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This text is a discussion of general ideas concerning families of cusp forms and their associated
invariants, especially L-functions. The point of view is influenced by the problem of local
spectral equidistribution, which makes sense in a very general setting, and seems to be a critical
ingredient for systematic attempts at predicting averages of global L-values. The second main
influence are the ideas of P. Sarnak concerning this question [20]. Among other papers that
influenced the ideas here, the one of Cogdell and Michel [5] should also be mentioned.
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6 Families of cusp forms

This text is a rather informal survey and it contains little in the way of new results. It also
does not attempt to be exhaustive, and in particular the bibliography does not contain all
references concerning the ideas we discuss.
Thanks to A. Venkatesh for explanations of various issues of harmonic analysis, especially
with respect to Plancherel measures, and to B. Conrey for clarifying certain points in [6].
Also many thanks to A. Saha for remarks and comments about the first version of this survey.
The text is presented as a list of numbered items; references to one of these are given with
the sans-serif boldface font, e.g., “see 12”. References to equations are in standard font within
parentheses, as in “see (1)”, while sections are just given as “see Section 2”, and the bibliography
is quoted within square brackets: “see [10]”.

1. Families of cusp forms and the local equidistribution problem

1. For a reductive group G/k over a global field (1) k, with L-group LG, we denote by Ak(G)
or A(G) the set of cuspidal automorphic representations of G(Ak) (Ak is the ring of adèles
of k). We will often drop the subscript, since k is always fixed.
2. Any cusp form π ∈ A(G) can be represented as a tensor product

π '
⊗

v

πv

where v runs over all places of k, and πv is an (irreducible, unitary, admissible) representation
of the group G(kv) of points of G in the completion of k at v. This is called the local
component of π at v.
The main point of this text is the idea that, if we have a reasonable “family” of cusp forms π,
then the “local” components πv, which are simpler objects, should also behave in a reasonable
way for any fixed v, and that one should then be able to use the knowledge of such behavior to
understand the family of global objects, in a local-global manner.
3. Our main concern will be G = GLn for some n > 1, but examples involving the symplectic
group Sp4 will also occur, so we attempt a general discussion.
4. We recall, for general orientation, that if G = GLn, the L-group is simply GLn(C). If
k = Q, G = GLn and v is a finite place corresponding to a prime number p, then for
all but finitely many p, the local component πp is unramified, which means that it can be
parameterized uniquely by an n-tuple (α1, . . . , αn) of n non-zero complex numbers, up to
permutation, which are the Satake parameters at p. The Ramanujan-Petersson conjecture
holds at p (representation-theoretically, this means that the local component at p is tempered)
if and only if |αi| = 1 for all i. In any case, however, we have |αi| 6 √p.
5. For any place v of k, we denote by Av or A(Gv) the unitary dual of G(kv), which is also
called the “local spectrum” at v. Thus the local components πv of any π ∈ A(G) are elements
of Av. The set Av carries a natural topology (the Fell topology), hence a natural Borel σ-
algebra. It also carries the Plancherel measure νP , which is characterized by the inversion

1. We will sometimes also use k as notation for certain integers, but no confusion should arise.
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Emmanuel Kowalski 7

formula

f(1) =

∫

Av

Tr(π(f̃))dνP (π), f̃(g) = f(g−1),

for “reasonable” functions f : G(kv) −→ C (such, in particular, that the trace of π(f̃) is
well-defined.)
We think of Av as significantly “simpler” than A(G), and in particular we expect it to be
amenable to many techniques of harmonic analysis.
6. The local spectrum Av contains some distinguished subsets: the unramified part Anr

v of the
spectrum, and the tempered part At

v. The intersection Anr
v ∩ At

v, the tempered, unramified,
spectrum, is denoted A0

v. As in 4, Anr
v can be identified naturally with the set of semisimple

conjugacy classes in LG, and A0
v can be identified with the set of conjugacy classes in a

maximal compact subgroup K of the L-group of G.
7. If S is a finite set of places of k, we write

AS =
∏

v∈S
Av,

considered as given with the product topology, the product Plancherel measure, etc.
8. If π is a unitary irreducible representation of GLn(kv), we denote by q(π) its analytic
conductor, defined as the usual arithmetic conductor when v is finite, and given by

q(π) =

[k:Q]∏

j=1

(1 + |tj |),

when v | ∞, where the tj are the Langlands parameters of π.
For a cusp form π ∈ A(GLn), we use the analytic conductor as defined by Iwaniec and Sarnak:

q(π) =
∏

v

q(πv) = q(π)

n[k:Q]∏

j=1

(1 + |tj |),

where q(π) is the “finite” part of the conductor (the factor appearing in the functional equation
of the standard L-function of π). This is therefore a positive real number that measures the
complexity of π both at the finite places (taking into account the ramification) and infinite
places.
9. If G is not GLn, we will always work in a context where there is given a fixed representation
% : LG −→ GLn(C) of the L-group, with finite kernel, and some associated maps

%∗,v : Av(G) −→ Av(GLn)

at all places. For π ∈ A(G), this allows us to define a corresponding analytic conductor
(depending on %)

q̃(π) =
∏

v

q(%∗,vπv),

(in fact, we will apply this only in this paper in Section 13 for G = Sp4 and π unramified at
all finite places.)
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8 Families of cusp forms

We expect, of course, that %∗,v is given by a form of the local Langlands correspondance.
Since this is not known yet, (2) this may be problematic, but often we are restricting to the
unramified subset of Av, where %∗,v is defined by the matching of Satake parameters, i.e., by
the induced map from (semisimple) conjugacy classes of LG to those of GLn.
10. If ϕ ∈ L2

0(G(k)\G(Ak)) is any automorphic function which generates an automorphic
representation π, or even a π-isotypic representation π⊕k, we will denote π(ϕ) = π, and will
also write πv(ϕ) for πv and q̃(ϕ) for q̃(π).
11. Although it seems most natural to study average values of L-functions performed using
the counting measure (possibly normalized), many different contexts suggest, or make use of,
more general weighted sums (including in principle integral averages, typically on intervals
of the critical line, as in the “family” ζ(1/2 + it)). To handle very general circumstances, we
will define a small family of cusp forms on G/k to be any finite measure µ on the set A(G)
(with respect to the obvious σ-algebra; typically, µ will be supported on a countable set
so measurability issues will be non-existent; continuous parameters arise usually only from
the critical line, as mentioned above, and then the measurability questions are also clear).
We assume the non-degeneracy condition µ(A(G)) 6= 0. The intuition is that µ counts, in
some maybe “smoothed” way, the cusp forms where certain parameters lie in suitable ranges.
In particular, µ is of highly arithmetic nature, and should be subject to the typical mix of
“structure and randomness” one sees in objects of multiplicative number theory and arithmetic
geometry.
12. Typical examples are:
– If F ⊂ A(G) is a finite set, the counting measure on it, or the normalized counting measure,
where µ is a probability measure and every element of F has equal weight; of particular
importance are the counting measures associated to

FX = {π ∈ A(G) | q(π) 6 X},
forX > 0 (such that the set is non-empty; its finiteness is – or should be – a basic height-like
property of the analytic conductor).

– If w is any non-negative function on A(G) which can be summed (in particular, which is
supported on a countable set), one can define a measure µ with µ({π}) = w(π). This is
often done for families of Maass forms, for instance.

13. Given a small family µ, it is most often the relative average of invariants of cusp forms,
measured with respect to µ, which is important. For instance, when dealing with the family
FX , the asymptotic behavior of |FX | is by no means easy to fathom, but one may expect that
many results are best interpreted as dealing with

1

|FX |
∑

π∈FX

α(π).

Thus, in general, we will write

Eµ(α) = Eµ(α(π)) =
1

µ(A(G))

∫

A(G)
α(π)dµ(π),

2. It is known for GLn by the work of Harris and Taylor, and for GSp4, by work by Gan and Takeda.
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Emmanuel Kowalski 9

for any (measurable, if need be) function α defined on A(G), and also introduce the corre-
sponding (redundant-looking) probability notation:

Pµ({π satisfies . . . }) =
1

µ(A(G))
µ({π ∈ A(G) | π satisfies . . . }).

For FX (and similarly later for other families defined using some parameter similar to the
“height bound” X that appears here, e.g. µn), we will use the shorthand notation EX(· · · )
and PX(· · · ) (resp. En(· · · ), etc).
14. For a small family µ of cusp forms, we denote by µv the image of µ under the map
π 7→ πv on A(G) (which should have all necessary measurability properties to make µv a
Borel measure on A(G)). Similarly, for a finite set S of places, we write µS for the image
measure of µ in AS . In other words, for nice subsets Bv ⊂ Av, defined for v ∈ S, we have

µS(B) = µ({π ∈ A(G) | πv ∈ Bv for v ∈ S}).

15. The local equidistribution question for a small family µ asks, roughly, “what do the local
measures µv look like?”, where it is thought that v is fixed. What is expected is that, under
suitable conditions, µv is “close” to a nice intrinsically-defined measure on Av. This target
measure, say νv, is in many (but not all) cases rather impervious to the arithmetic subtleties
of the small family.

16. Assuming that some form of the local equidistribution question is answered positively,
the local independence question asks whether the measure νv above, if they are defined for all
v in some set S of places, have the property that the image measure µS (living on the set of
possible S-tuples of local components of cusp forms “in” µ) is close to the product

∏

v∈S
νv

(if true, this indicates that there is no obvious restriction on πv, for some v ∈ S, even when
knowing all the other πw, w ∈ S − {v}).
17. For a more precise formulation, involving a well-defined question, we must assume given a
sequence (µn) of small families on A(G) (the parameter n going to infinity could of course be
replaced by any similar one, e.g., one can take the families (µX) of cusp forms with analytic
conductor 6 X, with X −→ +∞), which we think as covering a larger and larger (somehow
coherent) set of cusp forms, possibly with some weight. Then we have image measures µv,n
on Av for all places v and for all parameters n. We will call such a collection an extended
family. (3) The basic questions, where the second is stronger than the first (and the third is a
variant), are:

1. For a fixed place v of k, does there exist a Borel measure νv, independent of n, on Av,
such that µv,n converges weakly to νv as n −→ +∞?

3. This is very provisional terminology; a better one would emphasize the fact that these are not yet at
all supposed to be well-behaved families worthy of the name.

Publications mathématiques de Besançon - 2013



10 Families of cusp forms

2. Do there exist Borel measures νv on Av, independent of n, defined for all places v, such
that for any finite set S of places, the measures µS,n converge weakly to

νS =
∏

v∈S
νv

as n −→ +∞?
3. If k is a number field: do there exist Borel measures νv on Av, independent of n, defined

for all finite places v, such that for any finite set S of finite places, the measures µS,n
converge weakly to

νS =
∏

v∈S
νv

as n −→ +∞?

