
PUBLICATIONS DU DÉPARTEMENT DE MATHÉMATIQUES DE LYON

PHILIPPE FLAJOLET

JEAN-MARC STEYAERT
A Complexity Calculus for Recursive Tree Algorithms
Publications du Département de Mathématiques de Lyon, 1984, fascicule 6B
« Théorie des langages et complexité des algorithmes », , p. 39-88
<http://www.numdam.org/item?id=PDML_1984___6B_A3_0>

© Université de Lyon, 1984, tous droits réservés.

L’accès aux archives de la série « Publications du Département de mathématiques de Lyon » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pé-
nale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=PDML_1984___6B_A3_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

A COMPLEXITY C A L C U L U S FOR R E C U R S I V E T R E E ALGORITHMS

by Philippe F L A J O L E T (I . N . R . I . A . - Rocquencourt - France)

and Jean-Marc S T E Y A E R T (Centre de Math. Appl . -

Ecole Polytechnique - Palaiseau - France)

ABSTRACT :

We study a restricted programming language over tree structures. For this

language, we give systematic translation rules which map programs into complexity

descriptors. The descriptors are in the form of generating functions of average

costs. Such a direct approach avoids the recourse to recurrences ; it therefore

simplifies the task of analyzing algorithms in the class considered and permits

analysis of structurally complex programs. It also allows for a clear discussion

of analytic properties of complexity desciptors whose singularities are related

to the asymptotic behavior of average costs. Algorithms that are analyzed in this

way include : formal differentiation, tree matching, tree compatibility and

simplification of expressions in a diversity of contexts. Some general results

relating (average case) complexity properties to structural properties of programs

in the class can also be derived in this framework.

RESUME :

L'objet de cet article est l'étude d'un langage de programmation

restreint pour les structures arborescentes. On donne pour ce langage des

règles de traduction systématiques qui associent aux programmes des des­

cripteurs de complexité représentant les coûts moyens sous forme de série

génératrice. Une telle approche directe évite le recours aux récurrences

et permet ainsi l'analyse de programmes structurellement complexes. Ceci

nécessite l'examen des propriétés analytiques des descripteurs de complexité

dont les singularités déterminent le comportement asymptotique du coût moyen.

Divers algorithmes sont étudiés de cette manière : dérivation formelle, re­

cherche de motifs, compatibilité, simplification d'expressions. Quelques

résultats généraux reliant les coûts moyens à la structure des programmes

de la classe définie sont également donnés dans ce cadre.

39

1. INTRODUCTION

A Large number of algorithms of both practical and theoretical
interest considered in the literature are realized by combinations of
recursive descent procedures over recursively defined data structures,
A s is also the case for loop-programs, such algorithms have the interesting
property that termination is a priori guaranteed by their structure, so
*hat no undecidability question arises to limit the possibility of analy­
zing program behavior- We mention the following classes :
(i) Tree algorithms : forma' differentiation (in formal manipulation

systems), tree matching (as occurs in compiler optimization),
reduction algorithms (in theorem proving or symbolic execution).

(ii) Comparison searching and sorting : binary search (for maintaining
dictionaries), heap-like sorting, tree sorting, quicksort and a
number of their variants.

(iii) Digital search : with algorithms for inserting, deleting and
querying tables that maintain digital keys (strings over some
fixed alphabet) ; various set-theoretic operations such as
union and intersection can also be performed efficiently.

The performances of a number of such alqorithms have already
been analyzed and (ii), (iii) represent a nonnegligible fraction of
[Kn73]. A few analyses pertaining to (i) are also discussed in [Kn68].
Existing analyses essentially obey the following paradigm.

For an algorithm A over a set of inputs I (viz. trees, permutations,
digital sets), with I n the subset of inputs of size n, we consider
the quantities :

i = cardl p x a n
 = X! time^ [e]

e d n

representing the number of possible inputs of size n and the cumulated com­
putation time of A over such inputs. An interesting quantity is the average per­

formance of A (over 7) defined by
n

T a n
x a n = _ H .

40

To determine these quantities, i.e., "analyze" the algorithm,
one usually sets up recurrence relations based on the one hand on a
combinatorial decomposition of the structure into smaller components :

i = Ф <{i.}.)
n J j <n

and, on the other hand, on tracing back the complexity of the algorithms
on substructures and subroutines. For instance, in the case of two
mutually dependent subroutines. А,В equations would have the form :

та = ^ Ц т а Л . , (хЬЛ. : « П Л .) т а п A J J 4 n)/]<n 1 , j j r j < n

i b n = * B < { T 3 J } J N ; { T b j } j < n ; { i j } j < n >

One then attempts to solve these recurrence relations, relying on
classical techniques from the calculus of finite differences, the alqebra
of formal power series or analysis.

Such performance analyses are basically one-shot. A new set of
equations has to be set up for each new algorithm considered and often ad
hoc solution methods have to be found in each particular case. Experience,
however, shows that most "reasonable" algorithms ultimately exhibit relati­
vely simple behaviors (expressible in terms of standard functions), and the
set of applicable techniques seems much more restricted than appears at
first glance.

This paper proposes to develop an alternative framework to the
analysis of such algorithms, trying to capture many of the regularities
encountered in the recurrence approach. It starts with the observation
that generating functions for input counts (i n> and cumulated complexity
counts (та р) defined by

i (z) = I i n z n and xa(z) = I та z n

satisfy equations whose shapes reflect the structural definitions of
inputs and programs (such a relation also exists between programs and recur­
rences but is of a much less simple form). This observation can be developed
into a system of translation rules that allow a systematic translation
from program texts into complexity descriptors (the generating functions
of the cumulated complexities т а р) . More precisely, each translation rule
specifies in a particular context how the complexity descriptor of a larger
program can be determined from the complexity descriptors of its simpler
components.

41

The system of rules thus forms the algebraic part of a complexity
caIculus for the class of programs considered- The next stage, which involves
complex analysis, is to recover proper information on program complexity
form these complexity descriptors- We use here the existence of relations
between the nature of a function around its singularities in the complex
plane and the asymptotic behavior of its Taylor coefficients. By tracing
singular parts of complexity descriptors, we are thus able to draw, in a
systematic way, precise conclusions on the costs of algorithms.

We propose here to illustrace this approach by studyino a restricted
programming language over tree structures. This language PL-tree operates
on tree structures as appear in compiling, formal manipulation systems,
theorem proving, automatic inference, i.e., essentially term trees (in
single-typed or heteregeneous algebras). It allows for basic recursive
descent mechanisms possibly guided by the informations contained in nodes
of the trees. The language is powerful enough to include programs for formal
differentiation, tree maching, tree enbedding, reduction of expressions for
which precise performance estimates are given.

Amongst the works that bear relations to our approach we mention :

(i) investigation of relations between structural properties of combina­
torial objects and corresponding generating functions is an important
trend in combinatorial analysis : one can refer to works by Rota,
Foata, Schützenberger [Ro75][FS70] and the very systematic treatment
in Jackson and Goulden [JG81].

(ii) Wegbreit [W76] and Ramshaw [R79] have proposed complexity assertions
systems that are analogues of the Floyd-Hoare assertions in formal
semantics ; these systems can be used to express computational
properties of programs but seem too general to allow automatic
performance analysts of specific classes. Closer to our objective
is Wegbreit's system [W75] for automating the analysis of a set of
LISP-like procedures on lists. It is, however, based on recurrence
relations and, as such, has to rely in its resolution part on strin­
gent Markovian approximations to probabilities of test satisfaction
leading only to approximate analyses- Several convergent ideas also
appear in the work of Bürge [Bu75] where various correspondences are
indicated between recursive data structures and generating functions.

42

(iii) We finally exploit informations on functions around their singularities
to derive the asymptotics of their coefficients- This is related to
the Darboux-Polya method [He74], esoecially to developments in a
paper by Meir and Moon [MM78] , as well as the use of particular
contour integration by Odlyzko [082] and [F082][SF82].

