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THE STRUCTURE OF A UNITARY FACTOR GROUP

By G.E. WALL

Introduction

Let D be a division ring, V a right vector space of finite dimension n over £). A
linear transformation, Z, on Vis called a transvection if it has the form x - > x - { - a ^ ( x ) ,
where ^ is a fixed vector and p ( x ) a linear form on V such that p ( a ) == 0 (in other
words, J^=/4-^V, where 7 is the identity and N a nilpotent linear transformation of
rank 1). The group of all non-singular linear transformations on V (full linear group)
is denoted by GL(n^D), and the invariant subgroup generated by all transvections
(special linear group) by SL(n,D).

The structure of the factor group GLfSL was elucidated by J. Dieudonne ([!]).
Let A denote the multiplicative group formed by the non-zero elements of Z), Ai the
commutator group of A. Choose a fixed basis ^, .. en of F, and let X^GL. Using the
technique of 'elementary transformations3 familiar in matrix theory, Dieudonne proved
that X= A (mod SL) for some 'diagonal5 linear transformation A of the form

A ^ = ^ ( I < Z < T Z — I ) , A^=^(SE=A);

he proved furthermore that ^ is unique modulo Ai and that the mapping X(SL)->^^
is an isomorphism of GLfSL onto A/Ai. The coset ^Ai is the 'noncommutative deter-
minant5 of X.

The object of this paper is to prove a similar structure theorem for a class of unitary
groups. In order to define unitary groups, we require that D have an involutory anti-
automorphism J:X->X. As fundamental form we take a function /== ( x ^ y ) , which
is defined for all x,y^.V, has values (x,^)^D, and satisfies the conditions:

(1) f is a sesquilinear form with respect to J, i.e^

(X^l \ +^2 ̂  -= f^J ^1 + (X,^) ^2,

(x^ Xi + ̂  \,y) = X"i ( x ^ y ) + \ ( x ^ y ) ,

for all x^x^y^y^V and \^D;
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(2) f is non-degenerate, i.e., if ( x , y ) ==0for all y^V then x==0;

(3) f is skew-Hermitian, i.e., ( y ^ x ) = — ( x , y ) for all x,y^.V.

The unitary group, U (f), of f consists of the linear transformations X which leave f
invariant: ( ' Xx, Xy) == ( x , y ) for all x.y^V. (We remark that, unless J is the identity,
there is no loss of generality in taking^ skew-Hermitian rather than Hermitian ([2], p. 12);
thus, our discussion covers the 'properly' unitary, and symplectic, groups but not the
orthogonal groups.)

Two subsets M, J\f of V are orthogonal if ( x , y ) == 0 for all x^M and y^.N; by (3)
the relation of orthogonality is symmetric. If M is a subspace of V, the vectors x^V
which are orthogonal to Mform the orthogonal space, M1-, of M. By (2) and (3), we have
(M1-)1- = M and dim M 4- dim M1- = n.

It is easy to show that a transvection which belongs to U (f) has the from
K->X—a^(a,x), where co is a symmetric element of A (i.e., co=o) and a an isotropic
vector in V (i.e., (a, a) == 0). Bearing in mind the situation for GL, we make the addi-
tional assumption:

(4) V contains non-^ero isotropic vectors.

The invariant subgroup of U (f) generated by all unitary transvections is denoted
by T(f).

By (3), the value ( x , x ) is skew { ( x , x ) =—(x,x)) for every x^V. Our final
assumption is:

(5) f is trace-valued, i.e., ( x , x ) has the form X—\(\^D) for every x^V.

Notice that (5) is automatically satisfied when characteristic D^2: ( x , x ) == X—X,
where X== ^ ( x , x ) .

A plane (i.e. 2-dimensional subspace of 7) is called hyperbolic when it has a basis of
two isotropic vectors e^, e^ such that (e^ e^) = 1. Condition (5) ensures that ( i ) every
isotropic vector can be embedded in a hyperbolic plane and (ii) any two hyperbolic
planes are equivalent under U (f). From ( i ) and (ii) can be deduced an analogue of
Witt's theorem on quadratic forms, viz., that the number of members in a maximal set of
mutually orthogonal hyperbolic planes is always the same (cf. [2], ch. I, § 11). This
number, denoted by v, is the Witt index off; by ( i ) and (4), v>l .

Let S denote the subgroup of A generated by the non-zero symmetric elements of D,
and Q, the subgroup generated by the XGA such that X — X = ( x , x ) for some vector
x ̂ .V which is orthogonal to a hyperbolic plane. Taking x == 0, we see that S^^.
It is not difficult to show that S, Q. are invariant subgroups of A. With these notations,
our main result is as follows.
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THEOREM 1. Iff satisfies the conditions (1) - (5), and if (1) U (f) -=^ Us ( F ^ ) , then

W U(f)IT(f)^^[^^

where [A, ^1~\ is the subgroup of A generated by the commutators co~1 8~1 co 8 (coG 0., &£ A).

