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SURVEY ON LOCALLY FACTORIAL KRULL DOMAINS 

Alain Bouvier 

In the following diagram, we consider some classes 

of rings which have been introduced to study integrally 

closed domains: 

Discrète 
valuation ring 

•^^ Noetherians S (DVR) ' • ^ N . 

non ' \. χ . _ 
noeterian^^ 

-, . . / Dedekind valuation ^ . ̂ / ι 

\ Factorial 
u + ̂  (UFD) * Regular 

ι bezout y -̂̂ ST ><Γ*" 
\ ^ ^ ^ ^ / locally ^ 
\ η η Τ Λ , . \ factorial \ GCD-domains (, -, Λ , . \ ^ (

νKrull domains 

Prîif er - \ ν ^ Krull 
\ \ f locally " ̂  N domains 

\ | factorial j ι 
- x \ ν domains \ 

' i/^ completely 
j locally % integrally 
î GCD-domains / closed 

Integrally 
closed 
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Assuming furthermore that the domains are noetherian 

the above diagram collapses and becomes the diagram 

below· 

Valuation = DVR 

l 

Principal = Bezout 

UFD = GCD Prufer = Dedekind 

Regular 

locally GCD = locally factorial = locally factorial Krull 

l 
Krull = integrally closed 

In this note we shall prove some interesting 

properties of locally factorial Krull domains; namely: 

1) They are the Krull domains such that every divisor-

ial idéal Is invertible; in comparison, Dedekind domain 

have the property that non-zero ideals are invertible 

and UFD 1s that every divisorial is principal. 

2) For a locally factorial Krull domain A , the 

Picard group Pic(A) is equal to the class group c£(A) ; 

thus the quotient group c^ A^|pi c(A) indicates how far 

the Krull domain A is from being a locally factorial 

domain. 
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3) In order to prove a ring A is factorial it 

is convenient to prove that A is locally factorial and 

satisfies few more conditions (for instance A is 

noetherian on Pic(A) = 0 ). Several of thèse results, 

like in [GR], are proved for noetherian domains; what 

is yet true without this hypothesis? 

Before the study of locally factorial Krull domains 

(§3) we indicate a few properties of domains satisfying 

local conditions: locally GCD-domains and locally UFD. 

We end this lecture by posing some questions related 

to this topic. 

I want to thank D.D. Anderson for the stimulating 

letters he sent to me, P. Ribenboim and A, Geramita for 

their help while I was preparing this lecture. 
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§ 1. Preliminaries 
To make this paper easy to read, we summarize in 

this first paragraph the terminology and notations used 
in the following ones. More détails can be found in 
[Β], [BG], or [F]. 

(1-1) Let A be a domain. We write Κ = Frac(A) its 
field of quotients, Spec(A) its prime spectrum, Max(A) 
its maximal spectrum and X^^CA) the set of height one 
prime ideals of A 

A non null (fractional) idéal is called divisorial 
o r a v-ideal if it is the intersection of any family of 
principal ideals. Let D(A) be the set of such ideals and 
I(A) the monoid of non null ideals in A . We write 
Div(A) for the set of divisors of A ; that is, the 
quotient of I(A) by the Artin congruence defined by 
I Ξ J if and only if A : I = A : J . Let div : H A ) -+ 
biv(A) be the canonical surjection. We write I ^ = A:I 
and since I = (I 1 ) " " 1 is a v-ideal, we call it the 
ν-idéal associated to I . If 1' is a prime, we sometimes 
write p^ n^ instead of (P n) . We say I is a v-ideal 

η 
of finite tvpe if I = (Σ a.A) for some a. ε Κ . Let 
D (A) be the set of v-ideals of finite type, P(A) the 
set of principal ideals and Cart(A) the Cartier group 
of invertible ideals of Aj one has the folJowing inclusion: 

4 
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P(A) <=—> Cart(A)^—* Dt(A)^-—>D(A)<=—->I(A) 

A domain A is a Dedekind domain if and only if 
Cart(A) = I(A) or if and only if D(A) = I(A) 

Principal 

UFD Dedekind 
ι : 1 ι 1 

p(A)c >Cart(A)* > D(A) c > I(A) 

We will complète this diagram later (§3)· 

We say a ring A [resp. on idéal I of A] satisfies 

locally a property Ρ if each Ap [resp. each IAp] 
satisfies the property Ρ for every Ρ ε Spec(A). For 
instance, a ring A is locally a UFU if every Ap for 
} ε Spec(A) is an UFD. An idéal 1 is invertible if and 
only if I is finitely generated and locally principal. 