The plan of the paper is as follows :

Section 2 starts with a description of the programming constructs of
PL.tree (Section 2.1.), together with associated complexity rules (Section
2.2.) ; proof techniques for these algebraic complexity rules are discussed
in Section 2.3., and the set of analytic tools needed to interpret comple­
xity descriptors appears in Section 2.4.

We then work out several analyses in detail :

Firstly the classical algorithm for symbolic differentiation (Section 3) ;
secondly a tree compatibility algorithm (Section 4) closely related to the
"generalization problem" in symbolic manipulation. In Section 5, we conclude
with two further examples : tree matching revisited with results complemen­
ting thoseof [SF82] and a simple case of a top down recursive simplifier.

2 - COMPLEXITY DESCRIPTORS AND COMPLEXITY RULES

In this section, we first describe informally the main features of
the programming language (PL-tree) to which our rules apply. We then state
the main rules that allow calculation of complexity descriptors associated
to programs ; these rules also serve indirectly as a specification of the
allowable constructs of PL-tree- Lastly, we present some analytic translation
lemmas that make it possible to extract information on the asymptotic
time complexity of programs from the equations satisfied by their complexity
descriptors as derived through the complexity rules.

43

2.1. - A Programming Language on Trees

The basic data type underlying PL-tree is a set of term trees
o r expression trees : a fixed alphabet of operator symbols ft is given ;
to each operator GO C ft is associated its arity (or degree) - 6 Go)- ;
this defines in a standard way the set of term trees constructed on ft :
a tree T with root oo can be written in functional form as

T = co(T,,...,T 6 (a j))

where the T^'s are themselves trees built on ft . The set T of all trees
built on ft thus satisfies formally the equation :

T =. I 03 (T,T,...,T) (1)
0) € ft

in which the number of T's appearing in (D(T, ...J) is equal to the arity
of a). Equation (1) will also be written for short as

T = ft (T)

Our analyses are relative to programs operating on data types
Tj, T 2 , — (i ncludi ng T i tself) which are subtyoesof T and are defined by
some ftj_ c ft :

T. = ft4 (T.) (2)
1 L

Elements of T are commonly written in functional form as above
and can be represented as trees as shown in Figure 1.

We shall denote the size of a tree T - i.e. its total number
of nodes or equivalently of symbols - by ITI.

+

f A ' A
a a x a *

A
X X

f = +(f (v~(a),*(a,x),a), \T(+(a,*(x,x))))

Figure 1 : A term T and its associated tree corresponding to the symbol
alphabet ft = { a (o) , x (o) , v r (1) , + (2) , * (2) , f (3)) (superscripts mark arities).

44

PL-tree isa lanquaqeof a procedural type which does not allow
explicit assignment of variables. From developments that follow it will
be clear that it is not universal. Such a constraint has to be out on the
language since, as is well known, complexity properties of universal pro­
gramming languages are highly undecidable. Yet PL-tree allows programming
of a large number of recursive procedures of general interest as it has
been mentionned previously.

Without going intoa formal specification of the language, that
would take us too far away, we briefly discuss its main characteristics :
(i) Basic data types :

The basic type is the set of trees defined in (1) together with sub­
types of the form (2). Integers are allowed in a restricted form in
the control of loops and in tests on node degrees, but cannot be
assigned freely to variables or procedure results.
Booleans may only appear as the result of elementary tests or as the
result of boolean procedures (functions) to be used in conditional
instructions.

(i i) Primitive operators :
The main operations are the ones dealing with trees ; for a tree X :
- root(X) is the label of the root of X, thus an element of ft.
- deg(X) is the arity of the root of X ^i.e. 6(root(X)^.
- for an integer i, X[i] denotes the i-th root subtree of X so that

X = root(X) (\[1],..,x[deg(X)]y*
Elementary tests allow comparison of the root of a tree to some
element in ft and of its degree to some fixed integer.
Results of tests and boolean functions can also be combined using
the standard boolean connectives,

(iii) The presentation of the syntax is Pascal-oriented.
Procedure and program definitions allow usual sequential composition
of instructions denoted by
Procedure calls arewrittenas usual : A (Yj,..,Y) denotes application
of procedure A to arguments Y j r v

2 ' Y
m ' with arguments being passed

by reference.

Procedure definitions obey the format :
procedure A (Xj : Tj ; X 2 : ̂ 2 ' — * : — e n d p r o c ;

function A (Xj : T ; X^ : ;) : endfct ;

in the case of a pure procedure without result and of a boolean
function respectively.

45

The control structures are :

conditionals :

if < boolean expression > then < instruction > else < instruction > fi
iteration :
with Q a predicate over]N m x ftm it reads :

for (i-|,..,im) with Q(i-|/—,i m,root(X<|),—,root(X m)) do

B (Y 1 , . . . , Y p , X 1 [i 1] , . . . , X m [i m]) od.

This construct means that the body of the for-loop will be executed for
all values of indices i , 1 < j < m and 1 < i < d e g (X j) , which satisfy predicate
Q, where Q may depend on the root labels of its arguments.

conditional iteration :

with arguments Xi,X£, , X m satisfying deg(X>|) = deq(X2) = ...= d e g (X m) ,
it reads :
for i 1 t£ deg(X^) whi le Q (X 1 [i],...,X m [i])

do B (X ^ i] ...,X [i]) od

With this mechanism, root-subtrees of a m-tuples of trees can be searched
until a condition terminating the loop is met.
Notice that, in these iterations, the values of the indices are undefined
outside the loop.

(iv) Special features :

These are the write, assign and nil constructs :
- wri te (<info>) : where info is a string possibly made of elements of ft,

can be used to transfer information on a write-only output file ; in
particular, this feature allows programs to operate as tree transducers,
the results being output for instance in polish prefix notation (trivial
modifications would make it possible to produce linked tree-structures
as outputs).

" assign (<boolean expression>) : each boolean function is assumed to
have a special result register ; the assign construct can be pu around
any boolean expression in a program definition and will result in assi­
gning the value of the exoression to the result register of the function
that commands it.

- niI : this dummy procedure has no effect on the computation and will
be used for convenience.

46

(v) macroinstructions :
It is convenient to avoid Long sequences of nested conditional statements
we shall therefore use in some cases the following macroinstruction :

case root(X) of_
a) 1 : < instruction >
OJ : < instruction >

fo

which is easily translated in terms of if then else. For complexity
estimates, we shall consider that this switch performs a single test
(this convention could clearly be changed without deeply affecting
our results).

In Figure 2, we give an example of program in PL-tree, which tests
two trees for equality, using a recursive search in preorder.

function equal (X,Y : T) :
if root(X) # root(Y) then assign (false)
else assign (true) ;

for i<- 1 to deg(X)
while assign (equal (X[i],Y[i]))

do niI od

end equal .

Figure 2 : The function equal which tests two trees for equality.

47

2.2. - Complexity Rules

We define here input descriptors and complexity descriptors
associated to PL-tree data structures and programs We later give a set of
rules that can be used to inductively determine the complexity descriptors
of programs and procedures from their simpler components.

Let U c T™ ke a set of m-tuples of trees.

