,,J))-GK(R, ^(J)).
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Proof. — Let e==emdim R, and take a basis (;q, . . ., x ^ ) ofM(R). Let t : Ag->R
be the unique local K-homomorphism with ^(XJ=^ for ^^i^e; by (2.14) we
know that t is surjective. Let b : A^—Ag be the K-epimorphism defined by taking
^(/(X,, ...,XJ)=/(X,, . . . ,X, ,o , . . . , o ) for all /(X,, . . . ,XJeA,. By (2.17) we
can find AeG^AJ such that tbh=v.

Let any ^'eG^R, v{])) be given. Then gf{x,)—x^v(])=tbh{J) for i^Ke,
and hence there exists
(1) Z;eJ for i<i<e

such that upon letting
(2) Z,==h{Z^) for i^'^

we have g\x^—x^=tb(7.^ for i;<^^. Now
(3) ^X,+^))-^) for i^r^;

since g ' is an automorphism of R, we have (^(^i), . . ., ^'(A;J)R=M(R) and
hence the elements ^'(^i), . . ., g ' ^ e ) are K-independent modulo M(R)2; since
t : Ag-^R is an epimorphism, in view of (3) we deduce that the elements
X^+&(Zi), . . ., Xg+&(Zg) are in M(AJ and they are K-independent modulo M(Ag)2.
Therefore (Xi+^(Zi), . . ., Xg+&(ZJ)Ag==M(AJ ; now b :A^->Ag is an epimorphism
with Ker6==(X,+i , . . . , XJA^ and 6(X,+Z,)=X,.+&(Z,) for i<i<e', conse-
quently, we must have (X^+Z^, . . ., X,+Z,, X^^, . . ., XJA,= M(AJ. By (2.15)
we now get A'GG^AJ such that
(4) A'(X,)=X,+Z, for i<i<e, and A'(X,)=X, for ^<?<^.

Since ^(X^)===^ for i^^^, by (3) and (4) we see that
for i<z<e: ^'(X,)=^(^)=^(X,)=^(X,),

and for e<i<n: ^A'(X,)=o =^6(X,);
thus
(5) ^'(X,)=^(X,) for i^i^n.

Let
(6) g=h-lh'h, and X^A-^X,) for I^^TZ.

Then ^eG^AJ, and
(7) (X:,...,X:)A,=M(AJ.

Ky (2), (4) ? ^d (6) we get
^(X,*)=X;+Z; for i<^<z, and ^(X;)=X; for ^<^7z;

consequently, in view of ( i) and (7), by (2.9) we see that ^Gg^A^J). Since tbh===v,
by (5) and (6) we get that for i<^i<^n:

^(X;) = (tbh) (h-^h^h-1^ == tbh^X,)
=gftb{•K,)=gf{tbh)h-l{X,)=gW).
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Thus vg{'X^)=gfv{'X^) for i<:i<n', now vg : A^R and g ' v : A^->R are both local
K-homomorphisms, and by (7) we have (X^, .. ., X*JA^==M(AJ; therefore by (2.11)
we get

vg=gtv.

From this it follows that geG^[A^ Ker v] and ^'=w(^).
Since, in view of (2.4)5 we have

^(GK[A,, Ker .] nG^.J)) cG^R, ^(J)),

we now conclude that
^(GK[A,, Ker .] nGK(A,,J))=GK(R, ^(J)).

Remark (2.20). — By [2, (20.6)] we know that R is henselian. Whence, in parti-
cular, Remark (2.13) is applicable to R.

Definition (2.21). — An analytic local domain S over K is said to be analytically separably
generated over K if there exists a system of parameters (j^, . . .,j^) of S such that the quotient
field of S is separable over K(d, . . . ,j^ ». Given a prime ideal P in R, R/P can be considered
to be an analytic local domain over K by identifying K with its image under the canonical epimorphism
R—R/P, and hence the above definition applies to R/P.

Equivalently, upon regarding R/P to be a K-algebra, in view of (2.14) we have that:
R/P is analytically separably generated over Kothere exists a local K-monomorphism
u : A^->R/P, for some m, such that R/P is integral over u{AJ and the quotient field
of R/P is separable over the quotient field of ^(AJ (note that we must then have
m= dim R/P).

It is known that if K is perfect then every analytic local domain over K is analy-
tically separably generated over K. For the case when K is an infinite perfect field
see for instance [2, (24.5)]. In [3] we shall give an elementary proof of this which
applies also when K is finite.

It may be noted that in case of characteristic zero, by definition every field is
considered to be perfect and every algebraic extension is considered to be separable.

