Cet article est une version étendue de l’exposé de l’auteur à la conférence « Non-Archimedean analytic geometry : theory and practice » tenue à Papeete en août 2015. Il offre une vue d’ensemble des résultats et des méthodes des travaux récents [2] et [5] sur la structure des revêtements sauvages des courbes de Berkovich et sa relation avec la théorie de la différente et de la ramification supérieure.
This paper is an extended version of the author’s talk given at the conference “Non-Archimedean analytic geometry: theory and practice” held in August 2015 at Papeete. It gives a brief overview of results and methods of recent works [2] and [5] on the structure of wild coverings of Berkovich curves and its relation to the different and higher ramification theory.
DOI : 10.5802/pmb.18
Mots-clés : Berkovich geometry, wild ramification, different, Herbrand function
@article{PMB_2017____127_0, author = {Temkin, Michael}, title = {Wild coverings of {Berkovich} curves}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {127--135}, publisher = {Presses universitaires de Franche-Comt\'e}, year = {2017}, doi = {10.5802/pmb.18}, mrnumber = {3752490}, zbl = {1428.14038}, language = {en}, url = {http://www.numdam.org/articles/10.5802/pmb.18/} }
TY - JOUR AU - Temkin, Michael TI - Wild coverings of Berkovich curves JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2017 SP - 127 EP - 135 PB - Presses universitaires de Franche-Comté UR - http://www.numdam.org/articles/10.5802/pmb.18/ DO - 10.5802/pmb.18 LA - en ID - PMB_2017____127_0 ER -
%0 Journal Article %A Temkin, Michael %T Wild coverings of Berkovich curves %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2017 %P 127-135 %I Presses universitaires de Franche-Comté %U http://www.numdam.org/articles/10.5802/pmb.18/ %R 10.5802/pmb.18 %G en %F PMB_2017____127_0
Temkin, Michael. Wild coverings of Berkovich curves. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2017), pp. 127-135. doi : 10.5802/pmb.18. http://www.numdam.org/articles/10.5802/pmb.18/
[1] Liting harmonic morphisms I: metrized complexes and Berkovich skeleta (2013) (https://arxiv.org/abs/1303.4812v3) | Zbl
[2] Morphisms of Berkovich curves and the different function, Adv. Math., Volume 303 (2016), pp. 800-858 | DOI | MR | Zbl
[3] Topology and geometry of the Berkovich ramification locus for rational functions, I, Manuscr. Math., Volume 142 (2013) no. 3-4, pp. 439-474 | DOI | MR | Zbl
[4] Topology and geometry of the Berkovich ramification locus for rational functions, II, Math. Ann., Volume 356 (2013) no. 3, pp. 819-844 | DOI | MR | Zbl
[5] Metric uniformization of morphisms of Berkovich curves, Adv. Math., Volume 317 (2017), pp. 438-472 | DOI | MR | Zbl
Cité par Sources :