In probabilistic terms, (2) means that the local components πv of the small families µn are
asymptotically independent as n→ +∞.
18. In most cases, we expect that if local spectral equidistribution holds, the limiting measure
νv is supported on the tempered spectrum At

v. When G = GLn, this should be automatic
because of the Ramanujan-Petersson conjecture, but even when there are cusp forms on G
for which the Ramanujan-Petersson conjecture fails (e.g., on G = Sp4 because of the Saito-
Kurokawa lifts), these exceptions will typically be few (unless they are specifically targeted
in the family!). For an example, see Section 13.
Similarly, the limiting measure νv is sometimes supported on the unramified part of the
spectrum, but it may also occur quite frequently that the fact that ramification is “rare” is
displayed instead in the fact that the mass νv(Anr

v ) of the unramified spectrum is “large”, and
in particular converges to 1 as Nv tends to infinity. This plays a big role later in Section 9.
19. Since the analytic conductor has height-like properties, it is necessary that an extended
family (µn) “involve” in a significant way more and more cusp forms with increasing conductor,
as n grows. To measure this growth, we define

(1) κ(n) = En(q̃(π)),

the average conductor for µn. We will always have κ(n)→ +∞ as n→ +∞, and we will use
this quantity in estimates related to quantitative forms of equidistribution (Section 8).

2. Families of L-functions

20. The most important invariants of families of cusp forms are related to their L-functions.
Thus, by (extended) family of L-functions associated to an (extended) family (µn), we mean
that we are given a representation

% : LG −→ GLm(C)

of the L-group, and we consider the asymptotic behavior of the Langlands L-functions
L(π, %, s) associated to the representations π in the family using %. Note that we will always
mean by L-function the finite part of the completed L-function, i.e., without Gamma factors.
Thus we will consider averages like

En(L(π, %, s0)), En(L(π, %, 1/2)k), etc,...
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Emmanuel Kowalski 11

or averages involving the distribution of zeros of L(π, %, s).
21. Any L-function L(π, %, s) has also an analytic conductor, which we denote q(%∗π) (with
a slight abuse of notation); it coincides with the conductor q̃(π) defined in 9, computed using
%.
22. When G = GLd (unless specified otherwise) the family of L-functions is the family
of standard L-functions associated to the tautological representation LGLd = GLd(C)

=−→
GLd(C). Then q̃(π) = q(π) is the “standard” analytic conductor (see 8). However, keeping
track of a general representation % will lead to some clarifications, for instance when it comes
to the determination of the “symmetry type” of an extended family of L-functions.
23. For a general group G with representation % as above, we recall that the L-function
L(π, %, s) is defined by an Euler product

(2) L(π, %, s) =
∏

v finite

Lv(πv, %, s),

where Lv(πv, %, s) is a local L-function which is meant to be defined in general using a local
Langlands correspondance

%∗,v : Av(G) −→ Av(GLn)

(which is just the identity if G = GLn and % is the identity, defining the standard L-function),
i.e., we expect to be able to define

Lv(θ, %, s) = Lv(%∗,vθ, s)

for all places v and all local representations θ ∈ Av(G) (we use the notation θ to emphasize
that these representations are arbitrary, and not necessarily related to global representations.)
These local correspondances are not known to be defined in all cases, with the expected
properties. However, for an unramified representation θ ∈ Anr

v (G), the local map is always
defined, as recalled in 9, and the local L-factor is given by

(3) Lv(θ, %, s) = Lv(%∗,vθ, s) = det(1− (Nv)−s%(Θ))−1,

for θ ∈ Av(G). in terms of the semisimple conjugacy class Θ in LG parameterizing the
unramified representation θ.
Thus L(π, %, s) is always well-defined, using the Euler product, if π is everywhere unramified
at the finite places.
24. It is part of the Langlands conjectures that, in fact, there exists a global functoriality
map

%∗ : A(G) −→ A(GLn)

(possibly defined on a subset of A(G) to ensure that the image is cuspidal, as one sees even
for the symmetric square on GL2), with the property, among others, that

L(%∗π, s) = L(π, %, s),

or in other words, the Euler product (2) is in fact a standard L-function of a cusp form on
GLn.
25. However, statements of Langlands functoriality in this sense are still rather rare when k
is a number field. Thus it is indeed useful to be able to work efficiently with the L-function
L(π, %, s) as an invariant of π. This can be done in quite a few cases, with local factors
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12 Families of cusp forms

for L(π, %, s) well-defined at all places (including ramified places), and the “usual” analytic
properties – functional equation, polynomial growth in vertical strips, as described in [10,
Ch. 5]. Even if only partial analytic continuation, or meromorphic continuation with partial
location of the poles is known, one can still consider the values of L(π, %, s) where it does
make sense.
For instance, one can consider general Rankin-Selberg convolutions of cusp forms on GLm1

by cusp forms on GLm2 , since the analytic properties of the L-functions are known (due to
the work in particular of Mœglin-Waldspurger, and Jacquet-Piatetski Shapiro-Shalika).
In the unramified case (at finite places), at least in the region of absolute convergence, one
can consider arbitrary %, using the definition (3), since it is known from “trivial” bounds on
Satake parameters that the Euler product converges in some rightward half-plane.

3. Analogy with sieve

26. This section may certainly be omitted in a first reading. We explain how some of the
basic ideas above are analogues of the general sieve settings described in [13].
27. In that framework, one is given a set Y of “global” objects of interest, and one wishes to
extract information related to “sifted sets”. These are defined using local information maps

%` : Y −→ Y`,

with Y` finite, where ` runs through some (general) index set Λ, and are of the form

S = {y ∈ Y | %`(y) /∈ Ω` for all ` ∈ L}
for certain subset L of indices and certain sifting conditions Ω` ⊂ Y`.
Specifically, one is given a finite (often probability) measure µ on Y , or a sequence (µn) of
such measures, and one wishes to compute µ(S).
28. As an example, take Y = SLn(Z), and let %`, for ` prime, be the reduction map modulo
`, which surjects to Y` = SLn(F`). Define Ω` to be the set of matrices in Y` with irreducible
characteristic polynomial. Then, for any L, S contains the g ∈ SLn(Z) for which det(T − g)
is reducible.
29. As explained in [13], sieve methods apply with some success provided the following two
conditions are satisfied: (1) for each `, the measure %`,∗µ is “close” to some measure ν` on Y`
– typically, %`,∗µn converges to ν` as n grows; (2) for a finite subset S of the index set of `’s,
the measures ∏

`∈S
%`,∗µ

(on the product of Y` over ` ∈ S) are close, or converge to, the product measure of the ν`.
30. Except for the fact that families of cusp forms (seen as global objects) involve as local
information the local components πv, which live in infinite sets Av, we see that the formal
setting and the basic local equidistribution questions of Section 1 are exactly of this type.
One can indeed perform a certain amount of sieving (especially of the “large sieve” type) for
extended families of cusp forms with local equidistribution, especially when a quantitative
form holds (see Section 8).
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4. Examples of local equidistribution

31. We give some easy examples now, involving k = Q and G = GL1 or G = GL2. The
small families involved are the following (where we simply write down the finite support of a
measure when the normalized (probability) counting measure is meant, and where we write
primitive Dirichlet characters and classical, holomorphic and Maass, primitive cusp forms,
with respect to some Hecke group Γ0(q), to denote the corresponding cuspidal automorphic
representations of GL2 over Q):

1. Dq is the set of all primitive Dirichlet characters of conductor q;

2. D+
Q is the set of all primitive Dirichlet characters of conductor 6 Q;

3. Ck is the set of all primitive holomorphic cusp forms of weight k and level 1;
4. Ck,q is the set of all primitive holomorphic cusp forms of weight (4) k and level q; (5)

5. C+
k,Q is the set of all primitive holomorphic cusp forms of weight k and level 6 Q;

6. C++
K,q is the set of all primitive holomorphic cusp forms of weight 6 K and level q;

7. C++
K,Q is the set of all primitive holomorphic cusp forms of weight 6 K and level 6 Q;

8. For any of the C-sets above, say C�? , the small family H�? has the same support but the
measure µ = µ�? is obtained by putting on a newform f the weight

ω(f) =
Γ(k − 1)

(4π)k−1
1

〈f, f〉
where 〈·, ·〉 is the Petersson inner product. This is the “harmonic weight” that arises
from the Petersson formula.

9. More variants involving the choice of a non-trivial nebentypus can also be considered...
10. Even more variants can be constructed with Maass forms; let us define only MT and

HT , where MT is the set of primitive Maass forms of level 1 and Laplace eigenvalue
1/4 + t2, 0 6 t 6 T , and where HT is the corresponding measure with weight given by
the analogue of the Petersson weight above.

32. For GL1 (and the extended families (Dq) and (D+
Q), with asymptotic parameters q → +∞,

possibly along a subsequence of integers, or Q→ +∞ respectively, the local equidistribution
problem (which we consider only for the finite places) has not been considered previously in
the literature – to the author’s knowledge –, but it is extremely simple and elementary. Here
is a quick summary.
33. The basic information needed is, for a given p, the description of the local character of
Q×p associated with a primitive Dirichlet character χ. Once we select the prime p itself as a
uniformizer at p, we obtain an isomorphism of the dual of Q×p with Z×p ×S1, where the factor
S1 corresponds to unramified characters. The component χp of p is given as follows: factor (6)

4. In this section, the weight is always at least 2.
5. Unless specified otherwise, a classical cusp form of level q is considered to have trivial nebentypus.
6. Here we use crucially the fact, specific to GL1 or abelian groups more generally, that the dual of Q×

p is
still a group.
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14 Families of cusp forms

χ = χpχ
′
p, where χp is a character of conductor a power of p, say pk, k > 0, and χ′p is one

with conductor coprime to p; then

χp = (χ̃p, χ
′
p(p)) ∈ Z×p × S1,

with the ramified component χ̃p obtained by the inverse of the composite

Z×p −→ (Z/pkZ)×
χp−→ S1.