For some other criteria of analytic separable generation reference may be made
to [5] and [6, Exercises i to 4 on page 202].

§ 3. Symbolic powers.

Recall that for a primary ideal Q,in a noetherian ring R: exponentRQ^=min n for
which (rad^Q^)n C Q,; and lengthRQ= max n for which there exists a chain of distinct
ideals Q^cQ^C. . . cQ^ in R such that Q ,̂ . . . , C L are primary for radaQ, and
Q .=0. Also recall that for a prime ideal P in a noetherian domain R, the n-^ symbolic
power of P is denoted by P^, i.e., P^^ M^Rp^n R; also note that if Q,is an ideal in R
which is primary for P, then upon letting e = exponent^ we have that: Qis a symbolic
power of PoQ^P^. As usual, by (}) we denote binomial coefficients.
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(3.1) Let A and R be noetherian rings, let u : A-^R 6^ an epimorphism, and let Q^be a
primary idealin^. Then exponentRQ== exponent^" ̂ QJ, and lengthRQ^length^'^Qj.

Proof. — The assertion about length is obvious. The assertion about exponent
follows by checking that if Q^ and Q* are any ideals in R and n is any positive integer
then: 0:̂ 0:0 [u-\Qi}Ycu-\^).

(3.2) Let P and Q^ be ideals in a regular local ring A such that P is prime and Q^cP^.
Then Q^cM(A)2 and emdim A/Q^= dim A.

Proof. — Suppose if possible that there exists xeP^ with ^M(A)2. Now Ap
is a regular local ring with dim Ap= dim A—dim A/P, A/^A is a regular local ring
with dim A/AA=dim A — i ; P/A*A is a prime ideal in A/^A, and (A/^A)p/^ is a regular
local ring with dim(A/A:A)p^ == dim A/xA — dim(A/A:A) /(P/^A); consequently

emdim (A/xA)p/^= dim (A/A:A)p/^
==dim A/^A-dim(A/^A)/(P/^A)
= dim A/A-A — dim A/P
=(dim A — i ) — d i m A/P
== (dim A — dim A/P) — i
= dim Ap — i
== emdim Ap — i.

Also, by the permutability of residue class ring and quotient ring formations we know
that (A/xA)p/^ is isomorphic to Ap/^Ap; whence we get that

emdim Ap/xAp = emdim Ap — i.

However, ^eP^cM^Ap)2 and hence

emdim Ap/^Ap = emdim Ap

which is a contradiction.
Thus we must have P^clVl^A)2. Therefore Q^cM(A)2 and hence

emdim A/Q,= emdim A = dim A.

(3.3) Let P and Q^ be ideals in a regular local ring A such that P is prime and Q^is primary
for P. Then:

QcP^ o dim A = emdim A/Q= emdim (A/QJp/Q + dim A/Q.

Proof. — Since Q, is primary for P, we have dim A/Q==dim A/P$ also
emdim Ap = dim Ap == dim A — dim A/P; consequently,

emdim Ap == dim A — dim A/Q.

Also, by the permutability of residue class ring and quotient ring formations we know
that Ap/QAp is isomorphic to (A/QJp/Q, and hence

emdim Ap/QAp == emdim (A/QJp/Q.
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Clearly : dim A=emdim(A/QJp/Q+dim A/Qo dim A—dim A/Q^= emdim (A/QJp/q,
and hence by the above two displayed equations we get that

dim A == emdim (A/QJp/Q + dim A/Q^ o emdim Ap == emdim Ap/QAp.

Clearly: Q,c P^ o QAp c M(Ap)2 o emdim Ap = emdim Ap/QAp, and hence by the
above displayed implication we get that

Qc P^ o dim A = emdim(A/QJp/Q + dim A/Q,.

Our assertion follows from this in view of (3.2).
Proposition (3.4). — Let P and Q^be ideals in a local ring R such that P is prime and Q^

is primary for P. Then we have the following.
1) If u: A->R is any epimorphism such that A is a regular local ring and

^-^^C^-^P))^, then dim A = emdim R.
2) Now assume that there exists an epimorphism B—^R such that B is a regular local ring

with dim B= emdim R (note that by (2.16) we know that this assumption is satisfied
if R is an analytic local ring over a valued field K). Then the following three conditions
are equivalents

(*) There exists an epimorphism u : A->R such that A is a regular local ring and
u-\^c(u-\W.

(**) If M:A—»-R is any epimorphism such that A is a regular local ring with
dimA=emdimR, then M-^QJ C^-^P))^.

