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AUTOMORPHISMS OF ANALYTIC LOCAL RINGS
by SHREERAM SHANKAR ABHYANKAR (%)

§ 1. Introduction.

Let K be any valued field. Let X,, X,, ... be indeterminates. For every non-
negative integer d let A; be the ring of convergent power series in X, ..., X, with
coefficients in K, and let A} be the ring of formal power series in X, ..., X, with coeffi-
cients in K. By an analytic local ring over K we mean an overring A” of K such that there
exists a K-epimorphism A;—~A" for some d. (Note that K fis allowed to be discrete,
and in that case: K is simply an arbitrary field; A;=A,; and an analytic local ring
over K is exactly a complete local ring with coefficient field K).

The group Gg(A;) of all K-automorphisms of the convergent power series ring A,
for d>o, is quite large. Namely, g (g(X,), ..., £(X;)) gives a bijection of Gg(A,)
onto the set of all ordered d-tuples of elements of A, which constitute a basis of the maximal
ideal M(A,) in A,.

The group G(A]) of all automorphisms of the formal power series ring A is even
richer. Namely, any isomorphism of K onto any coefficient field of A} can be extended,
in many ways, to an automorphism of A;. In fact, let H' be the set of all ordered
d-tuples of elements of A, which constitute a basis of M(A;]), let H" be the set of
all monomorphisms W : K—A] such that W(K) is a coefficient field of A, and let
H={(Y,W):YeH’' and WeH'}. Then g—((g(X,), ..., &(X,;)), g|K) gives a bijec-
tion of G(A;) onto H.

The genesis of the present investigation (including our forthcoming joint papers [3]
and [4] with Moh and van der Put) was Zariski’s discovery [10] that, like formal power
series rings, saturated rings are also very rich in automorphisms.

Namely, let K’ be an algebraically closed field of characteristic zero, and let B
be a one-dimensional complete local domain with coefficient field K’ such that B is
saturated in the sense of [10]. Then:

I) B has infinitely many K’'-automorphisms.

More precisely, given any transversal parameters Z and Z’ of B (i.e., Z and Z’
are elements in B such that, upon letting D to be the integral closure of B in its quotient
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field, we have ord,Z=ord,Z'=min{ordyr:reM(B)}) there exists geGg (B) such
that g(Z)=2Z' [10, Theorem (1.11)].
And:

II) Any isomorphism of K’ onto any coefficient field of B can be extended to an automorphism
of B.

More precisely, given any transversal parameter Z of B and any monomorphism
w:K'—B such that w(K’) is a coefficient field of B, there exists geG(B) such that
2(Z)y=7 and g(k)=w(k) for all keK’' [10, Theorem (1.16)].

Now II) is all the more striking in view of the following two well-known facts:

(") For every algebraically closed field K* we have that G(K") is infinite and
Inv G(K")=the prime subfield of K', where Inv G(K") denotes

{keK": g(k)=Fk for all geG(K")}; l
(see (2.8)). '

(") If the characteristic of K is zero, K is not algebraic over its prime subfield,
and R is any analytic local ring over K with R #+K, then R has infinitely many coeffi-
cient fields (see (2.20)).

We want to find out as to how far I) and II) can be generalized to analytic local
rings. .

The results to be reported are positive in the direction of I), and negative in the
direction of II). '

First consider II).

In § 5 we shall prove

Theorem 1. — Let L be any subfield of K such that L is finitely generated over the prime
subfield of K. Then there exists a one-dimensional aﬁalytic local domain R over K with
emdim R =2 such that for every geG(R) we have g(k)—keM(R) for all keL; whence,
in particular, if g(K)=K then g(k)=Fk for all keL. o

In our forthcoming joint paper [4] with van der Put, the following theorem will
be proved:

Theorem 1'. — If R is any analytic local ring over the complex number field G such that R
has a nonunit nonzerodivisor, then for any geG(R) we have: g(C)=C and g(r)=r for every
real number r. More generally, if ¢t: R —R is any local homomorphism of analytic local rings
over G such that ¢(M(R")) contains a nonzerodivisor of R, then: t(C)=GC and t(r)=r for
every real number r.

Theorems 1 and 1’ relate to II) in view of (') and ().

Now we turn to I).

We start off by proving

Theorem 2. — Let R be any complete local domain suck that dim R>o and R has the
same characteristic as R[M(R). Let J be any nonzero ideal in R. Let R’ be the integral closure
of R in its quotient field; (it is known that then R’ is a complete local domain and R’ is
a finite R-module). Assume that R’ is regular; (note that this assumption is automatically
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AUTOMORPHISMS OF ANALYTIC LOCAL RINGS 141

satisfied if dim R=1). Then G(R,]J) is infinite (where G(R, J) denotes the ¢ inertia
group ” {geG(R):g(r)—re] for all reR}). If, moreover, ¥ is a coefficient field of R
which can be extended to a coefficient field of R’ then Gy(R,]) is infinite (where Gg(R, J)
denotes Gy(R) nG(R, J); note that if R’/M(R’) is separable over R/M(R) then, by
Hensel’s lemma, every coefficient field of R can be extended to a coefficient field of R’).

Proof. — By Cohen’s theorem R’ has a coefficient field E; in case F is a
given coefficient field of R which can be extended to a coefficient field of R’ then
we take E to be such an extension. Let C be the conductor of R in R’, i.e.,
C={ceR:¢r'eR for all r'eR’}. Since R’ is a finite R-module, we know that C
contains a nonzero element. Now CJ is a nonzero ideal in R and it remains an ideal
in R’. Since CJ is an ideal in R’, we have that Gg(R’, CJ]) is a subgroup of Ggz(R')
(see (2.1)). Given any geGg(R', CJ), we have g(r')—r'eCJ for all r'eR’; since
CJcR, it follows that .g(r)eR for all reR, ie., g(R)cR; since Ggz(R', CJ]) is a
subgroup of Gyz(R’), we have g 'eGg(R’, CJ) and hence also g~ '(R)cR; therefore
g(R)=R. Thus g(R)=R for all geGg(R’', CJ); since CJcJ, it now suffices to
show that Gg(R’, CJ) is infinite. By assumption R’ is regular, and hence we may
regard R’ to be the ring of formal power series in X, ..., X, with coefficients in E,
where n=dim R’. For every ye(CJ)nM(R’')> we have a unique g,eGg(R’') such
that g,(X)=X;4+y for 1<i<n; moreover, g,eGg(R’, CJ) (see (2.9)). Now
(CJ) nM(R')? is clearly infinite, and hence Gg(R’, CJ) is infinite.

n (4.2), (4.3) and (4.4) we shall prove, respectively, Theorems 3, 4 and 5 stated
below; the actual versions of these theorems which we shall prove there will be more
detailed than as stated below.

Theorem 3. — Let R be an analytic local ring over K such that dim R =0 and R +K.
Let J be any nonzero ideal in R. Then we have the following.

1) If K is infinite then Gg(R,]) is infinite.

2) Gg(R,J)={1}< G(R)={1}< R consists of four elements.

Theorem 4. — Let R be an analytic local ring over K such that dim R>o. Assume that
the zero ideal in R has an isolated primm:y component QQ such that upon letting P =radzQ we
have that Q=+P and:

(%) there exists a K- eptmorp/nsm u: AR, for some d, such that u='(Q) is contained
in the second symbolic power (u=*(P))® of u=*(P).

Let J be any tdeal in R with J& Q. Then Gi(R,JaP)nG[R, Q] is infinite (where
Gg[R, Q] denotes the « splitting group ” {geGg(R) : g(Q)=Q}).

Theorem 5. —- Let R be an analytic local ring over K. Let J,Q,, ..., Q,, (a>0), be
ideals in R such that Q,, ..., Q, are primary and JnQ n...nQ ={o}. Let P;=radzQ;.
Let v : R—S bea K-epimorphism where S is an analytic local ring over K and Kerv=P,n...nP,,
Assume that:

(xx) there exists a K-epimorphism u : A;—R, for some d, such t/zat u=H(Q,) is a symbolic
power of u=(P,) for 1<i<a. :
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Then v induces an epimorphism of

Ge(®, J) n 1 Ge[R, Bl n A Ge[R, Q]
onto | Gx(S, o)) n 11 G [S, o(B)].

In (3.4) and (3.6) we shall give intrinsic formulations of the above conditions ()
and (%x) respectively.