It is well known that 5'Z (^, D) is projectively a simple, non-cyclic group, unless
n = 2 and D == F^ or Fs. It follows from the isomorphism GZ/^SZ^A/Ai, that SL is,
except in these two cases, the commutator group of GL. The situation for unitary groups
is analogous, but more complicated. Except in some half-dozen cases which we entirely
exclude from the discussion, T (f) is projectively a simple, non-cyclic group (2), so that
T (f) is the commutator group of U (f) if, and only if, UfTis abelian, i.e., by theorem 1,
if, and only if,

(7) S [A, 0]? A,.

Most of the known results on this problem follow fairly easily from (7). We mention
only the two results ofDieudonne ([2], ch. II, § 5) that (a) T is the commutator group
of U whenever v > 2, and that (b) T is not the commutator group of U when D is the
algebra of real quaternions under the usual 'complex conjugate' anti-automorphism
and n == 2. The result which we shall prove is as follows.

THEOREM 2. Suppose that the conditions of theorem 1 hold and that T (f) is projectively a
simple group. If n ̂  3 and D has finite dimension m2 over its centre /̂ , then T (f) is the commutator
group of U(f).

It is perhaps unlikely that theorem 2 remains valid whenever D has infinite
dimension over its centre, but I have not been able to construct a counterexample.

I am indebted to Professor J. Dieudonne for his helpful comments on this paper.

1. Proof of Theorem 2.
In this section we shall deduce theorem 2 from theorem 1. We assume that J is

not the identity, for otherwise A ==2 and so, by theorem 1, U == T. It follows from this
assumption that there exist anisotropic vectors orthogonal to a given hyperbolic plane H;
for otherwise the (non-degenerate) restriction of f to H1- would be a symplectic form,
and this would imply that J was the identity. Let a be such an anisotropic vector and X
a fixed element of A such that X— X = (a, a). Let S denote the set of symmetric elements
of Z). We consider three cases according to the 'type5 of the anti-automorphism
J (cf. [2], ch. II, § 5).

(1) Fq denotes the Galois field with q elements. There is essentially only one properly unitary group over Fq
(q a square) for each dimension m, and it is denoted by Um ( F q ) .

(2) In order to establish (7) rigorously, we actually need the slightly stronger result that every proper
invariant subgroup of T is contained in the centre of T.
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TYPE I. (J leaves every element of ̂  invariant and S is a vector space over ^ of
dimension im^m+l j ) . This case was considered by Dieudonne ([3], p. 379), whose
argument (1) shows that A==S and therefore U== T.

TYPE II. [J leaves every element of ^ invariant and S is a vector space over ^
of dimension ^m(m—1); this type occurs only when characteristic 2)^:2). We shall
prove that UfTis an abelian group by showing that each of its elements has order < 2.
Since characteristic D^2, the vector space A over ̂  formed by the skew elements of D
is complementary to S and has dimension ^m (m +1). Let K denote the vector space
over ^ of dimension l+^m(m—1} formed by the elements ^ ( X + a) (^£^, a^S).
Since (X + a) — (X + cr) = (a,a), every non-zero element of K is in n.

Now let (J^A; it is required to show that ^^^[A, t2]. Since the sum of the
dimensions of the vector spaces piTTand A over ̂  is 1 + m2, these spaces have a non-zero
element in common, say \Lk; as we remarked above, k^Q.. Then we have
\kk= — (\s.k) == —k |JL, and so

(1.1) (k-^k^)^^-(k--k)(^^).

Again, the sum of the dimensions of the vector spaces k A and A over ^ is m2 +m, so
that there exists a non-zero skew element a such that A: a is skew. Thus, k a = —a ̂  = aA^
Hence

(1. 2) Ar-^^A^a-^a.

(1. 1) and (1. 2) together show that ^GS^A, 0.], as we had to prove.

TYPE III. (J does not leave invariant every element of^; S, D are vector spaces of
respective dimensions m2, 2 m2 over the subfield ^o formed by symmetric elements of^).
Let KQ denote the vector space over ^o of dimension 1 -\-m2 formed by the elements
^o(^+ CT) (^0^-^05 a^S). As with type II, every non-zero element of Ko is in Q.
Let (ISA. Since the sum of the dimensions of the vector spaces ^KQ and Ko over ^
is 2 m2 + 2, there exist non-zero elements k^ k^ of Ko such that ^1 == k^ Hence (JIG Q.
and so A = 0.. It now follows from theorem 1 that UjT is abelian, as required.

2. Two Preliminary Lemmas.

The remainder of the paper is devoted to the proof of theorem 1. We begin with
two lemmas on sesquilinear forms (cf. (1)).

(1) Dieudonn^s argument actually applies only when characteristic D =z^ 2. However, only a slight modification
is needed when characteristic D == 2.
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LEMMA 1. Let W be an m -dimensional right vector space over Z), 0 ( x ^ ) ̂  sesquilinear
form on W (with respect to J ) and suppose that J is not the identity. Then there exists a basis
<?i,. . 5 e^ of W such that <S> (e,, e\) == 0 (1< i <j < m).