(1-2) Let ^i^iei a i a m u y of subrings of a field Κ . 
We say this family satisfies (FC) ("finiteness condition") 
if every non real élément χ ε Κ is a unit in every A^ 
but finitely many of them. 

A domain A is a Krull domain if there exists a 

family ^ ΐ ^ £ ε ι °^ discrète valuation rings in Frac(A) , 
satisfying the finiteness condition and such that A = f \ 

i 
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Recall that if A is a Krull domain, then 
A . /Ο A p , the A p are discret valuation rings, the 

ΡεΧ ν ι'(Α) V V 

family (Α π) satisfies (FC) and if (V.). T is 
P (i) 1 ι ε Ι 

another family of discrète valuation rings satisfying the 

same conditions then for every Ρ ε X ^ \ A ) , their exists 

i ε I such that A n = V. . The A N are called the 
Ρ ι Ρ 

essential valuation rings of A . 

If A is a Krull domain, then Div A is a free 

abelian group with {div P} n . as a basis; the 
ΡεΧ ν ΐ ;(Α) 

subgroup of principal divisors is denoted by Prin(A) , 
the quotient group D i v ( A ) | p p i n ( A ) = et(A) is called the 
class group of A and the canonical image of Cart(A) in 
c£(A) the Picard group of A denoted by Pic(A) · In a 
Dedekind domain, cl(A) = Pic(A). 

Let Y be a subset of X^"^(A) ; the ring 
Α γ = ̂ ""̂  A p is a Krull ring called a subintersection 
χ ρ ε γ Y 

of A ; for instance one can prove every ring of quotients 
is a subintersection. 

(1-3) Let A be a Krull ring, Α γ a subintersection, Y 

the set complément of Y in X ( 1 ) ( A ) and G (Y) the 

group generated by the canonical image of Y in c£(A)· 

then there exists a canonical map cl(A) c£(Ay) and 

CLABORN [C ] proved that the following séquence of groups 

i s exact : 
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LCLAB] 0 + G (Y) + cl(A) + c£(A y) + 0 

In particular, if S "''A is a ring of quotients of A^ 

then c£(A) + cl(S ^A) is surjective and its kernel is 

generated by the images of the height one primes which 

meet S 

(1-4) Spécial notations and terminology 

A R overring of a domain A is a domain Β such 
that A C Β dFrac(A). Following Gilmer, we write A(x) 
the quotient ring S A[x] where S is the set of 
polynomials whose coefficients generate the unit idéal. 
If S is a multiplicatively closed set of ideals of A , 
then A 0 will dénote the S-transform of the generalized  
quotient ring of A with respect to S (see [ARB]). 

A domain A is cohérent if the intersection of 
two ideals finitely generated is an idéal finitely generated. 

Ail the rings are domains; for instance the 
valuation rings or the Krull rings are actually domains. 
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§ 2 · Local Properties 

( 2-1) GCD-domains 
A GCD-domain is a domain A satisfying the 

following équivalent conditions: 

i) aA Λ bA is principal for any a,b € Frac(A) ; 
ii) A: (A: aA + bA) is principal for any 

a,b 6 Frac(A) ; 
iii) Every finitely gençrated v-ideal is principal 

(i.e. D t(A) = P(A)). 

For instance, UFD 1s, Bezout rings and so valuation rings 
are GCD-domains. If A is a noetherian or a Krull domain 
one checks that A is a GCD-domain if and only if A is 
a UFD. 

A GCD-domain A is integrally closed and Pic(A) = 0 . 
But an integrally closed domain A with Pic(A) = 0 is 
not necessarily a GCD-domain. Let f ε A[x] ; the v-ideal 
of A generated by the coefficients of f is a principal 
idéal, denoted cCf)^ and called the v-content of f . 
If c(f) = aA , then f = af # with c(f*) = A . 
A polynomial f ε A[x] such that c(g) = A is called 
a v-primitive polynomial. Any Ρ ε Spec(A[x]) such that 
Ρ f\ A = (0) contains a v-primitive polynomial. 

Properties of v-contents can be found in [Me] and 
[T]. For instance, if A is a GCD-domain and f ε KLx] , 
then there exists a ε c(f)""^ such that 
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fK[x] Π ALx] = afAlx] 

If A is a GCD-domain^the rings A[x], A(x) 
and any localizations of A are also GCD-domain. 

