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NOUVELLES ANNALES

DE

MATHEMATIQUES.

[D4b]
EXPRESSION ASYMPTOTIQUE
DE CERTAINES FONCTIONS ENTIERES ;

Par M. G. VALIRON.

L’étude des produits canoniques d’ordre fini dont la
distribution de zéros est simple a été faite par un grand
nombre d’auteurs ('); mais les cas plus généraux ne me
semblent avoir éié abordés que par M. Lindelsf (2) et

ar M. Leau (). Les résultats de M. Leau comprennent
ccux de M. Lindelof comme cas particulier ; wmais ils
laissent échapper certains ‘cas’ de distribution trés té-
guliére, c’est ainsi qu'ils ne s’appliquent pas au cas ot
la relation entre le module 7, du ni¢™ zéro, et n est

logr,= plogn + K(logyn)%, x>1, K>o.

Je me propose ici d’obtenir la méme approximation

(1) Parmi lesquels MM. Wiman, Barnes, Mattson, Littlewood.

(%) Voir LINDELGR, Mémoire sur la theorie desfonctions entiéres
de genre fini (Acta Societatis Scientiarum Fenmcoe, t. XXXI1;
n° 1).

(3) Etude sur les fonctions entiéres orientées (Annales de
UEcole Normale, 1906, p. 33).

Ann. de Matheémat., 4° série, t. XII. (Janvier 1912.) 1



(2)
que M. Leau, en faisant sur la distribution une hypo-
thése qui me semble plus souple, et par une méthode
de calcul plus directe.

1. Hypothéses et notations. — Je considére un
produit canonique dont je supposerai tout d’abord que
tous les zéros ont le méme argument, par un chan-
gement de variable, je puis supposer cel argument
égal & . Je suppose également que ('ordre o n’est

as entier; le genre p est alors égal 4 la partie entiére
P 8 P _ I
de p, etsi r, est le module du ni®m® zéro, le produit

s'écrit
T s =ITe(=r),
1
en posant
z 2!

z \ 3\ — = 4= =
. h — = T P
(2) l,<___r“,p)_<x—+—r")e Pra.

Ceci posé, je suppose que la relation qui lie 7, a n

est la suivante
1+a(n)

(3) rp=n ¢ n>N;

la fonction «(z) satisfaisant aux conditions suivantes
que J'appelerai conditions A

lim a(z) = o,

X' == 00
lim z logz o' () = o;
[pour chaque valeur de 2 > N, la fonction a(z) a une
dérivée a droite et une dérivée a gauche].
Nous nous proposons de chercher une valeur asymp-
touique & (1 4-¢) pres (') du produit f(z), lorsque s

(') Je désignerai par ¢ toute quantité positive, négative ou com-

. 1 1 1
plexe, tendant vers zéro avec -~ ou — ou —-
r n n,



‘ (3) ,
est extérieur a certains cercles entourant les zéros, nous
poserons

ng—1 n'—1

B=HE<£—_—;9}7), . C=l__lE(__:,,‘n’p),
n,

1 o ."
z F 0 s )
D=E<_"n”P>X E<“‘"n'+l’p)’ F —l[ <—"/1,P>’
n'+2

le nombre »' étant défini par la double inégalité

rotrs Tn'+1,
r désignant le module de 3.
2. Calcul de B. — Comme le produit B a un nombre

fint de facteurs, on a
B = eMsPi+a)

ng—1
(—r1)p
M est la somme 2 p) .
Pra
I
3. Calcul de C. — Nous pouvons écrire, pour
n<n,
14
3 3 ’ S =P
E =~——(|+J e !
_.r,,’p ra\ 2 Py

. rn
et puisque - <1,

R P 4
= — P2 Y g1+t !
o =1 2‘( 1) =

3 5 X
E< ’)'—;ie Prng s 937
)=
Par suite on a
C=GxH,
en posant
Zh'—n,—1
G= —vu—,
Pry. . Fpieq

n'—1 n'—1 n=n'-1f ® q
NS SIPEA IE TE B S R
._.,2,‘"4-.‘.-4-( =X > [z,( 1) poc

H =e n, ny ne n=ng 1



le dernier exposant est la somme de n' — n,-— 1 séries
convergentes, en faisant la somme terme a terme, on
peut écrire

n'—1

logH _2 (—-l)‘l‘f‘——z

la somme £’ ne comprenant pas le terme correspon-
dantag=o.

Pour calculer logH nous sommes ramenés au calcul
des sommes telles que

n'—1

2 rh,  (g=—p,— P, )

Ro.

or, nous avons
n’-l
§ ‘I [l+a(r)]- R
(4) rd = Pdw (0 < By,
n°

en lenant compte de I'égalité (3), et du fait que 1,
croit (ou du moins ne décroit pas) avec n. Mais, par
suile de la propriété de la fonction a(z) nous avons, en
prenant Ji, assez grand,

d [ [l+a(.r\)z]
—_—|r.x P

dx
I]
-+ 5 ) =
=91 "'[.1-4;- Zu(a)-i-. 7 xlogrz’(x)]x[l+a‘l)lp
Y ? q—+e .
_q9+p i1 R »
- (l—i—.-‘.,,).‘l:“ ratn P,
et par conséquent
q s q
{1+a(x)] - 5 d[ [+a(r)— ]
z P = —+e)) 5 P
o_—i—q(I ) 7z L7 zds

B

en porlant dans. I'expression (4), nous obtenons, en



(5)

) .
n -

supposant — suffisamment grand
ny ’

1 . - ! E
E 0 S raan? b
21’1{: ——(14¢4) |z Pz|n

o+g ’
n, -

1+¢(n—-0 \1— i

—<|+s'"> (n o) b.

Or, d’aprés la définition de 7, nous avons S

[1+a( +e)1—
r=(n'-+10) " e,

donc
_0 1 : 0’
(=) T )P=r‘l([—-~2‘]?1>',(l+€") @< <1);

et finalement nous-avons

n'—1 . L, . 0" 2 o
P cn' 0 2 P

Er;{:(l—i—s,,) : rﬂ(l—-“——,q‘ )
- : s+ q n

7y

d’ou, en posant

3 = reiy, | -
~ ) i§ 7 .)0; %
SV gar _PETRT <_;‘_q).
logH = n' ¥ (— )7+ eI Gl
=P
Mais la série
+ 9 '
! o pe-ieq
—n)gHr 22
Zp( T

est absolument convergente, ainsi que celle figurant
dans log H, en prenant n' assez grand la dlﬂ'erence,
entre les Q premiers. termes corr espondanls des deux
séries est arbitrairement petile, et par suile nous avens

L
B G L V- £ S

logH = (1 +¢;)n' H
ogH =) gle+q) . .



