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Manuel Valdivia 

N. Bourbaki, [1, p.35] notices that it is not known if every bornological 

barrelled space is ultrabornological. In [ 2 J we proved that if E is the topological 

product of an infinite family of bornological barrelled spaces, of non-zero 

dimension, there exists an infinite number of bornological barrelled subspaces,which 

are not ultrabornological. We also gave some examples of barrelled normable non 

-ultrabornological spaces. In [3] we gave an example of a bornological barrelled 

space E , such that E is not inductive limit of Baire espaces. We prove in this 

article that the example given in [3] is not inductive limit of barrelled normed 

spaces. Other result given here is the following: If E and F are two infinite 

dimensional Banach spaces, such that the conjugate of F is separable, there exists a 

family in E of precompact absolutely convex sets { B :seS} such that, for every seS, 
s 

E B S = F , Eg s is the second conjugate of F , being B S the closure of B G in E , and E is 

the inductive limit of the family {E n :seS}. 
**s 

The vector spaces we use here are defined over the field K of the real or 

complex numbers. We mean under "space" a separated locally convex space. If T is the 

topology of a space E we shall write E[T1 sometimes instead of E. If A is a bounded 

absolutely convex set of E, then E^ denotes the normed space over the linear hull of 

A, with the norm associated to A. We say that {x^°°n-^ is a Cauchy (convergent) 

sequence for the Mackey convergence in E if there is a bounded closed absolutely 
oo 

convex set B in E such that { x ^ } ^ ^ is a Cauchy (convergent) sequence in E^. We say 

that E is locally complete if every Cauchy sequence for the Mackey convergence in E 

is convergent in E. We represent by E the completion of E. If F is the family of all 

locally complete subspaces of £, which contain E, its intersection is a locally 

complete space E and we call it the locally completion of E. We say that & subspace 

E of F is locally dense if, for every xcF, there exists a sequence ^ x

n ^ n - ^ °f 

elements of E, which converges to x in the Mackey sense. We say that a space E is a 

Mackey space if it is provided with the Mackey topology. 

We shall need the following result , 12] : a) Let E be_ a_ locally dense subspace  

of â  space F. If̂  E is bornological, then F is_ bornological. 

THEOREM 1. If E is a bornological space, then È is_ bornological. 

Proof: Let {E^:iel} be the family of all bornological subspaces of è, containing E. 

We show now that {E^:iel} with the inclusion relation is an inductive ordered set. 

Indeed, let {E_.:jeJ} be a totally ordered subfamily of {E^.:iel} and we set 

F= U {E_. : jeJ}. Since F is a Mackey space and is dense in F, for every jeJ, we have 

that F is the inductive limit of the family {E.:jeJ} and, therefore, F is 

bornological. By Zorn's lemma, there exists a bornological subspace G of E 
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containing E, which is maximal, refered to the family {E^riel}. We shall see now 
that G coincides with E. Indeed, if G*E, G is not locally complete and, therefore, 

a, 

there exists a vector x in E, x^G, such that if M is the linear hull of G U ( x } , 
then G is locally dense in M and, by result a ) , we have that M is bornological,which 
contradicts the maximality of G in {E^:iel}. q.e.d. 

For the proof of Theorem 2 we shall need the following results: b) Let E be a 
barrelled space. If F is_ a_ subspace of E, of finite codimension, then F is^ barrelled, 
M.c) Lf E is_ a_ metrizable barrelled space,then it is not the union of an increasing  
sequence of closed, nowhere dense and absolutely convex sets, [5]. d) Let E and F 
be two spaces so that F Is a_ Ptak space. If u _is an almost continuous linear mapping  
from E into F and the graph of u is_ closed, then u _is continuous, 16, p.302 ]• 
THEOREM 2. Let E be a non-complete (LB)-space. Let x Q be a_ point of E which is not  
in E. Lf G is_ the linear hull of E U {x Q} with the by E induced topology, then 6 is  
not the locally convex hull of barrelled normed spaces. 