In our forthcoming joint paper [3] with Moh and van der Put, we shall prove
several other results about automorphisms of analytic local rings. There, in addition
to the methods of the present paper, we shall use Samuel’s [7] technique by which he
proved the algebraicity of an algebroid hypersurface with an isolated singularity. The
following two theorems are a sample of the results which are proved in [3]:

Theorem 2'. — Let R be an analytic local ring over K such that dim R>o. Assume
that there exists an isolated primary component P of {0} in R such that P is prime and R [P is analyti-
cally separably generated over K (for definition see (2.21)). Then Gg(R) is infinite.

Theorem 3'. — Assume that K s perfect (the characteristic of K may or may not be
zero), and let R be any analytic local ring over K such that radg{o}={o0}. Then
Inv G¢(R)=K.

§ 2. Terminology and preliminaries.

I) Splitting and inertia groups. — For a ring (commutative with identity) R and a
subring K of R we set:
G(R) =the group of all automorphisms of R;
Gg(R)=the group of all K-automorphisms of R
={geG(R) : g(k)=*k for all keK}.
By analogy with Hilbert’s ramification theory, for any ideal Q in R we set:
G[R, Q] =the splitting group of Q in R
={geGR) : g(Q)=Q};
Gk[R, Q]=the splitting group of Q in R over K
—Ge(R)nG[R, QJ;
G(R, Q) =the inertia group of Q in R
={geG(R) : g(r)—reQ for all reR};
Gk (R, Q)=the inertia group of Q in R over K
=Gk(R)nG(R, Q).

Clearly G[R, Q] and G¢[R, Q] are subgroups of G(R) and Gg(R) respectively. We
claim that also

(2.1) G(R, Q) is a subgroup of G[R, Q].
Namely, for any geG(R,Q) we have g(r)—reQ for all reR, and hence g(r)eQ
for all 7eQ. Thus g(Q)cQ forall geG(R,Q). Forany geG(R, Q) and any reR,
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AUTOMORPHISMS OF ANALYTIC LOCAL RINGS 143

upon letting s=g"!(r), we have seR and g7 '(r)—r=g"'(r)—g(g™'(r) =s—g(s)eQ;
consequently ¢7'eG(R,Q), and hence g7'(Q)cQ; since g(Q)cQ and g~ }(Q)cQ,
we get g(Q)=Q. For any g and %4 in G(R, Q) and any reR, we have
(gh)(r)—r=(g(h(r))—h(r))+(h(r)—r) and g(h(r))—h(r)eQ and A(r)—reQ, and hence
(gh)(r)—reQ; consequently gheG(R, Q). Thus G(R, Q) is a subgroup of G(R), and
GR,Q)cG[R,Q].

It follows that also Gg(R, Q) is a subgroup of G¢[R, Q]. Also note that:

(2.2) If Q is any ideal in R with Q'cQ then clearly G(R, Q) cG(R, Q) and
Gk(R, Q) cGk(R, Q).

We remark that the splitting groups and inertia groups of the galois theory of
local rings [1, § 7] are special cases of G¢[R, Q] and G¢(R, Q) respectively; also, Hilbert’s
higher ramification groups [8, chapter V, § 10] are special cases of Gx(R, Q).

We may now restrict our attention to Gg(R), G¢[R, Q], Gx(R, Q), because the
case of G(R), G[R, Q], G(R, Q) would then follow by taking K to be the prime subring
(i.e., the smallest subring) of R.

Let »: R—S be a ring homomorphism, let S=v(R), and let L=2(K) (note
that if K is the prime subring of R then L is the prime subring of S). For any
geG¢[R, Ker v] we have a unique g'e€G(S) such that: g'(v(r))=v(g(r)) for all reR;
we say that g’ is induced by g. Thus we have a unique map w : Gg[R, Ker 0] — G(S)
such that: w(g)(v(r))=u0v(g(r)) for all geGg[R, Kerv] and all reR; we again say
that w is induced by v.

(2.3) Clearly w: Gg[R, Ker v] - G(S) s a group homomorphism,

and Ker w=Gg(R, Ker v).

(2.4) Let P be any ideal in R. Then
w(Gg[R, Ker 2] n Gg(R, P)) cGy(S, »(P)),
and w(Gg[R, Ker v] nG[R, P]) cG.[S, »(P)].

If moreover KervcP then
w™H(Gy(S, v(P))) cGk(R, P),
and w™ Y (G[S, v(P)]) cGk[R, P].

Namely, everything except the last inclusion is obvious. The last inclusion follows
by noting that for any geGg[R, Ker v], assuming Ker vcP, we have the following:
1) if w(g)(v(P)) co(P) then clearly g(P)cP; 2) if w(g)eGL[S, »(P)] then, since w
is a homomorphism, also w(g) '=w(g"')eG,[S, »(P)].

(2.5) Let J be any ideal in R with Kerwvc]J, and let G be any subset of
Gg[R, Ker 9] such that for each g#+# in G we have g(x,)—h(x,)¢] for some x,eR.
Then upon letting  y,=v(x,), for eery g+h in G we clearly have 3y, eS and
w(g) (V) — w(h) () =0v(g (%) —h(x,)) €0(]).  Whence, in particular, w induces an injec-
tion of G.
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144 SHREERAM SHANKAR ABHYANKAR

(2.6) Let u: A—R be a ring epimorphism and let K’ be a subring of A such
that #(K')=K. Let t:Gg[A, Keru] - Gg(R) be the homomorphism induced by u.
Let v"=wvu and let w':Gg[A, Ker v'] > G.(S) be the homomorphism induced by 2.
Then for any heGg [A, Ker u] n G [A, Ker v'] we clearly have t(h)eGg[R, Ker v], and
w(t(h))=w'(k).

For any subset H of G(R) we set:

Inv H={reR : g(r)=r for all geH};
note that then

(2.7) Inv H is a subring of R; moreover, if T is any subfield of R then (InvH)nT
is a subfield of R.-
Namely, for any o+xe(InvH)nT and any geH we have:
1/x=(1/x)g(1)=(1/x)g((x) (1/x)) = (1/x)g(x)g (1 [x) = (1 %) ()g(1 [*) = g(1 /%),
and hence 1/xe(InvH)nT.

(2.8) Let E be an algebraically closed field, let F be a subfield of E, and let F*
be the algebraic closure of F in E. Then we have the following:

1) Inv Gx(E) cF’, and if F* is separable over F then Inv Gy(E)=F.
2) If F'+E then Gg(E) is infinite. If F" is separable over F and [F":F]=c0
then Gg(E) is infinite. :

[Note that it follows that if F is the prime subfield of E then Inv Gp(E)=F and Gz(E)
is infinite.]

To prove 1) and 2), take any transcendence basis {#,},c5 of E over F'. Let g be
any element in G(F") (for instance g=the identity). Given any o#+feF", there exists
a unique keGy(F'({%,},ep)) such that A(r)=g(r) for all reF" and A (x,)=fx, for
all beB. Since E is an algebraic closure of F'({x,},c5), there exists geGy(E) such
that g(r)=»h(r) for all reF'({x,},c5). Now F’ is infinite, and hence we see that if
F'+E (i, if B is nonempty) then Gg(E) is infinite; since we may assume that the
transcendence basis {,},c5 includes any given element in E which is not in F7, it also
follows that Inv Gg(E) cF’. We have just seen that given any geGg(F’) there exists
£:€Gy(E) such that g,(r)=g(r) for all reF"; therefore the proof is now completed by
noting that by ordinary galois theory we have the following: if F* is separable over F
then Inv Gi(F)=F; if F" is separable over F and [F':F]=c then Gy(F") is
infinite.

For any ideal Q in a ring R, by radg Q we shall denofe the radical of Q in R.

II) Local rings. — For a (noetherian) local ring R we set: dim R =max n such that
there exists a chain PycP,c...cP, of distinct prime ideals in R; M(R)=the maximal
ideal in R; endim R = the vector space dimension of M(R)/M(R)? as a vector space over
R/M(R). Recall that for any NcM(R) we have: NR=M(R) <~ NR+M(R)’=M(R);
whence, in particular, emdim R =the number of elements in any irredundant basis
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AUTOMORPHISMS OF ANALYTIC LOCAL RINGS 145

of M(R). For any xeR we set: ordgx=maxj such that xeM(R)J; recall that:
ordgx =00 < x=0. Recall that: dim R =min d such that there exist d elements in R
which generate an ideal which is primary for M(R); whence, in particular,
emdim R>dim R; recall that by definition, R is regular < emdim R =dim R. By a
system of parameters of R we mean a sequence (x;, ..., ;) of elements in M(R) such that
d=dim R and (x;, ..., x,)R is primary for M(R). Given a homomorphism » of R
into another local ring S, we say that v is local if v(M(R)) cM(S).