(6)
en prenant Q de fagon que les restes soient négli-
geables (1).
Considérons maintenant log G :
n—1
logG= (r'—n¢—1)logr —Zlogr,,+(n'— n,—1)io,
ny

on a

n—1

210‘,,,,=f "1 an) logz.dz (o< 0<1);

or,

a [I + a(x)

1+ a(z)
P z logz

T

z(log:c—l)] =

a(z)z(logze —1)
P

et, d’aprés la propriété dela fonction (), le deuxiéme
terme du second membre est arbitrairement petit,
pourvu que n, soit assez grand, donc

- n—8
Zlogr,,.—. {'—'iz—):c(logx—x)] “+e(n'— ny)

2 un
o
1+ €
=n'logr— klogr— n',
P
en remarquant que logr—logr,. tend vers zéro et,

log »
comme enfin % tend vers zéro,

n' .
logG = ?(l + &) == lon'(1—g;).
)
En faisant la somme des expressions obtenues pour

logH et log G,

q= +=o
logC =1+ ¢ n',o)ln £_|_ V (-l)—q+lpe_—il
ge=lr+etn' 2] [p R N TERr)

(') Cette détermination de Q est indépendante de n'.



(7)
4. Calculde F. — Pour n > n' 4- 1, nous avons
"=2"’°(__”,+1_z14
E( 2 , p) - €1=P+1 ql‘".,

— Tn

d’ou
n=+wo =+

logF = 2 2 (—l)‘l"";% .

n=n+2L g=p+1

Puisqu’il y a convergence absolue on peut intervertir
'ordre des sommations, et écrire

logF = 2 (—1)q+lfq-q 2 I_nl—

g =-+w n=+4w 7]
],

q=p+1 n=n'4+2 1o
le calcul des sommes

n=-o®

1 +e dr
2 ﬁ———‘/’: — (0 < Bp<t)

g 1+0, [M+a(x) >
n=n'+2 "Iz, p

se fail comme précédemment el nous obtenons

n=o4w» q

, .-

20,0\
1 qp_rip(l+aq),.q<(+‘ng) (0 < B, <1).

En portant dans I'expression de logF', nous aurons

q=+w . — e
Pel?q 20,1(1 p ’
logF = 2 (—1)f1+1——-——-(|+e,,)<1+ 7 ) n,
— n .
el q(q —9)

ou encore, par un raisonnement analogue’a celui fait

pour log H,
q=+n

logF=[1+¢"(n', 6)]n' 2 (=1)7

g=p+1

pei31

9(p—4q) ..

3. Calcul de B.C.F. — En faisant la somme des



(8)
expressions obtenues pour logB, logC, logF, nous
avons, en remarquant que
[/=+T(—l)’/+‘96'i?‘/ _ N (—1)7pei?d
gle~q) 2 9Ge—q)

P .
el que = tend vers zéro,
n

e
logBCF = [1+ " (n', 0)] ' I(-_—“w
- 7(p.— ¢

Entre crochets nous avons une fonction méromorphe
de 5, le dénominateur est sinw, puisque ses zéros sont
=0, Ty, ... le résidu relatif au pole ¢
est(— 1)4¢/#9, le numérateur de la fonction méromorphe
est donc nne fonction ®(3) telle que

E]

. d . :
P(g)=(—1)7ei97 x <‘TP smwpl)p:”
ou ’

d(q) = wel?e.

Comme la fonction wei%? répond & la question,
on a
P(p) = eivpm + W(9)sinTp,

W(z) étant une fonclion entiére.
Nous avons ainsi

+ ®

v "(—1)tpel®r  melde )

- 1o+ : = — , —mnlel+ T);
s 2 20e—q) ~swm Tr@ (TrEesw)

et en tenant compte de la décomposition de la fonction

Teirp
sin 7o

méromorphe en fractions simples (') on voit que

(') Voir E. Picarn, Traité d’Analyse, »° édition, t. I, p. 173, 174;
« €L LinniLir, Calcul des residus, p. 38 et note de la page 32. .



(9)
W ()= o. Nous.aurons donc I'égalité .

elPp -

log (BCF ) = [i+e<n,?>]smp

6. Calcul de D. — Pufs"que ’:’—'“-:1 +¢ (comme

ou le voit immédiatement), on a

logD:log(l—{_—,_i) <r+ >+/c, k fini. -
AN ”

n'-r1

Excluons les zéros par des cercles ayant pour centre
ces zéros el pour rayons 7,“ (a>>o0), nous aurons
a extérieur de ces cercles

[logD| <2(a+1)logr,

n' N
et comme lU—gT croit mdeﬁmmem

[logD| = ¢|log(BCF) 1.

.

Nous arrivons ainsi a l’égalile

Tel?
sm-p

(5) logf(z)=[1+e(n'¢)] (—mSgS+m),
valable pour s suffisamment grand, et a Uextérieur
de cercles décrits autour des zéros et de rayons
inversement proportionnels aux modules des zéros ;
n’ est le nombre des zéros de module infériear a |z,
:(n/, ©) une fonction complexe de »’ et o, lendant vers
zéro avec ,—i-, i ‘

Si'argument des zéros, au lieu d’étre égal a =, est
égal a w, il suffira de remplacer, dans I'égalité (3), o
paro + % — wfuy— 2anS oS w).

7. En supposant que les arguments des zéros, au
lieu d’étre tous égaux, tendent vers une valeur ©,
’égalité précédente a encore lieu. Supposons encore



(10)
w ==, nous devrons dans les calculs remplacer r, par
. 1
r,et®n, w, tendant vers zéro avec w Prenons n, assez
grand pour que
Jwa | <z pour n > n,,
¢ étant donné.
Dans le calcul de G, on voit facilement que logG est

multiplié par 1+ 7, 7 étant inférieur & ge; d’auntre part
dans logH, les sommes Zr¢ sont remplacées par

n—1
(] 1
E 7 ’Il elm,.l]’
o

Pourq<;/—E on a

n=n'—1

2 ¥ eion? = (14 7/) 2 (I 1 <Ve);

n=n,

la somme des Q premiers termes de logH est multi-

pliée par (1 + 7/, [v/] <ve (Q < partie entiére de 7—)
€

le reste est inférieur en module a

+wo s n=n'—1 ) 0, q

1 AN q(o+q . 29,
PACIIEY "2 e (1= 52)"
Q \ n=n,

en prenant Q assez grand, c’est-a-dire ¢ assez petit, ce
T . P R A .
reste est négligeable (1[ est inférieur a »’ 6> En ré-

sumé log C est multiplié par (1 +1"), 0 < y/e.