PROOF. If 0 is not identically zero, then by a familiar argument (using the fact
that J is not the identity) there exists an e^W such that 0 (e^e^^Q. The x such
that 0(^i, x ) ==0 form an (m—1) -dimensional subspace for which (by induction on
the dimension) we can choose a basis e^. .,^ such that ^> ( e ^ e ^ ) ==0 (2^i<j^m).
Then ^i,. ., e^ satisfy the requirements of the lemma. Q.E.D.

LEMMA 2. Suppose that the conditions of lemma 1 hold and that in addition 0 ( x ^ y ) is non-
degenerate. Let Y ( x , j y ) be a second sesquilinear (1) form on W which is not identically ^ero.
Then, if m>2 when D=F^ there exists an x^W such that both 0 ( x , x ) and T ( x , x )
are non-^ero.

PROOF. Choose a basis ^i,..,^ of W as in lemma 1. As Y is not identically
zero on W it is not identically zero on every one of the planes \e^e^ It therefore suffices
to prove the lemma in two cases: (i) D=F^m==2, (ii) D^F^m= 2.

As the first case can be settled by a direct calculation we consider the second only.
Suppose that it is not possible to choose x as required by the lemma. Then the matrices
of 0 and Y with respect to the basis e^e^ must have the forms

/o/ 0\ /Oa ' \
^oj3 ^'O;3,p- 0 ) 2 / - \P'^

where 0)1' cog'^O and not both a', (B' are 0. Moreover, for every X^Z), at least one of

0 (e^+e^e^+e^) ==^coi 'X+ p ' X + 0)2'== 0

V (ei X + ̂ i ̂  + ̂  = P' X +^a' = 0
and

must hold. By the symmetry of the second equation in a', (B', we may assume without
loss of generality that [B'^O, and on putting [L== ( B ' X and slightly modifying coi', etc.,
these equations become

(2.1) (A coi (i + p p- + o)a = 0,

(2.2) (Ji+(JLa-0,
with 0)1 0)3^0.

If we regard D as a vector space over the field F formed by the symmetric elements
in its centre, then it is clear that the solutions of (2.2), and the symmetric elements of D,
form subspaces 1C and S respectively. It is easy to see that either K = S or KnS == J O S .
In particular (since it is assumed that D^z^S), K~^D.

(1) 'Sesquilinear* means 'sesquilinear with respect to J5 unless otherwise stated.
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Now every element of D not in K satisfies (2.1). Hence (2.1) has a solution [L
such that (I (T is also a solution for every 0(^0) in F. Each such a satisfies the qua-
dratic equation

((i 0)i pi) (72 + (^p (Jl) (7 + 6)2 = 0

and therefore F==F^ or jFs.
(a) (F==Fs). D contains at least 3 additive cosets of K (including K itself) 5 and

atleastOcosetsofJTif^T^Oj. It is therefore possible to choose [JL, v so that [L, pi + ^5
[JL— v are 3 distinct solutions of (2.1). Putting these in (2.1) we deduce that v coi v == 0
and so coi == 0, a contradiction.

(b) (F== F^). The centre ofZ) is .For a quadratic extension ofF; and by assumption
D^F^ Hence D is non-commutative, and so, by a result of Dieudonne ([3], lemma 1),
not every two elements of S commute. In particular, the dimension of 6'>3. Let
TT, cr, T be any 3 linearly independent elements of S. Since S == K or SnK = j0i,
there exists a piED such that every element of pi+ 5', with the possible exception of [L
itself, satisfies (2.1). Putting p l+7^3^+<7 ,p l+7c+ ( 7 in (2.1) we deduce that

Similarly,
TC COi (7 4- CT (Oi TT == (JL (Oi (Jl + ̂ z + P pt-

T (Oi cr + <^ ̂ i T == "jl (Oi [JL + ^2 + P^?

(TC 4- r) coi o- + CT 0)1 (TT + r) == ]i Cx)i (JL + (Og + P ̂
whence

(2.3) TTCOl (7 == 0" COiTT.

(2.3) clearly holds for any two symmetric elements TT, cr. For o== 1, we get Tceoi = coiTC
and so (2.3) becomes (TTOT—cr7r ) (0 i=0 . This is a contradiction because on the
one hand not every two symmetric elements commute and on the other 0)1^:0. This
proves the lemma.

3. Cayley Parametrization.
In this section we shall obtain a parametrization (without exceptions) for the elements

of U. Similar considerations for orthogonal groups lead to a generalization of the ordi-
nary Cayley parametrization.

Let PE= [7, and write P==I—Q^y where I is the identity transformation. The
space Q^V will be called the space of P, and denoted by Vp. If dim Vp = r, P is called
an r-dimensional element of U.