(2-2) Locally GCD-domains 
(2-2-1) Lemma. For a domain A, the following assertions 

are équivalent 
i) A M is a GCD-domain for any M ε Max(A) ; 

ii) Ap is a GCD-domain for any Ρ ε Spec(A) ; 
iii) aA i\ bA is locally principal for any a,b ε A 

Proof. i)-=^ii). It is enough to notice that if P is a 
prime and M a maximal idéal containing P then 
aA p Γ\ bA p = Α ( Α Μ ) Ρ Δ Γ\ b ( A M ) D A is principal. The remainder 

parts are clear. U 

Définition . Any ring A which satisfies any one of the 
équivalent conditions of the above lemma is called a locally  
GCD-domain. 

For instance, GCD-domains, regular rings, and 
Priîfer rings are locally GCD-domains. The following resuit 
is obvious: 

(2-2-2) Proposition. Let A be a locally GCD-domain; then 
A is integrally closed and S^A , A[x] and A(x) 
are locally GCD-domains. 
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The Picard group of a GCD-domain is null; but 
any commutative group G can be the Picard group of a 
locally GCD-domain: consider a Dedekind domain A such 
that Pic(A) = cl(A) = G ; [Cl. Furthermore: 

(2-2-3) Proposition. A locally GCD-domain is a GCD-domain 
if and only if 
a) Pic(A) = 0 ; 
b) aA Π bA is finitely generated for any a,b ε A 

Froof. If aA Π bA is finitely generated, then, since it 
is locally principal, it is invertible and so principal 
(Pic(A) = 0). U 

(2-2-4) Corollary (Zaffrullah). Let A be a locally 
GCD-domain such that 
a) Pic(A) = 0 ; 
b) (A ) 

MeMaxA s a t i s f i e s "t h e (PC) 
Then, A is a GCD-domain. 

Proof. By (2.2.3), it is enough to prove aA C\ bA is 
finitely generated for any a,b ε A , which is nothing 
more than [GI; 37-3]. D 

Of course, (b) is not a necessary condition for a 
ring to be a GCD-domain: consider for instance, k[X,Y] where 
k is a field. 
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Let A be a semi-local domain; then the following 
assertions are équivalent: 

i) A is locally a GCD-domain; 
ii) A is a GCD-domain. 

(2-2-5) Remarks. Let A be a locally GCD-domain. Then: 

a) A is a Krull ring if and only if 
* (A p) n x satisfies the (FC); 

r ΡεΧ^ ΐ ;(Α) 

* A M is a UFD for any M ε Max(A) 

b) If A is noetherian, then necessarily A 

is a Krull ring and furthermore A is a UFD 
if and only if Pic(A) = 0 . 

A ring A is called reflexive LMT^] if every 
submodule Ν , of a finitely generated torsion-free 
A-module M is a ref lexive A-module (i.e. Ν ~ Ν) 

(2-2-6) Lemma (Matlis). Let (A,M) be a local ring and 
χ ε Frac(A)/A a non élément; then Ann^(x) is 
an irreducible idéal. 

Proof. see [MA^] 

(2-2-7) Corollary. Let A be a locally reflexive and 
locally GCD-domain; then A is a Prufer domain. 
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Proof. We hâve to prove A^ is a valuation domain for any 
M ε Max(A) ; so we can suppose A is a local, reflexive, 
GCD-domain. Let a,b ε A and let c ε A be an élément 
such that aA A bA = cA · If χ = - + A ε Frac(A)/A , 

c 
then Ann A(x) =cA ; by (2-2-6), cA is irreducible and 
so cA = aA or cA = bA , i.e. aA C bA or bA C aA . • 

The next proposition generalizes [GS, 11-5]· 

(2-2-8) Proposition . Let A be a cohérent ring; the 
following conditions are équivalent 
i) A is a locally a GCD-domain; 

ii) the intersection of two non zéro principal 
ideals of A is an invertible idéal. 

Proof. (i) ==> (ii). Let a,b be two non zéro éléments 
of A ; then aA f\ LA is finitely generated and locally 
principal ; 

(ii) => (i) aA^ Π bA^ = (aA /Λ bA)A^ is principal 
because aA C\ bA is invertible. U 

(2-2-9) Notice. In [AA] D.D. Anderson and D.F. Anderson 
study a class of rings, ca]led generalized GCD-domains or 
G-GCD-domains. Instead of aA A bA principal, they only 
want to have aA Λ bA invertible. So a GCD-domain is a 
G-GCD-domain and a G-GCD-domain is locally a GCD-domain. 
Connections between G-GCD-domains and other kinds of 
rings and properties of G-GCD-domains can be found in [AA]. 