On constatera le méme fait pour log K et, par suite,
Pextension est établie.

De méme, si le produit f(z) est multiplié par e,
ou Pp(3) désigne un polygone de degré p, I’égalité (3)
est encore valable.



(1)

8. Fonctions f(3) + a. — Les modules des zéros
d’une fonction entiére satisfaisant a la condition (A), et
leurs arguments tendant vers une valeur déterminée w,
on a P’égalité asymptotique o

i T eR(FHT-w)

6) fla)y=e smmp (w—2mSplw),

ou n est le nombre des zéros de module inférieura |z |;
on déduit de la des résultats relatifs aux zéros des
fonctions

Sf(5)+a.

Supposons w = =, on voit immédiatement que les
zéros des fonctions f(3)+ a forment des files dont
les arguments ont pour limite possible les nombres

= +-(-7P—7: et w (g=o0,%1,...).

N
O

Cherchons le nombre des zéros de module inférieur
TP
_—
?

n’a pas de zéros en dehors de la direction =, cenombre

ar=/|z| pour 'une des files == ;’%—i— comme f(z)

est égal 4 la différence des nombres des zéros des fonc-
tions f(z) et f(s5)-+ a, c’est-a-dire a la variation

a . . .
d’argument de 1 + —— lorsqu’on faitdécrire au point =
f(z)
un contour formé de la facon suivante : les deux

. a7 ™~ joirs
droites = — 4+ 2 ¢ 4 2 1 2% 1 ¢ et deux arcs

R 26 p
de cercle de rayon ry et r; 'expression de f(5) montre
que ce contour contient
n : (1+¢
2(sinwp) )
zéros de f(3) + a.
. I . . ’
Sig>p —I-? il existe 2(p 1) files de zéros en

dehors de la file possible d’arguments =; si 9Sp —{—-i



(12)

il y en a 2p seulement; on constatera.de plus que, si

I ooy y
e>p+s il n’y a pas de zéros dont les arguments ont
BT . | .
pour limite = ; si p§p—|—;1l yena n(1+c¢). Enré-
sumé le rapport des nombres des zéros des fonctions
P+t

J(3)+a et f(z)a pour limite [sinmol Pi p>p—f—
I io<p+Ll. Il . remarqu u
|Sinﬂp!+l§l‘°=p - Il importe de arquer que
ces limites ne sont pas atteinles uniformément quel
que soit @, les zéros dont les arguments tendent vers
des valeurs autres que = se présentent pour des mo-
dules d’autant plus grands que |@| est plus petit.

L’étude de 'influence produile par les variations de @
sur les zéros de f(5)+a revient d’ailleurs a Uétude
compliquée de la fonclion inverse de la fonction f(3).

9. Ezposant brut et exposant net de la suite des
zéros d’une fonction entiére. — Pour justifier 'intro-
duction des conditions (A) je vais démontrer la propo-
sition suivante; étant donnée la suite

A R

des modules des zéros d’une (onction entiére d’ordre ¢;
on peut trouver des fonctions a(x) satisfaisant aux
conditions (A) et telles qu’on ait

1+ain)

raan (n>N), .

légalité ayant liew pour une infinité de valeurs
de n.
Posons
logn

Tp= = L)
a2 logr,

il résulte de la définition de s s que la suite ¢, admel
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zéro pour limile supérieure pour r infini. Je vais con-
struire une fonction B(z) définie pour z > ry, satis-
falsant aux conditions (A) et telles que.

p(’")=°fu
quel que soit n > N;
?‘(":1) = Gy,

pour une infinité de valeurs de 7.

Soit ©(z) une fonction positive dérivable, satisfai-
sant a la deuxiéme condition (A) el croissante indé-
finiment lorsque x croit ('). A chaque valeur ¢, (aisons
correspondre la fonction y, (z) définie comme il suit:

1° Pourz<r,

Yn(®)=8(z) —0(ru) +op,
2° Pour z2r,
yu(x) =—08(z)+0(rp) +on;

soient alms #, un nombre quelconque et p défini par

les inégalités
"p:xo < T ptet

parmi les nombres y,(zy), n<p, il y en a un plus
grand ou égal 4 tous les autres ; il en est de méme pour
Yn(xo) lorsque nZp +1, car

yn(z’o) --}’p+1(-'l'o) =0p—0pt1— 0("n’) +‘0(",a+f)7

et comme 9(.2:) croit indéfiniment, et que ¢, a pour
limite supérieure zéro, cetle différence est negatlve a
partir d'une certaine valeur de n, il y a aussi un

(‘) Une telle fonctlon est aisée & former, par exemple

8 (.17) = Iog,.z'
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nombre fini de nombres y,(z,) supérieurs & ¥4 (Zo);
il y en a un plus grand que tous les autres.

Considérons alors la fonction y(z) qui pour chaque
valeur de z est égale au plus grand des nombres y, (),
cette fonction coincide successivement avec un certain
nombre de fonctions y,(z) (de part et d’autre de
x =1r,), elle salisfait donc déja aux trois condilions

lim ' (z)z logz = o,

Y=o

‘((I',,)gd,,,
quel que soit n > N,
.f("u) = Gn,

pour une infinité de valeurs de n.