In particular, if χ is unramified at p, the local component can be (canonically here) identified
with the value χ(p) ∈ S1.
34. Consider first Dq, i.e., primitive characters with a given level. If all q are considered, this
does not satisfy local equidistribution, simply because for any fixed prime p, there is, if p | q,
a non-zero probability (depending only on p) that χ ∈ Dq be ramified, while this probability
is zero for p - q. Thus the µq-measure of the unramified dual of Qp does not have a limit as
q → +∞.
35. However, if we restrict q to any sequence where the smallest prime divisor P−(q) tends
to infinity, there is strong local equidistribution in (Dq) thus restricted. The reason is that,
for any finite set of primes S, all χ ∈ Dq are unramified at all p ∈ S when q is large enough.
It is then an easy matter to check that χp, for p ∈ S, becomes equidistributed according to
the probability Haar measure on the unramified dual of Qp (isomorphic to S1), and that the
S-components become equidistributed with respect to the product of these measures.
36. It is also interesting to look at the extended family (D+

Q) of primitive characters of modulus
6 Q. Then, as Q → +∞ (without restriction), there is strong local equidistribution, with
limiting measures νp on the dual of Qp that can be described as follows: on each connected
component {χ0} × S1, the unramified component is “relatively” equidistributed with respect
to the Haar measure on S1, while the connected component has total measure equal to

(4) νp({χ0} × S1) =
p3

(p− 1)(p+ 1)2
1

p2k

where k is the exponent of the conductor of the local character χ0. This is again a fairly simple
computation (one “sees” χ0 as a primitive character modulo pk, and notes that the characters
χ modulo q 6 Q which have χp equivalent to χ0, modulo an unramified character, exist only
when q = pkr with p - r, and are then exactly those of the form χ0χ

′ where χ′ is primitive
modulo r.) A first useful check of the formula above is the fact that it does correspond to a
probability measure on the dual of Qp; this follows from

p3

(p− 1)(p+ 1)2

∑

k>0

1

p2k

∑∗

χ0 (mod pk)

1 = 1,

(where the inner sum is the number of primitive character modulo pk), which is correct, and
is a rather simple computation.
This measure on the dual of Qp is somewhat unusual. It is not the Plancherel measure
(which, being a Haar measure on the dual group, treats each connected component as equal!),
though they are mutually absolutely continuous. Note – for further reference – that its
mystery evaporates as p → +∞: νp “converges” then to the probability Haar measure on
the unramified spectrum. (We put quotes here because, in principle, the measures νp live on
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different spaces for p varying, where however the unramified component can be all identified;
one should then say that the restriction of νp to the unramified component, after identification
to the “constant” space S1, converges to probability Haar measure on S1.) We will see later
that this type of “large p limit” is very frequent and has important consequences, e.g., with
respect to the determination of the conjectural symmetry type of the family (see Section 9).
37. For classical cusp forms, local equidistribution at unramified places was proved by
Serre [22]. Precisely, consider a sequence of pairs (k, q), where k is a weight and q a level,
such that k+ q → +∞, and a finite set of primes S such that no prime in S divides infinitely
many q’s. Then, for q large enough, any f ∈ Ck,q is unramified at all p ∈ S. The local
component at p of the cusp form π(f) associated to f is very easily described in terms of its
Satake parameters (αp, βp), namely we have

αp + βp = λf (p),

the Hecke eigenvalue at p, and αpβp = 1 (this last is because we work without nebentypus...).
In fact there is then an identification of the space of possible local components (the part
of the spectrum of GL2(Qp) corresponding to unramified, tempered (7) representations with
trivial central character) with the interval [−2, 2], in which πp(f) corresponds to λf (p) for
f unramified at p. Serre shows local equidistribution of πS(f) for f ∈ Ck,q, with respect to
the product measures νS =

∏
νp, where νp is the Plancherel measure on the (unramified,

tempered, trivial central character) spectrum of GL2(Qp). This measure νp is given explicitly
by

(5) νp =
p+ 1

(p1/2 + p−1/2)2 − x2
1

π

√
1− x2

4
dx.

In particular, this proves strong local equidistribution in level 1, with Plancherel measures as
limiting measures, for the family Ck,1. Royer [19] has also proved such results quantitatively.
38. If one uses instead the families Hk,q (with harmonic weight on Ck,q), it follows almost
immediately from the Petersson formula that (at least in the absence of oldforms) there is
strong local equidistribution of the p-components for p ∈ S, again for levels coprime to S, but
with limiting measure ν̃p at p equal to the Sato-Tate measure (which is independent of p) on
the unramified tempered (trivial central character) spectrum, identified with [−2, 2] as above:

(6) ν̃p =
1

π

√
1− x2

4
dx.

39. Similarly, Sarnak obtained local equidistribution for Maass forms [21] (at unramified
places); the weighted version goes back (implicitly) to Bruggeman’s work.
40. The most general result currently available (to the author’s knowledge) is due to Sug-
Woo Shin [23], who proves local equidistribution with the Plancherel measure as limiting
measures for families of cusp forms on groups with discrete series as components at infinity
(this excludes GLn, n > 3, but includes GSp2g). We will say a bit more in Section 8, when
discussing the recent quantitative refinements announced by Shin and Templier [24].

7. Because of Deligne’s bound |αp| = |βp| = 1.
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5. Families of cusp forms according to Sarnak’s letter

41. In the letter [20], P. Sarnak gives a list of certain “canonical” types of families of cusp
forms on GLn over Q; these are all defined by taking a set F of cusp forms in A(GLn) (which is
usually infinite) of special type, and then considering – in a different language – the extended
family (FX) with normalized counting measure on

FX = {π ∈ F | q(π) 6 X}.
42. The special types of sets F considered by Sarnak encompass essentially all types of arith-
metic restrictions on concrete incarnations of families that have arisen “in practice”. These
are the following, (8) listed with the shorthand names attached to them by Sarnak:

1. [Degenerate case] F is a single cusp form π;
2. [Root numbers and central characters] F is either the set of π with a fixed central

character, or the set of self-dual forms in A(GLn), or the set of self-dual forms with a
fixed sign ±1 of the functional equation.

3. [Given H-type] (9) Here H ⊂ GLn(C) is a semisimple subgroup and F (which depends
onH) is the set of all cusp forms π such that the semisimple conjugacy classes in GLn(C)
associated to the unramified components of π intersect H (for almost all places).

4. [Harmonic analysis constraints] Here one fixes a finite set of places S and “nice” subsets
Bv of the local tempered spectrum of GLn(Qv) for v ∈ S, and F might be either the
set of cusp forms unramified outside S, but with local components in Bv for v ∈ S; or
simply the set of cusp forms with πv ∈ Bv for v ∈ S, but possibly still ramified outside
S.

5. [Geometric families] Here one takes a nice family of algebraic varieties V −→ T , and
one picks a family Ht of (fixed index) cohomology groups of V −→ T , t ∈ T ; these are
conjecturally – and very special cases are known – associated to cusp forms π(t) on GLn
with n the constant dimension of Ht, and F is the set of these π(t). (10)

6. [Functorial transfers] Given a reductive group H/Q with a representation % : LH −→
GLn(C), and the associated (usually conjectural) Langlands functoriality map %∗ :

A(H) −→ A(GLn), let F be the image of %∗. (11)

43. Sarnak further defines families of L-functions as follows. One takes finitely many families
Fi of the type above (for GLni , 1 6 i 6 k) and the product family

F =
∏

i

Fi,

and then one considers representations %i : GLni(C) −→ GLmi(C), and their associated
Langlands transfers %i,∗ – of course usually conjectural! –, in order to obtain an extended

8. Some, for instance (2), could be split further, but we keep the terminology in Sarnak’s text.
9. One should think of this as “generalized CM” cases.

10. Here one should really take the possible multiplicity of the π(t)’s into account, as managing it analytically
is usually pretty much out of the question. This is one of the motivations for using a more general way of
“counting” in the definition of small families.
11. Here also multiplicity should probably be taken into account.
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family with

FX = {π =
⊗

i

πi ∈ F | q(
⊗

i

πi) 6 X}

(the tensor product of the πi’s is supposed to be the generalized Rankin-Selberg product, a
cusp form on GLn1···nk

, which is conjectured to exist).
Then one wants to study particularly the properties of the L-functions

L
(⊗

i

%i,∗(πi), s
)

using the average over FX .
44. The Sarnak extended families FX are well-defined (possibly with restrictions related
to functoriality in some cases). The following is therefore an unambiguous mathematical
questions, which seems fundamental:
For FX any family as above, does it satisfy strong local equidistribution at the

finite places?

It seems very likely that the answer is yes. It would be interesting to know the corresponding
limiting measures νv (for some of the types at least). The case of GL1 and k = Q is the
content of 36. In any case, one can see that the answer can not be the Plancherel measure,
because the latter has infinite total measure. Intuitively, the difference occurs because families
of global cusp forms emphasize the unramified part of the spectrum of the local components,
which the Plancherel measure does not do to such an extent.

6. Families of L-functions according to Conrey, Farmer, Keating, Rubinstein
and Snaith

45. Another “working definition” of family has been used by Conrey, Farmer, Keating, Ru-
binstein and Snaith in their paper [6] suggesting a heuristic method to estimate (with lower
order terms) moments of L-functions.
46. The main difference between [6] and Sarnak’s letter (and the point of view taken here) is
the focus by the five authors on families of Dirichlet series, without assuming the presence of
underlying cusp forms. So they start with a set F of series

L(s) =
∑

n>1
f(n)n−s,

assumed to satisfy Euler product expansions (of some fixed degree d) and standard functional
equations. These are ordered with respect to the log-conductor, which is essentially the same
as the logarithm of the analytic conductor if L(s) is a standard L-function on GLd; one denotes
F(T ) the set of series with q(L(s)) < T . A set of such series is then a cfkrs-family when, (12)

12. Conrey, Farmer, Keating, Rubinstein and Snaith impose extra conditions, e.g., of monotonicity of
parameters with respect to the conductor, that we ignore here.
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for every k > 1, for every integer 0 6 ` 6 k, every k-tuple of positive integers m = (mi), the
limits

(7) δ`(m) = lim
T→+∞

1

|F(T )|
∑

f∈F(T )
f(m1) · · · f(m`)f(m`+1) · · · f(mk)

exist, and are multiplicative functions, in the sense that

(8) δ`(nm) = δ`(n)δ`(m)

for each `, and tuples n, m with (n1 · · ·nk,m1 · · ·mk) = 1 (the product of tuples on the left
of this condition is taken coordinate-wise).
47. Assume we are given an extended family F = (Fn)n from finite sets of cusp forms on GLd
over Q, satisfying strong local equidistribution (in our sense) at the finite places, with limit
measures νp. Consider the associated standard L-functions L(π, s) (restricting to the finite
places) for π ∈ F, and expand them

L(π, s) =
∑

n>1
λπ(n)n−s.

Then the corresponding limits (7) exist, and satisfy the multiplicativity property (8). In other
words, we obtain a cfkrs-family automatically.
To see this, note that for each prime p, each integer ν > 0, the coefficient

λπ(pν)

is the value at π of a continuous function tp,ν defined on Ap(GLd) (in the unramified case, it
is a symmetric polynomial in the Satake parameters). Therefore, in terms of the factorization
of the miS’s, we have

λπ(m1) · · ·λπ(m`)λπ(m`+1) · · ·λπ(mk) =
∏

p

∏

16i6`
tp,vp(mi)(π)

∏

`+16i6k
tp,vp(mi)(π).

