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By a linear system we shall understand a system of three Banach

spaces reals X, , Y and two continuous linear operators A, B
(X -+ 2 Y)
A B

In our considerations the space will not play any role, because we

shall not consider constrains on trajectories. For this reason we write briefly
C = BA.
Let Y, CX. 1f we are looking for a minimal norm solution of equa-

tion Cu = Y, » we said that we consider a minimum norm problem.

The first step for the solving of minimum norm problem is to find

(1) a = inf {liull : cu=yo}

In the case when Y is one dimensional it can be easily reduced to a

well known problem of calculating of the norm of the functional C.

A case when Y is finite dimensional was reduced to the one dimen-

sional case by M.G. KREIN [ 1] by formula

(2) inf {liull : Cu=yo}= sup inf {liull : C(Cu) =C(y )}
cey °

iIn the theory of control formula (2) was used first time by N.N. KRASSOWSKI
[3]. A.G. BUTKOWSKI [ 2] has proved formula (2) for X = LP and Y = 2P,

27



On a method of moments

It was shown in [4] that formula (2) holds in general provided that
the image I of the closed unit ball K = {u : [lull 1] is closed.

If T is not closed formula (2) may not hold. It follows from the
following example [5]. Let X =£ andlet Y be an arbitrary infinite dimen-
sional Banach space. Let LATIR ARRERED AVERE be a sequence of strongly

oo
linearly independent elements (i.e. such that if a series ¥ tn Y, is conver-

n=0
gent to 0, then tn =0, n=0,1,...) convergent to Yo . Such sequences exist
in each Banach spaces of infinite dimension. In fact as follows from a Banach
theorem each infinite dimensional Banach contains an infinite dimensional

subspace with a basis {en} n=0,1,2,.. Let us put yo = eo

1
= + - . It is easy to verify that the sequen h desid d
Yn eo . en is y v y e quence Yn as desidere

properties.

Let

1 e+
£ =—
C({ n}) 2 1:oyo * n2=1 tnyn

The operator C is one to one. It is easy to verify and that
inf {llull : Co=y_ | =2

and that on the other hand for each C€ Y*
inf {llull : ¢ (Cu) = G(yo) =1

as follows from the fact that Y, Y, and C is continuous.

Similar example was done by I. SINGER [ 6].

We say that maximum principle of Pontrjagin holds if there is

CO € Y* such that

(3) inf {llull : Cu:yo} = inf { [lull : Co (Cu):Go(yo)}.

The set CX is closed if and only if T has interior in CX . In this
case using Hahn-Banach theorem one may easily to show that the principle
of maximum holds for all Y, CX . Thus the principle of maximum holds if

either Y or X are finite dimensional .
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If the set CX is not closed, there is such Y, € CX that the prin-

ciple of maximum does not hold. It means that for all cey”®

(4)

inf { [lull : Cu:yof > inf {|lull : ¢(Cu) = G(yo)f

It is a consequence of a following theorem of WOJTASZCZYK [ 7] .
Let Y be a Banach space. Let ' be a closed setin Y such that 0

is an algebraically internal pointin T and let lin T = Y, If for each point Y,

of the algebraic boundary of ', there is a continuous linear functional f such

that f(yo) 2 f(x) for all x€T, then has interior in the norm sense.
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