Si elle tend vers zéro c’est une fonction B(z) cher-
chée; sinon considérons une fonction — =(z) satisfai-
sanl aux conditions (A), croissante et dérivable, la
fonction égale pour chaque valeur de 2 au plus grand
des deux nombres y(x) el —e(x) tend vers zéro: c’est
une fonction B(z) ('). ‘

Nous avons ainsi, & partir d’une certaine valeur

de n,
0= Pt ORe < ,.?L[l-;-B(r..\l’

nous dirons que la suite (1 + o, )p est'exposant brut
de la suite des zéros, la fonction g[ 1+ B(z)] est I'ez-
posant net. La fonction

2pl1+3uri

esl croissante, comme on le constale en employant les
propriétés de la fonction 3(z): si nous écrivons la

(1) Je suppose qu'une infinité de nombres o, & (7, ) sont positifs,
ce qui est facile & réaliser.
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fonction inverse sous la forme

&)
x P

nous aurons, i partir d’une certaine valeur de n,

14+0(n)
> .
ro2n P

il reste a montrer que a(z) satisfait aux conditions (A).

Or nous avons
1+ &(y)

y= pl+p)l z=y P |
d’ou

logy =pl1+~B8(2)]loge, [1+B{0))[1+a(py)]=1;

par suite, lorsque y croit indétiniment, z aussi, B(z)

tend vers zéro et par conséquent aussi a(y); de plus,

en dérivant les deux égalilés précédentes, on obtient
B(z)[i-a(M)+2(y) 1+ E(2)]y' =0,

.'1. = ('_t__e)_e ( lime=o0 S

Y z r=w

en portant dans la premiére de ces égalités la valeur
de y' tirée de la seconde, el remplagant p par

logy T
-
logz 1+ Biz)

on aura

a(y)[1+ B(2)]y logy _
+ (14+¢e)[1+B(2)] 1+ a(y)]'p’(x)a:logx =o.

Lorsque y croit indéfiniment, z aussi, 3(z), a(¥), ¢
tendent vers zéro ainsi que B'(z)z logz, donc

lima'(y)ylogy =o.
y=w -

La proposition que nous avions en vae est ainsi dé-
montrée, on peut introduire dans 1’égalité (6) la fonc-



tion inverse de

et 'on aura

( 5 log f(3) = (1+2¢2) " r:——* eiplp+r-wl pl1+B8(rip
7) ™

' (0 —27Sp5w),

[1+ 3(r)]p est un exposant net, égal ici a 'exposant
brut pour toutes les valeurs de r,.

10. Application aux fonctions de genre zéro. —
Si Pon désigne par M(7)le maximum du module d’une
fonction entiére de genve zéro pour |3| =r,et par r,
le module du n'é™¢ zéro, on a évidemment

M(r) <IT[<I ><H ,wm’\),

en désignant par a(z) une fonction telle que

razn ? (n>N),

fonction qui a été calculée au paragraphe précédent.
Or, nous avons trouvé une égalité asymplotique (7)
pour

©

M(-—)

1 nl+a(n)

égalité d’ou nous tirons

/ » (14-2) P Binle
[+ =e SinTo
) T4+xin) !
n )

14 a(x)
zU+B(2)1p désigne la fonclion inverse de z ¢ donc

| -+ #(2)]p est un exposant net de la suite des zéros
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de la fonction donnée. Nous arrivons denc au résuliat
suivant : le logarithme du module mazimum pour
|5| = r d’une fonctionentiére de genre zéro (') reste,
a partir d’une certaine valeur de r, inférieur a
Vexpression

) T .
(1-+2)= rl-+irp lim r = o\,
sinmp r=w )

o

ot z[ v+ B(x)] est un exposant net de la suite des
zéros.

Q

Cette limite supérieure est atteinte lorsque 'expo-
sant net est constamment égal a 'exposant brut.

[H2c3]

SUR L'INTEGRATION DE L'EQI]ATION I'EULER
PAR DES CONIQUES SPHERIQUES;

Par M. EmiLe TURRIERE,

Professeur au Lycée de Poitiers.

1. L’intégrale générale de I'équation différentielle
d'Euler,
dz dy

VR(z)  VR(y)

dans laquelle R(¢) est un polynome du qualriéme
degré,
R(t)anl‘+alt3+a,t’+a,t-+—a5,

(') Et naturellement d’ordre non entier ( 3£ 1) comme dans ce qui
précéde. .

Ann. de Mathémat., 4 série, t. XIL. (Janvier 1912.) 2
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est, d'aprés Stielijes, de la forme

1
ay ;a, ). l
‘-i-a. ay— 2k %ag —(z+y)
1
A 5% a, xy
I —(x+y) xy o

Des simplifications profondes se produisént lorsque
le polynome R (¢) est simultanément bicarré et réci-
proque; en posant, en effet,

ay=1, a;=o, az=o, a,=1,
Pintégrale précédente se réduit a

(xy +~1)2 (xy —1)* (x+y)? _ :
ray S S W =0
;ag—)\

Considérons z et y comme étant les paramétres des
génératrices isotropes d’une sphére de centre O et de
rayon égal a I'unité, c’est-a-dire posons

r+y

[
\p'zxy—e-l’
(1) J p2==i%§§£%,
‘ _l‘_}’—'l.
\pa_.’lf_}’—i—l’

la relation entre & et y entraine une relation linéaire et
homogéne entre les carrés de p,, de p, et de ps; celle-ci
peul étre ramenée a la forme syméirique

& py P}
) a+e Thxe Texes ™
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par un simple changement de notations, en posant

20—a—b

azz‘),——a—:b——,
b—2c—a
A= b+s

ainsi donc l'intégrale générale de I'équation d’Euler est
réductible a la forme (2), au moyen de la transformation
définie par les formules (1), dans le cas ou le poly-
nome R (¢) est simultanément bicarré et réciproque, ce
polynome pouvant étre toujours égal a

a+b—oac
Rt)=tt— o2 —m——¢2 ;
(3) (t)y=1t 2 —+1;
-, bet ¢ désignent des constantes.
L’équation (2) représente, sur la sphére d’équation

pPi+pi+pi=rm,

une famille dépendant du paramétre variable s, de
-coniques sphériques, dont il est possible de donner
diverses définitions.

On observera Lout d’abord que les cones représentés
par Péquation (1) constituent une famille de cones
homofocaux; les coniques sphériques (2) sont dés
lors homofocales.

2. Cherchons plas généralement la forme que doit
avoir le polynome R (¢), du quatri¢me degré pour que
la transformation définie par- les formules (1) fasse
correspondre une conique sphérique a 'intégrale géné-
rale de Péquation d’Euler. _

Afin d'éviter des calcals compliqués, Jappliquera;j
des résuliats trouvés par M. Keenigs, en atilisant un
certain systéme de coordonnées introduit par M. Dar-
boux; l'intégrale générale de Péquation d’Euler a été
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transformée par M. Kwnigs en une conique d’un fais—
ccau langentiel.