For a fixed k-tuple m, the product ranges only over a finite set of primes S. Thus, by
definition, strong equidistribution for S yields the value

∏

p∈S

∏

16i6`

∫

Ap

tp,vp(mi)(θ)dνp(θ)
∏

`+16i6k

∫

Ap

tp,vp(mi)(θ)dνp(θ)

of the limit as n→ +∞. This formula is clearly multiplicative in the sense (8).

7. Direct consequences of strong local equidistribution

48. Strong local equidistribution, when it holds, has by itself a number of interesting conse-
quences. However, the deepest ones depend on quantitative forms of local equidistribution,
to be discussed in Section 8.
49. We assume here that we are given an extended family (µn) on A(G) which satisfies strong
local equidistribution at the finite places. We denote by νv the corresponding limit measure
on Av = Av(G) at the place v.
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50. The basic idea is that if π 7→ α(π) is a multiplicative invariant, i.e., one that can be
expressed as a product over finite places of local quantities αv(πv), then we expect that

(9) En(α(π)) −→
∏

v finite

∫

Av

αv(θ)dνv(θ)

as n −→ +∞.
When valid, this expresses some form of independence of the local components at the finite
places, and probabilistically corresponds to the fact that the expectation of a product of
independent random variables is the product of the individual expectations.
By definition of strong local equidistribution, (9) holds when each αv is a bounded continuous
function on Av, and αv = 1 for v not in a finite set of finite places.
51. A first consequence of strong local equidistribution is a “strong approximation” theorem:
for a finite set of places S, let Uv = supp(νv) for v ∈ S, and let Tv ⊂ Uv be an open set. Then
there exist infinitely many cusp forms π ∈ A(G) with πv ∈ Tv for all v ∈ S. This means that,
although A(G) is an infinite set, one can specify fairly arbitrarily the behavior of the cusp
forms in the family at any finite set of primes. (13)
Note that if we only have local equidistribution for certain places, we obtain a corresponding
result for these places (individually).
52. If we consider the family of L-functions associated to a representation % of the L-group
of G – assuming the minimal conditions in 25 –, a soft “dominated convergence” argument
leads to an asymptotic formula, with an Euler product as main term, far enough in the region
of absolute convergence: for any fixed s with Re(s) > σ0, where σ0 may depend on % and the
family, we have

(10) En(L(π, %, s)) −→
∏

v

∫

Av

Lv(θ, %, s)dνv(θ),

as n→ +∞.
To see this, one simply notes that if we write

(11) L(π, %, s) =
∑

a

λ(a;π, %)(Na)−s

(where a runs over non-zero integral ideals of k, with norm Na), each coefficient can be written
as

λ(a;π, %)(Na)−s =
∏

p|a
λ(pvp(a);πp, %)(Np)−vp(a)s

which means it is a function in factorized form on AS , where S is the set of primes p di-
viding a. For fixed a, this is a bounded continuous function, and we can apply strong local
equidistribution to obtain

En(λ(a;π, %)(Na)−s) −→ (Na)−s
∏

p|a

∫

Ap

λ(pvp(a); θ, %)dνP (θ).

13. With quantitative forms of equidistribution, one can attempt to generalize this to certain unbounded
sets of places; see [16, Th. 4] for an example.
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Applying dominated convergence, we can sum over a again to derive (10) using the multi-
plicativity in the form of the local formula

∑

k>0
λ(pk; θ, %)(Np)−ks = Lp(θ, %, s).

Now, this is rather trivial from the point of view of analytic number theory, but one should
perhaps take note that this applies simultaneously to all Langlands L-functions (when it
makes sense) associated to the cusp forms in the family. This point illustrates an advantage
of looking at equidistribution at the level of the cusp forms, and not of the L-functions.
Another similar point is explained at the end of the text in 109.

8. Quantitative local equidistribution: level of decay

53. In order to study more deeply the averages involving extended families of cusp forms, it is
natural to expect that quantitative forms of local equidistribution are required. This may be
formulated in different ways, but the goal is to have an analogue of the “level of distribution”
in sieve theory.
54. Consider an extended family (µn)n of cusp forms in A(G), satisfying strong local equidis-
tribution (at the finite places, in the number field case), with limit measures νv. For a
continuous bounded function φ on AS =

∏
v∈S Av, denoting by νS the product over v ∈ S of

the νv, we write

En(φ(π)) =

∫

AS

φ(θ)dνS(θ) + En(φ),

which introduces the error term En(φ).
55. Strong local equidistribution means of course that En(φ)→ 0 for any fixed φ. In order to
make this quantitative, we use the quantity κ(n) defined in (1) to measure the complexity of
cusp forms in the small families µn, though it is conceivable that other parameters might be
better adapted in certain situations.
If there is a system of norms ‖ · ‖S which is defined for functions on AS for all S, one can say
that (µn) has level of decay δ with respect to this choice of norms, for some δ > 0, if

(12) |En(φ)| � κ(n)−δ‖φ‖S ,
with an absolute implied constant. It is enough to check such an inequality for factorized
functions

φ((πv)v∈S) =
∏

v∈S
φv(πv)

(which are quite often general enough for applications anyway.)
56. In practice, the inequality (12) might be proved for factorized functions φ which are of
a very special form. Typically, φv is taken from an orthonormal basis of the Hilbert space
L2(Av, νv), containing the constant function 1. This means that one proves strong local
equidistribution, using the Weyl criterion, by showing

(13) En(φ)� κ(n)−δ
∏

v∈S
‖φ‖v
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for factorized functions where each factor φv is in a fixed basis of the space of functions Av

with average value 0, (14) and the implied constant is independent of S. Here the main term
vanishes (and these cases of the Weyl criterion suffice because if some φv is constant, one can
replace S by a smaller set of primes.)
57. From (13), we obtain (12) for continuous functions which lie in the closure of the linear
combinations of basis functions with respect to the norms defined using multiplicativity.
58. This may be quite a small space (see Section 13 for an example; the same happens for
classical cusp forms), but we can expect that it contains all functions on the unramified
spectrum Anr

v which are characters of finite-dimensional representations of the L-group of G,
when the unramified spectrum is identified – by the Satake isomorphism – with the semisimple
conjugacy classes in the L-group.
59. Quantitative local equidistribution is easy to prove for GL1, and was proved for GL2 over
Q by Royer [19] (and Conrey-Duke-Farmer independently).
60. The most general, and rather impressive, known case of quantitative equidistribution is
due Shin and Templier [24]. It concerns two types of extended families, based on sets of cusp
forms (with some multiplicity) on G having discrete series as local components at infinity,
where either the weight is fixed and the level grows, or the level is fixed and the weight grows.
The proofs are based on the earlier work of Shin [23], and require a quantitative treatement
of his argument based on the trace formula.
61. The reader may again safely skip now to the next section; we describe here how the
quantitative local equidistribution leads to “sieve” inequalities for the extended family (see
Section 3 for the context).
We suppose that we have an extended family (µn) with strong local equidistribution at finite
places, in the following quantitative form (which is a variant of the above): for every place
v, we assume given an orthonormal basis of continuous functions (ϕv,n)n>0 of L2(νv), with
ϕv,0 = 1, such that for any nv > 0, mv > 0, we have

(14) En

(∏

v∈S
ϕv,nvϕv,mv

)
=
∏

v∈S
δ(nv,mv) +O

(
κ(n)−δ

(∏

v∈S
Nv
)A(nv+mv))

for any finite set S of finite places and some fixed A > 0, δ > 0.
62. The first basic sieve statement is the following: for all places v, select a function on Av

of the form
Φv(π) =

∑

n6d
αv,nϕv,n(π)

(a kind of “spectral polynomial” of fixed degree). Then the νv average of Φv is therefore αv,0,
and the L2-norm is ∑

n6d
|αv,n|2 = |αv,0|2 + σ2v ,

say.

14. So that here En(φ) = En(φ(π)).
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A Rényi-type large sieve inequality expresses a bound on the variance of Φ(πv) when v varies,
averaged over the family:

(15) En

(∣∣∣
∑

Nv6x
Φv(πv)−

∑

Nv6x
αv,0

∣∣∣
2)
� ∆

∑

Nv6x

∑

16n6d
|αv,n|2 = ∆

∑

Nv6x
σ2v ,

where ∆ is a constant that can be estimated by

∆ 6 1 + κ(n)−δdxB

for some B (depending on A and d; one can take B = 1+2Ad for instance, using the standard
argument in [13], though better bounds might be possible in special cases). This is non-trivial
as long as dxB � κ(n)δ, and it provides therefore some control over unbounded sets of places.
The Montgomery-type inequality looks more like sieve: given the data as above, as well as
some parameters δv > 0, we have

Pn

(
Φv(πv) 6 αv,0 − δv for all v with Nv 6 x

)
� ∆H−1,

where ∆ can be bounded as above, and

H =
∑[

Na6x

∏

v|a

δ2v
σ2v

(the sum ranging over squarefree integral ideals of norm at most x). The proof is an adaptation
of the one (15) in [14, §2] (which also contains some more information about this topic in the
case of classical cusp forms.)

9. Symmetry types for the behavior of L-functions on the critical line

63. A basic question underlying the search for a good notion of family of cusp forms is the
definition (and determination) of a “symmetry type” for a family of L-functions associated to
the family. (16) The existence of such a symmetry type is part of the Katz-Sarnak philosophy
(see [11, 12]), together with the assumption that it should belong to a very small list of
possibilities, related to Haar-distributed families of random matrices in classical compact
groups. We explain in this section a heuristic for determining the right symmetry type in
certain extended families satisfying (strong) local equidistribution, and show how the “low-
lying zeros” statistics can be computed under some assumption on the level of distribution or
decay for the family, and on the limiting measures νv. We will also recall the interpretation of
symmetry types in terms of random matrices, and how this drives the conjectures for critical
moments of L-functions.
For simplicity, we only consider the case of number fields k in the computations, although
the principles extend to function fields (there is an example of family over function fields in
Section 12).

