@article{PDML_1985___2B_15_0, author = {Wang, Shang Zhi and Li, Bo Yu}, title = {A {Theorem} on {Directed} {Quasi-Ordered} {Sets} and {Some} {Remarks}}, journal = {Publications du D\'epartement de math\'ematiques (Lyon)}, pages = {15--20}, publisher = {Universit\'e Claude Bernard - Lyon 1}, number = {2B}, year = {1985}, mrnumber = {848820}, zbl = {0591.06005}, language = {en}, url = {http://www.numdam.org/item/PDML_1985___2B_15_0/} }
TY - JOUR AU - Wang, Shang Zhi AU - Li, Bo Yu TI - A Theorem on Directed Quasi-Ordered Sets and Some Remarks JO - Publications du Département de mathématiques (Lyon) PY - 1985 SP - 15 EP - 20 IS - 2B PB - Université Claude Bernard - Lyon 1 UR - http://www.numdam.org/item/PDML_1985___2B_15_0/ LA - en ID - PDML_1985___2B_15_0 ER -
%0 Journal Article %A Wang, Shang Zhi %A Li, Bo Yu %T A Theorem on Directed Quasi-Ordered Sets and Some Remarks %J Publications du Département de mathématiques (Lyon) %D 1985 %P 15-20 %N 2B %I Université Claude Bernard - Lyon 1 %U http://www.numdam.org/item/PDML_1985___2B_15_0/ %G en %F PDML_1985___2B_15_0
Wang, Shang Zhi; Li, Bo Yu. A Theorem on Directed Quasi-Ordered Sets and Some Remarks. Publications du Département de mathématiques (Lyon), Compte rendu des journées infinitistes, no. 2B (1985), pp. 15-20. http://www.numdam.org/item/PDML_1985___2B_15_0/
[1] The category of cofinal types. II, Trans. Amer. Math. soc. Vol. 116, (1965) p. 394-416. | MR | Zbl
,[2] Some theorems in set theory and application in the ideal theory of partially ordered sets, Duke Math. J. 31 (1964) ; 287-289. | MR | Zbl
, , ,[3] Recent results on the cofinality of ordered sets Orders : Description and Roles (ed. M. Pouzet, D. Richard) Annals of Discrete Math. Vol. 23 (1984), North-Holland, Amsterdam. p. 1-8. | MR | Zbl
,[4] On the cofinality of a partially ordered set, in I. Rival, ed, Ordered sets (1982) 279-298. Reidel, Dordrecht. | MR | Zbl
and ,[5] Parties cofinales des ordres partiels ne contenant pas d'antichaines infinies, 1980, J. London Math. Soc., to appear.
,[6] Konfinalität, Z. Math. Logik 1 (1955), 271-303. | MR | Zbl
,[7] On the minimal cofinal subsets of a directed quasi-ordered set, Discrete Mathematics, 48 (1984), 289-306. | MR | Zbl
, ,