Note that clearly G(R)=G[R, M(R)] for all ;; whence, in particular, the canonical
epimorphism  R—R/M(R) induces a homomorphism G(R)—-G(R/M(R)).

By a coefficient field of R we mean a subfield K of R such that K gets mapped onto
R/M(R) by the canonical epimorphism R —-R/M(R).

(2.9) Assume that R has a coefficient field K. Let NcR be such that NR =M(R),
let J be an ideal in R, and let geGg(R) be such that g(x)—=x€e] for all xeN. Then
8€G(R, J)-

Proof. — By induction on m (m any positive integer) we shall show thatif x, ..., x,
are any elements in N then g(x;...x,)—%;...x,€]; by assumption this is true for

m=1; so now let m>1 and suppose true for m—r1; upon letting x'=x,...x

w WE

have g(x,)—x,€] by assumption, and g(x')—=x'€]J by the induction hypothesis; now

glxy. . x,)— % x,=g(x)g(x") —x,x"
=g(x)g(x") —g(x)x" +g(x,) ¥ — 2%
=g(x1) (g(x") — ") + &' (g (%) — %,),

and hence g(x;...x,)—%;...x,€]. Since g is a K-automorphism, it now follows that
g(9)—ye] for all yeK[N]. Let any zeR be given. Given any nonnegative integer ¢
we can find yeK[N] with z—»,eM(R)’; now g()—ye] and g(M(R)")=M(R)’;
whence g(z)—zeJ +M(R). Thus g(z)——zeif_:lo (J+MR)H=].

(2.10) Assume that R has a coefficient field K. Then K-+ radg{o}=the integral
closure of K in R (where, as usual, K+radg{o} denotes {k+=x:keK, xeradg{o}}).
Whence in particular: K is integrally closed in R<>R  has no nonzero nilpotent element.

Proof. — For any zeradp{o} we have z'=o0 for some positive integer d, and
hence z is integral over K; since every element in K is certainly integral over K, it follows
that every element in K +radg{o} is integral over K. Conversely, let any yeR be
given such that y is integral over K. Since yeR and K is a coefficient field of R, we can
write y=4k+x with £eK and xeM(R). Now £ is certainly integral over K and by
assumption y is integral over K; consequently «x is integral over K. Therefore there
exists a positive integer n and elements kg, £, ..., k, in K with k=1 such that
kox"+kx" "'+ ... +k,=o0. Let e be the largest nonnegative integer <7 such that
k,+0. Now o#%k,eK and

kox*+kx*"'+...+k,=k,+an element in xR
=k,+an element in M(R)

145
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and hence kyx*+kx*"'4...+k, is a unit in R;since kpx"+kx""'+...+k,=0, we
must have e#n, i.e., n—e>0. Now

B (kyx H hxt T L R) =Rt Ea T LR,
=0

and kyx*+kx*"'4... 4k, is a unitin R, and hence 2" °=o0. Therefore xeradg{o},
and hence yeK +radg{o}.

(2.xx) Assume that R has a coefficient field K. Let N be any subset of R with
NR=M(R). Let S be any other local ring with coefficient field K. Let u:R—>S and
v: R—>S be any local K-homomorphisms such that u(x)=v(x) for all xeN. Then u=v.

Proof. — Now u(x)=uv(x) for all xeK[N]; also «(M(R))cM(S)" and
o(M(R))*cM(S)" for all . Let any yeR be given. Since K is a coefficient field of R,
given any nonnegative integer i we can find x,eK[N] with y —xeM(R); by what
we have just said we now get u(y)—ov(»)eM(S). Thus u(y)—v(.y)eOoM(S)i, and
hence u(9)=uv(y). -

In the following two Remarks we recall some known facts about the uniqueness
of coefficient fields.

Remark (2.12). — Assume that R/M(R) is a perfect field of characteristic p+o,
and R is of characteristic p. Then R has at most one coefficient field.

Namely let w: R—-R/M(R) be the canonical epimorphism, and let K and K’
be any coefficient fields of R. Given any zeR/M(R), let xeK and x'€K’ be the
unique elements such that w(x)=z=w(x"). For any positive integer n we have
" "eK, 7 "eK', and w(x"")=z""=w(x'"""); consequently, x*"—x""eM(R); now
x—x'=(x""—x"""?" and hence x—x'eM(R)?". This being so for all n, we must
have x—x'=o0, i.e., x=«". Thus K=K,

On the other hand:

Remark (2.13). — Assume that R is henselian (for definition see [2, § 12 A]),
M(R) #+{o}, R has the same characteristic as R/M(R), R/M(R) is not algebraic over
its prime subfield, and R/M(R) possesses a separating transcendence basis over its prime
subfield (note that the last assumption is automatically satisfied if R/M(R) is of characte-
ristic zero). Then R has infinitely many coefficient fields. In fact,let w: R—-R/M(R) be
the canonical epimorphism, and take any subfield L of R and any nonempty family
{%,}ae of elements in R such that the elements {w(x,) },c , are algebraically independent
over w(L) and R/M(R) possesses a separating transcendence basis {z,},cp over
w(L)({w(x,),cs})- Let D={r},cs be any family of elements in M(R) (with the same
indexing set A).  Then there exists a coefficient field Ky, of R such that L[{x,+1,},c4] cKp.
(Namely, take yp,ew™'(z,), and let L'=L[{x,+7,},cs {I}resl; then for every
o+seL’ we clearly have w(s)#0 and hence s is a unit in R; consequently R contains
the quotient field L” of L’; by Zorn’s lemma, L’ is contained in a maximal subfield K,
of R; now R/M(R) is separable algebraic over w(L") and hence, since R is henselian,
by a standard argument (see the proof of [g9, Corcllary 2 on page 280]) we see that K,
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AUTOMORPHISMS OF ANALYTIC LOCAL RINGS 147

is a coefficient field of R.) Now M(R) is infinite and hence there are infinitely many
distinct families D={r,},c, of elements in M(R). Moreover, if D={r,},c, and
D'={r,},c are any two families of elements in M(R) then for any acA we clearly
have that: x,+7eKy<7r =r,.

IITI) Analytic local rings. — Let K be a valued field, and let X, X,, ... be indeter-
minates. For every nonnegative integer m we set:

K[[X,, ..., X,]] =the ring of formal power series in X, ..., X,, with coefficients in K;

K((X;, ..., X,)) =the quotient field of K[[X,, ..., X,]];

K[KX,, ..., X,,>]=the ring of convergent power series in X, ..., X, with coefficients
in K;

KX, ..., X, >)=the quotient field of K[(X,, ..., X, >].

Note that if K is discrete then K[(X,, ..., X, > ]=K[[X,, ..., X,]].

By an analytic local ring over K we mean an overring R of K such that there exists
a K-epimorphism of K[(X,, ..., X >] onto R for some g¢.

For properties of analytic local rings see [2]. It should be remarked that
although in [2] we assumed K to be complete, in all the relevant (algebraic as
opposed to the function theoretic) material this assumption was never used; alter-
natively it suffices to note that, upon letting K" to be the completion of K, we
have K[(X,, ..., X, >]=K'[(X,, ..., X, )] nK[[X|, ..., X,]]. In particular then
K[<X,, ..., X, >] is an m-dimensional regular local ring with coefficient field K.
We also remark that in case K is discrete, an analytic local ring over K is exactly a
complete local ring with coefficient field K.

Now let R be an analytic local ring over K. Clearly then R is a local ring with
coefficient field K.

For every nonnegative integer m let A, =K[(X,, ..., X, >].