The generating function -or characteristic function- of U is
the series

X u (x ,x^,...,x) = Y* C x ? 1 x ? 2 . . x
P m (3) 1 2 m L-J n ^ n - ^ . - . n - 1 * ••• xm n 1 , n 2 / . , n m 1' 2' m

where

X , n 2 n m
 =
 C a r d

 { (X r X 2 X m) € U ' ' X1' =
 n 1 I X - '

 = n4 «
(4)

Let furthermore Q be a predicate over T™ ; we also introduce the
conditional characteristic function of U with condition Q as :

xu (x<|,x-2'-•-'x
m I ^ = X (UAQ) (X ^ X ^ , . .) , (5)

where U A Q ist the conjonction (intersection) of U and Q ;

In the sequel, we repeatedly make use of the notation

[xJ1 x ? ... x ^] f (x v x 2 x m)

to denote the Taylor coefficient of x" 1 x^ 2 ... x^ m "in f (x<|,x 2,.. .,x m) -
With this notation, we see that (5) is equivalent to :

K1 x 2 2 ••• x m m] X U <*1'*2 x m l Q > =

card | (X 1,X 2,.-.,X m) € U / |X-|I = n ^ . - . J X j = n m , Q (X V . . .,X m) Î

48

Similarly, let A(X<| : T ^ X z : T"2,...,X m : T m) be a procedure
defined on m arguments of respective types T<\ , T 2 , . . . T m . Assume also
that a standard complexity measure T is defined for programs in PL-tree,
with

T A(X-j,X2, - - .,X m)
representing the cost of running procedure A on arguments X^,X2,-.-,X m.
The complexity descriptor of A is defined as the series

T a(x<|,x 2, - - -x m)
whose general coefficient is

[x? 1 x£ 2 . . . x M T a (X l , X 2 , . . . , x | n) = I T A (X 1 , X 2 , . . . , X m) (6)
J IX ql=nq,...,IX ml = n m

and represents the cumulative cost of running algorithm A over all inputs
(X 1,X 2,•-.,X n) of size (n i , n 2 , - - - n m) -

For Q a predicate on Ti x T 2 x...x Tm , the conditional complexity
descriptor of A (under condition**) is similarly defined as the series

x a (x i , X 2 , - --x ml Q)
with

[x!J1 x^2 .. . x n m 1 T a (x v x 2 , - . . , x m l Q) =

I T A (X 1 , X 2 , . . . , X m) .

IX-)I =n 1,...,IX ml = n m

Q(X*,• • •, X.)
I r ' m

Thus t a (x i , X 2 , - --x m I Q) describes the complexity of A when
applied to arguments sati'sfy/r'ngcondition Q-

In the following we shall use extensively a vector notation to
denote m-tuples of variables and cartesian products :

X , x and n will denote respectively

(X 1,X 2,...,X m) , (x 1,x 2,...,x f T |) and (n 1 , n ? , . - - , n m) -

T will denote 7\j x 7"2 x..x Tffl .

In particular, we shall write X € T instead of
(X 1,X 2,...,X m) e x T 2 x..x T m and
|X| = n instead of IX iI = for I < i < m .

49

It also proves convenient to use X [i] to denote

<X-| [i-,], X 2 h^L- - r x n m3) and ^ to denote " m x

m

n

(thus x~ = x^X2---x m) ; hov;ever, for the sake of notational simplicity,

we shall often use x instead of xl when no ambiguity arises, so that :

[?xj f (x) = [¿4 f <x).

50

From the definitions follow a few basic facts which we now list :

(i) If Q(X) = Qi (X) v G*2 (X) where Qi 3nd Q2 are disjoint predicates
(i-e- Q 1 A Q 2 e false) :

xq(x) = XQi (x) + X Q 2 <x>
xa(xj Q) = Ta(x^I Q 1) + x a (x j Q 2) . (8)

If Q(X) = C L W -) A G U (X J A . . A Q (X) then I I c c m m

xq(x> = XQ^x-,) . x q 2 (x 2 } - • x q m (x m) '
with xtrue = 1 and xfalse = 0 (9)

(ii) Let t(x), t-j(x) denote the characteristic functions of types
T, 1\ (since they will be of constant use we omit there the prefix x>•

Let <X>(u) «D^u) respectively) be the power series defined from Q
(ft-i resp.) by

[u n] <D (u) = card jooEft Ideg(o)) = n j , (10)

with a similar definition for the fl^'s. Then t(z) satisfies the equation
(DWI78], [G65],[SF82],[F082]) :

t(x) = x <D^t(x)^ (11)

and similarly for t^- From (9) follows in particular that the characte­
ristic function of the type x x..x 7"m is

t-(x) t^(x) t (x) .
I c m

(iii) If the procedure A(X : T) depends effectively on only p arguments

where p < m -say X 1,X 2" • • -' x
0 ~ ' U c a n b e w r i t t e n a s :

A(X^,«--,X^) = B(X«|,a..,X)

and we have

xa(x) = xb(x l y,...,x). n f x i) . (12)
p<i<m

51

This Last equation is easily relativized to some predicate
GL x G> x ... x Q over L x x..x I : 1 2 m 1 d m

T a (x I Gl x G> x...x Q) = xb(x I GL x...x Q) . TT xQ.<x.) (12') ~ 1 2 m — 1 p i i
p<i <m

(iv) Given a procedure A (X : 7) and its complexity descriptor xa(x),
the series xa(z,z, ,z) is often written for short as xa(z).
Its n-th Taylor coefficient satisfies

[z n] xa(z) = I T A (X r . . . , X m) (1 3)

|X 1l+...+lX ml=n

which therefore represents the cumulated cost of procedure A on all
m-tuples of inputs of total size n.

We can now proceed with the statement of complexity rules. Each
rule applies to a construct in the language of the form

A = C (B^Bz,...)

and expresses the complexity descriptor xa of A in terms of the
complexity descriptors xb-j of the program segments B-j and the
characteristic functions of the underlying datatypes :

xa(x) = r ^ x b i (x) , x b 2 < > 0 , — , ^SZ?^

Occasionally (in the case of boolean constructs), r may also involve
the characteristic functions of some intervening boolean procedures.

52

Rules are relative to an additive (w.r.t. composition of
instructions) complexity measure corresponding to execution time on an
abstract machine model, whose properties are summarized in Figure 3.
There is naturally considerable arbitrannessin the choices made in this
table : our purpose has only been to have rules that are reasonably
simple to state ; from the developments that follow it should be clear
that adequate time constants in procedure calls, tests, branching... could
be introduced to reftect more closely the time constants of any particular
machine model.

Construct Resulting complexity

A s B ; C T A = T B + T C

A s B(X[i]) T A = T B (X [i])
f T A = T Q + T B if Q

A = i± Q t h e n B else c f i I T A = T Q + T C i f Q

A H for i with Q do B od . . , o l

~ — — T A is the sum of T B ' s corresponding
to arguments which satisfy predicate Q
and of T Q ' S .

A = for i while Q do B od T A is the sum of T Q ' S an T B ' s corres-
ponding to executions of Q and B while
condition Q is satisfied and, of the
first execution of Q which returns false.

Q s a boolean combination of T Q = 1
atomic predicates on root labels
and degrees

assign, nil xassign = xniI = 0

Figure 3 : A summary of the definitions of the additive
measure considered.

53

Rule 1 [Composition]

When

A(X) = B(X) ; C(X)

where X̂ is of type T , one has for any predicate Q on T :

xa(x I Q) = xb(x I Q) + tc(x I Q) .

r^> <~->

Rule 2 [Conditionals]

When

A (X ? s 11 Q (X ? t h e n B (X ? else C(X) jM

one has

xa(x) = xq(x) + xb^x I Q(X)) + xc^x I-Q(X))

These two rules follow directly from the additive character of the

time complexity measure.

Rule 3 [Subtree descent]

When

A(X) s B [i-,], -. .,X[i p])

for some ij all different, where X is of type T , one has :

xa(x) = x t b (x,x, .. .,x) * (^t(x)^

where

a) e Œ
p < 6 (w)

A variant of Rule 3 is of special interest when we insist that the

rootsubtrees be identical ; we state it in a special case.

Let E q w be the predicate over T defined by :

E q a) (X) s J root (X) = to and Vj X [j] = X [1] J .

55

We then have :

Rule 3 eg [Subtree descent with Equality]

When
A(X) • B-(X ti])

where X is of type T and i < 6(03), one has under condition Eq^ :

T a (x I Eq w) = x x b (x 6 (a))) .