En posant
X =zy,

Y=2+y,
I'intégrale générale de I'équation d’Euler, attachée aw
polynome général du quatriéme degré, est la conique

J(N,Y) = o dont ’équation tangentielle est
(4) a,u?-+ asuw + agw?— azuv —ayswy + A(uw — ¢2)=o,
c¢n coordonnées homogénes.

En vertu des relations (1), on a les relations sui-
vantes entre X, Y, p, et py:

_ 1+ pa y — 2P .
T u—py t—ps’

introduisons des coordonnées ponctuelles X, Y, Z
homogénes et considérons la transformation définie par
les formules

(5) x'—:l-'r"[);;, \’:2[)1, ~Z=]_-p3-

Cette transformation fait se correspondre les courbes
du plan (x, ¥, 5) et de la sphére d'équation

Pi+pi-Fpi=1;
la lrz;usl'ornu}c d’une conique quelconque d’équation
AX2- A'Y2 - A"Z24-9BYZ +~2B'ZX 4+ 2B"XY = o,
est une quartique biquadratique située sur la quadrique

AU+ pa2 =GP+ A" (1 —p3)2+ 4B p (1 — p3)
= 2B (1—p3) + 4B p1(1+p;3) =0}

pour que celte biquadratique soit une conique sphé-
rique, il est nécessaire et suffisanl que, dans cette
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derniére équation, les termes en p, et en py dispa-
vaissent ; il faut donc que les conditions

A—A"=o, B+B =o0

'

soient remplies; ce sont les conditions qui en coor-
données (X, Y =1,Z) expriment que la conique admet

{a droite
) X+7Z= Q,

pour axe de symétrie.
Si I’équation tangentielle de la méme conique est

aut+a'vt+4 a" w4 2bow + 20w + 20" uv = o,
{es conditions sont par conséquent
a—a"=o, b+ D' =o0;
<n appliquant a la conique (4), on obtient ainsi
ay— a,=o, ay+ az=o0;
de ces derniéres formules résulte le théoréme suivant

La condition nécessaire et suffisante pour que la
transformation définie par les formules (1) change
en des coniques sphériques les courbes intégrales de
Léquation d’Euler est que Uéquation

R(t)y=o0
soit invariante dans la tranformation

t:—-:.

Par analogie avec les polynomes réciproques (1'équa-
tion R(¢)=o-est résoluble en prenant ¢ — % pour incon-

mue), je dirai que le polynome R(¢) est alors semi-réci-
proque. '
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3. Placons-nous donc dans le cas.

a, = a, az=— Qi

d’un polynome semi-réciproque. Les coniques sphé-
riques sont alors

{(A + 2A'+ BI)P.';“" (A -+ BI)P;—l— 2AP§— 4Bp1p3= Q;

'équation tlangentielle d’un cdne, d’équation ponc-

tuelle
2z -+ By 4+ y324 2025 = o,

est d’autre part
Brut+ (ay —S2)v2+ 2B w?— 2B8uw = o;
des relations

a=A-+4 20+ B, a=a"=AA"— B2,

E=A+PB. a’ = A?— B2,
=2, b=—b'=—B(A+B),
§=—oB, b= —B2—A'B,

on déduit Péquation tangentielle du cone
Byt 2+ w?)+ fav?+(2a—a — 20" )w? — fbuw = o
ou

Byut—+ 024 w?) - fage?+ (2a0— az) Wi 2a,uw = 0;

sous celle derni¢re forme, le paramétre ) v'intervient,
que par Pintermédiaire de {3y : les cones considérés.
sont donc homofocaux au cone

Jage= (2ay— az) w2+ 2a,uw = o.

Cette méme propriéié peut étre établie par le raison-
nement suivant. Les formules (5) transforment la

conique . ‘
Yt— 4XZ =0
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d’équation tangentielle
02— pw = o,'

en le cercle p, = o de la sphére. Toute droile du plan
est transformée en un petit cercle de la sphére, section
par un plan paralléle a I'axe Op,; loule tangente
(1, ¢, w) a la conique

v — uw = o,
est transformée en un cercle de rayon nul ayant pour
centre le point de la sphére dont les coordounées sont

20 w-—u,
n =0, =

»
g = ’ —_.
u-+w w4 u

une courbe quelconque du plan est ainsi transformée
en une courbe sphérique; celle-ci, puisque la transfor-
mation est ponclue]le el par consequent de contact,
peut étre envisagée comme enveloppée par les cercles
de la sphére qui sont les transformés des tangentes de
la courbe plane. Parmi ces cercles, ceux:qui cerres-
pondent aux tangentes communes avec la conique- ‘

02— uw =o'

auront leur rayon nul. Une conique du faisceau lan-
gentiel (4) étant tangente & quatre tangentes fixes de
la conique précédente, la conique sphérique trans-
formée sera langente & quatre cercles de rayon nul fixes.
En posant )
82== al—8al—j4aya,
¢ élant une quantité qui n’est pas nulle si R () nest
pas carré parfait, on- peut prendre pour coordonnées
des tangentes fixes :
u—w=—a=x S,
u+ w -—+ \/m’ \

L8 =2a05
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en portant ces valeurs dans les expressions de Eetdel
on obtient quatre points du cerele n = o deux a deux
diamétralement opposés. Les cones de sommet O et
qui définissent les coniques sphériques ont donc deux
focales fixes dans le plan p,=o.

Il résulte donc de ces considérations que, lorsque
les formules (1) associent des coniques sphériques
auzx intégrales de Uéquation d’Euler, ces coniques
sphériques sont nécessairement homofocales.

k. Revenons maintenant au cas particulier initiale-
ment envisagé : celui ou le polynome R (¢) est simul-
tanément bicarré et réciproque et a la forme (3).
L’intégrale a été transformée en la conique sphé-
rique (2) qui reste homofocale a elle-méme lorsque =
varie.

1l est alors possible de donner deux interprétations
géométriques de I'équation d’Euler ressortissant a
la Géomeétrie réglée.

En premier lieu, je rappellerai qu'a tout complexe
de droites Sophus Lie associe une équation de Monge
(ou de Pfaff) dont les intégrales sont les courbes dont
les tangentes appartiennent au complexe.