Proof: Let tE n> ^ be an increasing sequence of subspaces of E such that 
U{E n:n=l,2,..}=E. Let T be a topology on E finer than the topology of E , such 
that ET, | T ] is a Banach space and E is the inductive limit of {E |T 1} „ *If B n n ^ n 1 n J n=l* n 
is the unit ball in E R let ^ n ^ - l ^ e a s " t r ^ c t increasing sequence of positive 
numbers such that A B -B A and U {A B :n=l ,2,.. }=E. We suppose that G is 

n n+1 n+1 n n 5 ' 
the locally convex hull of the family {G^:iel} of normed barrelled spaces. Since E 
is dense in G there exists an element i in I such that G-r H E is dense in G-? • Let 

o -'-o J - O 

j be the injective mapping of G^ 0 E» with the by G ^ q induced topology in E. If A n 

is the closure of j" 1(X nB n) in R E , then U {A n:n=l,2,.. ) sGj fl E. According to 
result b ) , we have that G^ O E is barrelled and, by result c ) , there exists a 
positive integer n Q such that A n Q is a neighbourhood of the origin in Gi flE. Let L 
be the linear hull of J~*(^n 0^n 0) with the by Gj^ induced topology. Let k be 
the canonical mapping of L into E n . Since k, considered from L into E is the 

o 
restriction of j to L we have that k is continuous from L into E and,therefore, 
the graph of k is closed in LxE n Q . Obviously, k is almost continuous and,according 
to result d ) , u is continuous since E n Q is a Banach space. Since L is dense in 
Gj^nE we have that L is dense in G^ and, therefore, we can take a point y QeGj , 
yo£ Gi onE and a sequence ^Y n^n=l ^ n L c o n v e r g i n g t o Yo * n G i 0 * I f u * s t^ i e 

canonical mapping of G^ in G, we have that 
lim u(y n) = lim k(y n) = y0ij:E 
n—>°° n— >°° 

and since En^ is a Banach space it results that 

lim u(y ) = lim k(y ) = y eE C E n n J o n Q 

n >°° n >°° 

which is a contradiction. q.e.d. 
* We put now E n instead E n fT n]. 52 
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In I 7, p.43^] G. Kothe gives an example of a non-complete (LB)-space which 
is defined by a sequence of Banach spaces such that there exists a bounded set A in 
E which is not a subset of E n , n=l,2,.. If B is the closed absolutely convex hull 
of A, then E_ is not a Banach space, (see [3], proof of Theorem 2 ) , and, therefore, 
E is not locally complete. We take x^E, xeE. If G is the linear hull of E U (x } $ 

with the by E induced topology, then G is barrelled and,by result a ) , G is 
bornological and, according to Theorem 2, G is not inductive limit of normed 
barrelled spaces. 

In [8 ] Markushevich proves the existence of a generalized basis for every 
Banach separable space of infinite dimension, (see also [9] p. 116). In the 
following Lemma we give a proof of the existence of basis of Markushevich, which 
is valid for Frechet spaces, and we shall need it after. Given a space E we 
represent by E 1 the topological dual of E and by a(E f,E) and 6(E f,E) the weak 
and strong tooologies on E 1 , respectively. 

LEMMA. Let E be_ â  separable Frechet space of infinite dimension. If G is_ a_ total 
subspace of E' [a(E',E)] cxf countable dimension, there exists a biorthogonal 
system {x ,u }°° A for E, such that {x } is total in E and the linear hull of —* n n n=l n 
tun}°° A coincides with G. 

Proof: In E let ^n^n-l ^ e a c o n v e r S e n t t o t* i e o r i g i n total sequence and let B 
be the closed absolutely convex hull of this sequence. Let ^ n ^ - l ^ e a s e ( l u e n c € 

of non-zero elements of K, such that z n= * n y n , | |z n| |<l/n, being | |. || the 
2 

norm in the Banach space E D . Let f be the mapping of t into E D such that if 
2 

{ an }n=l € 1 • t h e n 

f({a }• ) = f a z n n=l n=l n n 
Since 

«„1x1 ^ i 2 > 1 / 2 <„ i a ^» 2 > 1 / 2 

we have that f is well defined and it is continuous. Let U be the closed unit ball 
2 2 in t and we set f(U)=A. Then the Hilbert space I /f-l(O) can be identified with 