Survey on local ly factorial Krull domains 

13 

(2-2-10) Problem 1. Is a locally GCD-domain of 
dimension 1 a Prufer ring? 

2-3 Locally factorial domains 
A domain A is locally factorial (or locally UFD) 

if it satisfies the following équivalent conditions: 

i) A M is factorial for any M eMax(A) ; 
ii) AfJ is factorial for any Ρ ε Spec(A) 

Factorial domains and regular domains are locally UFD. A 
locally factorial domain is not necessarily noetherian nor 
is it necessarily a Krull domain; a Krull domain, like 
k[x ,y,u,v]/(xy-uv) , is not a locally UFD (see LBO^]). If 
A is locally UFD then it is a locally GCD-domain. For 
any abelian group G there exists a locally factorial 
domain A such that Pic(A) = c£(A) = G 

(2-3-1) Proposition. Let A be a locally factorial domain, then 
a) A is an intersection of discrète valuation 

rings ; 

b) A is completely integrally closed; 

c) S~^A , A[x] and A(x) are locally factorial 

domains ; 

d) Any non zéro prime contains a height one prime; 

e) If I is a finitely generated idéal which is 

locally divisorial; then I is invertible. 
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Proof. a) Because A = 
HeMa^l Ρ ε χ < 1 ' ( Α ) 

b) and c) are clear. 
d) If Q ε Spec(A), then QA contains a height 

one prime PA and so Q contains the 
height one prime Ρ 

e) Let M ε Max(A) ; if I φ. h then ΙΑ^ = A^ ; 
if I C M then IAX1 , which is divisorial 
in the UFD A^ , is principal. So I is 
1 ο c a 11 y ρ r i η c i ρ a 1 · L J 

(/'-.']-/) Proposition. Let A be a locally factorial domain, 

a) A is a Krull ring if and only if every principal 
non zéro idéal has finitely many minimal primes. 

b) If A is noetherian or if ( A
M > M e M a x ( A ) 

satisfies the (FC), then A is a Krull ring. 

1 roof . ι) Follows (2-3-la) and (b) is a conséquence of 
( a ) . ι j 

Krull rings which are locally UFD will be studies 
i ι . § 3 . 

(2-3-3) Proposition (Matlis). Let A be a locally 
factorial domain; then A is a Dedekind domain 
il and only if A is reflexive. 
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Proof. * If A is a Dedkind domain, then A is reflexive 
[HT2 , Th. 40] . 

* Suppose A is a reflexive domain; so for any 
M €. Max(A) , the ring A M is reflexive [ΜΤ' , Th. 31] and 
so, by (2-2-2), A^ is a valuation ring which proves A 
is a Priifer domain. We have only to prove that A is a 
noetherian ring. 

Let M c Max(A) ; the valuation ring A^ is a 
UPD and so a discrète valuation ring. Thus dim A = 1 

Furthermore, A^ is reflexive and integrally closed; by 

[HA^, 3-5], M is finitely generated. By Cohen1 s 

theorem, A is a noetherian ring. U 

(2-3-4) Proposition. Let A be locally factorial and 

suppose Pic(A) = 0 . The following assertions 

are équivalent. 

i) A is a UFD ; 

ii) A is a Krull ring and aA A bA is finitely 

generated for any a,b ε A 
iii) The height one primes of A are finitely 

generated· 

Proof. (ii) => (iii). In a Krull ring, any height one prime 
Ρ is divisorial, and so is the intersection of two principal 
ideals and hence finitely generated. 

(iii) => (i). Let Q G Spec(A) ; then Q contains 
a height one prime Ρ by (2-3-1-d). Such a Ρ is finitely 
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generated and locally divisorial, so it is invertible 
(2-3-1-c) and then principal because Pic(A) = 0 · Any 
domain A in which every prime contains a principal 
prime in a UFD (see [K]). U 

(2-3-4) Corollary. Let A be locally factorial with 
Pic(A) - 0 . I f one of the following properties 
is satisfied then A is a UFD : 
a) A is noetherian; 
b) A is a cohérent Krull domain; 
c) (A M) satisfies the (FC) and aA C\ bA is 

finitely generated for any a,b ε A ; 
d) (A p) n . satisfies the (FC) and aA f\ bA 

1 ΡεΧ ν ΐ ;(Α) 
is finitely generated for any a,b ε A 

Of course we could add several other sufficent 
conditions. Let us notice that the last one (d) is also 
necessary. 

