@article{PDML_1982___4B_A7_0, author = {Delorme, Patrick}, title = {Multipliers for the {Hecke} {Algebra} of a {Real} {Semi} {Simple} {Lie} {Group}}, journal = {Publications du D\'epartement de math\'ematiques (Lyon)}, pages = {1--3}, publisher = {Universit\'e Claude Bernard - Lyon 1}, number = {4B}, year = {1982}, mrnumber = {720732}, zbl = {0525.43003}, language = {en}, url = {http://www.numdam.org/item/PDML_1982___4B_A7_0/} }
TY - JOUR AU - Delorme, Patrick TI - Multipliers for the Hecke Algebra of a Real Semi Simple Lie Group JO - Publications du Département de mathématiques (Lyon) PY - 1982 SP - 1 EP - 3 IS - 4B PB - Université Claude Bernard - Lyon 1 UR - http://www.numdam.org/item/PDML_1982___4B_A7_0/ LA - en ID - PDML_1982___4B_A7_0 ER -
%0 Journal Article %A Delorme, Patrick %T Multipliers for the Hecke Algebra of a Real Semi Simple Lie Group %J Publications du Département de mathématiques (Lyon) %D 1982 %P 1-3 %N 4B %I Université Claude Bernard - Lyon 1 %U http://www.numdam.org/item/PDML_1982___4B_A7_0/ %G en %F PDML_1982___4B_A7_0
Delorme, Patrick. Multipliers for the Hecke Algebra of a Real Semi Simple Lie Group. Publications du Département de mathématiques (Lyon), Journées d'analyse harmonique, no. 4B (1982), pp. 1-3. http://www.numdam.org/item/PDML_1982___4B_A7_0/
[1] A Paley-Wiener theorem for real reductive groups (preprint). | MR | Zbl
,[2] Discrete series for semi-simple symmetric spaces, Ann. of Math., 111 (1980), 253-311. | MR | Zbl
,[3] Dirrerential geometry and symmetric spaces, Academic Press, New York - London, (1962). | MR | Zbl
,[4] An analogue of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces, Math. Ann. 165 (1966), 297-308. | EuDML | MR | Zbl
,[5] A duality for symmetric spaces with applications to group representations II, Differential equations and eigenspace representations, Adv. Math. 22 (1976), 187-219. | MR | Zbl
,[6] Théorie des distributions, Hermann, Paris, (1962). | Zbl
,[7] Le théorème de Paley-Wiener pour l'espace des fonctions indéfiniment différentiables et à support compact sur un espace symétrique de type non compact, J. of Funct. Anal. 26 (1977), 201-213. | MR | Zbl
,[8] Represnetations of semi-simple Lie groups and Lie algebras, in Queen's papers in pure and applied math. 48, 155-248, Queen's University, Kingston, Ontario (1978). | MR | Zbl
,