Since P^U, we have

(3.1) ( x , Q^y) + ( ^ y ) = (^ Q^y)

for all x^yGV. This equation obviously shows that the value of (Qj^^y) depends only
on the values of Q^x and Q^y. We may therefore write (Q^x,jy}==[Q^x, Qj/]. This defines
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for all u,v^Vp, a function \u^v\. We denote this function by fp and call it the
form of P.

It is easily verified thatj^ is a non-degenerate sesquilinear form on Vp (with respect
to J), and that (by (3.1))

(3.2) ^v]—[v,u]==(u,v)
for all u^v^Vp.

Let now ^i, . . ,^. be a basis of Vp and set ^==[e,,e,], (c^i,)~1 == (<S>iy). For each
A:£F, we have Q^x==^[e^ where the \(^D) depend on x; we shall now determine
the X, explicitly. Using the equation ( Q ^ x ^ y ) = [Q^x, Q^jy], we have

and so
(^ x ) == [e,, S; e \.] == S; co,; \.,

X,==S;O,,Y^;O<^^-
This gives the formula

(3.3) Px == x— S,,^ (D,; ̂  ̂ .

The following converse of the above holds and justifies the description of (3.3) as a
parametrization for U: if W is any subspace of V and [u, v]' any non-degenerate sesquilinear
form on W (with respect to J) satisfying (3.2), then there exists one, and only one, P'^U such
that Vp' =W and fp, ==\u,v\'. The straightforward proof will be omitted.

We consider now some properties of the parametrization.
(i) Conjugate Elements. If R^U, it is easy to see that

R PR-1 x = x — ̂  (R e,) 0,; (R e,, x ) .

Hence V^ps-i == R Vp and the forms fp and fnpp-^ are equivalent (1).
(ii) One-dimensional Elements. If Vp=\e\, we have

Px == x—ecp ( e , x ) ,
where

(p-1—^-1^^

We denote this element by ( e ; ^ ) .
(iii) Factorisations of P. Let Wi be a subspace of Vp such that the restriction (fp) ̂
off? to Wi is non-degenerate. Let W^ be the subspace of Vp formed by the u such that
[^y]==0 for all v^W-t. Then Vp==Wi +^2 (direct sum) and (fp)wz is non-dege-
nerate. Let Pi(i==l,2) be the elements of [/such that Vp^==Wi,fp^== (fp)w,' Then
we have P == Pi Pa-

To prove this, let ^13. ., a, and Ai,. .5 ^ be bases of Wi and Wz respectively. The
matrix off? with respect to the basis ^13. .3 <2,, ^i,. .3 b^ of Fp has the form

(1) It can be proved that the converse is also true: elements Pi, Pg of U are conjugate in U if, and only if, their
forms fpi and fp^ are equivalent.
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( A C\
\OB)'

where A refers to the a,, B to the &,. By (3.2), the element in the i -th row and^ -th
column of C is (a,,b,). Hence if A~1 = (a^.),2?-1 = ((B,,), we have

P^x == x— S a, a,,. ( ,̂, x ) ,

P,x=x—^b^(b^),

Px==x—^a, a,; ̂ ,, x ) — S ̂  (B,, (^,, ̂  + S ̂  a,, ̂ ,, b,} (B<, (b,, x ) ,

and direct calculation gives P==P^P^ as required.

Essentially the same calculation shows that, conversely, if R^R^ are elements of
U such that P=R^R^ and Vp==V^+Vs, (direct sum), then f^ is the restriction of
fp to F^ and [u,v]=0 for all ^eF^, v^V^

DEFINITION. We call
(3.4) P=R,R^.R,(R^U}

a direct factorisation of P of length s if, firstly, no R, is the identity I and, secondly, Vp is the direct
sum of the V^ Any factor occurring in such a direct factorisation is called a direct factor of P.
A direct factorisation is called complete if each factor is a one-dimensional element.

By the above, R^U is a direct factor of P if, and only if, \Q\-^Vi^-Vp and
fs == (fp) v^ We remark also if R = 7?, is the i -th factor in some direct factorization
(3.4) of length s, then, for any j such that 1 <j<j-, there exists a direct factorization of
length s in which R is thej -th factor. If i<j, for example, it is easy to prove that

P== ̂ .. R,_, (RR^R-1).. (RR,R-1) RR^.. ̂
is such a direct factorization.

LEMMA 3. If P (~^-I)^. U and J is not the identity, then P has a complete direct facto-
risation. Moreover, the space of the first factor can be taken as any line \a\^.Vp such that
M^O.

PROOF. By lemma 1, Vp has a basis e^..,e, such that \e^e~\= 0 (l^j< i ^ r ) ;
and by the proof of lemma 1, j ^ i j may be taken as any line in Vp satisfying [e^e^^-Q.
Then, if cpT-1:^,^],

P= (Cl; 9J . . (Cr; ?J

is a complete direct factorization. Q.E.D.

4. A 'Spinor Norm' in £7.

Throughout this section, a stands for a fixed element of V chosen (quite arbitrarily)
in advance. We shall associate with a a 'spinor norm5 which has properties similar
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to the spinor norm in orthogonal groups. We shall assume that J is not the identity
because our construction becomes trivial in the case of symplectic groups. It is not
necessary to assume that v>l or that f be trace-valued.