E A and, therefore, E^ is a Hilbert space. Obviously, E^ is total in E and thus E f 

is weakly dense in ( E A ) f . Let ^vn^n~*l ^ e a H a x n e ^ ^ a s i s ^ n G. * n 

( E A ) ! [B((E )f,E )] we apply the orthonormalization method od Gram-Schmidt and 
A A A 

we obtain an orthonormal sequence ^Un^-l ^ r o T n ^ vn^n~l" ^ ^^^n^l * s t* i e 

sequence in E^ such that <u n,x n>=l, <u n,x m>=0, n^m, n, m=l,2,.., then the 
biorthogonal system {x_,u }» A verifies that (x n}~ is total is E and {u~} 

n n n=l 1 1 n-i ' n n=l 

has G as linear hull. q.e.d. 

THEOREM 3. Let E and F be Banach spaces of infinite dimension. I f F M B t F ^ F ) ] i s 53 
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separable, there exists in E a family { B g:s eS } of precompact absolutely convex  
sets such that |J {B s:s € rS}=E, E B S

= F a n d E B g is che second conjugate of F for every 
SeS, and E _is the locally convex hull of the family { E B s

: s £ S } ' 

Proof:We shall use the symbol | |. | | for the norm of every normed space.By the Lemma 
we can choose a Markushevich basis . {x n,u^ for F such that {un}^-i total 
in Ff[B(F',F)] and ||x n||=l, n=l,2,.. Let fx^} be a strictly increasing 
sequence of positive integers such that | |u n||^x n- Let 5 be the family of all the 
sequences in E such that if s={y n}~ = 1£"S then { y n } ~ = 1 is topologically free and 
| |yj\< 2~ n*~ 2- L e t f s b e t h e ^ P P ^ S o f F i n t o E s u c h t h a t , if x eF then 

V X > W V X > V 

Since 

M f s ( x ) 11 < nIi M u nM • I l x M • I |ynl I < 11̂ 1 iJa^V 1 1 

we get that f g is well defined and it is continuous. If x^O there exists a positive 
integer n Q such that <u n o,x>^0 and there exists a w e E f such that <w,y n> =1, 
<w,y n>=0, n^n c, since tyn^n=l ^ s "topologically free. Then 

00 

<f s(x),w>= n^ 1<u n,x>.<w 9y n>=<u n o,x>.<w,y n o>=<u n o,x>fO 

and, thus, f is injective. If U is the closed unit ball in F let f (U)=B . We shall 
s s — s see that B is precompact. Indeed, given x eU it results that s 

f s ( x ) = n l ^ n l 2 " n < u n ^ > ^ 2 \ = n l l ^ l 2 " n < u n ' x > z n > 

I |z ||=X 2n||y I | <X 2 n . 2 - V 2 = A - 1 

' ' n' ' n 1 " n ' ' ^ n n n 

n l i l ^ l 2 " n < u n » x > l < n l i ^ l 2 " n l \\\ I • I l x l \< n ! i 2 " n = 1 

and, therefore, f (x) is in the closed absolutely convex hull of the sequence 
oo S 1 00 

* Zn*n=l* Since || z
n|| =*n * * Zn*n=l c o n v e r g e s t o the origin in E and, thus, B s 

is precompact. Obviously F coincides with Eg . We shall show that E is the locally 
s 

convex hull of the family {E~ :s eS}. In E let V be an absorbent absolutely convex 
**s 

set such that V p E ^ i s a neighbourhood of the origin in E B g for every s es • We 
suppose that V is not a neighbourhood of the origin in E. We take t^eE, w ^ E 1 such 
that | | til | < 2" 1X£ 3, <w 1,t 1>=l. Since Vflw^CO) is not a neighbourhood of the 
origin in w"*(0), considered as subspace of E, we take tjew^CO) and v^eE 1 such 
that t^V, ||t 2 | |<2" , <w 2*t 1>=0, <w 2,t 2>=l. We suppose we have 
constructed (t p,w}** and, according to the fact that Vf|w" 1(0) fltcHo) fl • • flw'^O) 
is not a neighbourhood of the origin in WT-I(0)fl w^MO) f) .. fl w" (0), we take t n 