Au complexe tétraédral

apyp,+bpsp;s+ cpsps=o,
attaché aux quadriques

X1 Y? YAS
a+)\+Ab—|—)\+c+)\

= const.,
Sophus Lie associe I’équation de Monge
(b—c)zdydz+(¢c—a)ydsdr+(a—b)zdrdy =o;

si l'on se propose de déterminer, sur la sphére de
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centre O et derayon 1, les courbes ducomplexe tétraé-
dral il suffit d’intégrer I'équation précédente ou ’on
a respectivement remplacé z, y et z par p,, p, et p;;
on obtient ainsi

(6) . zavdPt(Pz dpsA—Pa dpy).= o;

en utilisaut alors les formules (1) on est conduit a
I’équation d’Euler avec le polynome (3). Ainsi donc les
courbes (2) ne sont autres que les courbes du com-
plexe tétraédral situées sur la sphére.

3. De méme qu’a tout complexe de droites Sophus
Lie associa une équation de Monge-Pfaff particulicre,
al est possible d'associer a toute équation de Monge-
Pfaff un complexe particulier par la considération du
probléme de Transon (¢f. le Chapitre III de ma Thése
Sur les congruences de normales qui appartiennent”
@ un complexe donné, Paris, 1911).

D’une facon précise, étant donné un complexe
-anvariant dans I’homothétie infinitésimale de pole O, le
probléme de Transon, pour ce complexe d’équation

C(p1; P2, P3y Pus Psy P6) =0,
est équivalent a 'intégration sur la sphére
Pi+pi+pi=t
de I'équation de Monge-Pfaff .
C(pi, p2, ps, dp1, dp., dps) =o.

4l résulte de ces considérations que, pour le complexe
associé a I'équation (6), le probléme de Transon est @
priori réductible a 'intégration de I’équation d’Euler.
C’est ce que je vais établir directement.
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6. Dans une Communication a I’Académie des
Sciences Sur les normales aux quadriques (22 dé-
cembre 18go), M. G. Humbert a monlré que les nor-
males aux quadriques
X2 Y? YA
B —oi(cxra) (c+09)(a+o) + (a+o)(b+o)

=o,

dépendant du paramétre s, engendrent un complexe
du troisiéme ordre.
Plus particuliérement, les cénes homocycliques dw
second degré, d’équation
(a+0)X2+ (b+0)Y2+(c+o)l2=o0,

définissent un complexe du troisiéme ordre qui n’est
autre que le complexe des génératrices des quadriques
homothétiques aux quadriques d’un faisceau homo-
focal; 1'équation de ce complexe est

(7) (b—e)p1psps—+ (c— a)pspspi+(a—b)pspups=o

ou encore .
ap,xo+ b psy,+ cpsso=o0,

en introduisant les coordonnées ordinaires (x4, ¥oy %0 )
de la projection orthogonale de l'origine sur le rayon
de coordonnées pliickériennes (py, ..., Po)-

Proposons-nous de résoudre le probléme de Transon
pour ce complexe. En se reportant alors a un article
précédent (') et appliquant les formules (5) et (7) de
cet article

1 ) dp, opy
Pe= ;(l-i-zy)’(p oy 7 dz)

9,
zo= 31+ ay (p e 2,

(') Sur certaines transformauons de drmtes (Ensezgnememt
mathématique, 1911, p. 363).
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on trouve l'équation aux dérivées partielles

o pSe(Z) - Sa()
) 1 1

dont dépendent les surfaces trajectoires du complexe,
considérés comme enveloppes des plans

(X —iY)+y(X+iY)+(zy —1)l=w.

L'intégration de cette équation aux dérivées par-
tielles (8) est équivalente a celle de I’équation différen-
tielle du premier ordre

; 3 .
opi\? opr\?
. Pk \* _ OPkN\".
e - (2
1 1

appliquant les formules qui donnent les dérivées par-
tielles de p,, py et p,, celle équation diftérentielle
devient précisément I'équation d’Euler dans laquelle le
polynome R (¢) a la forme (3).

Ainsi donc, conformément au paragraphe précédent,
la solution du probléme de Transon, pour le com-
plexe dégénéré du complexe de M. Humbert, dépend
de Uintégration de U'équation d’ Euler. ’

L’équation générale des surfaces trajectoires ortho-
gonales des droites du complexe est

2 2 ‘"p?
a +pl;(w) - b—i—pfll(m) 3 -f-pI;(m) =

El

Il (w) désignant une fonction arbitraire de .

Les. coniques sphériques (2) sont les courbes de
contact avec la sphére des développables circonscrites &
cette sphére et aux diverses surfaces trajectoires ortho-
gonales de droites du complexe, '
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P.-S. — M. CI. Guichard a eu la bonté de me
signaler récemment que j’avais consacré plusicurs
articles & une transformation de l'espace réglé déja
envisagée par Ribaucour, dans ses recherches sur les
congruences isotropes, puis par Antomari, dans ses
travaux sur les surfaces réglées. En remerciant
M. Guichard, je m’empresse de porter celle remarque
4 la connaissance des lecteurs des Nouvelles Annales
el de profiter de I'occasion pour indiquer quels sont les
résultats que j'avais retrouvés.

I1 s’agit de la transformatiou de droites, a laquelle
J'avais éLé conduit & propos des complexes de droites,
ainsi que je l'explique & la page 83 de ma Thése Sur
les congruences de normales qui appartiennent ¢ un
complexe donné, et que javais appliquée dans les
articles suivants :

1° Sur une transformation de droites (Nouvelles
.Innales, juin 190g);
2° Sur les surfaces de M. Appell (/Votwelles
Annales, juin 1910);
® Sur les congruences de droites qui admeltent un
point pour surface eentrale (Nouvelles Annales, avril
1911);
4° Sur un complexe du quatriéme ordre (Nouvel/es
Annales, mai 1g11);
5° Sur certaines transformations de droites ( Ensei-
gnement mathématique, scptembre 1911).