(***) emdim R == emdim R /Q,= emdim (R/QJp/Q+ dim R/Q,.

Proof. — Follows from (3.3) by noting that if A->R is any epimorphism such
that A is a regular local ring, then

dim A^ emdim R> emdim R/Q.

(3.5) Let P and Q be ideals in a regular local ring A such that P is prime, Q is primary
for P, and 0,4= P. Then the following two conditions are equivalent:

(*) Q, is a symbolic power of P.
(**) dim A == emdim A/Q,

r ^ /emdim A/Q—dim A/Q^+exponentA/o{o}—i\
and length^{o}= /- r ^ •

" V exponent^Jo} ;

Proof. — Since Q^ is primary for P, we have dim A/Q^=dim A/P; also
dim Ap == dim A — dim A/P; consequently: if dim A == emdim A/Q^ then

emdim A/Q—dim A/Q^= dim Ap.

Therefore, in view of (3. i) and (3.2), we see that our assertion would follow from the
following:

( \ o • ^ r r D i i, ^ /dim Ap+exponent Q,—i \(i) 0 is a symbolic power of P o length *0=v A ° A" \ exponent Q, ;
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To prove (i), let e= exponent^ Q,. Then P^cQ, and hence

(2) Q= P(6) o lengthy Q== lengthy.

Also:

(3) Q, is a symbolic power of P o Q^== P^.

Now Ap is a regular local ring, and hence

/ \ 1 1 - ^ /dimAp+^—1\(4) lengthy = p l

\ e ]
Now (i) follows from (2), (3) and (4).

Proposition (3.6). — Let P ̂  Q ̂  ideals in a local ring R such that P ̂  prime, Q ̂
primary for P, W Q,4=P. TV^T? ̂  Aaz^ the following'.

\) If u\ A->R ^ flyy/ epimorphism such that A z'j a regular local ring and ^(QJ is a
symbolic power of ^(P), then dim A=emdim R.

2) Now assume that there exists an epimorphism B—^R such that B is a regular local ring
with dim B==emdim R (note that by (2.16) we know that this assumption is satisfied
if R is an analytic local ring over a valued field K). Then the following three conditions
are equivalent'.

(*) There exists an epimorphism u : A->R such that A is a regular local ring and ̂ (QJ
is a symbolic power ^^"^(P).

(**)7^ u: A->R is any epimorphism such that A is a regular local ring with
dim A=emdim R, then ̂ (QJ is a symbolic power of ̂ (P).

(***) emdim R == emdim R/Q

, i i r -» /emdim R/Q^—dim R/0+exponentR/o{o}—i\and lengthR/Q{o} = ' ^ / ^ 1 p R/Ql J

\ exponentR/Q{o} ;

Proof. — Follows from (3.5) by noting that if A->R is any epimorphism such
that A is a regular local ring, then

dim A > emdim R^> emdim R/Q,.

§ 4. Proof of Theorems 3, 4 and 5.

Let K be a valued field. Let R be an analytic local ring over K. Let X^, Xg, . . .
be indeterminates, and for every nonnegative integer d let A^=K[<Xi, . . . ,X^>] .
By card we shall denote cardinal number; note that for any infinite set N,
card(N)=card(N)-i.

(4.1) Let d be a positive integer. Let P be a nonzero prime ideal in \. Let Q^ be an
ideal in \ such that Q^ is primary for P, and QcP^. Let] be an ideal in A^ such that J^Q^.
Let Go == GK(A^ , J n P) n G^ [\, QJ. Then we have the following:
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1) There exists G'cGo with card(G')>card(K)—i such that ^(Xi)—A(Xi)^Q,
for all g^h in G'.

2) If there exists ZeJnM(A^) with Z^Q^ such that either ZeM(AJ2 or
Z(^XA+M(A^)2, then there exists G*cGo with card (G*};> card (K) such that
g^-h^iQ^forall g^h in G*.

3) GoCG^QJ orf=i ,card(K)=2, W Q-P^.
4.) jy P4=M(AJ ^n ^r<? exists an infinite subset G O/GQ such that ^(Xi)—A(X^Q

/or all g ^ r h in G.

pyoq/. — Since j4=d, there exists ZeJ with Z^Q; in the general case we fix
any such Z, and in case of 2) we take ZeJnM(A^) with Z^Q, such that either
ZeM(A^)2 or Z^XiA^+M(A^)2. Since Q, is primary for P, there exists a positive
integer m such that P^cQ,, and then ZP^Qj now ZP°c)=Q; therefore there exists
a unique nonnegative integer n such that upon letting B==ZPn we have Bc(:Q and
BPcQ. Since P is a nonzero prime ideal, we must have M((A^)p) +0; consequently
M((A,)p)+M((A,)p)2, and hence P+P^; since QcP^, we get P4:Q. Now Q is
primary for P, BPcQ, and P4:Q; therefore BcP. Since B^ZP^, it follows
that BcJnP.