We observe that given any finite number of elements x, ..., x, in M(R) there
exists a unique local K-homomorphism v»:A,—R with »(X;)=x for 1<:<an.
Namely, the uniqueness follows by (2.11). To see the existence, note that by definition
there exists a K-epimorphism s:A —R for some g; take f(X,, ..., X)es '(x)
for 1<:<n; now define v by taking

o(fXys -5 X)) =s(fAKy -5 Xy oo fulXKys -5 X))

for all f{X,, ..., X,)eA,. For any f(X,, ..., X,)eA, we define f(x,, ..., x,) to be
o( Xy, ..., X,)); also we set: K[<x,,...,x,>]=0v(A,) and K({(x,,...,x,>)=the total
quotient ring of K[(#;, ..., x,>]. For the case of a complete local ring with coefficient
field K we may denote the corresponding objects by f(xy, ..., x,), K[[x, ..., x,]], and
K((x, ..., x,)) respectively.

Note that given any finite number of elements x,, ..., x, in M(R) and any
nonnegative integer ¢<n, upon letting v:A,—R and ¢:A,—R to be the unique
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local K-homomorphisms with o(X;)=x, for 1<i<n and X;)=x for 1<i<e,
we clearly have ¢(f)=uv(f) for all feA,.
The following lemma is quite useful.

(2. 14) Given any finite number of elements x,, ..., x, in M(R), let t: A,—~R be the
unique local K-homomorphism with t(X;)=x; for 1<i<e. Then we have the following:

1) (%, ..., x,)R @5 primary for M(R)<>R s integral over K[{x, ..., x,>]<>R i a
Sinite K[<{xy, ..., x, >]-module.

2) If (%, ..., x,)R is primary for M(R) then: dim R =e<>t s injective.

3) (%1, ..., x) R=M(R)<t is surjective.

4) If R is a domain and (x,, . .., x,) is a system of parameters of R, then, for any ze M(R),
upon letting ¥ (X) to be the minimal monic polynomial of z over K({x,, ..., x,>) (where X is an
indeterminate) and D to be the degree of F(X), we have F(X) —XPeM(K[{xy, ..., x,>]) [X].
(Note that by 1) we know that if R is a domain and (¥, ...,x,) is a system of

sy e

parameters of R, then the quotient field of R is a finite algebraic extension of

K({<xg, vy 5,0)0)

Proof. — Take a basis (x, 4, ..., x,) of M(R) and let »: A ,—~R be the unique
local K-homomorphism with »(X;)=x; for 1<i<n. Now 1), 2) and 4) follow by
applying [2, (23.3) and (23.10)] to the ideal Kerv in A,. To prove 3), note that if
(%, ..., x) R=M(R), then, upon letting R'=K[{(x, ...,%,>] we clearly have
R=R'+M(R’)R as R’-modules and by 1) we have that R is a finite R’-module, and
hence R =R’ by Nakayama’s lemma. Q.E.D.

(2.x5) Given any nonnegative integer n and any basis (Y, ..., Y,) of M(A,), upon
letting h:A,—~A, to be the unique local K-homomorphism with h(X,)=Y, for 1<i<n,
by (2.14) we have that heGg(A,). Thus we have a bijection of Gg(A,) onto the set of all
ordered n-tuples (Y, ..., Y,) of elements in M(A,) with (Y, ..., Y, )A,=M(A,).

It may be remarked that the Implicit Function Theorem [2, (10.8)] and the
Inversion Theorem [2, (10.10)] can be deduced directly from (2.15).

Another immediate consequence of (2.14) is that:

(2.16) There exists a K-epimorphism A,—R-<n>emdim R.

Moreover, all these epimorphisms can be derived from one of them in the following
manner:

(2.17) Let v:A,—R and t: A,—R be any K-¢pimorphisms where n is any nonnegative
integer and e=emdim R. Let b:A,—~A, be the K-epimorphism defined by taking
b(f(Xyy oo, X)) =f(X, .., X0, ...,0) forall f(X, ..., X,)eA,. Then there exists
heGg(A,) such that thh—=v. (Note that if n=¢ then we get th=uv.)

Actually, we shall prove the following slightly stronger version of (2.17):

(2.18) Let v: A,—R and u:A,—~R be any K-epimorphisms where n and m are any
nonnegative integers with n>m. Let b:A,—~A, be the K-epimorphism defined by taking
(X oo X)) =fXyy oy X, 0, ..., 0) forall f(X,, ..., X,)eA,. Then there exists
heGg(A,) such that ubh=v. (Note that if n=m then we get uwh=2.)
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Proof. — Let x;=u(X;) for 1<i<m, and let ¢e=emdim R. Since u:A,—»>R
is an epimorphism, we have (xy, ...,x,)R=M(R) and hence there exists a permutation
(a(1), ..., a(m)) of (1,...,m) such that (x,y, ..., ¥%)R=M(R). Since v:A,—-R
is an epimorphism, we can take Z,;eM(A,) with v(Z;;))=x, for 1<i<e; now
the elements x,, ..., %,, are K-independent modulo M(R)? and hence the elements
Zyyys -+ > Ly, are K-independent modulo M(A,)?; consequently there exists a basis
(Zy, ..., Z,) of M(A,) such that Z,,=7Z,, for 1<i<e. By (2.15) we can now
take A'eGg(A,) such that A (X))==Z; for 1<i<n. Now vk’ :A,—-R is a
K-epimorphism and oh'(X,;)=x,, for 1<i<e. Let t:A,—~R be the unique
local K-homomorphism with #(X;)=x,, for 1<i<e. By (2.14) we know that ¢t is
surjective, and hence there exist

F(X,, ..., X,)eM(A,) and £(X,, ..., X,)eM(A,)

such that

F,,: (xa(l), c .oy xa(e)) — Z)}l’ (X'L) fOI’ IS is n,
and fi(Xatys -+ v Xage) =% for 1<i<m.
Let

Xi—Fi(Xyqy -5 Xy) for m<i<an,
Y,={X; for ie{a(1),...,a(e)},
Xi—F(Xpnys -+ o5 Xa) FiXKagyy -+ o5 Xyy)  for 1<i<m with i¢{a(1), ...,a(e)}.
Then clearly (Y;, ...,Y,) is a basis of M(A,), and
oh' (Y)=x, for 1<i<m, and oA’ (Y;)=o0 for m<:i:<n.
Since (Yy, ..., Y,)isabasisof M(A,), by (2.15) we can take A'eGg(A,) with A" (X,)=Y
for 1<i<n, and then we have
Wk (X)=2x for 1<i<m, and b’k (X;)=0 for m<i<n.
Let h=4""'""" and let X!=/H(X;) for 1<i<n. Then heGg(4,), (X, ..., X))
is a basis of M(A)),
o(Xj) =o'k (X)) =x=u(X;)=ubh(X) for 1<i<m,
and (X)) =k’ k' (X,) = 0 =ubh(X]) for m<i<n.

Thus ubh:A,—~R and »:A,—~R are both local K-homomorphisms,
(X, o XA, = M(A,),
and wbh(X])=0(X;) for 1<i<n; consequently by (2.11) we get ubh=u0.
Using (2.17) we shall now prove

(2.19) Let v:A,—R be any K-epimorphism where n is any nonnegative integer, let J
be any ideal in A, and let w: Gg[A,, Ker v] > Gg(R) be the homomorphism induced by v.

Then w(Gy[A,, Ker o] nGy(A,, J)) = Gy (R, o(J)).
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Proof. — Let ¢=emdim R, and take a basis (x, ..., x,) of M(R). Let t:A,—-R
be the unique local K-homomorphism with ¢(X,)=x; for 1<i<e; by (2.14) we
know that ¢ is surjective. Let &:A,—A, be the K-epimorphism defined by taking
(X, oo, X)) =X, ..., X,,0,...,0) forall f(X,,...,X,)eA,. By (2.17) we
can find 2eGg(A,) such that thh=v.

