PDML

Session de problèmes

Publications du Département de Mathématiques de Lyon, 1985, fascicule 2B
«Compte rendu des journées infinitistes»,, p. 117-119
http://www.numdam.org/item?id=PDML_1985___2B_117_0
© Université de Lyon, 1985, tous droits réservés.
L'accès aux archives de la série «Publications du Département de mathématiques de Lyon » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

SESSION DE PROBLEMES

On trouvera ci-dessous quelques uns des problèmes proposés à cette session.
E. Corominas : A minimal automorphic poset is a poset A without the fixed point property whose all the strict retracts of A have the fixed point property Examples include the crowns.

Problem 1 - Describe the minimal automorphic posets where only finitely many cycles are allowed. Same problem when the height of the posets is finite.

Problem 2 - Is a minimal automorphic finite poset A isomorphic to a retract of $\mathrm{A} \times \mathrm{A}$.

Conjecture : If K is a retract of $A \times A$ isomorphic to A and the projections are also isomorphic to A then there are exactly two retractions from $A \times A$ onto K .

B. Courcelle :

Problem 1 - Decide whether or not two regular langages on $\{0,1\}$ are order isomorphic with respect to the lexicographic ordering $<_{1}$ ex.

Problem 2 - Describe the equational rules for rational expressions defining the frontiers of regular trees.

F. Galvin :

If r and s are positive integers and \mathscr{U} is a (non principal) ultrafilter on ω, let $G_{r, s}(\mathscr{U})$ be the following game of length ω. At move n, first White chooses a set $W_{n} \in\left[\omega \backslash \underset{i<n}{\bigcup} B_{i}\right]^{r}$, and then Black chooses a set $B_{n} \in[\omega \backslash \underbrace{}_{i<n} W_{i}]^{s}$. White wins if $\varliminf_{n<\omega}^{\bigcup} W_{n} \in \mathscr{U}$. If $r \geqslant 2 s$, there is an ultrafilter \mathscr{U} such that White has a winning strategy in $G_{r, s}(\mathscr{U})$; this
is an unpublished result of F . Galvin, S. Hechler, and R. McKenzie. It is easy to see that White cannot have a winning strategy if $r<s$.

Problem - What happens for $\mathrm{s}<\mathrm{r}<2 \mathrm{~s}$? Is there an ultrafilter \mathscr{U} such that White has a winning strategy in $G_{3,2}(\mathscr{U})$?

A. Hajnal :

$\underline{\text { Problem } 1}-$ Let $G=(V, E), H$ be graphs. $G \mapsto(H)_{k}^{1}$ is the following statement : $\forall f: V \rightarrow \mathcal{U} \exists \xi<\mathcal{H} \quad H$ is isomorphic to an induced subgraph of $G \mid f^{-1}(\{\xi\})$. P. Komjàth proved that for all $3 \leqslant n \leqslant u_{0}$
$\forall H \quad \forall \mathcal{K} \mathrm{~K}_{\mathrm{n}} \not \subset H \Rightarrow \exists G, \mathrm{~K}_{\mathrm{n}} \not \subset G \wedge G \rightarrow(H) \underset{K}{1}$.
This was recently extended by the author and Komjath for arbitrary n. However, the cardinality of G in general is larger than that of H. Is it true that for all countable H not containing a K_{3} there is a countable G not containing a K_{3} such that

$$
G \longrightarrow(H)_{2}^{1} \quad ?
$$

Problem 2. Let $G_{i}=\left(V_{i}, E_{i}\right)$ be graphs for $i<2 . G_{0} \times G_{1}=\left(V_{0} \times V_{1}, E_{o} * E_{1}\right)$ where $\left\{\left(x_{0}, x_{1}\right)\left(y_{o}, y_{1}\right)\right\} \in E_{o} \neq E_{1} \Leftrightarrow\left\{x_{o}, y_{o}\right\} \in E_{o} \wedge\left\{x_{1}, y_{1}\right\} \in E_{1}$. The author proved in a forthcoming volume of Combinatorica that there exist graphs $G_{i}: i<2$ with $\operatorname{Chr}\left(G_{i}\right)=\mathscr{S}_{1}$ for $i<2$ such that

$$
\operatorname{Chr}\left(G_{0} \times G_{1}\right)=X_{0} .
$$

L. Soukup proved that it is consistent with ZFC + GCH that $3 G_{i} \quad i<2$ with $\operatorname{Chr}\left(G_{0} \times G_{1}\right)=\mathcal{K}_{0} \wedge \operatorname{Chr}\left(G_{i}\right)=\mathcal{H}_{2}$.

Is there a natural bound in ZFC for $\operatorname{Chr}\left(G_{i}\right)$ if we know that $\operatorname{Chr}\left(G_{0} \times G_{1}\right)=\mathcal{S}_{0}$?

B. VOIGT.

Let $[\omega]^{\omega}$ be the set of all strictly increasing maps $\mathrm{f}: \omega \rightarrow \omega$ (i.e. the set of all infinite subsets of ω). It becomes a polish space with the metric defined by $d(f, g)=\frac{1}{i+1}$ where $i=\operatorname{Min}\{j / j<\omega$ and $f(i) \neq g(i)\}$ (This gives the usual Tychonoff topology).

Problem : Is it true that every set $\mathscr{B} \subseteq[\omega]^{\omega}$ having the property of Baire in the restricted sense (i.e. for all $a \subseteq[\omega]^{\omega}$ the intersection $\mathbb{A} \cap \mathscr{B}$ is Baire w.r.t. \mathbb{Q}) is Ramsey ? The set \mathbb{B} is Ramsey means that there is $f \in[\omega]^{\omega}$ such that either $f .[\omega]^{\omega} \subseteq B$ (i.e. all infinite subsets of f belongs to B). or $f .[\omega]^{\omega} \cap B=\emptyset$ (i.e. non infinite subset of f belongs to B)
Motivation.
(1) The answer is YES for B being analytic.
(2) The answer is NO for B being Baire (in general).
(3) I cannot think of any counterexample.