Let U, denote the subgroup of A generated by the co£A such that

(4.1) u—^==(b,b)

for some b(^V) orthogonal to a. Write I\==2[A,QJ, where [A, QJ is the subgroup
of A generated by the commutators X~1 ar^Xco (X^A,(O^QJ.

LEMMA 4. 2, n, and F^ are invariant subgroups of A such that SCp^CQ^.

PROOF. If a is symmetric and pi£A, then [JKJ^JL and [L [L are symmetric so that
pio- [L~1 == (i(7 ̂ ((JLp^eS. Hence S is invariant in A. Taking b == 0 in (4.1) we
see that every non-zero symmetric element is in 0.^ and so S^Q^. Let co satisfy (4.1)
and (Ji£A. Then [JL^L^S^D^ and [ lop.—((A (O(JL) === (b ^ b [ L ) , so that [L copi^tia.
Hence [jKo^^eU, and therefore £i<, is an invariant subgroup of A. It is now evident
that F^ is invariant in A and 2CI\C:^. This completes the proof.

LEMMA 5. Let P be an r -dimensional element of U(r>0), and

P—.P p — p ' p 'r — 2 i . . r y — r i . . 2 , .

two complete direct factorisations of P. Let

P,=(a,;^),P/=(a/;^},

the Oi and a,' being chosen so that each value (a, a,) and (a, a/} is either 0 or 1 (l<i<r).
Then the cosets a>i cog.. co,. I\ and 0)1' 0 ) 2 / - • ^r^a ̂  equal.

PROOF. The lemma is easily proved when D is commutative. For in this case

0)1. . . co,. == | A ~1, Oi'. . co/ = B |~1,

where A^ B are the matrices off? with respect to the bases a^ . .^a, and a^\. . ^ a ^ ' of
Vp. Since A\ and 2? j differ by a factor of the form XX, we have (Or.co,. I\ =
(QI'. . (o/ I\5 as required.

Suppose now that D is non-commutative. It will be convenient to use the following
notations: when a,(B(£A) satisfy a I \==(Br< , we write a^(B, and when two factori-
zations Pi . . . . Pr and Pi ' . . . . P/ give rise to the same coset

(Ol. . . . (0,I\== COi ' . . . CO/ I\

we write Pi . . . . . P, ~ Pi ' . . . . . P/. Notice that, since [A, QJ C r^ we have a co ̂  6) a
whenever a£A,coeU,. We prove the lemma by induction on r, considering
separately the cases r===l , r = 2 and r>2.
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(i) (r= 1). In this case, Vp == \a^\ = I ^ i ' i ? so that a^ ==ai X"1 and coi' === Xcoi X for some
XeA. Thus,

(4.2) cor1^/ = (cor1^!^"1) (^).
If ^! is not orthogonal to Vp, then, by the choice of a^ and ^/, we have

^j=^,^=i.
Therefore X == 1 and so (Oi == G)/. If, on the other hand, \a\ is orthogonal to Vp, then
coiSQ^ and therefore coi^o^i ' by (4.2).
(ii) ^r == <2). In this case,

a^ =a^+a^[L)

^2 ' == ^1 P + ̂ 2 ̂ i

where X, ^i, p, a £ Z), and the matrices offp with respect to the bases a^ a^ and ^i', ^a'
are respectively

/cor1 (a^ a,}\ /coi7-1 î', ^/^
V 0 (Oa-1 y 5 V 0 Oa'-1 /

Hence
(Oi / 1 = X (Oi 1 X + ^ ^2 1 ̂  + ^ ^15 ̂ } y^
o)2 / - l :==p^^ lp+CT^^ l^ +p^i?^ ^ ?(4.3)

(4.4) o = p cor1 ^ + o" ̂ r1 ^ + p f^i, ̂ ) [A.
If one of p, [JL is zero, then by (4.4) so is the other, and therefore [<^ j==;^ / j (i== 1,2};

hence Pi Pa ̂  Pi 'Pa7 by the case r = = = l . We suppose therefore that P(JL^O. Then,
by (4.4),

— p (OI^IJL l = = ( 7 ( 0 2 1 + p (a^ a ^ ) }
—p"1 a o)2~1 (JL == cor'1 X + r^i? ̂  ^ i

and on substituting these values in (4.3) we get

(4.5)
co/-^ (l—Xp-^tJi-1)^^1^^

(oa '-1 = p or1 p (i — p~1 ^ ̂ -1 <7))
Suppose firstly that P has a one-dimensional direct factor whose space is orthogonal

to \a[. We may suppose without loss of generality that Pg is such a factor, so that
(a,a^) =0. Then ( a , a ^ ) == (a,a^) \ and ( a , a ^ ) = (a,a^) p. By the definition of
the a, and a,' (and since p^O^), we have p == 1 and X = = 0 or 1 when (a,ai) ==1. We
may also suppose that p == 1 and X = = 0 or 1 when (a,a^) ===0; for, by the case r=l,
(Oi 'o^ ' r^ is unaltered when a ^ ^ a ^ ' are replaced by multiples of themselves. With
these values of \ p, the element (1—Xp"1^^"1) (1—p'^Xpr'1^) is symmetric and
therefore, by (4.5), (x)i' coa'^ ^~1 (^2 pi-""1 ̂ i^ ^i ^25 since (Oa^^a-