Rule 4 [Iteration]

When

A(X) s for i with o/i, root (xA do B(X[i]) Qd

with X of type T one has

where

a n d

a_<6) = card <<i,u>) I V j 6- = 6< u.) & Q(i,cu)f •
Two subcases of Rule 4 are of special interest so that we state them as
derived rules :

Rule 4 dis [Distributive descent]

When
A(X) s for i do B(X [i]) od

with X of t y p e T , one has :
xa(x) = x ib(x) n <x>. (t. (x.))

i < j < m

t
<X>!, $! denote the derivatives of <X> and .

56

Let Eqrt be the predicate over "/^defined by

Eqrt(X) = Vi 1<i<m root(X<|) = root(X-j)

The second derived rule states as follows :

Rule 4 sim [simultanious descent]

When

A(X) = for i 1 to deg (X ^ do
B (X 1 [i] , X 2 [i] , . . . , X m[i]) od

where X is of type T mone has under condition
Eqrt :

xa(x, I Eqrt) = £ Tb(x^) O'l n t (x j)) -

A variant of Rule 4 is also of interest when the descent affects
a subset of the input arguments :

Rule 4 pds [Partial descent]

When

A(X,Y) s for i + 1 to deg(Y) do B(X,Y[i]) od

where Y is in T , one has
xa(x,y) = y xb(x,y) O'^t(y)^ .

Rule 5 [Conditional iteration]

When
A(X) = fo£ 1 4 - 1 to d e g ' C X ^ while Q(X,[i])

do BCXjj]) od

where X is in T , one has under condition Eqrt :

ra(x I Eqrt) = xjjxq(x) + x h (*)) F (^jCx,-) - FCxqW.)
n tj(XJ) - xq(x?

57

where
F(u) = I u 6 (a 3) , I = Q n-

a>ei J 3

As a final rule, we give the complexity descriptor of the
procedure that copies a tree on the outputfile :

Rule 6 [Copy]

With X in T one has :
xcopy (x) = x t 1 (x) .

This rule actually follows from the preceding ones as we shall sea
later.

We now turn to equations for characteristic functions of boolean
procedures. The basic remark is that the result of a boolean function
is precisely that of the last "assign"-instruction executed ; the situation
is therefore more intricate for characteristic functions than for comple­
xity descriptors ; however some schemes are quite often encountered for
which we give the following rules :

Rule 7 [Characteristic functions]

(i) When
a(X) s j_f Q(X) then assign (b (X))

else assign (c(X) J fj_
where X is of type T , one has :

xa(x) = xb(x, I Q) + x c C x J ^ Q) .

(ii) When
A(X) = j[or i + 1 t_o deg (X ^

while assign ^Q(Xji])J do B(X[i]> od

where is in T and B is a pure procedure (without boolean result) one
has under condition Eqrt :

xa(xj Eqrt) = X/(F(xq(x,)) - F (0))

where
• F(u) = I u 6 (u) , I = n fij -

0) 6 I

58

This Last assertion expresses the fact that predicate Q holds
true for all m-tuples xti] , 1<i<deg(X-).

2.3. - Proof techniques

Counting multisets is the main tool for proving complexity rules.
To introduce the method let us start with the problem of counting trees
in a family T defined by a set Q of operators :

T = I (T , T , . . . , T) ,
a) € tt

or in other words :

T = I I I ctT,, T p) . (14)

" » ° « < . " , I T 1 - ' T P ' € T P

The generating function t(x) of T can also be written as :

t(x) = I X
| T | ; (15)

T € T

so that it can be formally derived from the multiset T by replacing each
node (or symbol) of a T€T by an x, taking juxtaposition of variables
as products.

Applying this transformation to equation (14) we thus obtain :
v / \6<a>)

t(x) = / xft(x)J

/ \ n

= x I s n (t(z> j (16)

where s n is the number of operators of arity n in Q .

This symbolic way of deriving generating functions is inspired
by works of Schutzenberger tFS 70]. It can be extended to count multisets
of trees as shown in [G65] [SF 82] and in parallel developments
of [BR 82]. It makes it possible to translate "at sight" inductive '
definitions of multisets obtained by combinations of sums and products
into equations over generating functions. Extensive use of it is made in the
sequel, and we shall illustrate it by means of a few examples.

59

Given a procedure A (X : T) we consider the multiset associated
to the cost measure :

TA = Y TA(X) - X . (17)
x er

(a) The proof of Rule 3 [subtree descent] can be derived as follows ;
by definition we have on multisets :

T A = I xB(X[i 1],..., X[ip]> - X
X € T

I I T B (X I , . . . , X) . a) (V-"' XS(a>) }

I ai j i B , T 5 (A 3 > " P J (19)
0)

6(a))>p
where the brackets indicate the arguments of xB should be distributed
in the positions i^ to i . Applying the translation scheme on (19) we
obtain :

„ / \6(o))-p xa(x) = I x xb(x,...,x) (t(x)j (20)

6(o))>p
from which the rule follows.

(b) The proofs of rules 1-2-4-5-7 are quite similar, although multivariate
series are used ; consider for instance Rule 5 [Conditional iteration] ;
by definition :

60

rA(I Eqrt) = \ 7

^ I 1 TQ (X [1]) . ^
X

+ I I { ^ B (^ f P ~ 1]) + TQCXtp])^ .X
1<p<6(o)) A\Q(Xji])

X ^ 1 # < P \
I tb(x,[5CO>>]) - X (2 1)

*\Q(X,[i]) |
1 <i <5 (oj)

where £ means that the summation is taken over the m-tuples
<X. [1],... Xj [6<w>]> € T? ((A i) , 1<j<m,

and Xj = OJ^X j [1],...,Xj [6(o))]^ .

Applying the translation scheme, we associate to trees in Tj
the variable xj , 1 < j < m and we obtain :

Ta(x) = I x„...x I X q (x) p ~ 1 (r b U l Q) + xq(x))
a) 1 m 1<p<5(w) ~ V ~ 1

. n 7 t . (x .)V (w)" p

1<j<m V J 3 /
p-1 6(w)-p

= ,* (T b (* , Q) + Tq<x)J I I * q (£? (T T t j (x j)) " (2 2)

03 p

The last sum being a geometric progression, we obtain the final
form of the rule.

Rule 6 c o u l d be a l s o D r o v e d a l o n g these l i n e s but we can obtain
it t h r o u g h the o t h e r r u l e s b y e x p r e s s i n g the p r o c e d u r e c o o y r e c u r s i v e l y as :

procedure copy (X : T) :
write (root(X)) ;
for i«-1 to deg(X) do cooy (X[i]) od

end cop^.

Then b y Rules 1 and 4 we have
xcopy (x) = t(x) + x icopy (x) ^ t (x)^j

solving this linear equation and reducting the expression we obtain :
rcopy (x) = xt'(x) . (23)

61

2.4. - Analytic translation methods

It should be clear at this stage, that given a program
(viz. a set of procedures) in PL-tree, one is able to derive, using
the preceding rules, a system of equations which determines various
generating functions associated to the program and which ultimately define
the complexity descriptor. In this paragraph, we are interested in
determining the behaviour of the average cost, asymptotically when the
size of the data gets large.

Most complexity descriptors associated to simnle programs
satisfya system of equations of the form :

Where the h's and H's are known functions; this is usually
achieved after some algebraic transformations, by eliminating conditions
from conditional complexity descriptors.

A special case of interest is when the system can be written
in the form

f^xj) = X i H- (fOc)) (25)

It is then possible to solve it algebraically and to recover
the coefficients of the Taylor expansions of the f's using the Lagrange-
Good inversion theorem for implicit functions [G 60] ; however the
expressions thus obtained are usually too complex to allow aymptotic
analysis. We therefore turn to a more direct approach that follows the
lines of [MM 7 8] , [0 3 2 J , [SF 8 2] , [F0 82] : this approach is based on
the existence of relations between the asymptotics of Taylor coefficients
of a function and the behaviour of that function around its main singularity.