Let any HeG^A^, B) and any qeQ^ be given. Since BcP and HeG^A^, B),
by (2.1) and (2.2) we see that H(P)=P. Since yeQcP^, we can write

e

r^==Sj% with reA,,, r^P, ;r,eP, ^eP.
1=1

Now H(r)(H(?)-y)=^(r-H(r))+H(r?)-^

== <?(r-H(r)) + ̂  (H(^)-JA)

=^(r-H(r))+^(H(j.)(Hte)-^)+^(H(^)-^));

also Hte)—^eB and H^—j'.eB for i^^e

because H€GK(A;;, B), and
H(^,)eP and ^,eP for i<i^:e

because H(P)=P; therefore
H(r)(H(?)-<7)eQ.+BP.

Since BPcQ., we thus get H(r)(H(^)—?)eQ.; since r^P and H(P)=P, we must
also have H(r)^P; since Q, is primary for P, we conclude that H(q)—qeQ^, and hence
H(<?)eQ,

Thus we have shown that H(QJcQ, for all HeGg^A,,, B). Given any
HeGK(Aa, B), since GK(A<,, B) is a subgroup ofG^A,,) by (2.1), we have H^G^A,, B);
consequently by what we have just shown we get that H(QJ cQ, and H'^QJ cQ,;
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therefore H(QJ=Q. Thus G^, B) cG^, QJ; since BcJnP, by (2.2) we also
have GK(A,,B)CGK(A,,JHP). Therefore

(5) G(A,,B)cGo.

If d=i and card(K)=2 then for any basis (X^) of M(A^) we would have
X^—X^eM^A^^P^. Therefore, in view of (2.9) we get the following:

(6) If d==i and card(K)=2 then GK(AJ=GK(A,, P^).

Since B^Q, we can take YeB with Y^Q. Since YeB and BcPcM(A^),
we have YeM(A^).

For a moment suppose that P=(=M(AJ. Then X^P for some j. For every
positive integer t we have M(A^)=(Xi+XjY, Xg, . . ., X^)A^ and hence by (2.15)
we get A,eGK(A^ with h, (X^) == X^ + Xj Y and A,(X,)=X, for ^<_i<_d\ now XjYeB
and hence by (2.9) we see that ^eG^A,, B). For any integers o<t<s we have
^(X^-^X^XJY^-XJ-O; since X^P, Y^Q, and Q is primary for P, we get
that XJY^Qj also i—XJ^ is a unit in A^, and hence ^(Xi)—^(Xi)(^Q. In view
of (5), this completes the proof of 4).

Now, reverting back to the general case (i.e., without assuming P=1=M(AJ),
in view of (5) and (6) we see that i), 2) and 3) would follow from i'), 2') and 3')
respectively:

i') There exists G'cG^A^B) with card(G');>card(K)-1 such that

^(X,)-A(X^Q
for all g^h in G'.

2') If ZeM(A,) and either ZeM(A,)2 or Z^XiA,+M(A,)2, then there exists
G*CGK(A^,B) with card (G*);> card (K) such that ^(Xi)-A(X^Q, tor all g^h
in G\

3') If either d>2 or card(K)>2 or Q+P^, then G^{A^ B) ±G^{A^ Q).

We now proceed to prove i'), 2') and 3').
Since YeM(A^), there exist unique elements k^ ..., ̂  in K such that

(7) Y+^X,+...+WeM(A,)2.

Let
^ ^ { { k e K : k ^ i l k , } if ^4=0=^==...= '̂ d 9

0 K otherwise.

If k^=...==k^==o then let (X;, ..., X^)=(X2, .. ., X^); and if k^o for
some j with 2<,j^d then let (X^, .... X,)=(X^ . . ., X^, Y, X^i, . . ., X,). Now
M(A,)=(X,, X,, .. ., X,)A, and hence by (2.15) we get geG^A,) with ^*(X,)=X,
and g(X,) = X,' for 2^ i< d. For any ke^ we have M(AJ = (X, + kY, X^ ..., X;)A,
and hence by (2.15) we get ^eG^A,) with g^(X,)==X,+kY and ^(X,)=X^ for

7<5(5
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2^^; let &=^*-1; then g,eG^(\) with ^(X,)=X,+A;Y and ^)=X;
for 2<_i<d\ since ^YeB, by (2.9) we see that g^G^{^ B). Thus we have found

(9) ^GK(A,, B) for all keK,.