Dans la premiére Note, j'avais signalé Papplication
de cette transformation de droites aux congruences
isotropes de Ribaucour; dans la ycinquiém_e, Javais
remarqué qu'une représentalion des congruences 3a
laquelle on fait jouer un réle a la projection d’un point
fixe sur chaque rayon se rattache i la représentation
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la plus générale d’une congruence de droites par
Ribaucour. Effectivement, l'illustre géométre s’était
occupé de cette transformation de droites, « mais d’une
maniére accessoire », selon I'expression d’Antomari:
« Ribaucour s’était borné a la définir et a l'utiliser
pour déduire une congruence isotrope d’une autre
congruence isotrope ». Ribaucour avait d’autre part
déterminé analytiquement les congruences de normales.
dont enveloppée moyenne est un point, c’est-a-dire
les.congruences de droites normales aux surfaces dési-
gnées par L. Bianchi, dans ses Lezioni di Geometria
differensiale, sous la dénomination de surfaces de
M. Appell.

Mais ce fut surtout Antomari qui, dans sa Thése
remarquable ((1pplication de la méthode cinématique
a Uétude des surfaces réglées; mouvement d’un
corps solide assujetti & cing conditions, Paris, 1894),
étudia la méme transformation dc droites et l’app]i‘qua-
a divers problémes concernant notamment les surfaces.
développables et leurs transformées. Antomari signala
des applications de celte transformation aux congru-
ences; il étudia le cas du plan et de la congruence
transformée; il établit que la congruence de normales
la plus générale est transformée en la congruence la
plus générale admettant le péle pour enveloppée
moyenne; il mit en évidence I'invariance des congru-
ences de normales aux surfaces de M. Appell. 11 fit
enfin ressortir I'analogie de cette transformation avec
la transformation de droites de M. Guichard, qut
permet de déduire, de toute congruence de norinales,
une congruence dont la surface moyenne est un plan.
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[Ric]
SUR L’EXTENSION DE LA NOTION DE VITESSE;
Par M. Et. DELASSUS.

I. — VITESSE D'UN SYSTEME DE VECTEURS.

1. Considérons un point mobile M rapporté simulta-
nément a deux triedres fixes T et T,. Les coordonnées
Z,y, 5eLxy, ¥, 5 dans ces deux triédres sont lides
par les formules de transformation

T =a-+ T+ a Y1+ o433,

dans lesquelles les coefficients sont des constantes dont
la signification est bien connue. Par dérivation on en
déduit
= &) + a3 y) + 233},
e cees
ce qui exprime que le vecteur V, de composantes z/,
Y4y 5y, dans T, a 2/, 3/, ' pour composantes dans le
tricdre T. Autrement dit, le vecteur appliqué au
point M et ayant pour composantes les dérivées des
coordonnées est indépendant du triédre de refé-
rence.

C'est ce vecteur, qui est complétement déterminé
par le mouvement du point, qu’on appelle vitesse du
pouwnt.

Si le triédre T est fixe et le triedre T, mobile, les
coefficients de la transformation ne sont plus des con-
stantes et la dérivation donne

z:_( ’ ’ ’ 1] 2 ! -'
=(a'+ o\ +ay 1+ 25 5) + (0,2 + 2 7, + a33)),



(31)
ce qu’on interpréte immédiatement en introduisant la
vitesse d’entrainement et la vitesse relative et 1'on
obtient la régle classique de composition des vitesses.

2. Les raisonnements précédents s’appliquent sans
aucune modification & un systéme S de vecteurs. Soient
XNy Y, By, £, I, A6, Xy, Fiy By, L4y My, I6, ses coor-
données dans deux triédres fixes. Les formules de

transformation sont de la forme

o\»——(ljc(\q—r—p Jt"*"{i 1+)\ {1—4}— My "K;-—G—V;J{,h

................................... IEERREREE

b
et donnent par dérivation

.\1.’=a‘e"@'1-+—@, +“{11} +)\1{1+p,3|1,+v“)b1,

qm montrent que le systéme ayant n\.‘, 3‘, ,0 2

I, T, pour coordonnées dans Ty a &/, ', 2/, .Q’, M,
o/, pour coordonnées dans T, ou encore : '

Etant donné un systéme S de vecteurs, variable
avec le temps, le systéme S' ayant pour coordonnées
les dérivées des coordonnées du systéme S est indé-
pendant du triédre de référence.

Par analogie, nous dirons que le systéme S' est la
vitesse du systéme S.

Supposons maintenant que le triédre T soit fixe, mais
que T, soit mobile; les coefficients dela transformation
seronl variables et la dérivation donnera

o = (a/ir\‘q—i—ﬁliﬁ 1+ ::1+)\‘£1+141 JlLl—rVIJbg)

qu’on interprétera encore en introduisant le systéme S,
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vitesse d’entrainement de'S et le systéme S, vitesse
relative de S, et I'on sera encore conduit a la pro-
priéié classique: '
La vitesse absolue d’un systéme de vecteurs est la
résultante de sa vitesse d’entrainement et de savitesse
relative.

3. Effectuons simultanément la réduction des deux
systemes S et 8 en un point fixe que nous prendrons
pour origine d’un triédre fixe de référence. On ob-
tiendra ainsi un vecteur R el uvn couple G pour le sys-
teme S et, de méme, un vecteor R’ etun couple G’ pour
le systeme §'.

Les coordonnées du point R seront X, Y, &, sa
vitesse sera X/, N, %', c’est-a-dire équipollente au
vecteur R'. ’ '

De méme, les coordonnées du point G seront {, L,
I, sa vilesse sera £/, O/, IV, c’est-a-dire équipollente
a ', de sorte que :

Silon réduit simultanément en un point fixe un
systéme S de vecteurs et sa vitesse S', les éléments de
réduction de S' sont respectivement équipollents aux

vitesses des extrémités des éléments de réduction
de S,

théoréme de Cinématique qui a la méme forme que
I'interprétation géométrique bien connue des théorémes
sur les quantités de mouvement et peut, d’awlears,
fournir cette interprétalion comme conséquence presque
immédiate.

4. La notion de vilesse d’un systéme de vecteurs est
absolument distincte de la noltion bien connue de
dérivée géométrigue d’un vecteur. Ces deux notious
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ne coincident que dans le cas ou le systéme S se réduit
a un vecteur unique variable, mais dont 'origine reste
fixe.
La vitesse d’un systéme de vecteurs s’introduit tout
naturellement en Dynamique par la remarque classique
que les coordonnées

2, y' 3", yi'—zy', sz’ —ad, zy'—ya,
du vecteur accélération d’un point sont les dérivées des
coordonnées

z', y, 3, yi'—zy', zx'—zxz, zy —yz,

du vecteur vitesse de ce point, ce qui permet de dire,
point, qui p ;

au sens que nous adoptons :

Laccélération d'un point est la vitesse de sa vi-
tesse.