62

More precisely, the cumulated costs relative to total
input size n have a generating function which is obtained by replacing
in (24) all occurrences of x-j's by z ; so that the system (24) becomes :

| 9 i . (z) = K.(z, fl(k<z>)) • (2 6)

In (26) one of the functions (z), call it c(z), is the
complexity descriptor of the algorithm considered ; in order to determine
the asymptotic behaviour.of the coefficients c n of c(z) we study "its
singularities. The method relies on two remarks :
(i) let P be the radius of convergence (r.d.c.) of c(z) ; then the

exponential order of growth of c n is P"~N , that is

Ve>0 [P " 1 d + e)] " n < c n < V 1 d + e)] ~ n

i - o a. e

(ii) If z=P is the unique singularity of c(z) of modulus P , the
behaviour of

r n = c N P N is determined by the local expansion of c(z) at z = P .

The major fact concerning algorithms written in PL-tree is that
in most cases c(z) behaves as ^1 - £ ^ " a ; more precisely, at z = P ,
c(z) can be writteq :

c(z) = ^1 - 1 u(z) + v(z) (27)
where u and v are regular at z = P , and A € ID \ {0,-1,-2 — } .

Property (27) allows us to state, by the Darboux theorem
[H 74], [D 1878] that :

c n = -u(P) p-n H ^ L . (1 + 0 (J)) < 2 8)

r (A) V X J J

where r is the Euler gamma function.

Let us illustrate this method by deriving the asymptotic
number of term trees defined on a fixed set of operators ft. Let <£(u)
be the power series such that s n = t u n] $ (u) = card £ Q |6(W) = nj-

63

We know by (11) that the generating function t(z) satisfies :

t(z) = z « (t (z)) -

Let us further assume that the conditions (C) below hold :

(i) the s p are bounded by some fixed M
(ii) g c d j n l s n * 0 = lj

(Condition (ii) can easily be dispensed with).

Summarizing extensive discussions of [MM 78][SF 82] we have :

(a) t(z) is analytic for all z, |z| < p , excent z=p where

p = — ! — < 1 (29)
<&'(T)

and x is the root of smallest modulus of the equation :

T 4 1 (T) = <2>(T) ; (30)

T is always a real positive number

(b) at z=p, t(z) has an expansion of the form :

) • j , 6 n (i - |) " ' 2 « 1 >

/ 2d>(T)
where v = -/

V <3>"(T)

Similarly, the enumerating series for the family of
k- tuples of trees in T is t^(z), whose radius of convergence is still p,
and at z=p satisfies :

1/2
t k(z) = (1 - I) u k (z) + v

k
(z) (3 2)

where u|< and are regular and
u.(p) = - k T H JM̂ I

k K * " (T)

64

From the above discussion follows that the conditions for the
Darboux theorem to apply are satisfied and we can state :

Proposition 1 : Let T be a family of trees satisfying conditions (C).
Let t n ^ t ^ k) ^ be the number of trees (k-tuples of trees) of size n ;
then : I

tn • (1*0(1))
+ (k) - u k-1 / * < T) _ N _ 3 , -*n " kT V^^" P " (1+0^)>

where p = — — and TG'(T) = <I>(T) .
• ' (T)

Local expansions of input and program descriptors around their
singularities will be systematically used to derive the asymptotic behaviour
of procedure costs, as given by the complexity rules of § 2.2. Let us
give one example of this situation (we continue to assume here that the
family of inputs T satisfies conditions (O)

Proposition 2 : Let B be a procedure on trees of type T and A be the
iterate of B on subtrees, defined by :

A(X) = B(X) ; for_ i + 1 to deg(X) do A(X[i]) od

Assuming xb(z) has a unique algebraic singularity t on its circle of
convergence, and

b ~ c.n a

n
for some constants c and a < _ then

- . r(°-') z ° 4

xa ~ c8 ^ H n
n

r (a)

t A singularity is said algebraic whenever the function has a local
expansion of the form (27).

65

where 9 is a constant depending only on T, and r is the Euler gamma
function „
Proof : By Rules 1 and 4dis we have :

xa(z) = xb(z) + z xa(z) ® 1 (t(z)) ,

hence

a(z) = T b (2) (3 3 >
1-z <&' (t(z>)

From equation (11) we get by derivation :

1 - z * ' (t<z>> = (34)
zt'(z)

Since x b n is equivalent to c n a , *rb(z) has radius of convergence p ,
and from the hypothesis admits at z=p (its singularity) the expansion :

T b (z) = (t - ~ j " 6 M,(z) • ^(z) (35)

where and v.] are regular at z=p .

Rewriting (31) as :
z U

t(z) = (1 - -) ^ 2 u(z) + v(z), p
we obtain the expansion for t'(z) at z=p :

t'(z) = - _L ^1 -^y'1 [u<z) - 2 ^ 1 --^ u'(z)j +v'(z). (36)

Then xa(z) has radius of convergence p and at z=p we conclude from (33)
(34) (55) (36) that it satisfies :

xa(z) = - ±J& u 2(z) + v 2(z) (37)

where U2 and V£ are regular and

6 =) -\ if 0^0
1 1
1 (3 + JL otherwise I 2

Furthermore when & > 0
u 9(p) = -u-(p) - 1

1 1 2t
where y and t are defined in equations (30) and (31).

66

By proposition 1 and the Darboux theorem it is easy to see that

a = 0 + -1 .

Applying again Darboux 1 theorem to (37) leads to the asymptotic value
of the average cost of procedure A.

67

3. DIFFERENTIATION ALGORITHMS

In this section we study a class of algorithms which perform
formal differentiation on expressions represented by trees ; in a more
algebraic setting these algorithms can also be seen as top-down finite
state transducers [Th 73]and illustrate a natural class of computations
on trees, Let us start with some definitions.

Let 0, be an arbitrary finite set of operators (including
possibly +, -, \Tr log, sin, . . .) , variables (x,y...) and constants
(a,b,c,...). A set of differentiation rules D over the familyTof terms
constructed on Q, is defined by local transformations on^terms : a term

X = u) (X [1],...,X M)

with leading operator GO of arity m is transformed into a term

DX = X (Xfi,,], , X [i p] , DXtll,...,DX tml)

where as usual the X[ij]'s are root subtrees of X and DX [i] denotes
the derivative of X [ijaccording to the set of derivation rules. In the
derived expression, A wi 11 be called the header ; let e^, 6^ , i > 1
be nullary symbols not in .Q ; the header A of DX is a tree over

R 1 = fi U jei I 1 < i < m | U ĵ i I 1<i^m|

where 6-j1 s occur exactly once : the term DX is thus obtained by
substituting X[i]'s to e.'s and DX[i]'s to Si's. The fact that 6^'s
occur exactly once is an important feature of differentiation ; thus in
DX, derived subexpressions DX[i] , 1<i<m, occur once, whereas copied
subexpressions X[i]'s, 1<i<m, may occur several times.

Notations : Let co € Q be an operator, with arity <5(OJ) = m.
Let A (e 1 . . , £ ^ , 6 ^ . .,6 m> be the header of D (w (x 1, .. .,X m>)
The size h(oo) of the header A associated to co is the number of nodes
of A belonging to R(e^ fs and Si's are not counted). For 1^i^m, ot(aj).j
is the number of times subexpression X [i] is copied (substituted to
ê) in the derived expression , i.e. the number of occurrences of $i in A ;

the total number a(oo) of copied subexpressions is a(w) = a(a))-j + ...+ 01(00)^.

68

Fiqure 4 gives an example of differentiation rules.

Multiplication :

D* CX , Y) = + (* (X , D Y) , * (D X , Y)) ;

The header is + (* (. , .) , * (. , .)) so that
h(*) = 3 , a(*) = 1 + 1 = 2

Square root :

D vT (X) = v (D X , * (2 , \ T (X))) ;

the header is * (. , * (2 , \/ (.))) so that
h(\/) = 5 , a(V) = 1

Inverse :

D inv(X) = op (T(DX , * (X , X))) ;
the header is op (T(. , * (. ,.))) so that
h(inv) = 3 a(inv) = 2

Figure 4 : Some usual differentiation rules.
(ei's and 6i's have been marked by dots in headers).