For any k ^ k ' in K^ we have ^(X^—^X^^—^Y; now Y^Q, and A;—A;'
is a unit in A^; consequently ^(X^)—^(Xi)^Q^. Thus

(10) for all k^k' in K^ we have ^(Xi)-^(X^Q,.

By (8) we have card (K())> card (K)—i, and hence i') follows from (9) and (10).
Now YeZA^; consequently by (7) and (8) we see that if ZeM(A^) and either ZeM(A^)2

or Z^X^A^+M(A^)2 then KQ=K; therefore 2') also follows from (9) and (10).
Now only 3') remains to be proved.
By (9) and (10) we see that if card(Ko)>i then G^(\, B) ̂ G^(\, QJ; since

always card(K)^2, by (8) we see that card(Ko)^i; therefore we get the following:

(n) If card(Ko) + i then G^A,, B) <)= GK(A, Q).

By (8) we get (12) and (13):

(12) If card(K)+2 then card^)^!.

(13) If card(Ko)=i then k^+o==k^==. . .=k^.

If flT>2 and k^==o then M(AJ=(Xi, X^+Y, X3, .. ., X^)A^ and hence by
(2.15) we get ^GK(A,) such that ^'(X,)=X,, ^'(X,)=X,+Y, and^'(X,)=X
for S^i^d; since YeB, by (2.9) we have ^'eG^A^B); since Y^Q^, we also have
g'^G^A^y Q^). Thus we have proved the following:

(14) If rf>2 and k,=o then GK(A,, B) ̂  G^{A,, Q).

If d==i and k^o then clearly YA^=XiA^== M(A^)=P; since YeB and
BPcQcP^, we then must have Q^P^. Thus we have proved the following:

(15) If d=i and k^o then Q^P^.

Now 3') follows from (n), (12)3 (13), (14) and (15).
Theorem (4.2).—Assume that dim R=o and R + K (i.e., equivalently, dimR==o

and M(R) 4=M(R)2). Let x be any element in M(R) with ;v^M(R)2. Let J be any nonzero
ideal in R. Then we have the following.

i) G K ( R , J ) = { I }
oemdimR=i, card(K)=2, and M^R)^^}
ocard(K)==2 and R is K-isomorphic to Ai/(X^Ai)
<^>card(K)==2 and R is isomorphic to A^/(X^A^)
ocard(R)=4
^G(R)={i}
<>GK(R)={I}
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2) There exists G'cGK(R,J) with card(G')^card(K)—i such that g{x)+h{x)
for all g^h in G'.

3) If there exists o= t=^eJnM(R) such that either ^eM(R)2 or z<^R+M(R)2, then
there exists G*cGK(R,J) with card (G*)^ card (K) such that g{x) +h(x) for all g^h in G\

4) If either emdim R +1 or M^R)2^^}, then there exists GcG^(R) with
card(G)>card(K) such that g{x) ̂ h{x) for all g^h in G.

5) If card(R)+4 then there exists ^G^R) such that g{x)+x.

Proof. — Upon letting rf=emdimR, we can take x^ . . . ,^ in R such that
M(R)=(^,A;2, . . . ,^)R. Let v : A^R be the unique local K-homomorphism with
u{^i)==x and v{xi)==xi for 2^^rf; by (2.14) we know that v is surjective. Let
Q^Kery. Now Q is primary for M(A,), (icM{A,)2==M(A,y2\ v-^J)^^ and
GK(A^y - l(J)nM(A^)==GK(A^^/- l(J)). Also, we have the following:

6) If ^ is any nonzero element in JnM(R) such that either ^eM(R)2 or
^vR+M(R)2, then upon taking any Zev~1^) we have that Zey-^J) nM(A^),
Z^Q, and either ZeM(A,)2 or Z^XiA,+M(A,)2.

Let Go==GK(A„^;-l(J))nGK[A„Q]. By (4.1) we get i'), 2') and 3'):

i') GoCGK(A,,QJ od=i, card(K)=2, and Q==M(A,)2.
2') There exists GoCGo with card (G^)^ card (K)—i such that g(X^—h(X^)(f:Q^

for all g^h in Go.
3') If there exists Zey-^J) nM(A,) with Z<^ such that either ZeM(A,)2 or

Z^X,A^+M(A^)2, then there exists G^cGo with card(G^)^card(K) such that
^(X,)-A(X,)^ for all g^h in G;.

