@article{PDML_1986___4B_35_0, author = {Patissier, G.}, title = {Quantification d'une vari\'et\'e symplectique}, journal = {Publications du D\'epartement de math\'ematiques (Lyon)}, pages = {35--54}, publisher = {Universit\'e Claude Bernard - Lyon 1}, number = {4B}, year = {1986}, mrnumber = {905476}, zbl = {0617.58022}, language = {fr}, url = {http://www.numdam.org/item/PDML_1986___4B_35_0/} }
Patissier, G. Quantification d'une variété symplectique. Publications du Département de mathématiques (Lyon), no. 4B (1986), pp. 35-54. http://www.numdam.org/item/PDML_1986___4B_35_0/
[1] Foundations of Mechanics, Ed. Benjamin (1978). | Zbl
, ,[2] Méthodes mathématiques de la Mécanique classique. Editions MIR. | Zbl
,[3] Deformation theory and Quantization I, Annals of Physics (1978), 61-151. | MR | Zbl
, , , , ,[4] Deformation theory and Quantization II, Annals of Physics (1978). | Zbl
, , , , ,[5] Symbols of operators and quantization, Colloquia Mathematica Societatis Janos Bolyai, 5» Hilbert spac, op. Tihany (Hungary) (1970), | Zbl
, ,[6] Geometric asymptotics, Math. Surveys, n° 14 (1977) | MR | Zbl
, ,[7] Topological methods in algebraic geometry, Springer (1966). | Zbl
,[8] Fourier integral operators I, Acta Mathematica 127, (1971), p. 79-183. | MR | Zbl
,[9] The WEYL calculus of pseudo differential operators, Comm. Pure, Appl. Math. 32 (1979), p. 359-443. | MR | Zbl
,[10] Pseudo-differential operators and a canonical operator in general symplectic manifold. Math USSR. Izvestiya, Vol. 23 (1984), n° 2. | Zbl
, ,[11] Asymptotic and geometric Quantization, Russian Math. Surveys 39 : 6 (1984), p. 133-205. | MR | Zbl
, ,[12] Théorie des perturbations et méthodes asymptotiques, Dunod, Paris (1972). | Zbl
,[13] An algebra of pseudo-differential operators and the asymptotics of Quantum Mechanics. Journal of funct. analysis, Vol. 29, n° 1, (1978), p. 104-132. | MR | Zbl
,[14] Symplectic Geometry and FOURIER Analysis, Math. SCI PRESS (1977). | MR | Zbl
,