(2-3-5) Notes. * Let A be a regular domain, A is a UFD 
if and only if Pic(A) = 0 

Ή Let A = Φ be a noetherian graded Krull ring where 
n>0 

A n is a field. Then A is factorial if and only if A 
is locally factorial, since if M = Φ A , then [B0 ?] 

η>1 n 

cf.(AM) = cl(A) . 

f̂c-In view of some of the results in this section it 
would be interesting to know the answer to the following 
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questions asked by I. Papick: What are the cohérent 
Krull domains? 

^j/r We donft know examples of a locally factorial 
domain A with Pic(A) = 0 and which is not a UFD. 

17 



Survey on local ly factorial Krull domains 

18 

§ 3. Locally Factorial Krull Domains 
Like Dedekind domains or Prufer domains, the 

locally factorial Krull domains can be characterized by 
many différent conditions. Almost ail of them can be 
found in I_A2 ] , [AAJ] , [AM], [GI] and [L] where the 
locally Krull domains are called π-domains. 

(3-1) Examples of locally factorial Krull domains. 
Any factorial domain and any regular domain is a 

locally factorial Krull domain. 
Let A be a locally factorial Krull domain; then 

/^Xi"^iel is a locally factorial Krull domain. 
For any commutâtive group G and any n _> 1 there 

exists a locally factorial Krull domain A such that 
dim A = η and c£(A) = G . Indeed: if η = 1 , this 
is nothing more than Claborn's theorem [C]; if η >̂  1 
we have only to consider A = R[x.,x o 5 ...,x ] (on 

J 1 ζ η 
f η is infinité) where R is a Dedekind 

domain with c£(R) = G 

(3-2) Proposition. Let A be domain; the following 

assertions are équivalent: 

i) A is a locally factorial Krull domain; 

ii) Every divisorial idéal of A is uniquely a 

product of height one prime ideals of A ; 

iii) Every non zéro prime idéal of A contains 

an invertible prime idéal; 
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iv) A is a locally factorial ring in which the 
height one primes are finitely generated; 

v) A is a Krull ring and the height one primes 
are invertible; 

vi) A is a Krull ring and Pic(A) = cl(A) ; 
vii) A is a locally GCD-Krull ring; 

viii) A is a Krull ring and the product of two 
divisorial ideals is divisorial; 

ix) A(x) is factorial. 

Proof. (i) (ii) Let I be a divisorial idéal of A 
e . 

and let us write I = A: (A: Π P..1) in the Krull ring A 
e . 

Let M be a maximal idéal; then IAK, = A M : (A,,: II P.1 A,.) ' h M M ι M e . 
Because A^ is factorial IA^ = (Il )A^ and then 

e . 
I - II P^" · Of course, such a product is unique. 

(ii) => (iii) is immédiate. 
(iii) —> (iv) Note that every height one prime is 

invertible and so finitely generated. Now, let M ε Max[A] 
and PA^ ε Spec(A^) ; then PA^ contains an invertible 
prime QA^ which is principal. So, every prime in A^ 
contains a principal prime, thus A^ is factorial. 

(iv) -> (v). By (2-3-1-b) A = [ \ A p and 
( 1 ) ΡεΧ (A) 

(2-3-1-e) the height one prime are invertible. So we 
only have to prove that the family (A p) M v 

V ΡεΧ ν ΐ ;(Α) 
satisfies (PC). Let Β = A 0 where S is the idéal 
System generated by the height one primes and QB a prime 
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Β . By (2-3-1-d), Q contains a height one prime P ; 
but P is invertible so PB = Β and a fortiori QB = Β 
That means Β = Κ . Now let χ be a non zéro élément 

in A ; there exists height one primes Ρΐ'···» Ρ
η
 a n C* 

e, e 
intègres e. such that Ρ, ...Ρ n C xA . So the set of 

& ι 1 η 
height one primes containing χ is finite. 

(v) => (vi) Let I be a divisorial idéal, there 

are height one primes P i 5 # e e ' P
n
 a n c* integers e i > e # # > e

n 

e . e . 
such that A: I = A: Π P.1 . But Π P.1 which is ι . ι ι ι 

e i 
invertible is a divisorial idéal and so I = Π P. is als 

i 
an invertible idéal. 

(vi) => (vii) Let M be a maximal idéal and 
a,b ε A ; the idéal aA bA is divisorial and so is 
invertible; thus aA M bA^ is principal. 