Let w : GK[A^, Ker v] -> G^(R) be the homomorphism induced by v. Then
by (2.3) and (2.4) we have Ker w == G^(A.,, QJ and w(Go) cG^RJ). In view
of (2.5), 2) now follows from 2') by taking G' to be ^(G^). In view of (2.5) and 6),
3) follows from 3') by taking G" to be w{G^).

Since Kerw=G^{A^Q^) and w{Go) cG^RJ), by i') we get that:

GKC^J)-^} -> d==i, card(K)=2, and M(R)2={o}.

Clearly: d=i, card(K)=2, and M(R)2-{o}
=>card(K)==2 and R is K-isomorphic to Ai/(X^Ai)
=>card(K)=2 and R is isomorphic to A^(X^Ai)
=>card(R)=4;

and: G(R)={i} => GK(R)={I} => G^R,J)={i}.

For a moment suppose that card(R)=4; now card(K);>2, x(f:K, I+A:^K, and
x ^ i + x , therefore we must have card(K)==2 and R = {o, i, x, i +x}, for any
geG(R) we must have g{o)=o and ^ ( i ) = = i ; also g{x}=x because M(R)={A:};
hence also g{i+x)=i-{-x; therefore g is the identity automorphism. Thus:
card(R)=4 => G(R)=={i}. This completes the proof of i).
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To prove 4) assume that either d^ i or I^R)2^^}. If d^ i then let ^=x^',
if d=i and M^R)2^^} then let z be any nonzero element in M(R)2. Now in both
cases o4=^eM(R) and either ^eM(R)2 or ^xR+M(R)2. So take J to be ^R and
apply 3).

Finally, 5) follows from i), 2), and 4).
Theorem (4.3). — Assume that dim R 4=0. Let Q^ be an isolated primary component

of[o} in R, and let P == rad^Q,. Let Q^==^ n . . . n Q ,̂ where Q\, . . ., Q ,̂ ̂  any finite
number of primary ideals in R z^A Q^ cj: P ^or i^ i<^ b. Let] be any ideal in R with J 4: Q.
Z^ ^ ^ any element in M(R) with x^M(R)2. Assume that Q4=P ayzrf:

(*) there exists a Vi-epimorphism u : A^R, for some d, such that ^"^(QJ c (^^(P))^.

Then there exists an infinite subset G of G^R.JnPnQ^nGKl^QJ wlt^
card(G)^card(K) such that g{x)—h{x)^Q^ for all g+h in G.

(Note that by (2.1) and (2 .2) we then have GcC^R,?] and GcG^R, CYJ
for i<i<b.)

(For an intrinsic formulation of (*) see (3.4).)
(Note that if we assume Q^= P but keep all the other assumptions unchanged, then:

P==Q,=={o} =hjn Q' nM(R)2, rf>o, and u is an isomorphism. In view of (2.15) we
can now identify R with A^ so that x gets identified with Xi. We can take
o+J^JnQ'nM^R)2. For every positive integer n and every keK, in view of (2.9)
and (2.15), we get ^eG^RJ n Q;) with g^{x)=x+kyn and &^(X,)=X, for
2<i<d. Clearly g^{x) 4=&^(^) whenever (k, n) + ( k ' , TZ').)

Proof. — By (3.4) we know that flf=emdim R, and hence we can take x^ . . ., x^
in R such that M(R) ={x, x^, . . ., ^)R. Let v : A^->R be the unique local
K-homomorphism with u{'X.-^==x and v{'X^)=x^ for 2<^i<^d, By (2.14) we see
that v is surjective, and then by (3.4) we see that v~l{Q^) C (^(P))^. Now d>o, v~l{'P)
is a nonzero prime ideal in A^ with v~l{'P) +M(Aj), and y-l(Q,) is primary for ^^(P).
Since Q^ is an isolated primary component of {0} in R, we have {o}==QnQ* with
Q*=Q^in .. . nQ^ where Q^i, .... Q*̂  are primary ideals in R with Q^4: P for i^i^a.
Let Jo-JnQ^nQ:. Then Jo4= Q and hence v-\J,) <^ v-\(^). Let

Go - GK(A,, v-1^)) n GK(A,, v-\] n P n Q:)) n G^A,, v-\W.
Now GK(A,,.-l(Q:))nGK(A,,.-l(JnPn^))=GK(A,,.-l(Q:)n.-l(JnPnQ'))

and ^(Q^n^anPnQ^-U^-W

Therefore by (4.1) there exists an infinite subset G' of Go with card(G')^card(K)
such that ^(X^—^X^y-^QJ for all g^h in G'.