15. The standard proofs of Montgomery’s inequality in the classical theory of the large sieve can not be
adapted here.
16. We emphasize that, although the more fundamental notion is that of a family of cusp forms, the

symmetry type, on the other hand, is an invariant of the L-functions under consideration.
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Shin and Templier [24] develop the type of computations sketched below for their families
and obtain the same conclusion concerning the determination of symmetry types (the account
below is independent of their work, though the latter existed in draft form earlier).
64. The reader should be aware that there are “exotic” behavior in extended families, even
with apparently excellent equidistribution properties. In some cases, this suggests that more
general models of random matrices may be needed to account for the weight involved in
the measures µn. An enlightening example of this is considered in Section 13, and another
example due to A. Steiger is discussed in 82. However, these cases (which are, to the author’s
knowledge, the only ones known) can still be understood in a rather nice way as related
to families with well-defined Katz-Sarnak-type symmetry type, where the random matrix
model can be understood by modification of the Haar measures on the corresponding compact
classical groups.
65. We consider an extended family (µn) of probability measures with strong local equidistri-
bution (at the finite places) with respect to νv (which are also probability measures). Let νnrv
be the restriction of νv to the unramified spectrum of Gv, seen as a measure on the compact
space K of semisimple conjugacy classes in a maximal compact subgroup of the L-group LG.
We will begin with the following assumptions about the limiting behavior of νv as the norm
Nv of v tends to infinity:
– Most of the mass of νv is supported on the unramified spectrum, and in fact

(16) νnrv (Av) = 1 +O((Nv)−1/2−δ0)

for some δ0 > 0;
– We have

(17) lim
Nv→+∞

νnrv = ν,

where ν is the probability Haar measure on K (see 78 for a discussion of more general
situations, e.g, with νnrv converging to another limit, or converging only on average over
v...)

For instance, the first condition holds if νv is supported on the unramified spectrum.
66. We come back to our earlier examples. For the measure νp on characters (for k = Q,
G = GL1) described in 36, we see that the total measure of the ramified characters is� p−1.
The limit of νp is the uniform probability measure on the space S1 of unramified characters.
For classical cusp forms, the Plancherel measures νp of (5) and their limit, the fixed Sato-Tate
measure (6), also provide an example of (17) for families of classical modular forms.
More generally, for G = GLn, the Plancherel measures νPv on the unramified dual in Av(GLn)
satisfy (17) when suitably normalized, as in [1], where this can be checked. (Indeed, as
explained to the author by A. Venkatesh, this holds for all reductive groups G, at least split,
and can be deduced from the formula of MacDonald for the density of the unramified p-adic
Plancherel measure.)
67. Here comes a crucial point: essentially, any non-trivial level of decay allows the computa-
tion of low-lying zero distribution for the L-functions for restricted test functions. We explain
this in the next few items.
68. We fix a non-trivial representation % of the L-group, as before. We will consider the
distribution of zeros of the L-functions L(π, %, s), which are assumed to satisfy the standard
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analytic properties of L-functions (including functional equation). When G = GLn, one can
think of % as being the identity map, and therefore L(π, %, s) is just the standard L-function
of degree n. As before, we denote by q(%∗π) the analytic conductor of L(π, %, s).
69. We first fix π, and assume (for simplicity; it is known that some unconditional statements
can be made) the Riemann Hypothesis for L(π, %, s), and denote its zeros by

1/2 + iγπ,%,j , j ∈ Z,

(ordered with multiplicity and according to modulus, with j > 0 corresponding to zeros
γπ,%,j > 0). Further, write

(18) − L′

L
(π, %, s) =

∑

a

Λ(a)c(a;π, %)(Na)−s

where Λ is the von Mangoldt function of k. For a = pk with p prime and π unramified at p,
we have

c(pk;π, %) = Tr %(Θp(π)k),

in terms of the conjugacy class Θp(π) in the L-group which parameterizes πp.
Then for a Schwartz function ϕ with ϕ̂ of compact support, the classical “explicit formula”
leads to

(19)
∑

j

ϕ
(γπ,%,j

2π
log q(%∗π)

)
=

∫

R
ϕ(x)dx−

1

log q(%∗π)

∑

p

∑

k>1
(c(pk;π, %) + c(pk;π, %))(logNp)ϕ̂

( k logNp

log q(%∗π)

)
(Np)−k/2

+R(π),

where p runs over prime ideals, and R(π) is an “error term” that involves the archimedean
factors.
70. Now we perform average with respect to µn on both sides, and attempt to obtain an
asymptotic expansion of the left-hand side, as a functional of ϕ. Under very general circum-
stances, the average of R(π) goes to zero as n → +∞ (often, R(π) � (log q(%∗π))−1 and
q(%∗π)→ +∞). Similarly, it follows usually “for free” from easy bounds that the contribution
of all k > 3 tends to zero, leaving the terms k = 1 and k = 2 to consider, say Sn and Tn.
71. The term k = 1 is given by

∑

p

En

( 1

log q(%∗π)

{
c(p;π, %) + c(p;π, %)

}
ϕ̂
( logNp

log q(%∗π)

))
(logNp)(Np)−1/2.

72. We now assume that the conductor varies “smoothly enough” in the family so that the
factors log q(%∗π) can be pulled out of the average and replaced with log κ(n). (17) Thus

Sn ≈
1

log κ(n)

∑

p

En

(
c(p;π, %) + c(p;π, %)

)
ϕ̂
( logNp

log κ(n)

)
(logNp)(Np)−1/2.

17. This is of course clear if the conductor is constant for the small family µn. It can be quite a bit more
tricky for families of elliptic curves, for instance.
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Now we want to apply local equidistribution at each p. We assume that for φ(π) = c(p;π, %),
and its conjugate, the norm ‖φ‖p involved in (12) are bounded by some power of p, say pA.
Then the quantitative decay gives

En

(
c(p;π, %) + c(p;π, %)

)
=

∫

Av

{
c(p; θ, %) + c(p; θ, %))

}
dνp(θ) +O(pAκ(n)−δ).

If ϕ̂ has support in [−α, α] for some α > 0 (depending on A and on δ), the sum over p of the
remainder term is limited to Np 6 κ(n)α, and is therefore bounded by

κ(n)−δκ(n)α(A+1/2),

and goes to 0 as n→ +∞ if α is small enough (depending on A and δ).
Moreover, using (16), we can restrict the integral to the unramified spectrum by the same
type of arguments. Therefore we get

Sn ≈
1

log κ(n)

∑

p

ϕ̂
( logNp

log κ(n)

)(logNp)

(Np)1/2

∫

Av

{
Tr(%(θ)) + Tr(%(θ))

}
dνp(θ).

73. Now we assume that % is an irreducible representation of the L-group. (18) Under this
assumption, by (17) and character theory, we have

(20)
∫

Ap

{
Tr(%(θ)) + Tr(%(θ))

}
dνp(θ)→ 0

as Np→ +∞. This is not enough to continue, so we assume that, for some δ1 > 0, we have

(21)
∫

Ap

{
Tr(%(θ)) + Tr(%(θ))

}
dνp(θ)� (Np)−1/2−δ1 ,

in which case, we obtain
Sn → 0

as n→ +∞.
Quite often, this assumption holds for the reason that the integral is zero. For instance, this
is the case when νp is the Plancherel measure (on the unramified spectrum); this may also
happen when there is a symmetry to the measure which allows some change of variable to
give 0 as a result. In Section 13, we present an example found in [17] where (21) does not
hold, for rather deep arithmetic reasons.
74. There remains to handle Tn, the contribution of squares of primes. The same types of
arguments involving local equidistribution lead (more easily, in fact, since the sum of 1/Np is
barely divergent) to

Tn ≈
1

log κ(n)

∑

p

ϕ̂
(2 logNp

log κ(n)

)(logNp)

Np

∫

Anr
p

{
Tr(%(θ2)) + Tr(%(θ2))

}
dνp(θ)

18. For instance, % is the identity on GLn.
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Now the assumption

(22)
∫

Ap

{
Tr(%(θ2)) + Tr(%(θ2))

}
dνp(θ) =

∫

Ap

{
Tr(%(θ2)) + Tr(%(θ2))

}
dν(θ) +O((Np)−δ2)

for some δ2 > 0 is enough to ensure that

Tn ≈
2 FS(%)

log κ(n)

∑

p

ϕ̂
(2 logNp

log κ(n)

)
(Np)−1

where

FS(%) =

∫

K
Tr(%(θ2))dν(θ) = FS(%̄)

is the Frobenius-Schur indicator of the representation % (equal to that of %̄).
Hence, by the Prime Number Theorem, we get

Tn → FS(%)
ϕ(0)

2
.

75. We summarize: under the assumptions (16), (17), (21) and (22) – and possibly some more
technical ones having to do with variation of the conductor in the family, etc – we get, for
suitably small support of ϕ̂, the limit

(23) En

(∑

j

ϕ
(γπ,%,j

2π
log q(%∗π)

))
−→

∫

R
ϕ(x)dx− FS(%)

2
ϕ(0)

as n→ +∞. The limit can be written
∫

R
ϕ(x)dσ%(x),

where

dσ%(x) = dx− FS(%)

2
δ0.

76. The three basic, classical, symmetry types arise then from the trichotomy concerning the
Frobenius-Schur indicator:
– If FS(%) = 0, then % is of unitary type, the Frobenius-Schur indicator is zero, and we obtain
the measure dσ%(x) = dσU (x) = dx; this is called the unitary type.

– If FS(%) = 1, i.e., % is of orthogonal type (this means that % may be factored through an
orthogonal group, or equivalently, there is a %-invariant non-degenerate symmetric bilinear
form on the space of %), we get the measure dσSp = dx− 1

2δ0, corresponding to the symplectic
type. (See below for the shift!)

– If FS(%) = −1, i.e., % is of symplectic type (this means that there is a %-invariant non-
degenerate alternating bilinear form on the space of %), we get the measure dσO = dx+ 1

2δ0,
corresponding to the orthogonal type.
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77. The labeling of the three symmetry types is due to the following fact, first observed by
Katz-Sarnak: let T ∈ {U, Sp,O}; for N > 1, let TN be the corresponding maximal compact
classical group, with probability Haar measure mN . Then for N → +∞ and for ϕ with ϕ̂
having support in ]− 1, 1[, we have

EN

(∑

j

ϕ
(ϑj

2π
N
))
−→

∫

R
ϕ(x)dσT(x),

where eiϑj are the eigenvalues of a matrix in TN (with arguments ordered from −π to π).
In other words: the symmetry type associated to the family of L-functions by means of the
measure dσ% indicates that the zeros close enough to the central point 1/2 behave – after
scaling to have mean-spacing 1 – “like” the eigenvalues of large random matrices of type T,
scaled in the same manner.
(The “shift” between orthogonal and symplectic types, which arises from the minus sign on
the right-hand side of the explicit formula (19), is reminiscent of similar “change of signs”
between alternating and orthogonal forms on suitable cohomology groups; e.g., the middle
cohomology of a curve carries a symplectic pairing, but the H2 of a surface – which can be
seen as a family of curves – carries a symmetric pairing.)