(vii) => (i) Let M be a maximal idéal; the ring 
A^ is a Krull ring and so it is a UFD. 

(vi) > (viii) Because the set of divisorial 
ideals is a group. 

(viii) => (ix) The ring Β = A(x) is a locally 
factorial Krull ring. Furthermore, in this ring, the 
invertible ideals are principal (see [A^J). So 
c£(B) = Pic(B) = 0 . 

(ix) => (v) A + A(x) is faithfully flat; so 
[F; 6-10] A is a Krull domain. Let P a height one 
prime in A ; the idéal PA(x) is principal and so 
[F; 6-10] P is invertible. U 
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We can now complète the diagram given in §1. 

Principal 

UFD(c£(A)=0) Dedekind 

P(A)« *Cart(A)< >D t(A)* *D(A) e * H A ) 

I I l JL I 
Pic(A)=0 locally UFD 

GCD-domains Dedekind 

Let A be a locally factorial Krull domain; then 

A is factorial [resp. Dedekind] if and only if 

Pic(A) = 0 [resp. dim A = 1]. 

(3-3) Proposition. Let A be a locally factorial Krull ring. 

a) If A is not factorial then A has infinitely 

many height one primes which are not principal. 

b) For any height one P one has p^ n^ = p n 

for any η 
c) Any divisorial idéal is pure of height one and 

a product of height one prime ideals. 
d) Any primary divisorial idéal is a power of a 

height one prime. 
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Proof. a) See [BC^] 
b) is clear. 
c) Any divisorial idéal is a product of height 

one primes. 
d) If I is a primary divisorial idéal and if 

s e. 
I = Π Ρ.1 where the P. are height one 

1 1 1 

prime, then /Γ = P i = p
1 - - - p

s · I f 1 

is primary, then s = 1 . • 

(3-5) Proposition (D.D. Anderson). Let A be a locally 
factorial Krull domain and B an overring of A . 
The following assertions are équivalent: 

i) B is A-flat; 
ii) B is a generalized quotient ring of A ; 

iii) B is a subintersection; 
If B satisfies any of the above conditions, then 
B is a locally factorial Krull domain. 

Proof. (i) (ii) => (iii) see [ARB, Th 1.3 and 2.2]. 
(iii) => (i). Let B = A p be a subintersection 

ΡεΥ 
and S the multiplicatively closed set of ideals of A 
generated by the height one primes which do not belong 
to Y . Then B = A c 

In A , any height one prime Ρ is invertible; so 
PB is invertible and thus divisorial. Let I ε S ; if 

e . 
IB / B then div IB = div Π P.XB with P. ε Y and 

ι ι 
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I C IB Π Λ C P^B Π Α = P. which is impossible because 
I ε S . 

Let us prove now that B^ = for any 
Q ε Spec(B) (see [RI]). Let χ = ̂ - € B Q and I-^Ig € S 

such that sxl 1 C A so sl 2 C A · Then sxl-^ C A 
Let P = A O Q . We have I^I^ φ. Ρ (if not 
B = I 1I 2B C P B C Q ) . Let b be an élément in I I - Ρ . 
Then sxb ε A 

But s i Q and b t Q so sb i Q ; since 
sl 2 C A and b ε I^I2

 w e h a v e sb ε A , so sb ε A - Ρ 
and χ ε Ap . U 

(3-6) For a Krull ring A, Claborn [C] has shown: 
every subintersection is a ring of quotients if and only 
if c£(A) is a torsion group. So, if A is a Dedekind 
domain with a class group which is not a torsion group, 
then there exists a subintersection B which is not a 
ring of quotients ) notice that A and B are locally 
factorial Krull domains. Thus the condition MB is a 
quotient ring of A" is not équivalent to the conditions 
in (3-5). In [Βϋ 2, p. 47] we asked for an explicit 
example. Using a construction of Eakin and Heinzer [LIi] 
we now give such an example 

(3-6-1) Lemma (Eakin and Heinzer). Let η >_ 1 be an 
integer. There is a Dedekind domain A^ such that 

llxl C A n d ^Lx] and c£(An) = Έ η . 
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Proof. The main idea of the proof is to choose a suitable 
simple transcendental extension of φ . Let ρ > ϋ 
be a prime integer, v the p-adic valuation with ^(p) 
as the valuation ring and the ring of p-adic integers. 
Let t ε IL be a transcendental élément with p-aaic 