By (2.1) we have
^(A^-^Q:)) cG^A,. .-i(Q:)],

and clearly G^A,, v-W^nG^, v-^] cG^[A,, v-W) n^Q,)]
and y-l(Qt)no-l(Q)=Kery.
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Therefore GoCG^Aj, Ker v]. Let w : GjJA^, Ker v] -> G^(R) be the homomorphism
induced by y. Now, in view of (2.4), we see that

^(Go)cGK(R,JnPnQ:)nGK[R,QJ.

In view of (2.5) we see that w induces an injection of G', and g{x)—h(x)^Q^ for all
g^=h in w(G'). Therefore it suffices to take G to be w{G).

Theorem (4.4). — Let J, Q,i, . . . ,Q^(<z>o) be any ideals in R such that
Q.i5 • • • 5 Q.a are primary and J n Q^ n . . . n Q^ == {o}. Let P, = rad^O^. Let v : R->S
^ a K.-epimorphism where S zj- an analytic local ring over K and Ker y=P^n . . . nP^. Z^
w : G]^[R, Ker y] -> G^(S) ^ ̂  homomorphism induced by v. Let

G =GK(RJ) n,nGK[R, PJ n,nGK[R, QJ,

and G'=GK(S, .(J)) n^nGK[S, .(P,)].

Assume that:

(*) ^r^ ̂ ^ a H-epimorphism u : A^-^R, for some d^ such that ^^(O^) is a symbolic
power of u~l{'P^ for i <^ i<^ a.

Then ^(G)=G'.
(Note that clearly G^R, PJ n .. . n G^ER, PJ cG^ER, Ker y], and hence it makes

sense to talk about w{G).)
(Note that (*) is automatically satisfied if Q^=P^ for i^i^a, because then

we can take u to be any K-epimorphism A^->R. For the case when Q^4=P^ for some z,
for an intrinsic formulation of (*) see (3.6).)

Proof. — Let t : G^[A^, Ker u] —>• G^(R) be the homomorphism induced by u.
Let v1'==vu and let w' : G^[A^, Ker v ' ] -> G^(S) be the homomorphism induced by y'.
Let any g ' e G ' be given.

Clearly vf{u~l(J))=v{J), and hence by (2.19) there exists heG^[A^, Ker y']
such that heG^A^u-^J)) and w'(h)=g\ By (2. i) we see that h{u~l(J))=u~l(J).

Now Ker v'cu-1^) and vf(u~l(P^))=v{'P^), and hence by (2.4) we get
that heG^[A^ u~l(P,)], i.e., h{u~l(^?,))=u~l(P,). Therefore there exists a unique
automorphism of the quotient ring B, of A^ with respect to u~l('P,) such that
h^x)==h{x) for all xeA^. For every positive integer n we now have

^(M(B,)nnA,)=^M(B,)nnAJ=^(M(B,)n)n^(A,)=M(B,)nnA,;

since ^(QJ is a symbolic power of ^(P,), we conclude that h{u~l{Q^^)=u~l{Q^i).
Thus h(u-\]))=u-\]) and h(u-\^}=u-\^ for i^z^^; clearly

Ker^^l(J)n^l(Q,)n...n^(^),

and hence A(Ker ^)=Ker u. Thus AeGg^, Ker u] and upon letting g=t(h), in
view of (2.6), we see that ,?(=GK[R, Ker u] and w{g)=w(t(h))==wl{h)=gf. Now
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AeGK(A,^-l(J)),AeGK[A,^-l(P,)] for i^i^a, and heG^[A,, ̂ (QJ] for i^i<a;
consequently, in view of (2.4), we have g^G.

Thus we have shown that, given any g ' e G ' there exists geG with w{g)=g\
Now, in view of (2.4), ^(G)cG', and hence we conclude that w(G)=G\

§ 5. Rigid subfields.

Let K be a valued field. Let A==K[<X>] where X is an indeterminate.
Let ^, . . ., ̂  be any given finite number of elements in K. Let L be the field

generated by ^, . . ., ̂  over the prime subfield of K.
Take ^o==i' We can take positive integers m, n, q, d such that: q-\-qe<m\

m^-q-{-qe<n', n is not divisible by the characteristic of K; n-}-m^d'y and n and d are
coprime. Now we can take Y==Y(X)eA such that the coefficient of X^ in Y(X) is
nonzero and

e

y^-^n+mj^ S ̂ x^^^'+Y' with Y'eX^-^^^^A.
1=0

Let R^KI/X^ Y>]. Then clearly R is a one-dimensional analytic local domain
over K, with emdimR==2.