n P * 

belonging to this last subspace such that t n + 1^V, | | t | \ <2-(n+l)\~« » n+ie 
such that <w _ ,t > =0, p=l,2,..,n, <w . ,t =1. If r =X t , then - - n+l p n+i n+l n n n 
I I r n | |<2 _ nX-2 and {rn>» = 1 is topologically free since <w .r^ =X n, <w r o»r n>=0, 
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nHn, m, n=l,2,.., and, thus, r= fcn $ V 0 E R ^ is a neighbourhood of the origin 

in E B ^ and r n=f r(x n) eB r and, therefore, {t N } « A ~ l r n converges to the origin in 
E B r * w t lich is contradiction with t^V, n > 2 . From the way we chose tj it results 
that U{B s;seS}=E. We shall show now that Eg g is the second conjugate of F. If 
F n is the bidual of F and s={y n}~ s s leS, let g s be the mapping from F n into E such 
that if xeF" 

00 

g s ( x ) = n = l < U n > x > 5 V 
Since ( y n ) ^ = 1 is topologically free and ( u n ) ^ = 1 is total in F f[B(F f,F)] and also 
in F 1 [a(F* ,Fff)] , following the same patterns as we did for f s we prove that g s is 
injective. Obviously, f g is the restriction of g s to F. If U* is the closure of U 
in F"[a(F",Ff) ] and we prove that g s(U*)=B s then Eg g is the second conjugate of 
F. Let z be a point of U*. In F M[ a(F M ,F f) ] , U* is metrizable and U is dense in U* 
and, therefore, there exists a sequence {z n}~_^ in U o(F",F)-converging to z. 
Given an arbitrary €>0, we can find two positive integers n Q and p 0 such that 

Z 2 - N + 1 X - L < 6/2 
n = = no+l 

n ° n+l -2 

l < u n , Z " V ' < £ 7 n = l 2 X
n
 9 n=l,2,..,nQ, p > P o . 

Then, it follows for p > p Q 

|g s( 2)-8 s(z p)h l nll< u
n' z- zp> ynl 

< 2 l l < V Z - V | - | | y n l l + n l n o + l < u Hy II r o+l n* p y n 

< 2 , < * 11 *ni i Ch^K^nk^ 11 «.i i • 11 - s i i • i M i 
<6/2+ I A .2.2~ nA~ 2< 6, 

n a s no+l n n 

and since S s(z p)=f s(z p) eB s we have that g s(z)eB s. On the other hand, if x' is a 
point of B s we can find a sequence { x ^ } ^ ^ in B g converging to x 1 . If y f

n is the 
point of U such that f 'n^^'n* t h e n > since U* is o(F",F) 1)-compact we can 
choose a subsequence (y fnp}p_^ °f ^'n^n-l a(F",Ff)-converging to a point y f 

of U*. Then g g C y 1 ) ^ 1 and, therefore g s(U*)=B s. q.e.d. 

In [10] we prove the following result : e) Let F be a sequentially complete  
infinite-dimensional space with the following properties; 1) There is in F a, 
bounded countable total set . 2) There is in F t[o(F t,F)l a countable total set  
which is equicontinuous in F. 3) I£ u i£ an injective linear mapping from F into 
F, with closed graph, then u iis continuous• Then if E is an infinite-dimensional  
Banach space it results that E jis the inductive limit of a family of spaces equal 
to F* spanning E. 
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According to the Lemma and using the same kind of proof as we did for result 

e) it is possible to prove Theorem 4. 

THEOREM 4. Let E and F be two infinite-dimensional Banach spaces. If F'fBtF 1

fF) J is 

separable, there exists in E £ saturated family {B s:seS}, directed by inclusion » of 

precompact absolutely convex sets such that U{B s:seS}=E, E is the locally convex  

hull of the family { E R ^ : S S S } , E B S

= F and EjjL is the second conjugate of F for  

every seS. 
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