Ce texte est un article de synthèse portant sur la conjecture de Bogomolov géométrique. Nous y expliquons nos résultats récents ainsi que les travaux qui les ont précédés. Cet article contient également une introduction à la théorie des hauteurs sur les corps de fonctions et un exposé rapide des notions de base de géométrique analytique non-archimédienne.
This is a survey paper of the developments on the geometric Bogomolov conjecture. We explain the recent results by the author as well as previous works concerning the conjecture. This paper also includes an introduction to the height theory over function fields and a quick review on basic notions on nonarchimedean analytic geometry.
DOI : 10.5802/pmb.19
Mots-clés : Geometric Bogomolov conjecture, Bogomolov conjecture, canonical heights, canonical measures, small points
@article{PMB_2017____137_0, author = {Yamaki, Kazuhiko}, title = {Survey on the geometric {Bogomolov} conjecture}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {137--193}, publisher = {Presses universitaires de Franche-Comt\'e}, year = {2017}, doi = {10.5802/pmb.19}, mrnumber = {3752491}, zbl = {1404.14028}, language = {en}, url = {http://www.numdam.org/articles/10.5802/pmb.19/} }
TY - JOUR AU - Yamaki, Kazuhiko TI - Survey on the geometric Bogomolov conjecture JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2017 SP - 137 EP - 193 PB - Presses universitaires de Franche-Comté UR - http://www.numdam.org/articles/10.5802/pmb.19/ DO - 10.5802/pmb.19 LA - en ID - PMB_2017____137_0 ER -
%0 Journal Article %A Yamaki, Kazuhiko %T Survey on the geometric Bogomolov conjecture %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2017 %P 137-193 %I Presses universitaires de Franche-Comté %U http://www.numdam.org/articles/10.5802/pmb.19/ %R 10.5802/pmb.19 %G en %F PMB_2017____137_0
Yamaki, Kazuhiko. Survey on the geometric Bogomolov conjecture. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2017), pp. 137-193. doi : 10.5802/pmb.19. http://www.numdam.org/articles/10.5802/pmb.19/
[1] Hauteurs et discrétude (d’après Szpiro, L., Ullmo, E., Zhang, S.), Séminaire Bourbaki 1996/97 (Astérisque), Volume 245, Société Mathématique de France, 1997, pp. 141-166 | Numdam | MR | Zbl
[2] Spectral theory and analytic geometry over non-archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990, ix+169 pages | MR | Zbl
[3] Etale cohomology for non-archimedean analytic spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 78 (1993), pp. 5-161 | DOI | Numdam | Zbl
[4] Vanishing cycles for formal schemes, Invent. Math., Volume 115 (1994) no. 3, pp. 539-571 | DOI | MR | Zbl
[5] Smooth p-adic analytic spaces are locally contractible, Invent. Math., Volume 137 (1999) no. 1, pp. 1-84 | DOI | MR | Zbl
[6] Points of finite order on Abelian Variety, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 44 (1980) no. 4, pp. 782-804 | MR | Zbl
[7] Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, 2006, xvi+652 pages | MR | Zbl
[8] Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | Zbl
[9] Zhang’s conjecture and the effective Bogomolov conjecture over function fields, Invent. Math., Volume 183 (2011) no. 3, pp. 517-562 | DOI | MR | Zbl
[10] The geometric Bogomolov conjecture for curves of small genus, Exp. Math., Volume 18 (2009) no. 3, pp. 347-367 | DOI | MR | Zbl
[11] Local heights of subvarieties over non-archimedean fields, J. Reine Angew. Math., Volume 498 (1998), pp. 61-113 | DOI | MR | Zbl
[12] Local and canonical heights of subvarieties, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 2 (2003) no. 4, pp. 711-760 | Numdam | MR | Zbl
[13] The Bogomolov conjecture for totally degenerate abelian varieties, Invent. Math., Volume 169 (2007) no. 2, pp. 377-400 | DOI | MR | Zbl
[14] Tropical varieties for non-archimedean analytic spaces, Invent. Math., Volume 169 (2007) no. 2, pp. 321-376 | DOI | MR | Zbl
[15] Equidistribution over function fields, Manuscr. Math., Volume 127 (2008) no. 4, pp. 485-510 | DOI | MR | Zbl
[16] Non-archimedean canonical measures on abelian varieties, Compos. Math., Volume 146 (2010) no. 3, pp. 683-730 | DOI | MR | Zbl
[17] Smoothness, semi-stability and alterations, Publ. Math., Inst. Hautes Étud. Sci., Volume 83 (1996), pp. 51-93 | DOI | Numdam | Zbl