Let any g'eGg(R,9(]J)) be given. Then g'(x;)—x;ev(])=1tbh(]) for 1<:i<e,
and hence there exists

(1) Zie] for 1<i<e

such that upon letting

(2) Z,=h(Z)) for 1<i<e

we have g'(x)—x,=1b(Z;) for 1<i<e. Now

(3) WX+ 6(Zy))=g'(x) for 1<i<e;

since g’ is an automorphism of R, we have (g'(x), ..., g (x,))R=M(R) and
hence the elements g'(x), ..., g () are K-independent modulo M(R)?; since
t:A,—~R is an epimorphism, in view of (3) we deduce that the elements
X,+b(Z), ..., X,+5b(Z,) are in M(A,) and they are K-independent modulo M(A,)%
Therefore (X,+6(Z,), ..., X, +6(Z,))A,=M(A,); now b:A,—~A, is an epimorphism
with Kerb=(X, ;, ..., XA, and s(X;+Z)=X;4+b(Z) for 1<i<e; conse-
quently, we must have (X;+Z,, ..., X, +7Z,,X,,,, ..., X,)A,=M(A,). By (2.15)
we now get A'eGg(A,) such that

(4) F(X)=X,+Z;, for 1<i<e¢, and #(X;)=X,; for e<i<n.
Since t(X,)=x; for 1<i<e¢, by (3) and (4) we see that
for 1<:<e: tbh'(X,))=g'(x;)=g"t(X,)=g'th(X,),

and for e<i:<n: thh'(X)=0=g"th(X,);

thus

(5) Wh (X)=gth(X) for 1<i<n,

Let

(6) g=h"'"Wh, and X;=hr"YX,) for 1<i<n.
Then geGg(A,), and

(7) (Xp, o XA, =M(A).

By (2), (4), and (6) we get

gX)=X+Z; for 1<e<i, and g(X))=X! for e<i<nm;
consequently, in view of (1) and (7), by (2.9) we see that geGg(A,, J). Since thh=v,
by (5) and (6) we get that for 1<i<n:

g (X;) = (1bh) (=K RY(X,) = thH (X,)
—¢'1h(X,) =g (th)h (X)) = g'0(X;).
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Thus 1g(X;)=g'v(X]) for 1<i<n; now vg:A,—~R and g'v:A,—R are both local
K-homomorphisms, and by (7) we have (X, ..., X))A,=M(A,); therefore by (2.11)
we get
vg=g'v.
From this it follows that geGg[A,, Kerv] and g'=uw(g).
Since, in view of (2.4), we have

w(Gg[A,, Ker 9] nGg(A,, J)) cGk(R, o(])),
we now conclude that
w(Gg[A,, Ker 1] nGg(A,, J))=Gk(R, 2(])).

Remark (2.20). — By [2, (20.6)] we know that R is henselian. Whence, in parti-
cular, Remark (2.13) is applicable to R.

Definition (2.21). — An analytic local domain S over K is said to be analytically separably
generated over K if there exists a system of parameters (y,, ..., ;) of S such that the quotient
Sield of S is separable over K({yy, ..., 9:>). Given a prime ideal P in R, R [P can be considered
to be an analytic local domain over K by identifying K with its image under the canonical epimorphism
R—R/P, and hence the above definition applies to R[P.

Equivalently, upon regarding R /P to be a K-algebra, in view of (2. 14) we have that:
R/P is analytically separably generated over K<-there exists a local K-monomorphism
u:A,—~R/P, for some m, such that R/P is integral over u(A,,) and the quotient field
of R/P is separable over the quotient field of u(A,) (note that we must then have
m=dim R/P).

It is known that if K is perfect then every analytic local domain over K is analy-
tically separably generated over K. For the case when K is an infinite perfect field
see for instance [2, (24.5)]. In [3] we shall give an elementary proof of this which
applies also when K is finite.

It may be noted that in case of characteristic zero, by definition every field is
considered to be perfect and every algebraic extension is considered to be separable.

For some other criteria of analytic separable generation reference may be made
to [5] and [6, Exercises 1 to 4 on page 202].

§ 3. Symbolic powers.

Recall that for a primary ideal ) in a noetherian ring R: exponentyQQ=min n for
which (radgQ)"cQ; and lengthgQ) =max n for which there exists a chain of distinct
ideals Q,cQ,c...cQ, in R such that Q,, ..., Q, are primary for radzgQ and
Q,=Q. Also recall that for a prime ideal P in a noetherian domain R, the n-" symbolic
power of P is denoted by P™), i.e., P"=M(Rp)"nR; also note that if Q is an ideal in R
which is primary for P, then upon letting ¢ = exponentzQ we have that: Q is a symbolic
power of P<~Q=P¥. As usual, by ({) we denote binomial coefficients.
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(3.1) Let A and R be noetherian rings, let u: A—R be an epimorphism, and let QQ be a
primary ideal in R.  Then exponentyQ =exponent,u~*(Q), and lengthyQ=length,u=*(Q).

Proof. — The assertion about length is obvious. The assertion about exponent
follows by checking that if Q' and Q are any ideals in R and = is any positive integer
then: Q"cQ’ < (u~1(Q))"cu Q).

(3.2) Let P and Q be ideals in a regular local ring A such that P is prime and QcP®.
Then QcM(A)? and emdim A/Q =dim A.

Proof. — Suppose if possible that there exists xeP® with x¢M(A)%. Now A,
is a regular local ring with dim Ap=dim A—dim A/P, A/xA is a regular local ring
with dim A/xA=dim A—1; P/xAis a prime ideal in A/xA, and (A/xA)p,, is a regular
local ring with dim(A/xA)p,, =dim A/xA —dim(A/xA)/(P/xA); consequently

emdim (A [xA)p,, = dim (A [¥A)p;s
=dim A/xA —dim(A/xA) [(P/xA)
=dim A/xA —dim A/P
=(dim A—1)—dim A/P
=(dim A —dim A/P)—1
=dim Ap—1
=emdim Ap—1I.

Also, by the permutability of residue class ring and quotient ring formations we know
that (A/xA)p,, is isomorphic to Ap/xAp; whence we get that
emdim Ap/xAp,=emdim A, —1.
However, xeP®cM(A;)? and hence
emdim Ap/xAp, =emdim A,

which is a contradiction.
Thus we must have P®cM(A)%. Therefore QcM(A)? and hence

emdim A/Q =emdim A =dim A.

(3.3) Let P and Q be ideals in a regular local ring A such that P is prime and Q is primary
Sor P. Then:

Q cP? <« dim A =emdim A/Q = emdim (A/Q)pq+dim A/Q.

Proof. — Since Q is primary for P, we have dim A/Q=dim A/P; also
emdim A, =dim A,=dim A—dim A/P; consequently,

emdim Ap,=dim A —dim A/Q.
Also, by the permutability of residue class ring and quotient ring formations we know
that Ap/QA, is isomorphic to (A/Q )pq, and hence
emdim Ap/QA,=emdim(A/Q )p/q.
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Clearly : dim A=emdim(A/Q )pq+dim A/Q < dim A—dim A/Q =emdim(A/Q )pq,
and hence by the above two displayed equations we get that

dim A =emdim(A/Q )pq+dim A/Q < emdim Ap=emdim Ap/QA,.

Clearly: QcP?® < QA,cM(A;)? < emdim A, =emdim A;/QA;, and hence by the
above displayed implication we get that

QcP? < dim A =emdim(A/Q )pq+ dim A/Q.

Our assertion follows from this in view of (3.2).

Proposition (3.4). — Let P and Q be ideals in a local ring R such that P is prime and Q.
is primary for P.  Then we have the following.

1) If u:A—-R is any epimorphism such that A is a regular local ring and
u1(Q)c(w*(P))®, then dim A =emdim R.

2) Now assume that there exists an epimorphism B—R  such that B is a regular local ring
with dim B=emdim R (note that by (2.16) we know that this assumption is satisfied
if R is an analytic local ring over a valued field K). Then the following three conditions
are equivalent:

(%) There exists an epimorphism u : A—R such that A is a regular local ring and
u(Q) c (u~*(P))®.

(#%) If u:A—R s any epimorphism such that A is a regular local ring with
dim A=emdim R, then u=*(Q)c(u'(P))®.

(k) emdim R =emdim R/Q = cmdim(R/Q_)P/Q—I— dim R/Q.

Progf. — Follows from (3.3) by noting that if A—R is any epimorphism such
that A is a regular local ring, then

dim A>emdim R >emdim R/Q.

(3-5) Let P and Q be ideals in a regular local ring A such that P is prime, Q is primary
Sor P, and Q=+P. Then the following two conditions are equivalent:

(%) Q is a symbolic power of P.

(%) dim A =emdim A/Q
and length, o {o} = emdim A/Q —dim A/Q +- exponenty {0} —r1 .
exponent, q{o}

Proof. — Since Q is primary for P, we have dim A/Q=dim A/P; also
dim Ap;=dim A —dim A/P; consequently: if dim A=emdim A/Q then
emdim A/Q—dim A/Q =dim A,.