The rules of some differentiation system D translate at
sight into an algorithm written in PL-tree applied to inputs of type

T , where T=Q(T)(see,e-q., [Kn 63] p. 338). The general form of the
algorithm is given in Figure 5 a ; the sequence of instructions corres­
ponding to each branch of the case should be macroexnanded as is shown
in P?nnre 5-b on an example.

69

procedure diff (X : T) =

case root(X) £f

0)̂1 " generate X w CXC i 1 1 , .-,X[ip],dif f CXC1]"), - -, diff (x[p])>

wo : generate X ()

a) : generate X ()
n ^n
esac
end diff .
Figure 5-a : General form of the differentiation algorithm

* : write ('+') ; write ('*') ; copyMxMl) ;

diff (x[2l) ; write ('*•') ; diff (x t i l) ;

copy (x[2]).

inv : write C o p ') ; write <•*•) ; diff <X[1]> ;

write ('*') ; copy (X[1]> ; copy <X[1]).

Figure 5-b : Macroexpansion of generate for two usual operators.

The complexity descriptor of procedure diff is therefore
by Rule 2 [conditionals]

xdiff(z) = t(z) + J xgener(z I root(X) =o>) (38)
0)

By Rules 1-3 and 6 one gets :
6(d))

xgener (z I root (X)=o)) = h&o) z(t(z))
+ a(o» z 2t'(z) (t (z)) 5 < w) ~ 1

+ 6(a)) z xdiff (z)(t(z)) (3 9)

where the first term corresponds to wri te instructions, the second
to copy instructions and the third one to recursive calls with subtree
descent.

70

Combining (38) and (39) we finally get that :
tdiff(z) = t(z) + zH(t(z)) + z 2t'(z) A (t(z))

+ zxdiff(z) <X>'(t(z)) (40)
where H(u) = £ h C O u

l 5 (u))

w
and A(u) = I a (w) u

6 (a)) " 1 .
w '•

Solving this linear equation in tdiff(z) we obtain the explicit
form :

. t(z) + z H (t(z)) + z 2t'(z) A(t(z)) ,,„ x Tdiff(z) = (41)
1 - z<3>'(t(z))

and by (35)

xdiff(z) = t . (z) + illiil H(t(z)) + z f 2 (z) A (t (z)) < « >
t(z) t(z)

Since by the Lagrange inversion theorem we have explicit expressions
for the coefficients of t(z) and t'(z) it would be possible to provide
explicit but akward expressions for the coefficient of xdiff ; the
formulae obtained in this way are quite intricate so that it would be
hard -if not impossible- to derive an asymptotic estimate for the average
cost of the algorithm.
We thus turn to the analytic study of Tdiff(z).

Since ft is finite, H(u) and A(u) are polynomials and one can
conclude that xdiff(z) has radius of convergence P - Furthermore for I z| = o
its singularities are precisely those of t(z) and t'(z). lie can thus
obtain a local expansion of xdiff(z) at z=p by simply replacing t(z)
and t'(z) by t + - ~^j~2 a n d T' + Y' (1 " f respectively in

equation (42) : ^
xdiff (z) = JSl a Y ' 2 ^1 - I + (1 - v (z) + w (z)

where v(z) and w(z) are analytic at z=p, and a=A(x)•

71

Using the Da'rboux theorem we conclude that
T d i f f n = [z nl xdiff(z) = - £ l cx y' 2 p ~ n (1 + 0 (n ~ 1 / 2)) .

x

From (28) we have for the average cost :

xdiff n P 2
 0 ^ / 2 n ^ M (T) 3/2/ n / - 1 / 2 - \ \

T d i f f n = Q = a Y

, 2 V n (l + 0 (n))
t n T f » (T) \ \ //

Theorem 1 :

The average cost of a differentiation algorithm ts of the form :

T d i f f n = c n 3 / 2 + 0(n)

where c is a constant which depends only on the family of trees and
the set of rules.

The behavior of the average cost (0(n3/2)) is to be compared to
the worst case (0(n 2)) and the best case (0(n)). It is important to notice
that the non linear cost is due tn the conies of subtrees the algorithm
performs. If we allow pointers so that common subexpressions could be shared,
we could simply attach the subtrees of the argument to the headers with
unit cost (independently of the size of the subtree).

Equation (41) would then be changed to

x diff(z) = t'(z) + Z t > (2) ^H(t(z)) + A(t(z))) (43)
t(z) \ 7

whose analysis yields a linear average cost consistent with the linear
worst case behaviour.

72

4 - TREE COMPATIBILITY

In this section we study an algorithm which returns the greatest
commun part of two trees in a family T ; this algorithm can appear
as the first part of generalization algorithms. The interest relies now
on the fact that the procedure has two arguments as one can see on
Figure 6.

procedure comoat (X , Y : T)
if root(X) * root(Y) then write C . 1)

else begin write (root(X)) ;
for i<-1 to deg(X) do dbmpat (X[i], Y[i])

end f i
end compat.

- Figure 6 -
Algorithm for tree-compatibility

The complexity descriptor of procedure compat satisfies the
following equations ; by rule 2 we decompose Tcompat in :

xcompat (x,y) = t(x) t(y) + xthen (x,y I root(X) ± root(Y))
+ xelse (x,y I root(X) = root(Y)). (44)

where the unit cost of the test in taken into account by the term t(x) t(y).
Now

T t h e n (x,y I root(X) t root(Y)) = t(x).t(y) - xy$(t(x) t(y)) (45)
since this quantity is the characteristic function of pairs (X , Y) € T ^
whose roots are different.

By Rules 1 and 4sim one immediately obtains :
xelse (x,y I root(X) = root (Y)) =

xy $(t(x) t(y))
+ xy TCompat(x,y) <£' (t (x) t (y)) - (46)

Combining equations (44), (45), (46) and solving the linear
equation in xcompat we get :

2t(x)t(y) r / 7 . xcompat(x,y) = • K * f)

1 - xy <£' (t(x)t(y))

73

In order to derive the cost of procedure compat w.r.t. the
total size of its arguments, we use remarks (11) and (24) and substitute
variable z for x and y, obtaining (with an obvious change in notation) :

xcompat(z) = — 2 * (z) (48)
1 - zV(t^(z))

It is easy to see that <X>'(t2(z)) is analytic for Izl < p ,
and that at z=p : ^

<&'<t 2(z)) = ® ' (T 2) + 2TY^ " (T 2) (1 - f) T + o(l - ~)

Hence

xcompat(z) = T1 + ̂ 1 ^1 - ~ + 0 ^ 1 ~ f ^

with
2 T 2 , A T Y C I - P 2 * 1 (T 2)) '+' 4 x 5 p 2 y © " (T 2) = i and = r

1 - p 2 * 1 ^ 2) (1 - p 2 $ > ' (T 2)) 2

The average cost is therefore asymptotically constant :

(1+oG)) •
Theorem 2 '

For any family T of trees, there exists a real constant cy s u c h t h a t t h e

average cost of testing tree compatibility is

compat = c T + 0 (J-) .
n 7 n

For many classes of trees this numerical constant can be easily
computed ; for instance :
- for G the class of general planar trees whose generating function

is defined with <D(u) = we have :
1-u

•p
- for 8 the class of binary trees (<X> (u) = 1+u) we have

c g = 8 .

74

5 - TREE MATCHING AND SIMPLIFICATION

In this section we study two algorithms whose analysis are
slightly more complex than the two previous ones. In the case of
tree matching the algorithm consists of two procedures with two
arguments taken in different families. In the case of simplification the
equation to be solved for the cost generating function does not define it
implicitly. Furthermore in each case, we have to handle characteristic
series.