78. We see that, formally, the symmetry type can be bound from the local equidistribution by
simply checking if (17) holds, and then computing the Frobenius-Schur indicator. More general
situations can be handled very similarly. For instance, in Sarnak’s Type (3) (“restrictions on
H-type”), we would not expect (17), but instead νnrv might converge (as Nv → +∞) to the
probability Haar measure on a maximal compact subgroupKH of the subgroupH ⊂ GLm(C).
Then the same computations apply with (1) the condition of irreducibility of % replaced by
the irreducibility of the restriction of % to H (for the treatment of Sn); (2) the value of FS(%)
replaced by the Frobenius-Schur indicator FS(% | KH).
Other examples along these lines are given in Section 12 (in 97, the limit as Nv → +∞ is
Haar measure on a group with two elements, and in 91, it is Haar measure on the conjugacy
classes of a group isomorphic to Sn.)
We observe that in all cases we know of strong local equidistribution, the measures νv converge
to some limit as Nv → +∞ (in the sense that most of the mass is found on a “common” set,
and that the restriction there converge), and that this limit can be identified with the image on
the set of conjugacy classes of the probability Haar measure of a compact Lie group K. (This
should be the same as the one defined by Langlands that Sarnak mentions when discussing
his Type (3) families.) This important property applies even to the “exotic” baheviors already
mentioned (see Section 13 especially.)

79. However, the “formal” symmetry type might fail to be reflected in the limit of

En

(∑

j

ϕ
(γπ,%,j

2π
log q(%∗π)

))
,

even in extremely favorable circumstances, because of the failure of the estimate (21) (the
failure of (22) might also occur, of course, but since it is a much weaker condition, it seems
much more unlikely – the author does not know of an example.)
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More precisely, if ∫

Ap

{
Tr(%(θ)) + Tr(%(θ))

}
dνp(θ) � (Np)−δ3

with 0 6 δ3 < 1/2, the sequence (Sn) is certainly going to diverge. But in the critical case
where δ3 = 1/2, say

∫

Ap

{
Tr(%(θ)) + Tr(%(θ))

}
dνp(θ) ∼ λp(Np)−1/2,

we obtain
Sn ≈

1

log κ(n)

∑

p

ϕ̂
( logNp

log κ(n)

)
λp(Np)

−1/2.

If λp is constant, or has non-zero average over primes, this expression is of the same type as
that giving Tn. In particular, it can then be expected to add a contribution to the “second”
term −1

2 FS(%)δ0 in the distribution of low-lying zeros. This will be the case in the example of
Section 13. Low-lying zeros can lie! It seems that the “right” way to determine the symmetry
type (if it exists) is to use the “formal” one, based on analysis of the limit of the local measure
νv, and the relevant Frobenius-Schur indicator.
80. In Section 12 below, we present some further examples of determination of symmetry
types for some families related to families of extensions of Q with Galois groups Sn, and to
function fields.
81. We didn’t make any comment on the assumption that % be irreducible in this discussion.
This is because if % splits as a direct sum

% = %1 ⊕ %2,
we have L(π, %, s) = L(π, %1, s)L(π, %2, s), so that the analysis can be performed separately
on the irreducible summands, before combining them together if need be. And, similarly, if
% is trivial or has a trivial component, we simply obtain fixed additional factors ζk(s) in the
L-function.
82. A. Steiger has considered the following subfamily of primitive Dirichlet characters of prime
levels: fix a non-empty open interval I ⊂ S1, and for ` prime, let

DI,` = {χ ∈ D` | ε(χ) ∈ I},
where ε(χ) is the “root number” of L(s, χ) (i.e., a normalized Gauss sum.) This is meant to
be a “continuous” analogue of the restriction of a family to self-dual cusp forms with a given
sign of functional equation. It is naturally suggested by the fact that D` satisfies strong local
equidistribution, and that the root numbers of χ ∈ D` are equidistributed on S1 with respect
to Haar measure ν (as shown by Deligne using estimates for hyper-Kloosterman sums). Thus
the cardinality of DI,` is asymptotically (`− 2)ν(I) as ` tends to infinity.
Steiger shows that there is strong local equidistribution, with Haar measure on S1 as limiting
measure for every prime p (i.e., exactly like the situation for D` itself). Moreover, using
Deligne’s bound for hyper-Kloosterman sums, it is also possible to obtain a quantitative level
of decay for the test functions φ(θ) = θm,m ∈ Z, on S1. The recipe above, for a family obeying
Katz-Sarnak heuristic, would therefore suggest unitary symmetry type. This is confirmed for
low-lying zeros using the quantitative equidistribution.
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Moreover, for the same reason, any statistic that can be computed from averages of values
of the characters (e.g., 2-level density) will give the same answer as for the family (D`), and
therefore as for random unitary matrices.

10. Symmetry types and moments of L-functions

83. The point of the determination of the symmetry type is, historically, that it is used in order
to obtain the right conjectures for the behavior of moments of families of L-functions on the
critical line. We recall the shape of these conjectures now, in the unitary and symplectic cases
(see Section 11 for a discussion of the orthogonal case, where further distinctions are needed).
Let (µn) be an extended family on GLn, n > 1, with formal symmetry type T ∈ {U, Sp}. We
consider the standard L-functions for simplicity. A minimal assumption is that the formal
symmetry type should be reflected in the distribution of low-lying zeros (i.e., (23) holds for
the right symmetry type), but this may not be sufficient (the family considered by Steiger,
see 82, is a possible counter-example, which is currently being investigated).
84. The principles are: (1) one should model the L-values using matrices distributed according
to Haar measure and taken from the symmetry type, together with a short Euler product at
the small primes, which is distributed as dictated by local equidistribution ; (2) there is
asymptotic independance of these two components – to a certain extent at least.
85. We continue with the setting of the previous section, in particular we consider L-functions
L(π, %, s). The principles suggest that we compare

En(|L(π, %, 12)|2m)

(for a fixed m) with
(∫

TN

| det(1− g)|2mdmN (g)
)( ∏

Np6x

∫

Ap

|Lp(θ, %, 12)|2mdνp(θ)
)
,

for suitable N and x. These parameters can be adjusted by doing the usual scaling of zeros
and conductor, and by comparing the asymptotic behavior of the two factors (an easy matter
for the Euler product, using arguments similar to those used in the explicit formula for low-
lying zeros, and a fairly recent result of Keating-Snaith for the Random Matrix factor). Then,
when x = logN , the order of growth turns out to be the same, and the basic expectation is
that, after renormalizing through this order of growth with log κ(n) ≈ N , one will obtain an
asymptotic formula. Many partial results are known in this direction for certain families and
suitable m.
86. We present the computations by distinguishing between the cases, motivated by the fact
that the value at 1 of characteristic polynomials of symplectic or orthogonal matrices is a non-
negative real number. Consider first the symplectic type. We consider a fixed m ∈ C with
Re(m) > 0 (for instance, m = it with t real, in which case we are looking at the “characteristic
function”, in the probabilistic language, of the random variable logL(π, %, 12)). Then

(24)
∫

USp(2N)
det(1− g)mdmN (g) =

(N
2

)(m2+m)/2
ΦSp(m)(1 + o(1)),
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where

ΦSp(m) =
G(3/2)

G(3/2 +m)

as N → +∞ (this way of writing the limiting function ΦSp(m) is the one described in [15],
which is simpler than the one in Keating-Snaith).
Suppose % is n-dimensional, so L(π, %, s) is an L-function of degree n. The local L-function
of a representation θ of GLn(kp) is always of the form

Lp(θ, s) =
∏

16i6n

1

1− αi(Np)−s
,

where some αi may possibly vanishing. We expand the m-th power of this in powers of
T = (Np)−s, getting

(25) Lp(θ, s)
m =

∑

k>0
λm(pk; θ)(Np)−ks = 1 +

∑

k>1
λm(pk; θ)(Np)−ks.

(for instance, if m = 1, we have λ1(pk; θ) = λ(pk; θ, Id) with the notation in (11)).
Hence, if θ ∈ Ap(G), we have

Lp(θ, %, s)
m = 1 +

∑

k>1
λm(pk; %∗,pθ)(Np)−ks,

For a fixed m, the functions θ 7→ λm(pk; %∗,pθ) are bounded continuous functions on Ap(G),
and hence ∫

Ap

Lp(%∗θ, 12)mdνp(θ) = 1 +
∑

k>1
(Np)−k/2

∫

Ap

λm(pk; %∗,pθ)dνp(θ).

Because of (16), the contribution of the ramified spectrum is � (Np)−1−δ0 with δ0 > 0. For
unramified θ ∈ Ap, look at the terms of low degree. We find by Taylor expansion that (in
terms of the underlying representation % of the L-group) we have

λm(p; %∗,pθ) = mTr %(θ),

and

λm(p2; %∗,pθ) =
m(m+ 1)

2
Tr Sym2 %(θ) +

m(m− 1)

2
Tr

2∧
%(θ).

Since the contribution of k = 1 to the sum above is

(Np)−1/2
∫

Ap

λm(p; %∗,pθ)dνp(θ) = (Np)−1/2
∫

Ap

Tr %(θ)dνp(θ),

we see that under (21), this is � (Np)−1−δ1 . The contribution of k = 2 is

(Np)−1
∫

Ap

λm(p2; %∗,pθ)dνp(θ) = (Np)−1
{m(m+ 1)

2

∫

Ap

Tr Sym2 %(θ)dνp(θ)

+
m(m− 1)

2

∫

Ap

Tr
2∧
%(θ)dνp(θ)

}
,
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and since (formal) symplectic symmetry means that % is irreducible with Frobenius-Schur
indicator 1, we see that the assumption that

∫

Ap

Tr Sym2 %(θ)dνp(θ) =

∫

Ap

Tr Sym2 %(θ)dν(θ) +O((Np)−δ2),(26)
∫

Ap

Tr
∧
%(θ)dνp(θ) =

∫

Ap

Tr
∧
%(θ)dν(θ) +O((Np)−δ2),(27)

(which is a refinement of (22), since the difference of the two integrals on the right is the
Frobenius-Schur indicator) implies

(Np)−1/2
∫

Ap

λm(p; %∗,pθ)dνp(θ) =
m(m+ 1)

2

1

Np
+O((Np)−1−δ2).