Therefore, in view of (3.1) and (3.2), we see that our assertion would follow from the

following:

dim A t, Q—
(1)  Q is a symbolic power of P < lengthAQ_=( - P;—pe:r?:;jraQ I).
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To prove (1), let e=exponent,Q. Then P®cQ and hence

(2) Q =P® < length, Q =length, P,
Also:
(3) Q is a symbolic power of P < Q=DP,
Now A; is a regular local ring, and hence
dim A —
(4) length, P — ( tm Apte I).
¢

Now (1) follows from (2), (3) and (4).
Proposition (3.6). — Let P and Q be ideals in a local ring R such that P is prime, Q is
primary for P, and Q+P. Then we have the following:

1) If u:A—R is any epimorphism such that A is a regular local ring and u='(Q) is a
symbolic power of u='(P), then dim A =emdim R.

2) Now assume that there exists an epimorphism B—R  such that B is a regular local ring
with dim B=emdim R (note that by (2.16) we know that this assumption is satisfied
if R is an analytic local ring over a valued field K). Thken the following three conditions
are equivalent:

() There exists an epimorphism u : A—R. such that A is a regular local ring and u=*(Q)
is a symbolic power of u~*(P).

(#%) If u:A—R is any epimorphism such that A is a regular local ring with
dim A =emdim R, then u=*(Q) is a symbolic power of u='(P).

(#%) emdim R =emdim R/Q
i —dim R —
and lengthg ({0} = emdim R /Q —dim R /Q + exponenty g {0} —1 )
exponentgq{o}

Proof. — Follows from (3.5) by noting that if A—R is any epimorphism such
that A is a regular local ring, then

dim A>emdim R > emdim R/Q).

§ 4. Proof of Theorems 3, 4 and 5.

Let K be a valued field. Let R be an analytic local ring over K. Let X;, X,, ...
be indeterminates, and for every nonnegative integer d let A,=K[(X,, ..., X;>].
By card we shall denote cardinal number; note that for any infinite set N,
card(N)=card(N)—1. v

(4.1) Let d be a positive integer. Let P be a nonzero prime ideal in A;. Let Q be an
ideal in A, such that Q is primary for P, and Q cP®. Let J be an ideal in A, such that J+ Q.
Let Gy=Gg(A;, JnP)nGg[A;, Q). Then we have the following:
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1) There exists G'cG, with card(G')>card(K)—1 such that g(X,)—h(X,)¢Q
Sor all g%k in G'.

2) If there exists ZeJnM(A,) with Z¢Q such that either ZeM(A,)?® or
Z¢X, A, +M(A,)? then there exists G cG, with card(G")>card(K) such that
g(X) —h(X)¢Q forall g+h in G".

3) G,cGg(A;, Q) < d=1, card(K)=2, and Q=P"?.

4) If PE=M(A,) then there exists an infinite subset G of G, such that g(X,)—h(X,)¢Q
Jor all g=+=h wn G.

Proof. — Since J ¢ Q, there exists Ze] with Z¢Q ; in the general case we fix
any such Z, and in case of 2) we take ZeJnM(A;) with Z¢Q such that either
ZeM(A)? or Z¢X,A,+M(A)% Since Q is primary for P, there exists a positive
integer m such that P"cQ, and then ZP"cQ; now ZP°¢Q; therefore there exists
a unique nonnegative integer n such that upon letting B=ZP" we have B4+ Q and
BPcQ. Since P is a nonzero prime ideal, we must have M((A,)p) +£0; consequently
M((A,)p) + M((A,)p)%, and hence P+P@; since QcP® we get PEQ. Now Q is
primary for P, BPcQ, and P4 Q; therefore BcP. Since B=ZP", it follows
that BcJnP.

Let any HeGg(A,, B) and any ¢eQ be given. Since BcP and HeGg(A,, B),
by (2.1) and (2.2) we see that H(P)=P. Since ¢geQcP®, we can write

rq= ._ﬁlyizi with  reA,;, r¢P, 3eP, zeP.
Now  H(r)(H(q)—¢)=¢(r—H(r)) +-H(rg) —1rq
= q(r—H()+ = (H(32)—52)

—glr—H())+ 3 (H() () —2)+H)—);
also H(z)—zeB and H(y)—yeB for 1<i<e
because HeGg(A,, B), and

H(y)eP and zeP for 1<i<e
because H(P)=P; therefore

H(r)(H(g)—¢)eQ+BP.

Since BPcQ, we thus get H(r)(H(¢)—¢)eQ; since r¢P and H(P)=P, we must
also have H(r)¢P; since Q is primary for P, we conclude that H(g) —¢eQ, and hence
H(q)eQ.

Thus we have shown that H(Q)cQ for all HeGg(A;, B). Given any
HeGg(A,, B), since Gg(A,, B) is a subgroup of G (A,) by (2.1), we have H™'eGg(A,, B);
consequently by what we have just shown we get that H(Q)cQ and H™(Q)cQ;
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therefore H(Q)=0Q. Thus Gg(A;, B) cGg[A;, Q]; since BcJnP, by (2.2) we also
have Gg(A;, B) cGg(A;, JnP). Therefore

(5) G(A,, B) cG,.

If d=1 and card(K)=2 then for any basis (X]) of M(A,) we would have
X{—X,eM(A,)?=P®. Therefore, in view of (2.9) we get the following:

(6) If d=1 and card(K)=2 then Gg(A,)=Gg(A,, P?).

Since B4 Q, we can take YeB with Y¢Q. Since YeB and BcPcM(A)),
we have YeM(A)).

For a moment suppose that P+M(A;). Then X;¢P for some j. For every
positive integer ¢ we have M(A,)=(X,+XjY,X,, ..., X;)A, and hence by (2.15)
we get h,eGg(A;) with A(X)=X,+XjY and £,(X;)=X; for 2<i<d; now X/YeB
and hence by (2.9) we see that k,eGg(A;, B). For any integers 0<t<s we have
by(X)— k(X)) =X[Y(1—X;7"); since X;¢P, Y¢Q, and Q is primary for P, we get
that X/Y¢Q; also 1—X?!~! is a unit in A;, and hence £,(X,)—£4,(X,)¢Q. In view
of (5), this completes the proof of 4).

Now, reverting back to the general case (i.e., without assuming P<+M(A))),
in view of (5) and (6) we see that 1), 2) and 3) would follow from 1), 2’) and 3')
respectively:

1) There exists G’ cGg(A,, B) with card(G') >card(K)—1 such that

(X)) —h(X)¢Q
for all g#% in G'.

2') If ZeM(A,) and either ZeM(A,)? or Z¢X,A,+ M(A,)?% then there exists
G cGg(A;, B) with card(G") >card(K) such that g(X,)—A(X)¢Q for all g+#h
in G,

3’) Ifeither d>2 or card(K)>2 or Q+P? then Gg(A;, B) ¢ Gg(A;, Q).

We now proceed to prove 1), 2’) and g’).

Since YeM(A,), there exist unique elements £, ..., £, in K such that

) Y kX 4. .. 5 X,eMA,)
Let
®) _ {keK :k+1/k} if k+o=k=...=k,

" | K otherwise.

If k=...=k=o0 then let (Xj,...,X))=(X,,...,X;); and if k=+o for
some j with 2<j<d then let (X,, ..., X))=(Xy, .., Xj_, Y, Xj 15 -5 Xy). Now
M(A)=(X,, X;, ..., X))A,; and hence by (2.15) we get g'eGg(A,) with g(X,)=X,
and g'(X)=X; for 2<i<d. Forany keK, we have M(A,)= (X, +£Y, X, ..., XDA,
and hence by (2.15) we get g,eGg(A,) with g(X,)=X,+£Y and g(X;)=X! for
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2<i<d; let g,=g.g *; then geGg(A,) with g(X)=X,+£Y and g(X))=X!
for 2<i<d; since £YeB, by (2.9) we see that g,eGg(A,;, B). Thus we have found

(9) 2€Gk(A,;, B) for all keK,.

For any k=% in K, we have g,(X,)—g.(X)=Fk—F)Y; now Y¢Q and k—#
is a unit in A,; consequently g,(X,)—g.(X;)¢Q. Thus

(10) for all £+£ in K, we have g,(X,)—g.(X,)¢Q.

By (8) we have card(K,) >card(K)—1, and hence 1’) follows from (9) and (10).
Now YeZA,; consequently by (7) and (8) we see thatif ZeM(A,) and either ZeM(A,)?
or Z¢X,A;+M(A)? then K =K; therefore 2’) also follows from (9) and (10).