Suppose secondly that P has no one-dimensional direct factor whose space is ortho-
gonal to \a\. Then (a^di) = ( a , a / } == 1 (i== 1,2^), and so

(4.6) X + ^ - P + ^ - 1 .
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Further, since (a^a^—a^)=0,P cannot have a direct factor with space \a^—a^.
Hence [^i—a^a^—a^\ == 0, i.e.,

(4.7) cor1 + ^r1 = ^15^.
By (4.4), (4.6) and (4.7), —pcor^^'i1^ and therefore, by (4.5),

(0l/'-l= (1—p—pi) or1 and ^'~l== coa'^l—p—(JL),

whence coi' 0)2' ~ <0i 0)23 as required.
(iii) (r > 2). We assume that the lemma holds for elements of U of dimension < r.
Consider the subspaces A == \a^.., ^_ij, jB= ^i',. .,^/_ij. Suppose first that the
form [u,v] (u^AyV^B) on the pair of spaces A, B is degenerate. Then there exists
an x(^-0)^A such that [x,b]==0 for all b^B. Since [^',6]=0 for all b^B
we have \x\==\a/\. Hence P/ is a direct factor of Pi. . . . P,._i and so, by the induction
hypothesis, Pi. . . . P,-iP, ~ P/-^. . Pr-i-Pr for certain R^ Again, by a double
application of the induction hypothesis, Pi'.. . . P/^Pi'P,'^. . . . S,^P/ 7a. .. . T,,
for certain S,, T,. But 7^.. . . T^ R ^ . . . . 7?^_i P^ by the induction hypothesis, so that
Pi. . . . P^Pi'. . . . P/, as required.

Suppose secondly that the form [u, v] on the pair A, B is non-degenerate. Then the
equations

[u,b]==[u^,b] (for all bGEB)

define a one-to-one linear mapping u->u^ of A onto B. We may define a (non-dege-
nerate) form [z/,y]i on B by the equations

K ]̂ == [^*^*]i (^,je^».

Then, by lemma 2, there is a &G2? such that [b,b]^0 and [^]i^0. Since [u,v]
is non-degenerate on B and J^ is not the identity, there exists a vector d^B such that
[^ d] == 0 and [rf, d] ~^- 0. Then, if^ is the vector in A such that e* == b, we have [e, e\ ̂  0,
[e,d]==Wd]^0.

Now let P, S be respectively the direct factors of P with spaces ^{, 1^1. By the induc-
tion hypothesis, we have, with certain 7?,, 6*,, T,

PI'.....^-!-^^....^,

Pi.....P.-i-.R^....^-i,

^p-pr.
Also, since P == S ( S ^ . . . . S^i P / ) is a direct factorization and [^ , r f ]==0,^ belongs
to the space of 6*2. . . . ̂ _iP/; therefore, by the induction hypothesis,
6 2 . . . . S^P/ -R T^ . . . . r,, for certain T,.
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Hence
P/....P/-6^....^P/

-5PT3.... r.
-PTT3.... T,
~7?7?2. . . . Pr-i-Pr (induction hypotheses)
^ p p-ri. . . . /,..

This completes the proof of the lemma.

DEFINITION. The coset coi. . co, I\ appearing in lemma 5 z'j ^/W ^ jj^or TZOWZ o/ P with
respect to a and is denoted by N, ( P ) ; N^ ( I ) is defined to be I\.

LEMMA 6. (N^ ( P ) ) - 1 == N^ (P-1) (Pe U).

PROOF. If P = = = P i . . . . P ^ is a complete direct factorization of P, then P-1:^
P,--1....?!-1 is evidently a complete direct factorization for P-1. Let P,==(a,;^},
where (a, a,} =0 or 1 ( l<z<r) . Then P,-1 = (a,;—^), and so N ^ ( P ) == (Oi. . ̂ F,
and ̂  ( P - ^ ) = co,. .^ F, = (or1. . co71 F,)-1.

Since cor1... • ̂ 71 == (^i ^i)~1 (Oi (cogCOg)"1. . . . (co.co,)"1 co, ^ coi. . . . . co,, we have
the lemma.

LEMMA 7. JV, ( P ) ̂  ( Q ^ ) = ̂  ( P Q ^ ) (P, Qj= U).

PROOF. We write N for .̂ By lemma 6 and the definition of N, it is sufficient
to prove the following statement:
(4.8) if P i , . . . . , P, are one-dimensional elements such that Pi. . . . P, = /, then
AYPJ....^W=^..