5.1. - Tree matching

The algorithm we study works as follows ; let P and T be the
family of patterns and texts respectively. The class T is defined by
a set Q of operators (T = Q(T)). Let ft+ = {w G n I 6 OJ > 0} and # be a
new symbol of arity 0. The class P of patterns satisfies the equation

P = fo+U {#}] (P)

A tree P in P is said to occur at the root of a tree T in P
if there exist trees T<|, ,T^ in T whi ch substituted to #*s in P
give exactly T :

T = P (T ^ . . . , ^) .

In a sense #'s play the role of a "don't care" which can be
substituted by any tree in T.

More generally P is said to occur in T if it occurs at the root of
some subtree of T.

The algorithm therefore tests for any subtree of T whether P
occurs at its root ; this last procedure is a variant of procedure equal
in Figure 2 ; the algorithm is described in Figure 7.

This algorithm has been extensively studied in [SF 32] ; we nropose
here a new proof of the main result -the expected linearity of the alqorith-
in our framework.

75

function compare (P: P,T :T) =
if root (P) = # then assign (true)

else if root (P) t root (T) then assign (false)
else for i +- 1 to deg(P)

while assign (compare (P[i],T[i])) do nil od

11 11

end compare.
procedure match (P : ?, T :T) =

if compare (P,T) then write ('occurrence > f i
for i «- 1 to deg(T) do match (P,T[i]) od

end match.

Figure 7
The two procedures for tree-matching

Let p(x) and t(y) denote the generating functions associated to
P and T respectively ; these series satisfy equations i p(x) = x(1 + * (p(x)))

t(y) = y <3>(t(y)) (49)

where i|>(u) = <&(u) - © (0) .
We are now able to translate the algorithm in order to determine

the complexity descriptor of procedure match ; we shall use variables x
and y to represent patterns and texts respectively.

By Rules 1-2 and 4pds we have :
imatch (x,y) = rcomp (x,y) + x c o m P <x,y) ^5qj

+ y rmatch (x,y) *' (t(y)).
By Rules 2 and 5 we have :

TComp(x,y) = p(x).t(y) + (p(x)-x) t(y) (5 D
+ xy TComp(x,y) »<P<x)t(y» - »(Xcomp<x,y))

p(x)t(y) - xcomp(x,y)

76

Finally we deduce from Rule 7 :
XComp(x,y) = xt(y) + xy I(;(xcomp(x,y)). (52)

Following the standard approach we turn to univariate power series,
expressing the cost w.r.t. the total size of the input ; equations
(50), (51) and (52) are then rewritten as :

xmatch(z) = Tcomp(z) + Xcomp(z) ^ (50 bis)
1 - z <X>'(t(z))

2 p (z) t(z) - zt(z) xcomp(z) = — (51 bis)
1 - z 2 ^(p(z)t(z)) - IJJ(xcomp(z))

p(z)t(z) - xcomp(z)

Tcomp(z) = zt(z) + z 2 ^(xcomp(z)). (52 bis).

By remark (35), and by combining the last two equations we finally
obtain the following system where the variable z is implicit :

zt 1 i tmatch = (xcomp + xcomp)
t

xcomp = (2 P * - z*) (P * " xcomp) (53)

pt - z 2 I|;(pt) - zt
xcomp = zt + z 2 ^(xcomp)
We now turn to the analytic study of system (53) ; we assume,

for simplicity, that conditions (C) are satisfiediby T, hence by P.

77

Let as usual p be the radius of convergence of t(z) ; at z=p,
its dominant singularity we recall that :

(t(z) = x + yA + 0 (1 - £)
\ p (54)
(t'(z) = Y' A~ 1 + T 1 + 0 (1 - ~)

I — F Y

where A = W1 and y 1 = — - r — .
1 P 2p

We first prove that xcomp(z) has its dominant singularity at z = p ;
since [z n]xcomp(z) < [z n] t 2(z) , Xcomp(z) has a radius of convergence > p
Furthermore by the implicit function theorem, ycomp(z) is uniquely defined
and analytic unless

dxcomp(z) _ t + zt' 4 2z iKxcomp)
dz 1 - z 2 ^'(comp)

becomes infinite.

Since for Izl < p < 1 , x c o m P (z) < lt(z)| , and
1 > zifr1 (t(z)) > z^ ^'(xcomp(z)) on the real axis, we conclude that the
denominator in (55) cannot vanish, while the numerator becomes infinite
at the only point z=p.

Using equation (54) we derive a local expansion for xcomp(z) at z=p,
namely :

Xcomp(z) = x + X'A + 0 (1 - -) (56)
P

where x - xcomp (p) is the least positive root of
X = pT + p 2 ^(x 5 ,

and x
, = 2 1 . (57)

1 -PV<X>

78

We now study xcomp(z) and xmatch(z) ; since we know from the
procedure structures that these algorithms areat most quadratic in the
size of the input, their complexity descriptors should have the same radius of
convergence as the characteristic series of the input , namely o(z)t(z).

Let us then examine p(z) ; two cases arise deoeriding on the
condition : 1 + = <£> -

(i) 1 + i|; = <X> ; then p(z) = t(z) ; the dominant singularity of xcomp
and xmatch is easily seen to be located at z=p and using (54) and
(56) we conclude by elementary computations that at z=p we have : S xcomp(z) = g + £ fA + 0(1 --^-)

-1 z P V2

 (5 8)

rmatch(z) = vA ' + p' + 0C11 V >
P

wnere U - (2 t 2 - p t) (t 2 - X >
) x 2 - px - p 2 i j ; (x 2)

j (59)
fy = (? + X) .
\ 2x

ii) 1 + i> + 0 ; it is then easy to see that p(z) has a radius of convernence
greater than p and is regular at z=p : let p (p) ="03 ; the dominant sin­
gularity of xcomp(z) and xmatch(z) is again located at z=P and by similar
computations we conclude from (54) and (56) that equations (58) are still
valid at z=p with constants :

- (2oax - px) (orr - x)
WT - px - p2^(m)

KOU)
u = - (? + X) -

2x

79

The characteristic function of the input is p(z)t(z) which
has radius of convergence p and a dominant singularity at z=p , where we have : I t 2 + yxA + 0(1- —) when (i) holds

p (6 1)

w t + wyA + 0 (1 - ~) when (ii) holds

Therefore by the Darboux theorem we have :

xmatch n = [Z "] ™ a t c h (z) = an + 0 (1) (62)
[z n] p(z)t(z)

w h e r e / 1 in case (i)

j ^ in case (ii)

Theorem 3 :

The average running time of the maching algorithm is linear in the size of
the input :

rmatchp = an + 0 (1)

where the constant a depends only on the families of texts and patterns.

It is worth noticing that the worst case behaviour is quadratic in the
size of the input.

80

5-2. " Algebraic simplification

As a last showcase we propose to study an algorithm which
reduces arithmetic expressions containing subexpressions of the form
e 1 " e 2 ' w' i e n e l a n c' e 2 a r e formally identical. The algorithm is
shown in Figure 8 and makes use of function equal described in Figure 2.
The family A of expressions considered here is defined by a set ft
consisting of c variables or constants -e.g. 0,1, , x,y, -
and d binary symbols -e.g. ^, -

The generating functions associated to A satisfies therefore
the equation

a(z) = cz + dza 2(z)
(63)

or a(z) = z O (a(z))

with <X>(u) = c + d u 2 .

procedure reduce (X : A) =
vf root(X) * '-' then write (root(X)) ;

reduce CX [1] > ;
reduce (X[2])

else j l equal (X[1],X[2]> then write C O 1)
else write ('-') ;

reduce (X[1]) ;
reduce (X[2])

11 11
end reduce.

- Figure 8 -
The procedure for algebraic simplification.

81

By Rule 2 we can write with obvious notations :

Treduce(z) = a(z) + xthen (z I root(X) * •-•) , z / x

(64)
+ relse (z I root(X) = •-•> .

By Rules 1 and 3 we also have
xthen (z I root(X) * •-•) = cz + (d-1) z a 2(z) (6 5)

+ 2z(d-1) a(z) xreduce(z).