Now only g') remains to be proved.

By (9) and (10) we see that if card(Ky)>1 then Gg(A,, B) ¢ Gx(A,, Q); since
always card(K)>2, by (8) we see that card(K,)>1; therefore we get the following:

(11) If card(Kj)+1 then Gg(A,, B) ¢+ Gg(A, Q).
By (8) we get (12) and (13):

(12) If card(K)+2 then card(Kg)=+1.

(13) If card(Kj))=1 then k Fo=k=...=k,.

If d>2 and k,=o0 then M(A)=(X;, X,+Y, X;, ..., X;)A; and hence by
(2.15) we get g'e€Gg(A;) such that g'(X)=X;, ¢(X;)=X,4+Y, and g (X,)=X
for 3<i:<d; since YeB, by (2.9) we have g'eGg(A,, B); since Y¢Q , we also have
g'¢Gg(A;, Q). Thus we have proved the following:

(14) If d>2 and k=o then Gg(A,, B) ¢ Gg(A,, Q).

If d=1 and % #o0 then clearly YA;,=X A,=M(A))=P; since YeB and
BPcQcP?® we then must have Q=P®. Thus we have proved the following:

(15) If d=1 and k+o then Q=PP®.

Now g') follows from (11), (12), (13), (14) and (15).

Theorem (4.2). — Assume that dim R=o0 and R+K (i.e., equivalently, dim R=o0
and M(R) #+M(R)?). Let x be any element in M(R) with x¢ M(R)%. Let J be any nonzero
tdeal in R.  Then we have the following.

1) Gk(R, J)={1}

<emdim R =1, card(K)=2, and M(R)*={o}
<card(K)=2 and R is K-isomorphic to A,/(X3A,)
<-card(K)=2 and R is isomorphic to A;/(XZA))

<card(R)=4
«<G(R)={1}
<Gy (R)={1}
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2) There exists G'cGg(R,]J) with card(G’)>card(K)—1 such that g(x)+h(x)
Sor all g+h in G'.

3) If there exists o+ze]JnM(R) such that either ze M(R)? or z¢xR +M(R)2, then
there exists G"CcGg(R,]) with card(G") > card(K) such that g(x) +h(x) forall g+hk in G".

4) If either emdimR+1 or M(R)*%{o0}, then there exists GcGg(R) with
card(G) > card(K) such that g(x)=+h(x) for all g+h in G.

5) If card(R) =4 then there exists geGg(R) such that g(x)=*x.

Proof. — Upon letting d=emdim R, we can take x,, ..., x, in R such that
M(R)=(x, x5, ..., x,)R. Let v:A;—~R be the unique local K-homomorphism with
v(X))=2« and o(X;,)=x; for 2<:<d; by (2.14) we know that v is surjective. Let
Q=XKerv. Now Q is primary for M(A,), Qc M(A)2=M(A)? v7(])¢Q, and
Gg(A,, v 1(J) nM(A,))=Gg(A;, v7(])). Also, we have the following:

6) If z is any nonzero element in JnM(R) such that either zeM(R)® or
z¢xR +M(R)?, then upon taking any Zev '(z) we have that Zev '(J)nM(A),
Z¢Q, and either ZeM(A,)? or Z¢X,A,+M(A)>

Let Gy=Gg(Ay v71(J)) nGk[A;, Q). By (4.1) we get 1), 2') and g'):

1) GocGg(A;, Q) < d=1, card(K)=2, and Q=M(A)>~.

2’) There exists GycG, with card(G;)> card(K)—1 such that g(X,)—A(X,)¢Q
for all g+#4 in G.

') If there exists Zev '(J) nM(A,) with Z¢Q such that either ZeM(A,)? or
Z¢X A;+M(A,)?% then there exists G;cG, with card(G;)>card(K) such that
g(X)—h(X,)¢Q for all g+# in Gj.

Let w: Gg[A,, Kerv] - Gg(R) be the homomorphism induced by ». Then
by (2.3) and (2.4) we have Kerw=Gg(A;,, Q) and w(G)) cGg(R,]). In view
of (2.5), 2) now follows from 2’) by taking G’ to be w(G;). In view of (2.5) and 6),
3) follows from g') by taking G™ to be w(G;).

Since Ker w=Gg(A,;, Q) and w(G,) cGk(R,]), by 1’) we get that:

Gk(R,]J)={1} = d=1, card(K)=2, and M(R)*={o}.
Clearly: d=1, card(K)=2, and M(R)*={o}
=card(K)=2 and R is K-isomorphic to A;/(X2A,)
=card(K)=2 and R is isomorphic to A,(X3A,)
=card(R)=4;
and: GR)={1} = Gx(R)={1} = G¢(R, J)={1}.

For a moment suppose that card(R)=4; now card(K)>2, x¢K, 1+ x¢K, and
x+1+4x; thereforc we must have card(K)=2 and R={o, 1, X, 1+x}; for any
geG(R) we must have g(o)=o and g(1)=1; also g(x)=x because M(R)={x};
hence also g(1+x)=1+=x; therefore g is the identity automorphism. Thus:
card(R)=4 = G(R)={1}. This completes the proof of 1).
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To prove 4) assume that either d+1 or M(R)*+{o}. If d+1 then let z=x,;
if d=1 and M(R)?’+{o} then let z be any nonzero element in M(R)%. Now in both
cases 0#+2eM(R) and either zeM(R)? or z¢xR +M(R)%. So take J to be zR and
apply 3).

Finally, 5) follows from 1), 2), and 4).

Theorem (4.3). — Assume that dim R=o0. Let Q be an isolated primary component
of {o} in R, and let P=radgQ. Let Q'=Q n...nQ), where Q'y, ..., Q' are any finite
number of primary ideals in R with Q' ;¢ P for 1<i<b. Let] be any ideal in R with J+ Q.
Let x be any element in M(R) with x¢ M(R)?.  Assume that Q=+P and:

(%) there exists a K-epimorphism u : A,—~R, for some d, such that u=*(Q) c (u=*(P))®.

Then there exists an infinite subset G of Gg(R,JaPnQ')nGk[R,Q] with
card(G)>card(K) such that g(x)—h(x)¢Q for all g+h in G.

(Note that by (2.1) and (2.2) we then have GcGg[R,P] and GcGk[R, Q]
for 1<:<b.)

(For an intrinsic formulation of () see (3.4).)

(Note that if we assume Q =P but keep all the other assumptions unchanged, then:
P=Q={0}+]JnQ nM(R)?% d>o0, and u is an isomorphism. In view of (2.15) we
can now identify R with A, so that x gets identified with X,. We can take
o0+ye]Jn Q' nM(R)?% For every positive integer n and every keK, in view of (2.9)
and (2.15), we get g ,eGg(R,JnQ) with g, (x)=x+hk" and g (X)=X; for
2<i<d. Clearly g ,(*)+g .(x) whenever (k, n)=+(k',n").)

Proof. — By (3.4) we know that d=emdim R, and hence we can take x,, ..., x,
in R such that M(R)=(x, %, ..., ¥)R. Let v:A;—R be the unique local
K-homomorphism with »(X;)=x and o(X))=x, for 2<:<d. By (2.14) we see
that v is surjective, and then by (3.4) we see that 7 *(Q) c (v=*(P))®. Now d>o, v~ (P)
is a nonzero prime ideal in A, with v7(P) +M(A,), and »~*(Q) is primary for »~*(P).
Since Q is an isolated primary component of {0} in R, we have {0}=QnQ with
Q'=Q n...nQ, whereQ, ..., Q) are primary ideals in R with Q ;¢ P for 1<i<a.
Let J,=JnQ'nQ’. Then J,¢Q and hence v !(J,) v *(Q). Let

Gy =G (As, v7HQ)) nGr(Ay v (J NP Q) nGk[A,, 77H(Q)].
Now  GglA, 07(Q)) nGx(A, 5 (JnPnQ))=Ge(A, 5(Q) ns~(JnPn Q)
and THY no (AP Q) =v"1(],) no !(P).
Therefore by (4.1) there exists an infinite subset G’ of G, with card(G’)> card(K)

such that g(X)—A(X)¢o *(Q) for all g+4 in G'.
By (2.1) we have

Gk(As, vHQ) cGklA,, Q)]
and clearly Gy[A, v (Q)] n Ge[Ay, 77H(Q)] €G[A,, v7H(Q) no™H(Q)]
and ™ Q) no ' (Q)=Ker .