[18] Introduction to Arakelov geometry, Algebraic geometry in East Asia (Kyoto, 2001), World Scientific (2002), pp. 1-74 | Zbl
[19] Division points on curves, Ann. Mat. Pura Appl., Volume 70 (1965), pp. 229-234 | DOI | MR | Zbl
[20] Abelian varieties, Springer, 1983, xii+256 pages | Zbl
[21] Fundamentals of Diophantine Geometry, Springer, 1983, xviii+370 pages | Zbl
[22] Métriques permises, Séminaire sur les pinceaux arithmétiques: La Conjecture de Mordell (Astérisque), Volume 127, Société Mathématique de France, 1985, pp. 29-87 | Numdam | Zbl
[23] Bogomolov conjecture for curves of genus over function fields, J. Math. Kyoto Univ., Volume 36 (1996) no. 4, pp. 687-695 | DOI | MR | Zbl
[24] A sharp slope inequality for general stable fibrations of curves, J. Reine Angew. Math., Volume 480 (1996), pp. 177-195 | MR | Zbl
[25] Bogomolov conjecture over function fields for stable curves with only irreducible fibers, Compos. Math., Volume 105 (1997) no. 2, pp. 125-140 | DOI | MR | Zbl
[26] Relative Bogomolov’s inequality and the cone of positive divisors on the moduli space of stable curves, J. Am. Math. Soc., Volume 11 (1998) no. 3, pp. 569-600 | DOI | MR | Zbl
[27] Arithmetic height functions over finitely generated fields, Invent. Math., Volume 140 (2000) no. 1, pp. 101-142 | DOI | MR | Zbl
[28] Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, 1970, viii+242 pages | MR | Zbl
[29] Berkovich skeleta and birational geometry (2014) (https://arxiv.org/abs/1409.5229) | Zbl
[30] On -invariant subvarieties of semiabelian varieties and the Manin–Mumford conjecture, J. Algebr. Geom., Volume 13 (2004) no. 4, pp. 771-798 | DOI | MR | Zbl
[31] Courbes sur une variété abélienne et points de torsion, Invent. Math., Volume 71 (1983), pp. 207-233 | DOI | Zbl
[32] Sous-variétés dúne variété abélienne et points de torsion, Arithmetic and geometry, vol. I: Arithmetic (Progress in Mathematics), Volume 35, Birkhäuser, 1983, pp. 327-352 | DOI | Zbl
[33] Diophantine geometry from model theory, Bull. Symb. Log., Volume 7 (2001) no. 1, pp. 37-57 | DOI | MR | Zbl
[34] A positive characteristic Manin–Mumford theorem, Compos. Math., Volume 141 (2005) no. 6, pp. 1351-1364 | DOI | MR | Zbl
[35] Équirépartition des petits points, Invent. Math., Volume 127 (1997) no. 2, pp. 337-347 | DOI | Zbl
[36] Positivité et discrétion des points algébriques des courbes, Ann. Math., Volume 147 (1998) no. 1, pp. 167-179 | DOI | Zbl
[37] Geometric Bogomolov conjecture for nowhere degenerate abelian varieties of dimension 5 with trivial trace (to appear in Math. Res. Lett.) | MR | Zbl
[38] Geometric Bogomolov’s conjecture for curves of genus over function fields, J. Math. Kyoto Univ., Volume 42 (2002) no. 1, pp. 57-81 | DOI | MR | Zbl
[39] Effective calculation of the geometric height and the Bogomolov conjecture for hyperelliptic curves over function fields, J. Math. Kyoto Univ., Volume 48 (2008) no. 2, pp. 401-443 | DOI | MR | Zbl
[40] Geometric Bogomolov conjecture for abelian varieties and some results for those with some degeneration (with an appendix by Walter Gubler: The minimal dimension of a canonical measure), Manuscr. Math., Volume 142 (2013) no. 3-4, pp. 273-306 | DOI | MR | Zbl
[41] Strict supports of canonical measures and applications to the geometric Bogomolov conjecture, Compos. Math., Volume 152 (2016) no. 5, pp. 997-1040 | DOI | MR | Zbl
[42] Trace of abelian varieties over function fields and the geometric Bogomolov conjecture, J. Reine Angew. Math. (2016) (https://doi.org/10.1515/crelle-2015-0086) | DOI | MR | Zbl
[43] Non-density of small points on divisors on abelian varieties and the Bogomolov conjecture, J. Am. Math. Soc., Volume 30 (2017) no. 4, pp. 1133-1163 | DOI | MR | Zbl
[44] Big line bundles over arithmetic varieties, Invent. Math., Volume 173 (2008) no. 3, pp. 603-649 | DOI | MR | Zbl
[45] Admissible pairing on a curve, Invent. Math., Volume 112 (1993) no. 1, pp. 171-193 | DOI | MR | Zbl
[46] Small points and adelic metrics, J. Algebr. Geom., Volume 4 (1995) no. 2, pp. 281-300 | MR | Zbl
[47] Equidistribution of small points on abelian varieties, Ann. Math., Volume 147 (1998) no. 1, pp. 159-165 | DOI | MR | Zbl
[48] Gross-Schoen cycles and dualising sheaves, Invent. Math., Volume 179 (2010) no. 1, pp. 1-73 | DOI | MR | Zbl
Cité par Sources :