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GALVIN TREE—6AMES

by

E.C. Milner (Calgary)

Let T denote the class of all rooted trees havinq no 
infinite path. For Tt, Ta in T, the Galvin-tree game 
CTt: Ts*3 between two players called WHITE and BLACK is played 
on a board' consisting of disjoint copies of Tt and Ta with 
a white pawn at the root of Tt and a black pawn at the root 
of Ta». As in chess, the players move alternately and WHITE 
moves first. On his turn a player may push either one of the 
two pawns from its current position to an adjacent node one 
step up the corresponding tree (away from the root). The 
game ends when one of the pawns reaches a terminal position 
or 'queens', and the winner is the player whose name is the 
same as the colour of the 'queening' pawn. The game ends 
after a finite number of moves and there are no draws (if 
both trees have a single vertex we declare this a win for 
WHITE), and so, by a standard elementary argument, one of the 
two players must have a winning strategy. Since the game is 
essentially a race to the top, it seems intuitively obvious 
(??> that the first move is a considerable advantage for the 
qame CTsTD, and that WHITE should win. GALVIN proved that 
this is indeed the case, but his proof was not quite so 
obvious and so he circulated it as a problem for other 
mathemati ci ans.

We will describe Galvin's proof, but first we consider 
the special case of finite trees. The following proof for 
this case was known to Galvin and was independently given by 
EHRENFEUCHT.

For a finite tree T consider an auxiliary game, QSCTZI, 
between two players QUICK and SLOW. The 'board' now consists 
of a single copy of T with a pawn at the root. QUICK moves 
first, and on his move he MUST push the pawn up the tree and 
pay his opponent $1. The moves alternate, but, on his turn, 
SLOW may EITHER push the pawn and pay QUICK $1, OR he may 
simply 'pass' and give the move back to QUICK with no 
financial penalty. As before, the game ends when the pawn 
reaches a terminal node. QUICK's objective, not 
surprisingly, is to lose as little as possible, while SLOW 
tries to gain as much as possible. (The game SQETH is 
exactly the same except that SLOW has the first move.)

It is; clear that SLOW cannot win more than #N in this 
game, where N is the length of the longest path from the root 
to a terminal node, and hence there is a largest integer v 
(<= N) and a strategy g8  for SLOW which ensures that he wine 
at least ¡fcv, no matter how QUICK plays. The integer v is 
the value of the game QSCTZI, and QUICK has a strategy, go, 
which ensures that he does not lose more than $v.

We claim that WHITE has a winning strategy for the game
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CT:Tj by using qa to move the black pawn and ga to move his 
own pawn. Wore precisely, on his -first turn or after any 
push of the white pawn by BLACK, WHITE moves his pawn as i-f 
he were QUICK playing the strategy gra in the game QSCT]; 
after a BLACK push of the black pawn, WHITE first checks to 
see if gs calls for a move or not by SLOW in the game QSCTD 
against the black pawn; if it does, then this is the move 
WHITE should make in the actual game CT,T3; but, if gs tells 
SLOW to 'pass', then WHITE moves his own pawn (using ge ) as 
if SLOW had just passed in the game 0SCT3 against the white 
pawn.

To prove the claim, let us suppose, for contradiction, 
that the black pawn 'queens' first. Let W„ and Wts (resp. B„ 
and Bh ) denote the number of times that WHITE (resp. BLACK) 
moves the white and black pawns during the play. Since WHITE 
is using gra for his own pawn, and since the white pawn has 
not yet 'queened', we have Ww - Bw < v. Also, since he is 
using gsa against the black pawn, Bb - W*, >- v. This implies 
that W„ + Wt, < B„ + Gb, and this is impossible since WHITE 
moves first!

The above strategy does not actually tell WHITE how to 
play the game CT:T3, but it is not difficult to translate 
this into an effective version. First define two functions 
E, F on the nodes of T by the following rules: (i)Zf x is a 
terminal node of 7, then put E(x) = F(x) = 0. <ii)If x is not 
terminal and if E and F have been defined at every successor 
node x ‘ of x iwe write x'Sx)f then put

E (x) = miniF(x ' >+1: x'Sx>,
F (x) = maxiE(x), maxiE(x'>-1: x'Sxi*.

This defines E, F on T; in fact it is easily seen that E(x) 
and F(x) are just the values for the games QSCTxD and SQCT„3, 
where T„ denotes the subtree above the root x. We claim that 
WHITE can play the game CT:T3 in such a way as to ensure 
that, at any stage of the game with the white pawn at node x 
and the black pawn at node y:

(1) before any move of BLACKr F(x> <= E(y) - 1;
(2) before any move of WHITE, EITHER (a) E(x) < = E(y),
OR (b) BLACK just moved the black pawn and F(x) <= F(y).

This follows easily from the above definitions of the 
functions E and F. And, if WHITE plays in this manner,it is 
not possible to reach a position (x,y) with y terminal and x 
non-terminal (since E(x>, F(x> are non-negative and are zero 
only at a terminal node). It will be noticed also that, if 
he plays this way, then WHITE need only push the black pawn 
immediately after BLACK has done so.

Incidentally, the above strategy for WHITE can be 
applied equally well in the game CTi,Ta3 when the trees are 
different, provided only that Eir*) <= E(ras>, where r 4 is the 
root of Ti. But the argument only works in the case of
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FINITE trees. Of course, it is possible to define the 
functions E, F even for- infinite trees - simply replace the 
'max' by 'sup' in the definition of F. To see that the above 
strategy does not work for infinite trees consider the trees 
illustrated in diagram Is

T 1

diagram 1 .