159



160 SHREERAM SHANKAR ABHYANKAR

Therefore G,cG¢[A;, Kerv]. Let w:Gg[A,, Ker v] - Gg(R) be the homomorphism
induced by ». Now, in view of (2.4), we see that

w(Gy) cGx(R, JnPn Q) nGk[R, Q.

In view of (2.5) we see that w induces an injection of G’, and g(x)—A(x)¢Q for all
g+h in w(G’). Therefore it suffices to take G to be w(G’).

Theorem (4.4). — Let J, Q. ..., Q,(a>0) be any ideals in R such that
Qs .-, Q, are primary and JoQ,n...nQ,={o}. Let P;=radyQ;. Let v:R—>S
be a K-epimorphism where S is an analytic local ring over K and Kerv=P,n...nP,. Let
w: Gk[R, Ker v] - Gg(S) be the homomorphism induced by v. Let

G =Gx(R, J) n [ G¢[R, P1n N G[R, Q.

and G'=G(S, o(J)) n N Gk[S, o(P)].
Assume that:

(%) there exists a K-epimorphism u : A,—R, for some d, such that u=*(Q,) is a symbolic
power of u='(P) for 1<i<a.

Then w(G)=G'.

(Note that clearly Gg[R, P,]n...nGg[R, P,]cG¢[R, Ker v], and hence it makes
sense to talk about w(G).)

(Note that () is automatically satisfied if Q,=P;, for 1<i<a, because then
we can take u to be any K-epimorphism A;—R. For the case when Q=+ P; for some i,
for an intrinsic formulation of (*) see (3.6).)

Proof. — Let ¢:Gg[A;, Ker 4] - Gg(R) be the homomorphism induced by u,
Let v'=wvu and let w':Gg[A,, Ker v'] > G¢(S) be the homomorphism induced by v".
Let any g'€G’ be given.

Clearly o'(u=*(J))=0v(]), and hence by (2.19) there exists heGg[A,;, Ker ¢']
such that AeGg(A;, u=*(J)) and w'(h)=g’. By (2.1) we see that A(u=*(J))=u""(]).

Now Kerv' cu!(P) and o' (v '(P))=0(P,), and hence by (2.4) we get
that keGg[A,, v '(P)], ie., A *(P))=u"'(P). Therefore there exists a unique
automorphism of the quotient ring B, of A, with respect to u '(P,) such that
hi(x)=~h(x) for all xeA,. For every positive integer » we now have

R(M(B,)" n A;) = h(M(B))" 0 A,;) = ki(M(B,)") n hy(A,) = M(B))"n A, ;
since #~'(Q;) is a symbolic power of u~*(P,), we conclude that A(x~'(Q,))=u"(Q,).
Thus A '(J))=u"'(J) and A(x'(Q,)=u"(Q,) for 1<i<a; clearly
Keru=a"1(J)nu(Q)n... 01 (Q,),

and hence A(Keru)=Keru. Thus heGg[A,, Keru] and upon letting g=t(k), in
view of (2.6), we see that geGg[R, Kerv] and w(g)=w(t(h))=w'(h)=g. Now
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heGg(Ay, w(])), heGg[A,, u1(P)] for 1<i<a, and heGg[A,, « '(Q,)] for 1<i<a;
consequently, in view of (2.4), we have geG.

Thus we have shown that, given any g’eG’ there exists geG with w(g)=g'".
Now, in view of (2.4), w(G)cG’, and hence we conclude that w(G)=G".

§ 5. Rigid subfields.

Let K be a valued field. Let A=K[<(X )] where X is an indeterminate.

Let z;, ..., 2, be any given finite number of elements in K. Let L be the field
generated by z,, ..., z, over the prime subfield of K.

Take z,=1. We can take positive integers m, n, ¢, d such that: ¢+ ge<m;
m—+q-+qe<n; n is not divisible by the characteristic of K; n+m<d; and n and d are
coprime. Now we can take Y=Y (X)eA such that the coefficient of X* in Y(X) is
nonzero and

Y=Xrtmp 2 g Xrtmtatd Ly with  YeX"tmrate i
i=o

Let R=KJ[(X" Y>]. Then clearly R is a one-dimensional analytic local domain
over K, with emdim R =2.

(5-1) A is the integral closure of R in the quotient field of R.

Proof. — Clearly A is the integral closure of R in K((X ], K(¢X")) is contained
in the quotient field of R, and [K(<{X)) : K({X"))]=n; consequently it suffices to
show that [K((X">)(Y) : K(¢(X"»)]>n. Let K’ be an algebraic closure of K. Letv
be a primitive 7-* root of 1 in K’. We have a unique K’-automorphism #; of K'[[X]]
such that #(X)=9'X; #; extends uniquely to an automorphism of K’((X)) which we
continue to denote by #;; clearly k; is then a K’((X™)-automorphism of K'((X)). Now
Y=§ini with yeK for i=o0,1,2,..., and jy;#0; we have hj(Y)zgyivin";
since n is not divisible by the characteristic of K, and » and d are coprime, we sec
that o™, ..., o™ are pairwise distinct; since y,#0, we get that A(Y), ..., h,(Y)
are pairwise distinct. Thus Y has n distinct K'((X"))-conjugates in K’((X)), and
hence [K'((X™"))(Y):K'((X")]>n. Since K((X"))cK'((X")), we must also have
[K(¢XM)(Y) s K((X)]>n.

(5.2) Let reR be such that o<ord,r<a2n. Then ord,r=either n or n-+m.

Proof. — Since reR and ord,r>o0, we can write r=aX"+bY +1' where ackK,
beK, and 7 =sX®"+tX"Y+uY? with seR, teR, ueR. Since ord,Y=n-+m>n,
we have ord,r’>2n. Since ord,r<2m, we see that ord,r=ord,(aX"+bY)=either n
or n+t+m.

(5-3) Let g be any automorphism of R.  Then g(z)—zeM(R) for all zeL. Whence,
in particular, if g¢(K)=K then g(z)=z for all zeL.

(Note that by (2.12) we know that if K is a perfect field of nonzero characteristic
then g(K)=K for all geG(R).)
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Proof. — In view of (5.1), we can uniquely extend g to an automorphism of A
which we continue to denote by g. Now ord,g(X)=1 and hence there exists o+keK
with ord,(g(X)—iX)>1.

Suppose if possible that ord,(g(X)—X)<m. Then g(X)=£iX(1+4+EX") where u
is an integer with o<#¢<\m and E is a unit in A. Now

(XM =k"X"(14+nEX"“+an element in X**1A);
since 7 is not divisible by the characteristic of K, we get that ord,(g(X")—&"X")=n+u;

since n<n4u<n+m<eon and g(X")—£"X"eR, we have a contradiction by (5.2).
Therefore g(X)=£iX(1+DX™) with DeA. Now

Frmg(Y)=k"""g(Y') 4 X" ¥m(1 4 DXm)ntm
+.;Og(zi)kq+qixn+m+q+‘1i(1_|_DXm)n+m+q+qi;
since YeX"tmtite+tiA we have

g(Y')eXn+m+q+qe+lA;
also, for all j>o0 we have

Xrtmti(p L DXmyntmti=X"+tm i an element in X"t HiA

=Xn"tm*ti| an element in X"t et +1A  because ¢+ ge<m.

Consequently £ " "g(Y)—Y= é:o (g(z)ktToF—z)Xntmtata

+an element in X"tmTatetip
Since k7" ™g(Y)—YeR and n+m-+4 g+ ge<en, in view of (5.2) we now conclude
that gZ)H T zZeM(A)  for 0<i<e.
Since z,=1, we have g(z,)=1; consequently £*—1eM(R) and hence £?=1. There-
fore k*T%=1 for all ¢, and hence

g(z)—zeM(A)  for 1<i<e.

Let w:A—A/M(A) be the canonical epimorphism. Now g(M(A))=M(A) and
hence g induces g'eG(w(A)). Since g(z;)—zeM(A), we get that w(z)elnv{g'};

by (2.7) we know that Inv{g'} is a subfield of w(A), and hence we must have
w(L) cInv{g'}. Therefore

g(z)—zeM(A)nR=M(R) for all zeL.
Purdue University, Lafayette, Indiana, U.S.A.
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