The proof of (4.8) is by induction on r. Write Q ,̂ = Pi. . . . P,, V, == VQ ,
dim F,==^(Kj-<r). Notice that J>^, with equality if, and only if, the factorization

(4.9) Q.=Pi....P.

is direct. Similarly, since V, is also the space of

(4.10) Q^^i....?.

we have r—s^d,, with equality if, and only if, the factorization (4.10) is direct.
Suppose firstly that for some s (where 1 <s<r), we have

(4.11) d^d^d^d^

Then neither (4.9) nor (4.10) can be direct, so that s>t,r—s>t(t=d,). Let
Pi. . . . . P, be a complete direct factorization for Q^. Then

Pi....?^....?,-1-^
Pi....^P^.... P,=Z)
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and since s +1< r and r—s +1< r, we have by the induction hypothesis and lemma 6,

AYPJ... . . N ( P ^ ) =JVY7?J.. . . N ( R , )
N ( R , ) . . . . N ( R , ) M ( P ^ ) . . . JVYPJ == r,

Hence J\^PJ . . . . N ( P , ) - F,, as required.

Suppose secondly that (4.11) does not hold for any s. Then it is easy to see that
r==2u and Pi. . . . . P«,P^i. . . . P, are complete direct factorizations of Q^, Q^1 respec-
tively. Hence JV/PJ. . JVYPJ==r, by lemmas 5 and 6. This completes the proof.

5. Proof of Theorem 1.

We shall now assume that the conditions of theorem 1 hold. The theorem being
well known for symplectic groups, we shall assume that J is not the identity.

Let e be any fixed non-zero isotropic vector in V, and write N== JV,, 0. ==0.,, F == F,.
Then the 0. so defined is the same as the one in the enunciation of theorem 1, and we are
required to prove that

(5.i) c//r^A/r.
Consider the homomorphism Q:P->J\r ( P ) , of U into A/F. We shall prove (5.1) by
showing that (i) 6^=A/r, and (ii) Q-^^^T.

PROOF OF (i). Let X£A. Since/is tracevalued, there exists an isotropic vector
^i such that ( e , e ^ ) =1. Then, if ^2=^1—e\~1, we have (e^,e^) = X~1—~\~1 and
( e , e ^ ) =1, so that N{(e^\))==\Y. Hence O^—A/r , as required.

PROOF OF (ii). It is easy to see that N(P)=T for every transvection P; hence
rce-i(T). It remains to prove that if J^(P)=Y then P£ T. We first consider
the case n == 2, where V itself is a hyperbolic plane. Let e^ be as in the last paragraph,
so that e, e^ form a basis of K We note that in the present case Q. == S == F and that
therefore J \ T ( P ) is an element of A/S.

If CLe= U, we have Qe = e a + e, P, Q^i = ^ y + ^i 8 ("a, P, y. 8(=£),». We show that
(a) those coefficients out of a, (B, y? 8 which are not zero all lie in the same coset

of 2; this coset will be denoted by M(Q^)\
(b) M(^)M(^)==M(^(i,)(^(i^U}^,
(c) A^YQJ == .WYQJ when Q^ is a one-dimensional element;
(d) if M(Q^)=^, then Qf=. T.
It is clear that (a) - (c) prove that M=N and that then (d) proves the required

result (ii). We shall give only the proofs of (a) and (d), those of (b) and (c) being
straightforward verifications.
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PROOF OF (a). We remark that e + ̂  a is isotropic if, and only if, <r is symmetric.
Hence Qe = e, X or fc + Ci CT; X, where X^O, (T == CT. Since (^i, —c; = (^ + d o, <'J=1,
we have either

Qe=e,\ )(5.2)
or
(5.8)

Q<'i=—Y<'+ci<r;x-1 i'
Qc = f£ + ̂  cr; X i

Q?l=^l+^+^<TjT;X-1] '

where CT, T are symmetric, (a) now follows by direct inspection.

PROOF OF (d). We note that

(e,;a+2) (e—e,;\) ̂  [in (5.2)],
fc+<'i(r;—T; (e^a) Q,,. [in (5.8)].

(5.4) Q,=
where

^e ==e \
^e,==e,\-1

If now AYQJ ==S, then X== (TI. . . . cr,, where each (T, is symmetric, and so

(5-5) ^=Q^..Q^.
Finally, when ^ (^0) is symmetric,

(5.6) ,̂ = (e,; s-^) (e; s) (e,; s-^} (e,; — 1} (e; — 1} (e,; — 1 ) .

We now have QJEE T, by (5.4) - (5.6). This proves (ii) when ^==2 .

We suppose finally that n>2. Our proof is an adaptation of the argument used
by Dieudonne to prove that T is the commutator group of U when the Witt index > 2
(IXL § 16; [4], § 13). The isotropic vector e^ is chosen as before and the hyperbolic plane
;^ii is denoted by H. Letfs and Ps (for P S U) denote the restrictions of/ and P
to 7:/. It is easy to see that the Pf= £7 such that Vp^Hform a subgroup £/* of [/, and
that P - ^ P s ( P ^ U ^ ) is an isomorphism of t/* onto the unitary group U(fs) of f^
When ?£=£/*, we write N ^ ( P ) = N ^ ( P ^ ) ; then ^V* ^GEA/S and it is clear that
AY^=.7V*^r.