In this case, we do have E(Ti) = E <T^) (= w+1), but BLACK 
wins the game CTi,Ta ])!

Here is Galvin's proof for arbitrary trees in T .

THEOREM: HH1TE can win CTtTJ.

PROOF. As we have already remarked, one of the 
players does have a winning strategy. We shall assume that 
BLACK has one, say s, and derive a contradiction.

Let T„ (n < i»> ) be a copy of T, with a pawn pn at the 
root. Let P„ be an attendant sitting in front of Tn with an 
alarm clock A„ by his side. P«a is something of a dummy - 
every time his alarm, A0 , rings he pushes the pawn p0  one 
step up the tree T0  and this causes the alarm Ai to sound.
For n >0, the player Pn is given a copy of the strategy s 
which he uses as if he were playing BLACK in the game 
[. T n — 1 i I n 3. Whenever his alarm, An , rings, Pn uses s to push 
either pr»-i or pn; when he pushes pn-t this causes the alarm 
A,,_» to ring, and when he pushes his own pawn pn this causes 
the alarm An+i to ring. To start the action, we ring the 
alarm A0. What happens? Note that, when A„ rings and n > 0, 
then either Pn-» has pushed pn_i., or P0+i has pushed pn; in 
either case, it appears to Pr, that WHITE has just made a move 
in C Tr. - 1  ,T0 D to which he can respond using s. The action 
continues until one of the pawns reaches a terminal node. It 
is possible, of course, that there should be an infinite wave 
of ringing bells. But this can happen only a finite number 
of times, and we? reset the alarm A« to ring after each such 
infinite wave. Eventually, one of the pawns, say pn , 
'queens'. But this is impossible, since was using the
winning strategy s to ensure that pn+iqueened' before pn.

The above proof of GALVIN is short and elegant, but it 
does not tell WHITE how to play the game CTsTU. GRANTHAM E13 
subsequently gave a proof of Galvin's theorem which describes 
an actual winning strategy for WHITE. This is somewhat 
analogous to the proof given above for finite trees, but 
considerably more -omplex. In the case of infinite T, the 
functions E, F described earlier have to be replaced by
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sequences iof lT|*> -functions.

Let us denote by CT* ,T s » , the restricted game tTt,Ts»3 
in which WHITE is only allowed to push the black pawn 
immediately after BLACK has pushed it (so that, in 
particular, he must push his own pawn on the first move). It 
is easily verified that, in the above proof of Galvin's 
theorem, it appears to Pn+» that his immaginary opponent for 
the game CTr,, j. 3 is actually playing the restricted version 
of the game (after Pn+i pushes pn he is next called upon to 
move only after a further push of this pawn by Pr,) , and so 
WHITE actually has a winning strategy for this restricted 
game. Define binary relations ̂  , 5  and < on T by

Tt $ Ta ««=» WHITE wins CTi,Ta3*.

Tj %  T a 4 ^  T t 6 T a 4 T *. ; T* < T a 4 *?  Ti £ T a ^  T 4

The argument above shows that < is reflexive; in fact, the 
proof of Galvin's theorem really shows that the relation ^  is 
well founded (i.e. there is no infinite sequence T0 such that 
BLACK wins LT0 ,T„-*.i 3 ) , since the trees T± in the proof do not 
have to be distinct. GRANTHAM C13 has shown that is also 
transitive so that s is an equivalence on T ; in fact, it 
is a congruence modulo so that ^ is a well ordering of 
’T/=. Thus to each tree of T we can associate a 

definite ordinal and a natural question is to ask for the 
order type of special subsets of 7; for example,
GRANTHAM has calculated the ordinal number which corresonds 
to the set T* consisting of all those members of T of 
cardinality |t, where fc is infinite - it is the ordinal 
exponentiation of 4craised to the power Ic“1“ iterated fc* 
times!

VARIATIONS

LAVER suggested a variation of GALVIN's game, denoted by 
CTsiT)1*} , where k is an infinite cardinal- This is similar 
to the game CT:T3, except that now there is just one tree 
with a white pawn at the root but IC trees each having a black 
pawn at the root- The rules are as before, but BLACK wins if 
any one of the black pawns 'queens' first. The game is no 
longer finite (but it ends in fewer than moves), and to 
help BLACK further he is given the move at every limit stage 
of the play. Laver asked if WHITE also wins this game. 
Galvin's proof can be adapted to show that BLACK does not 
have a winning strategy, but, since the game is not finite, 
this no longer implies that WHITE can win! However, MARTIN 
(see C1H > has given a proof that WHITE can force a win in 
Laver's game.

Another variation is to allow multiple moves. Let 
r . T : T : i „ , m denote? the game which is played just as before, 
except that now, on WHITE'S turn to move, he must push either 
of the pawns a total of n steps up the trees, and BLACK must 
push a total of m steps. Mixed moves are allowed. There is
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one exception to this rule, and that is that if a player can 
'queen' his pawn, he may do so without having to use his full 
allocation of moves. Surprisingly, the first move may not be 
an advantage! For example, If 7 is the tree shown in diagram 
2 , then BLACK wins the game LT: T3.* ,3 ! However, in the 
examples illustrating this phenomenum, n is less than 3m/2, 
arid GRANTHAM C13 conjectures that this is the critical ratio. 
However, as far as I know, nobody has yet answered Grantham's 
question whether WHITE always wins ET: Til i»»,»?

diagram 2 .

Finally, we mention that GRANTHAM C13 also considers 
Galvin-type games on the enlarged class of trees in which 
there are paths of lengths CO and lO + 1 .
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