Finally, let

R(X) = reduce <X[1]) ; reduce (X[2]) ;
by Rule 2 it is clear that :

xr(z) = xr(z I equal (X[1], X[2])
+ xr(z I -.equal (X[1] , X[2]) ,

hence by Rules 1-3 and 3 eq
xr(z I -,equal (X[1], X[2]) =

(66)
2 z a(z) xreduce(z) - 2z xreduce(z 2).

82

Therefore
xelse (z I root(X) = '-') = xeq(z) + za 2(z)

+ 2za(z) xreduce (z) (67)
- 2z xreduce (z 2) ,

where
xeq(z) = z xequal (z,z) .

The study of xequal (x,y) is similar to that of xcomp (x,y) ; xequal is
defined by the system :

!

xequal(x,y) = xy<X> (xequal(x,y))
, s , x , , <D(a(x)a(y)) - <P(xequal(x,y))

xequal(x,y) = a(x)a(y) + xy xequal(x,y) — —
a(x)a(y) - x e cl u al-(x,y)

from which we deduce that

(xequal (x,y) = a(xy)
) , / N a(x)a(y) . (6 8)

I xequal (x,y) = - -

1 - dxy (a(x)a(y) + a(xy))

Substituting z for x and y in equation (68) we get :
Teq(z) = z " (6 9)

1 - d z 2 (a 2(z) + a(z 2))

Combining equations (64), (65), (67) and (35) we finally obtain :

xreduce(z) = [2 a(z) + eq(z) - 2z reduce (z 2)] z a - (70)
a(z)

We now turn to the analytic study of a(z), xeq(z) and xreduce (z).

83

From equation (63) We find :

1 - V l - 4 c d z 2

a(2) = ; (71)

2dz

therefore a(z) has radius of convergence p = — - — , and two singularities

in z = t P where it takes values i x , with is. ^ .
za 1(z)

Its derivative a'(z) and the function have
a(z)

similarly p as radius of convergence and two singularities in z = ! p ,
since they are exoressed as :

2c
8 l (2) = " l b (1 " ^ + W ^ z *

and z a ' (2) = 1 . (72)
a(z) - 4 c d z 2

Considering worst case behaviors of procedures reduce and
equal we deduce that for some real constant X :

[z n] a (z) < [z n 3 xeq(z) < Xn[z n] a(z) and

tz n] a(z) * tz n] rreduce(z) < X n 2 [z n] a(z) .

Thus xeq(z) and xreduce(z) have radius of convergence p .
Since P < 1 , functions a(z 2) and xreduce(z 2) are regular in a domain that
strictly contains { z I Izl ^p} (see [Po 37] for a similar argument).
Futhermore the denominator of xeq(z) does not vanish for Iz! < p
the series h(z) = d z 2 (a 2 (z) + a(z 2)) being monotonically increasing on
the real positive axis and h(p) < 1. Therefore xeq(z) has only two
singularities for |z| < p at z = ! p and the same holds true for xreduce(z).

84

From equations (69), (70), (7 1) and (7 2) we derive by
elementary algebraic manipulations, a local expansion of xreduce(z)
at z=p in terms of -4/1 - — -

1 P

xreduce(z) = u(z) 1 + v(z) (7 3)

where u(z) and v(z) are regular at z=p , and u (p) # 0.

Since xreduce(z) is an odd function, it has a similar
expansion at z = - p , namely :

1
xreduce(z) = u(-z) . + v(-z) (7 4)

and u (- p) = - u (p) .

Explicit computation shows that :

u (p) = — — (2x + a - 2 p 0) , (7 5)
X T

where
2 T

a = T e q (P) = = Z = Z
2 d (1 + \/1

9 = xreduce (p 2) ;

8 can be computed numerically, for given c and d, using
equation (70). The proof that u (p) > 0 is obtained by bounding terms in
the expression obtained from (70). Applying the Darboux theorem and
using the fact that xreduce(z) is odd we finally obtain : 1 0 when n is even

u (p) ifz"] (1 - £) > 2 -[z n] d + I) " l / 2 | (1 + 0 (l))

I P P)
when n is odd

Hence
0 when n is even

[z n] xreduce(z)=
2 u (P) -n (1 + 0 (-)) when n is odd

85

Similarly :

0 when n is even
f z n] a(z) = ^ 3

/ P n 2 (1 + 0 (1)) when ri is odd
[vHfT n

We therefore conclude the analysis.

Theorem 4 :

The average running time of the simplification algorithm is linear in
the size of the input :

xreduc^ yn + 0(1)

where the constant y depends only on the family of trees under consideration.

With the above notations we have :

T

86

BIBLIOGRAPHY

[B R 8 2] J. BERSTEL, C. REUTENAUER : "Recognizable formal
power series on trees",
Theor. Comp. Sc. 18 (1982) pp. 188-145

[Bu 85] W. BUR6E : Recursive programming techniques
Addison Wesley, Reading (1975)

[Da 1878] G. DARBOUX : "Mémoire sur l'approximation des fonc­
tions de très grands nombres, et sur une classe
étendue de développements en série",
J. de Mathématiques pures et appliquées, 3ème série,
tome VI, (Jan 1878) pp. 1-56

[FO 82] P. FLAJOLET, A. ODLYZKO : "The average height of
binary trees and other simple trees",
JCSS, vol. 25,No 2, (Oct. 1982) pp. 171-213

[FS 70] D. FOATA, M.P. SCHUTZENBERGER : Théorie géométrique
des polynômes eulériens,
Lecture Notes in Mathematics 138, Springer Verlag,
Berlin (1970)

[Go 60] I.J. GOOD : "Generalizations to several variables of
Lagrange's expansion, with applications to stochastic
processes",
Proc Cambridge Phil. Soc. 56 (1960) pp. 367-380

[Go 65] I.J. GOOD : "The generalization of Lagrange's expan­
sion and the enumeration of trees",
Proc. Cambridge Philo. S o c 61 (1965) pp. 499-517

[He 74] P. HENRICI : "Applied and computational complex
analysis,
2 vol J. Wiley, New York (1974)

[JG 81] D. JACKSON, I. GOULDEN : Combinatorial Decompositions
and Algebraic Enumerations (to appear)

[Kn 68] D.E. KNUTH : The art of computer programming : Fun­
damental Algorithms,
Addison Wesley, Reading (1968)

[Kn 73] D.E. KNUTH : The art of computer programming : Sorting
and Searching,
Addison Wesley, Reading (1973)

87

[MM 78] A. MEIR, J.W. MOON : "On the altitude of nodes in
random trees",
Canad. J. of Math 30 (1978), pp. 997-1015

[Od 82] A. ODLYZKO : "Periodic oscillations of coefficients of
power series that satisfy functional equations"
Adv. in Math. 44 (1982), pp. 180-205.

[Po 37] 6. POLYA : "Kombinatorische Anzahlbestimmungen für
Graphen, Grupen und Chemische Verbindungen",
Acta Mathematica 68 (1937), pp. 145-254

[Ra 79] L. RAMSHAW : "Formalizing the analysis of algorithms",
Ph. D Thesis, Stanford Univ. (1979)

[Ro 75] G.C. ROTA : Finite Operator Calculs, Academic Press,
New-York (19751

[SF 82] J.M. STEYAERT, P. FLAJOLET : "Patterns and Pattern-
matching in trees : an analysis", (to appear in Inf. &
Control).

[Th 73] J.W. THATCHER : "Tree automata : an informal survey",
in Currents in the Theory of Computing
(A.V. Aho, ed), Prentice Hall 11973) pp. 143-178.

[Vu 80] J. VUILLEMIN " A unifying look at data structures",
CACM 23 (1980), pp. 229-239.

[We 75] B. WEGBREIT : "Mechanical program analysis",
CACM 18 (1975), pp. 528-532.

[We 76] B. WEGBREIT: "Verifying program performance,
JACM 23 (1976), pp. 691-699.

Imprimé en France

par
l'Institut National de Recherche en Informatique et en Automatique

88