We shall prove that

(a) if J^i is any hyperbolic plane in F, there exists a P<= T such that PH^==H
( U - ^ U , ( F , ) ) ;

(P) if XS F, there exists an element Qj^. Tn U* such that ^V* ̂ ; = XS.
Before proving (a) and ((3), we show that (ii) follows from them. Suppose then that
(a), (p) hold, and let R be an element of [/such that ^V^ = F; it is required to show
that R^: T. Let 7? i . . . . 7?, be a complete direct factorization of R, and let F^.== ;^,;
f l<z'<r;. Since a, lies in some hyperbolic plane, there exists, by (a), an element
P^T such that P.a^H and therefore P/7?,P,-1^ ^* (1 <z<r ) . Hence RT===ST
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where S^ (P,R,Pr1).. (P^R^1)^ £/*. Since N ( R ) = N ( S ) =T,^* ̂  == X£,
where XGE F. With Q^as in ((B), we have ^* ( S ^ ) == ̂ * ̂  ^V* (Q^)-i =2, and so,
by the case TZ == 2, 6T= Q^r= T. Hence P(= 7, as required.

PROOF OF (a). Let H^== \a, a^ where a, a^ are isotropic and (a,a^) =1. Since
T permutes the isotropic lines of V transitively, there is no loss of generality in supposing
that a = e. With this assumption, a^ has the form €[L + e^ + b, where (b, e ) == (b, <?J = 0
and (i—(A== ( b , b ) ; and we may also suppose that b^O, since otherwise (a) is proved.
Let P be the element of U such that Vp== \e,b\ and/p== [u,v] has matrix

/O IN
\i — p;/

with respect to the basis e, b. It is easily verified that Pe = e, Pa^ = e^ and we shall
complete the proof of (a) by showing that P£ T except when U==Us(F^).

If b is isotropic, take any complete direct factorization P == Pi Pg ofP; since !<?, &;
is totally isotropic, Pi and Pg are transvections and so PG T, as required.

Suppose now that (b, b) ̂ 0. First let D-^F,. Under this assumption, D contains
a symmetric element s distinct from 0 and — 1. Write c==e\^\-\-e^ + b\ where
x==( l—^ - li :L) - l^ then (c,c}==0, ( e , c ) = 1, so that ^cj is a hyperboUc plane.
Let R be the element of U such that F^= \e,c\ and/^=<M,y> has matrix

/O.+l\
\s O/

with respect to the basis e,c. Then ^,^=<^,—^^-i> and ( c , e ) == <c,—es-l>,
so that A?=^l+.y-i;. By the case n==2,RGT. Further, ( e , b ) = <e,—e [L>
and ( c , b ) =<c,—e\L>, so that 7 ^ = = ^ + ^ { L

Now the matrix of/p with respect to the basis b+e^b is

/[L [l.——[L\

\0 -^?

so that P = (b + e (JL; pi-1; ̂ ; — pi- ̂

=.(b+e^;—^)-^(b;—^)

==R(b;-^-i)-iR-i(b;-^},

since 7?eT, it follows that also PeT, as required.

Finally, let D==F^n^4f. As v>2, we can find isotropic vectors d, di orthogonal
to both e, e, and such that (d, d,) == 1, d— d, p: = &. Then frf; — 1; (e + d; 1} b = b + e pi,
and so, by the argument of the last paragraph, Pe T. This completes the proof of (a).
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PROOF OF (P). By the multiplicative property of JV*, it is sufficient to prove (^)
when X has the form pip p"1p~1, where p^A and pi—pi= (^5^ for some non-isotropic
vector a orthogonal to both e and ^i.

For any oc^A, set 6a == ^a~1 +^i a p-, and let ^a ,ya be the vectors such that
a = uy. 4- ^a (A and &a = ^a + ^a p-. It is easily verified that \a, by, \ = \uy., •oy. \ is a
hyperbolic plane and that M a , y a are isotropic vectors such that (uy.,vy.) =1.

Let now ^a == (^a; \L-1) (a; \r1) and Q,== 7?p 7?r1 = f&p ; ^~1) f&i; ipi"^""1. Then,
in the expression for Ry.vy. as a linear combination of z^oc and ya, the coefficient of Vy.
is —1, so that, by the case n = 2, 7?aG T. Hence Q.G Tn (7*. Finally, in the expression
for ( b ^ ; ] L ~ ~ l } e as a linear combination of ^i, the coefficient of e^ is p p i p , so that
^* fQ,^ : ==p(J lpiJ l - l S=pplp~ ' l (J l~ l S. This completes the proof of ((B) and theorem 1.

Sydney University, New South Wales.
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