P F 

value one. Then, V = (\ (H t] is a discrète rank one 

and an extension of Έ, \ to ©Lt] with F as the 
(p) ^ p 

residue field. Now, for any integer k >_ 1 , the 
k 

^-automorphisms of ^(t) defined by t H- ρ t 
give distinct extensions of "^(p) t o Ç t "t 3 . Now, 
let Vn,...,V L n be n + 1 distinct rank one discrète 

1 n + 1 

valuation rings of $(t) prolonging the p-adic valuation 

v and let vi>'**' v

n+i ^ e their valuations. The ring 

An = Υ 1 Λ ·· - ^ ν η + 1 ^ ^ C t 3 

is a Krull ring and A [-] = $[t] 
η ρ 

Let (W-). T be the family of essential valuation ι ι ε I J 

rings of Ql.t]; their residue fields are algebraic 
extensions of $ LB, p. 106j, so none of them are 
équivalent to any of the and thus the essential 
réduction rings of A are the V.fs and the W. fs u η 3 ι 

Because the \Λ are the essential réductions ring 

of A containinp, ρ . in order to see that A is a η & ^ / η 
Dedekind domain (i.e., dim A = 1), we only have to prove 
that the Q. =•M. Π A are maximal where M. is the <ι ι η ι 
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maximal idéal of V. . It follows from 
ι 

(F + A , -> V. | M = IF that A , n is a field. P n|(<i i|Mi p n|Q i 

Because c£(A^L~]) = 0 , by LCLAB], the class group 
c£(A) is generated by the c£(Q^) for i = l,...,n + 1. 

n + 1 
If G = θ TL div Q. , then 

i = l 1 

C l ( A ) = G|GAPrin(A) 

n+1 d d + 

Now, let d = Σ div Q. . Because pA = ϋΊ ...Q ^ Ί , 
ι r η xl xn + l ' 

we have d. =v.(p) = l , s o ρΑ = 0Ί·.·0 and ι ι r r η xl <n+l 
d - div(Q i e..Q ^) = div(p) ε Prin(A). That proves 
dE C Prin(A ) Π G . Suppose now that 6 = Σ a. div Q. = η ι xi 

div(f ) with f ε $[t] , be an élément in Prin(A ) C\ G ; 

a l a +1 
front fA^ - •••Qn+i w e g e t f is a unit in $[t] , 
so f c and a^ = v^(f) = v(f) . Now, 
6 = v(f) Σ div Q i = v(f)d ε dZ . Then 

n + 1 
cl(A . Ί) = ( Φ Έ div Q.)/dE = Έ η . U 

n + 1 i = l 

Note. By a slight modification of the proof, Eakin and 
Heinzer show that for any commutative finitely generated 
group G , one can find a Dedeking domain A such that 
T[x] C A C Ç L x ] and c£(A) = G . 
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(3-6-2) Lxample. With the previous notation, take 

A = A } = V Λ V 2 Λ ÇLt ] and Β = ν χ f\ Q [ t ] . 

The ring A is a Dedeking domain with class group Έ 
and Β is a subintersection of A . (Notice Β is 
A-flat). If there exists a multiplicatively closed subset 
S of A such that Β = S "*Ά , then for every s ε S 
the prime idéal Qr will be the only one height one 

ex 
prime m A contaming s . So, we get sA = 
with α >_ 1 and ac£(Q2) = 0 which is impossible in 
Έ . This gives the explicit example previously asked 
for. LJ 

(3-7) The following resuit generalizes [T, 2.2]. 

Proposition. A locally factorial Krull ring is factorial 
if and only if every irreducible élément générâtes 
a primary idéal. 

Proof. Let A be a locally factorial Krull ring in 
which even irreducible éléments générâtes a primary idéal. 
Let Ρ ε X ^ \ A ) ; because Ap is a DVR , there exists 
a ε A such that PAp = aAp ; in the Krull ring A we 
can write a = b-, . .b where the b. are irreducible 

l n ι 
in A . But a is irreducible in Ap ; so 
aA n = bn...b A~ implies ail the b. but one are 

P 1 η P y ι 
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units in Ap . So one can suppose aAp = b^Ap with 
b , irreducible in A ; so aA is a primary idéal and 

Ρ = PA p Π A = aA p Π A = aA U 

(3-8) Let A be a Krull domain and G(A) be the group 
defined by 

G(A) - c £ ( A ) | p i c ( A ) . 