By general principles, we therefore deduce that
∏

Np6x

∫

Ap

Lp(%∗,pθ, 12)mdνp(θ)

diverges like
∏

Np6x

(
1 +

m(m+ 1)

2

1

Np

)
� (log x)m(m+1)2

as x grows, precisely
∏

Np6x

∫

Ap

Lp(%∗,pθ, 12)mdνp(θ) =
∏

Np6x

(
1 +

m(m+ 1)

2

1

Np

)
Φ(m)(1 + o(1))

for each m and for some function Φ (depending on the local equidistribution properties of the
family; we refer to [15] and the references there for the discussion of the probabilistic structure
of such a limit theorem.) This is similar to the Random Matrix estimate when log x = N/2.
87. In the unitary case, we only discuss the real part of 2 logL(π, %, 12), which means the
moments of the non-negative quantity |L(π, %, 12)|2. Here, the Keating-Snaith asymptotic is

(28)
∫

UN

|det(1− g)|2mdmN (g) = Nm2
ΦU(m)(1 + o(1)), ΦU(m) =

G(1 +m)2

G(1 + 2m)
,

(valid for Re(m) > −1/2).
The arithmetic factor is investigated as before, writing

|Lp(π, %, s)|2m =
∑

k>0
λm(pk; rho∗π)(Np)−ks

(with apologies for recycling notation) and using (16) to reduce to the unramified part of the
spectrum. We find this time

λm(p2; %∗,pθ) = m2 Tr(%⊗ %̄)(θ) +
m(m+ 1)

2

(
Tr Sym2 %(θ) + Tr Sym2 %̄(θ)

)
+

m(m− 1)

2

(
Tr

2∧
%(θ) + Tr

2∧
%̄(θ)

)
.
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Irreducibility of % means that ∫

Ap

|Tr %(θ)|2dν(θ) = 1,

and we therefore need an additional bound

(29)
∫

Ap

|Tr %(θ)|2dνp(θ) = 1 +O((Np)−δ2),

to derive (from the assumption of unitary symmetry, (21) and (26)) that

1 +
∑

k>1
(Np)−k/2

∫

Ap

λm(pk; %∗,pθ)dνp(θ) = 1 +
m2

Np
+O((Np)−1−δ2),

and therefore a rate of growth (log x)m
2 for the partial Euler product

∏

Np6x

∫

Ap

|Lp(θ, %, 12)|2mdνp(θ)

in the case of unitary symmetry.

88. It would be interesting to have a proof of the asymptotic behavior of values of characteristic
polynomials of random matrices which exhibits directly a link between the rate of growth
(in (24) or (28)) and the Frobenius-Schur indicator. Those proofs that the author is aware of
do not really explain this coincidence.

11. Orthogonal symmetry types

89. The orthogonal symmetry type is further split into three possibilities, corresponding to
the classical groups ON , SO2N or SO2N+1. The separation has to do with the property of
the determinant ±1, or rather with the value of det(−A), for A ∈ ON , which appears in the
“functional equation”

det(1− TA) = det(−A) det(1− TA)

of the reversed characteristic polynomial of an orthogonal matrix. Since det(−A) =
(−1)N det(A) for A ∈ ON , it becomes natural to separate even and odd matrix sizes to
isolate random matrices with given “sign” of functional equation.

90. We record the asymptotic of moments for SO2N (orthogonal matrices of even size with
“sign of functional equation” equal to 1): for Re(m) > 1/2, we have

∫

SO(2N)
det(1− g)mdmN (g) =

(N
2

)(m2−m)/2
ΦSO(m)(1 + o(1)),

where

ΦSO(m) =
G(1/2)

G(1/2 +m)
.
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12. Other examples of symmetry types

91. Another interesting example of determination of symmetry type is the following (which
was also observed by N. Templier.) Fix an integer n > 2. We consider L-functions associated
to an extension K/Q of degree n with Galois closure having Galois group Sn (which we just
call “Sn-extensions” below). The Dedekind zeta function of K is an Artin L-function for a
permutation representation Ind

GQ

GK
(1) of dimension n. This splits as a direct sum

Ind
GQ

GK
(1) = 1⊕ %̃K

of two irreducible representations, and we want to study the Artin L-functions L(%̃K , s).
There should be some automorphic representation πK ∈ A(GLn−1) with standard L-function
given by L(%̃K , s). Now consider the extended family of the πK ’s associated to the finite sets
(FX) of all Sn-fields of discriminant 6 X.
The local component of πK at an unramified prime p (for K or for πK , equivalently) is in the
tempered unramified spectrum of GLn−1(Qp). It corresponds therefore to a conjugacy class
in Un−1(C), and the compatibility of local L-factors means that this is the conjugacy class of
%K(σp), where σp is the Frobenius at p.
One can show for n 6 4, and one may expect more generally to be true, that there is local
spectral equidistribution as X → +∞, with some limiting measure νn,p (necessarily of finite
support, contained in the unramified spectrum, at least if p > n). A basic conjecture of
Bhargava [4, Conj. 1.3] states that, as p → +∞, the measure νn,p converge to the image of
the probability Haar measure of Sn under the irreducible (n−1)-dimensional “augmentation”
representation

%̃ : Sn −→ Un−1(C).

Bhargava’s results (summarized in [4]; see also [3]) show that this is true for n 6 5 (these are
highly non-trivial facts!)
Now the formal symmetry type is easy to determine: we are basically looking at the restriction
of the tautological representation of GLn−1 to the image of %̃; the latter is irreducible, and has
Frobenius-Schur indicator 1 (as all irreducible representations of Sn do), hence the symmetry
is of symplectic type.

92. If Bhargava’s conjecture is correct, one can check that his prediction imply that

1

n!

∑

σ∈Sn

Tr(%̃(σ))νn,p(σ)� p−1,
1

n!

∑

σ∈Sn

Tr(%̃(σ2))νn,p(σ) = 1 +O(p−1),

i.e., the analogues of (21) and (22) hold. So we expect the formal symmetry type to be
reflected in the low-lying zeros of the family of L(πK , s) = ζK(s)/ζ(s). For n = 2, this is
easy to check, and for n = 3, 4, this was proved by Yang [25], building on quantitative forms
of counting of cubic and quartic fields (due to Bellabas, Bhargava and Pomerance [3], and
others).

93. We now come to another example. We included the case of all global fields in our basic
definitions. This allows us to look at some concrete examples for functions fields over finite
fields, where one can expect geometric insight and methods to lead to new results.
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94. Consider for instance k = Fq(T ), the function field of the projection line over Fq, and a
family of elliptic curves over k, say in Weierstrass form

Ea,b : y2 = x3 + a(t)x+ b(t)

where a, b ∈ k vary in some algebraically-controlled way, say (a, b) ∈ U(Fq) for some algebraic
variety U/Fq (e.g., Ud which parameterizes polynomials of bounded bidegree 6 d with cubic
discriminant non-zero). For each (a, b), we have a cusp form on GL2 /k associated to the
elliptic curve (by results of Drinfeld), whose standard L-function is the L-function of Ea,b.
95. Extended families of two types arise naturally: either those associated with the finite sets
(U(Fqn))n for a fixed U/Fq (e.g., a fixed Ud), or those associated with (Ud(Fq))d, where the
base field Fq is fixed.
96. The former belong to the realm of algebraic geometry, and Deligne’s Equidistribution
Theorem, combined with the deep monodromy computations of Katz, leads to a very good
understanding (indeed, this is where the Katz-Sarnak philosophy comes in.) Ironically, such
families can not enter into the framework of this text, because the implied change of base
field from Fq(T ) to Fqn(T ) induces also changes in the set of places as n varies, so that one
can not “track” the distribution of the local representations at a fixed place.
97. The second type of extended families, however, are of similar difficulty as the number field
case, though of course the possibility to rely on the Riemann Hypothesis is very useful! The
following example of families of hyperelliptic curves is an example which has been the topic
of a number of investigations (e.g., by Kurlberg-Rudnick [18], or Faifman-Rudnick [9]). One
considers the varieties Ud/Fq (with q fixed, odd) and d odd (say) is the dense open subset
of monic polynomials of degree d in Fq[T ] which are squarefree (i.e., have no repeated root
in an algebraic closure of Fq). Then we consider the family of smooth projective curve with
affine model given by

Hf : y2 = f(x)

for f ∈ Ud(Fq). This set of curves “is” a small family of algebraic curves. The interesting part
of the zeta function of Hf is the L-function of the quadratic “Dirichlet” character χf of Fq[T ]
associated to f , and thus by varying d we obtain an extended family of (quadratic) characters
of k = Fq(T ) (so that the group involved is GL1 /k.)
For a place of k given by a monic irreducible polynomial (19) π ∈ Fq[T ], the local character
at π of χf is either the unramified quadratic character mapping π (seen as uniformizer) to
χf (π) ∈ {±1} (say ε+ = 1 and ε−), or – if π divides f – one of the two ramified quadratic
characters η±. The asymptotic probabilities, as d → +∞, of these are easily computed and
one finds that there is local equidistribution with limiting measure νπ supported on the set
of quadratic characters of k with

νπ(ε±) =
1

2

|π|
1 + |π| , νπ(η±) =

1

2

1

1 + |π|
where |π| = qdeg(π). Note that, as |π| tends to infinity, the measure νπ converges to the
uniform measure on {ε±} ' {±1}.

19. We hope there will no difficulty in understanding that π is used to denote polynomials in this section.
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In particular, we find that the first moment of νπ, as a measure on {±1}, is always 0, and the
second moment is 1 − 1/(1 + |π|) → 1 as |π| → +∞. These correspond, using the heuristics
of Section 9, to a symplectic symmetry, which fits well with the fact that the moduli spaces
of hyperelliptic curves of genus g (and even suitable one-parameter subfamilies on it) have
geometric monodromy group equal to the symplectic group Sp2g (see, e.g., [11, §11] for these
computations.)

13. An example with Siegel modular forms

98. This section presents a particular example of families for the group PGSp4, corresponding
to holomorphic Siegel modular forms. (20) The results are due to Saha, Tsimerman and the
author [17], and exhibit an interesting combination of unusual features:
– It is an example of a group of (semisimple) rank 2, like GL3; as we will explain, this has
certain interesting consequences in the study of invariants of associated L-functions, which
are not visible for groups of rank 1 (and are also hidden in the case of GL3);

– But the group is not among the general linear groups GLn, and is probably the simplest
example not of this type (note that, for GSp2g, the L-group is usually not GSp2g(C),
but a spin group; however, the connected component of identity of the L-group of PGSp4

is isomorphic to Spin5(C) ' Sp4(C) (one of the exceptional isomorphisms of algebraic
groups);

– The families used are not based on counting measures, but rather involve a special weight
which makes it possible to apply analogues of the Petersson formula for classical holomorphic
cusp forms;

– This weight turns out to involve global invariants of the corresponding cusp forms, which
has the effect of bringing the asymptotic behavior of certain L-functions out of the range
of the Katz-Sarnak symmetry types – at least, conjecturally;

– However, because the global invariant mentioned in the previous item is not immediately
visible, the asymptotic behavior we obtain can be interpreted in turn as giving strong
evidence for a beautiful conjecture of Böcherer concerning the arithmetic nature of Fourier
coefficients of Siegel modular forms on Sp4.