(5 .1 ) A is the integral closure of R in the quotient field of R.
Proof. — Clearly A is the integral closure ofRin K«X>], K^X^) is contained

in the quotient field of R, and [K«X» : K^X^^TZ; consequently it suffices to
show that [K^X^KY) : K^X^)]^. Let K' be an algebraic closure of K. Let v
be a primitive n-^ root of i in K'. We have a unique K'-automorphism ^ of K'[[X]]
such that Aj(X)=y JX; ^ extends uniquely to an automorphism of K/((X)) which we
continue to denote by ^.; clearly ^ is then a K'^X^) -automorphism of K'((X)). Now
Y=S^X1 with j^eK for z = o , i , 2 , . . . , and J^+o; we have ^(Y)=2^X1;

i l

since n is not divisible by the characteristic of K, and n and d are coprime, we see
that y^, . . . ,^ are pairwise distinct; since J^+o, we get that ^i(Y), . . ., AJY)
are pairwise distinct. Thus Y has n distinct K'^X^) -conjugates in K'((X)), and
hence [^((X^Y) : K'^X^)]^. Since K^X^) cK'^X^), we must also have
[K«Xn»(Y):K«Xn»]>7z.

(5.2) Let reR be such that o<ord^r<2/z. Then ord ̂ r== either n or n+m.
proof.—Since reR and ord^r>o, we can write r^a^+AY+r' where aeK,

6eK, and / = sX^ + fX.^ + uY2 with seR, teR, ueR. Since ord^Y ==n+m>n,
we have ord^/;>27z. Since ord^r<2n, we see that ord^r == ord^aX." + &Y) = either n
or n-\-m.

(5.3) Let g be any automorphism of'R. 77^ ^(^)-^eM(R) for all ^eL. Whence^
in particular, if ^(K)==K ̂  ^(^)=^ /o^ ̂  ^^L.

(Note that by (2.12) we know that if K is a perfect field of nonzero characteristic
then ^(K)=K for all ^eG(R).)
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Proof. — In view of (5.1)3 we can uniquely extend g to an automorphism of A
which we continue to denote by g. Now ord^(X)=i and hence there exists o+keK
with ord^(X)-A;X)>i.

Suppose if possible that ord^g(X.)—kX)<m. Then g(X) ==kX{i + EX") where u
is an integer with o<u<m and E is a unit in A. Now

g{Xn)==knX.n{I+nEXU+!in element in X^A);

since n is not divisible by the characteristic ofK, we get that ord^{g(X.n)—knXn)=n-}-u;
since n<n+u<n+m<2n and ^(X^—A^X^R, we have a contradiction by (5.2).

Therefore ^(X)=AX(I+DXW) with DeA. Now
^-n-m^Y) = /^-^(Y') + Xn+w(I + DX^)^

e

4- S CT(^.)^+3^xn+w+^+?^(I+DXW)n+w+9+^^•
since YfeXn+m+q+qe+lA, we have

^(Y^eX^+^+^A;
also, for all j^_o we have

X^+j^Dx^+^+^X^^+an element in X^^+^'A
^ y^n +m+j_(_ ̂  element in x^+^+^A because q+qe<m.

e

Consequently k~n~mg(Y)—y= S (^(^)A;?+s^—^)Xn+w+?+^^

1=0
+an element in X^-^+'^A.

Since A:~n-w^(Y)—YeR and n+m+q+qe<2n, in view of (5.2) we now conclude
that g{^)kq+qi—^eM{A) for o<,i^e.

Since ^o""1? we have g{^)==i; consequently A;g—IeM(R) and hence ^==1. There-
fore kq+q^==I for all i, and hence

^(^)-^eM(A) for i<,i<e.

Let w : A->A/M(A) be the canonical epimorphism. Now ^(M(A))=M(A) and
hence g induces ^'eG(w(A)). Since ^(^)-^eM(A), we get that w(^)elnv{^'};
by (2.7) we know that Inv{^'} is a subfield of ^(A), and hence we must have
w(L) dnv{^}. Therefore

^(^)-^eM(A)nR==M(R) for all <:eL.

Purdue University, Lafayette, Indiana, U.S.A.
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