From (3-2), one has: A is locally factorial if and only  
if G(A) ~ 0 . For instance, let 

A = lR[x,y]/(x2+y2-l) ; then [F, p. 113] 

c£(A) = Pic(A) = Έ | 2 Ε 

and so, G(A) = 0 
Since the size of G(A) indicates how a Krull 

rings is from a locally factorial ring, the study of 
the group G(A) is naturel. For instance, in [BEO] (Prop. 
1-9) an example is given of a noetherian Krull domain 
A such that 

• G(A) is a torsion group; 
• c£(A) is not a torsion group; 

• Pic(A) i c£(A) · 
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As was notée! by D.D. Anderson [A 2], for a Krull 
domain A the following assertions are équivalent: 

i) G(A) is a torsion group; 
ii) For each rank one prime Ρ of A , p^ n^ 

is invertible for4 some η > 0 ; 
iii) If I and J are invertible ideals , then 

there exists an integer η > 0 such that 
I n Λ J n is invertible. 

Questions. 1) Is every abelian group G equal to G(A) 
for some Krull domain A ? 

2) Let A B be a morphism of Krull rings. 
What are the relations between G(A) and G(B) where 
B = S"1A or A[x] or A + B is 4 flat or faithfully 
flat morphism? 

Few properties of the group G(A) can be found 
in [F] and the noetherian Krull domains for which G(A) 
is a torsion group are studies in [BEO] and [M]. This 
study could be done for Krull rings. 

(3-9) We end this paper with three questions from [AAJJ: 
1) Let A be a Krull domain; are the following 

assertions équivalent : 
i) A is locally factorial; 

ii) Ρ Γ\ Q - PQ for any two distinct height one 
primes ; 

iii) The product of two height one primes is a 

divisorial idéal? 
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2) Let A be a Krull ring such that 
i) Pic(A) = 0 ; 

ii) Ρ Π Q = PQ for any two distinct height one 

primes. Is A a UFD? 

3) Let A be a locally factorial Krull ring. 
Are the following assertions équivalent: 

i) dim A £ 2 ; 

ii) Ρ C\ Q = PQ for any incomparable primes; 
iii) Lvery idéal is a product of primary ideals? 

When A is a noetherian domain, the answers to thèse 

three questions are positive (see [AAJ]). 
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ADDENDA. 

D.D. ANDERSON and M. ZAFRULLAH who have seen a preliminary 

version of this paper have sent to me sorne answers and remarks. 

* Answer to problem 1: A locally GCD-domain A of dimension 

1 is a Prufer domain. 

Indeed, if M is a maximal ideal of A , then A w is 
' M 

a one dimensional GCD-domain. So , by a resuit from 

SHELDON, P. in "Prime ideals in GCD-domains" Canad. J. Math 26 

(197U), 98-107, A M is a Bezout domain, and then, a 

valuation domain. 

Furthermore, ZAFRULLAH noticed: "A locally GCD domain A 

is a Prufer domain if and only if Spec(A) is a tree11. 

* Examples of not factorial locally factorial domains A 

with Pic(A) = 0 . 

1) Let A be an almost Dedekind domain which is not a 

Dedekind domain (such domains can be found in [61])· Then, 

A is a Prufer domain of dimension 1, non-noetherian and A^ 

is a discrète valuation domain for every M ε Max(A) . So, 
A is locally factorial and by (2-3-1), A(x) is also locally 
factorial. But D.D. ANDERSON has proved, in "Some remarks on 
thé ring R(x) M in Comment. Math. Univ. St. Pauli XXVI 2 (1977) 
137-mO that Pic(A(x)) - 0 . Because A is not a Krull 
domain, by (3-2), A(x) is not factorial and so it provides 
the example. 
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2) In n0n Prufer v-rnultiplication domains" (to appear), 
MOTT and ZAFRULLAH give an example of a non-GCD-domain A 
which is locally factorial and which is a Schreier domain. 
But in "On pre-Schreier domains" (to appear), ZAFRULLAH has 
proved that the Picard group of a Schreier domain is null. 
So A provides another family of examples. 

* (2-3-5) can be generalized in the following way : 
Let A = Φ A be a graded Krull domain; then, A is 

n>0 n 

factorial if and only if A is locally factorial and 
Pic(A ) = 0 ο 

Indeed, a Krull domain is semi-normal and by a resuit 
from D.F. ANDERSON in "Semi-normal graded rings" (to appear), 
one has Pic(A) = Pic(A ) so the resuit is a conséquence 
of (3-2). 

* The study of properties of the group G(A) = C£(A)|Pic(A) 

will appear in a forthcoming paper: "The G-group of a Krull 

domain" by A. BOUVIER . 