99. For k > 0 even integer, let Sk be an orthogonal basis (for the Petersson inner product)
of primitive forms of the space of Siegel cusp forms of weight k with respect to Sp4(Z), and
let S∗k ⊂ A(PGSp4) be the corresponding set of cuspidal representations of PGSp4 (note that
the basis Sk is not known to be unique). For f ∈ Sk and a matrix t ∈ M2(Q) which is
half-integral, symmetric and positive definite, we denote by af (t) the corresponding Fourier
coefficient. Then we define

ωk(f) = ck
|af (1)|2
〈f, f〉 , ck =

π

4
(4π)3−2kΓ(k − 3/2)Γ(k − 2)

20. Just as classical modular forms involving SL2(Z) correspond, representation-theoretically, to PGL2, so
the Siegel cusp forms are related to the group PGSp4, the quotient of GSp4 by its center. One could also work
at the level of GSp4 itself.
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(where 1 corresponds to the identity matrix), and we finally define extended families (µk)
such that S∗k is the support of µk and

µk({π}) =
∑

π(f)=π

ωk(f)

where π ∈ S∗k and π(f) is the automorphic representation “generated” by f (multiplicity
one is not known, so that different f ’s might lead to the same representation, and we take
this possible multiplicity into account). We use the tautological representation LPGSp4 =
Sp4(C) ↪→ GL4(C) here to define the analytic conductor of π ∈ S∗k, which gives q̃(π) = k2,
and hence κ(n) = k2 in this case.
This definition looks superficially similar to that of families of classical cusp forms involving
the Petersson norm as a weight. The main difference – crucial, as it turns out – is that the
factor |af (1)|2 can be normalized to be 1 by the Atkin-Lehner theory of newforms on GL2,
which is not quite possible here.
100. The local unramified spectrum of PGSp4(Qp) (since the level is 1, we need not consider
the ramified spectrum) can be parameterized by two non-zero complex numbers (a, b), modulo
the action of the Weyl group W , which amounts to saying that a function on Ap is a function
φ(a, b) which is symmetric, and invariant under replacing a by a−1, or b by b−1 (or both).
The tempered unramified spectrum is then identified with (a, b) ∈ S1 × S1, modulo the same
identification. It can be identified with the space of conjugacy classes in the compact unitary
symplectic group K = USp4(C), by sending a matrix with eigenvalues (a, b, a−1, b−1) to a, b.
101. The main results of [17] concerning local equidistribution (21) are:

1. The extended family (µk)k satisfies strong local equidistribution at finite places; the
limiting measure νp, are supported on the tempered unramified spectrum (so (16) holds).
They depend on p, and are the so-called Bessel-Plancherel measures of Furusawa-Shalika
(associated to the choice of the Bessel model corresponding to the Fourier coefficient at
1).

2. These have explicit – but somewhat unwieldy, depending on the splitting of p in Q(i)
– descriptions in terms of the coordinates (a, b) above. At least, these show straight-
forwardly that, as p tends to infinity, the measures νp converge to the probability Haar
measure ν on K = USp4(C)], i.e., the property (17) also holds for this extended family.

3. The equidistribution holds quantitatively in the following sense. First, for any prime
p, there is a natural orthonormal basis of L2(Ap, νp) of (restrictions and projections of)
Laurent polynomials in two variables, denoted (U l,mp )l,m>0, which are invariant under
W . For any finite set of primes S, and any S-tuples l and m, we have

Ek

(∏

p∈S
U
lp,mp
p (πp)

)
= ∆(l;m) +O

(
k−2/3

∏

p∈S
plp+3mp/2+ε

)

for any ε > 0, where the main term ∆(l;m) is zero unless both l and m are 0. Note
that k−2/3 = κ(n)−1/3, so this is of the form (12).

21. There are other applications and more general versions in the paper.
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102. We apply these facts to families of L-functions. The L-group Sp4(C) has two fundamental
representations, the 4-dimensional embedding

%1 : Sp4(C) ↪→ GL4(C),

and the 5-dimensional “projection” that comes from the composition

%2 : Sp4(C) ' Spin5(C) −→ SO5(C) ↪→ GL5(C).

We denote by or L(π, %1, s) or simply L(π, s) (respectively L(π, %2, s)) the corresponding L-
function for a cusp form π ∈ A(PGSp4). For the first L-function (which is also called the
spinor L-function), Andrianov and others have proved all standard analytic properties. For
the second, these properties have been proved by Böcherer and Mizumoto. Very recently,
Pitale, Saha and Schmidt have proved that there exists a well-defined Langlands functoriality
map

%1,∗ : A(GSp4) −→ A(GL4)

so that one can see the spinor L-function as a standard L-function on GL4.
In terms of the parameters (a, b), the local L-functions at p for these L-functions are given by

(1− ap−s)−1(1− bp−s)−1(1− a−1p−s)−1(1− b−1p−s)−1,
and

(1− p−s)−1(1− abp−s)−1(1− a−1bp−s)−1(1− ab−1p−s)−1(1− a−1b−1p−s)−1

respectively. (22)

103. For the family of spinor L-functions, applying the recipe in 78, we know that the
representation %1 is irreducible and is of symplectic type, suggesting a (formal) orthogonal
symmetry type. However, when it comes to actually determining the distribution of low-lying
zeros, we find

(30)
∫

K
Tr(%1(θ))dνp(θ) =

λp√
p
,

where λp is the number of ideals of norm p in Z[i], and

(31)
∫

K
Tr(%2(θ

2))dνp(θ) = −1 +O(p−1),

which means that (22) holds, but not (21). In fact, this is the “critical” case mentioned
in 79. The average value of λp is one, and one computes that this leads (together with the
quantitative equidistribution result) to a distribution of low-lying zeros 1/2 + iγf,j given by

(32) Ek

(∑

j

ϕ
(γf,j

2π
log q(f)

))
−→

∫

R
ϕ(x)dx− 1

2
ϕ(0)

for ϕ with ϕ̂ having support in ] − 4/15, 4/15[. This is the same as would be obtained for a
symplectic symmetry type!

22. More generally, for Siegel cusp forms on GSp2g, g > 2, one has similarly a spinor L-function of dimension
2g, and a “projection” one of dimension 2g + 1, corresponding to the spin representation of Spin2g+1(C) and
its projection to the L-group SO2g+1(C); see [2] for a discussion of their properties.
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104. It should be noted that the work of Shin [23] and the developments of Shin and Tem-
plier [24] should provide a proof that, omitting the weight ωk(f), one obtains an extended
family where the formal symmetry type is reflected in the low-lying zeros.
105. The fact that the low-lying zeros in our extended family fail to reflect the formal symme-
try type is interpreted in [17] using a beautiful conjecture of Böcherer, as refined by Furusawa,
Shalika, Martin and others. This conjecture suggests that the weight ωk(f) used in the defini-
tion of the measure µk carries arithmetic information, through the Fourier coefficient |af (1)|2,
and in fact carries critical values of L-functions. Precisely, one expects that

ωk(f) ' L(f, 12)L(f × χ−4, 12)

〈f, f〉
where χ−4 is the real primitive character of conductor 4 (the notation ' indicates that there
would be extra factors, depending on k and maybe on f , but “independent” of the spinor L-
values). One can expect that L(f ×χ−4, 12) behaves independently of L(f, s), after averaging.
However, this is obviously not so for the factor L(f, 12) itself. (23)

106. In [17, End of §5.4], it is shown how assuming this conjecture, as well as some averaging
properties on Sk without the weight ωk(f) (i.e., roughly, assuming that the orthogonal “formal”
symmetry type is correct), one can recover the formula (32). Since the latter is a theorem, we
interpret this as some global evidence for the strong form of Böcherer’s conjecture described
above. Indeed, at the very least, it shows that |af (1)|2/〈f, f〉 correlates quite strongly with
the spinor L-function.
107. A fairly natural random matrix model of the spinor L-values (up to fitting of parameters)
is given here by the “size-biased” characteristic polynomial of a matrix in SO2N , i.e., by looking
at the measures (24)

dm̃N (g) =
1

2
det(1− g)dmN (g),

on SO2N . The factor 1/2 is such that these are probability measures. Because matrices with
det(1 − g) small are deemphasized, the distribution of det(1 − g) is, with respect to this
measure, altered so as to show greater probability of large values. To be precise, one can show
(see [7, §3.7, Th. 12]) that the moments behave almost like those of symplectic matrices, i.e.,
we have ∫

SO2N

det(1− g)mdm̃N (g) =
(N

2

)m(m+1)/2
Ψ(m)(1 + o(1))

for some limiting function Ψ (which closely resembles ΦSp(m), but is not exactly the same).
Similarly, analyzing the Euler product of local Spinor L-functions

∏

p6x

∫

Ap

Lp(θ;
1
2)mdνp(θ)

23. This factor is not present in the original conjecture of Böcherer, which concentrates on the variation of
Fourier coefficients af (t) with the discriminant of t; this corresponds here to the factor L(f × χ−4,

1
2
).

24. The Böcherer conjecture as stated above suggests adding another factor to account for the twisted L-
valued, but there are good reasons to think of it as (probabilistically) independent, and therefore contributing
only a normalizing factor.
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(as in 86), we find that it diverges like

(log x)m(m+1)/2 = log(x)m(m−1)/2+m,

one factor m coming from the contribution of k = 1, using (30).
108. It would be interesting to have more evidence for (or against) the use of such a matrix
model for this family of Siegel cusp forms and their spinor L-values. Indeed, agreement would
be a strong argument in favor of the existence of actual “matrices” becoming equidistributed
“somewhere” (from which the average of L-values on the critical line arise), instead of there
being only some kind of “normal form” (or universality) explanation for the coincidence of
formulas between Random Matrix Theory and L-functions. (Note that there is more evidence
for this, e.g., the recent work of Dueñnez, Huynh, Keating, Miller and Snaith [8] on modeling
L-values of elliptic curves for bounded, non-asymptotic, conductors.)
109. Here is a last remark about the distinction between families of cusp forms and of L-
functions: the Dirichlet expansion of the L-function (used also in the “arithmetic” factor
for moment conjectures on the critical line) and the determination of the symmetry type
involve functions of the local parameters, that we called λ(a;π, %) or λm(a;π) in (11), (25)
and c(pk;π, %) in (18). Each of them are characters of virtual representations of the L-group
LG (possibly with C-coefficients), the c-coefficients reflecting the Adams or Ψ-operations on
the representation ring.
The functions π 7→ λ(a;π, %) are enough to express the Dirichlet series representing L(π, %, s),
and one may think that understanding the equidistribution properties of these functions on the
spectrum would suffice to understand much of the behavior of L(π, %, s), at least conjecturally.
However, in the example of Siegel cusp forms, one sees that the coefficient c(p2;π, %1) occuring
in the determination of the low-lying zeros of the spinor L-functions is closely related to the
coefficient λ(p;π, %2) of the projection L-function. This coefficient is linearly independent
from all the functions λ(pk;π, %1) (see [17, (2.3.7)], in the limit p → +∞ which gives the
Haar measure on USp4(C), as already discussed). Hence even to understand a single type of
L-functions, it may be essential to understand equidistribution for other L-functions of the
underlying cusp forms!
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