Si nous multiplions la vitesse par la masse, sa vitesse
sera également mullipliée par la masse ce qui donnera
le vecteur opposé a la force d’inertie; donc: :

La force d’inertie d'un point matériel en mouve-
ment est a chaque instant opposé a la vitesse de sa
quantité de mouvement.

La propriété existant pour lous les points d’un sys-
leme malériel cxiste pour le systéme lui-méme;
donc :

Le systéme des forces d’inertie d’un systéme ma-
tériel en mouvement est a chaque instant opposé ala
vitesse de la quantité de mouvement de ce systéme
matériel.

Si 'on désigne par 3 le systéme des forces d’inertie,
par 2 le systéme des quantités de mouvement et par 3,
Ann. de Mathémat., §* série, t. X1I. (Janvier 1912.) 3
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sa vitesse, on a donc, a chaque instant, I’égalité géomé-

trique
3)+(2)=o.

8. Lanotion de vitesse d'un systéme de vecteurs s’in-
troduit encore tout naturellement quand on considére
deux systémes variables S, S, et leur moment

IMS, S,)) = fn\:‘ -+ 3!1.”_7'14— %21—4— *\’-£1+ .'73]11—’-;‘5%1.

On en déduit, par dérivation,

d SN

E.‘)TU(S, Sjv)
= (N4 IR 4 Ty 4+ A £y 4 I+ 06y )
(N, 4 I, + T, + X + FON,) + HIT,),

c'est-a-dire, en introduisant les vitesses de S et de S,

d
Tt IS, Sy) = INL(S, )+ INL(S, S)),
formule analogue & celle de la dérivée d'un produit et
qui donne la dérivée d’un moment comme somme de
deux moments. Si 'un des systémes, S, par exemple, est .
tixe, la formule se réduil simplement a

%mu(s, Sy) = IS, Sy).

1I. — VITESSE D'UN SOLIDE.

6. M. Keenigs, dans son Traité de Cinématique, a
développé et rendn classique la notion de systeme de
vecteurs représentatif de I’état des vitesses dans un
solide en mouvement. ' »

’une des propriétés essentielles est celle quiéél rela-
tive a la composition des mouvements et s'énonce
comme il suit: .
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Le sysieme de vecteurs représentatif de Pélat des
vitesses absolues d’un solide s’obtient en composant
géométriquement le systéme représentatif de 'état des
vitesses d’entrainement el le systéme représentalif de
I’état des vitesses relatives.

Nous nous bornerons a faire remarquer que cette
propriété s’énonce exactement comme celles qui sont
relatives au point ou au systéme de vecteurs, sauf le
remplacement de « vitesse » par « systéme représen-
tatif de 1’état des vitesses ».

1l y aurait donc intérét, pour uniformiser le langage
et avoir un méme énoncé s’appliquant & un plus grand
nombre de cas, & convenir d’appeler vilesse d’un solide
le systéme de vecteurs représentatif de Uétat des
vitesses de ses différents points.

Si Pon adopte cette délinition on pourra dire :

La vitesse d'un point quelconque d’un solide est le
moment en ce point de la vitesse du solide ;

el

Qu'il s’agisse d’un point, d’un systéme de vecteurs
ou d’un corps solide, la vitesse absolue est toujours
la résultante géométrique de la vitesse d’entraine-
ment et de la vitesse relative.

7. Proposons-nous de chercher la vitesse d’entraine-
ment d’un systéme S, de vecteurs, c’est-a-dire la vitesse
d’un systéme invariable S, atlaché 3 un corps solide
connaissant Ja vitesse S de ce solide.

Soit O un point du solide. Soient R, G, R,, G, les
éléments de réduction de S et S, en ce point; R, et G,
sont invariables et attachés au solide.

La vitesse de S, est la résultante de sa vitesse dans la
rotation R et de sa vitesse dans la translation G..
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Dans la rotation R, le point O reste fixe, donc les élé-
ments de réduction de la vitesse correspondante de S,
sont équipollentsaux vitesses desextrémités de R, et G,,
c'est-a-dire, puisque ces extrémilés sonl des points
attachés au solide, équipollents aux moments de R aux
points R, et Gy.

Dans la translation G du solide, le couple G, reste
équivalent & lui-méme, donc ne donne rien dans la
vitesse de S,. Quant au vecteur R,, subissant celte
translation, on voit immédiatement, soit géométrique-
ment, soit analytiquement, que sa vitesse est un couple
dont le moment changé de sens est celui de R, au
point G.

En résumé, ona un vecteur et deux couples respecti-
vement perpendiculaires aux trois plans RR,, R, G
et RG,.

Si I'on permute S et S,, c’est-a-dire sil’on cherche la
vitesse d’entrainement de S dans un solide dont la
vitesse serail S,, on voit immédiatement que le vecteur
et les deux couples ne font que changer de sens. Les
deux vitesses oblenues sont donc opposées, fait géomé-
trique qu’on peut écrire

(St)s,+ (Sy,e)s =o.

Enfin, soient A, A, les axes centraux de S et S,,
A’ leur perpendiculaire commune et O un point du
solide choisi de fagon qu’a I'instant considéré il se
trouve sur A’. On voit immédiatement que, si l'on fait
la réduction de S et S, en O, les directions R, G,
R,, G, sonttoutesdans le plan perpendiculaire a A’, donc
le vecteur et les deux couples de la vitesse d’entraine-
ment de S, sont dirigés suivant A’ qui est ainsi I'axe

central de cette vitesse; d'ou cette propriélé trés
sumple :
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L’aze central de la vitesse d’un systéme de vec-
teurs attaché a un solide est la perpendiculaire
commune & Uaze central de ce systéme et a laxe
central de la vitesse du solide.

[N'16a] .
NOTE DE GEOMETRIE;

Par M. Euie PARROD.

Dans cette Note, j’ai pour but d’établir le théoréme
suivant et d’en déduire quelques conséquences :

Tutorkme. — Si deux quadrilatéres ABCD,
A'B'C'D', inscrits dans une méme conique sont
homologiques, les siz points (AB. C'D’), (AC. D'B’),
(AD.B'C'),(A'B'.CD),(A'C".DB),(A’'D'.BC) sont sur
une droite A, passant par le centre d’homologie P
et tangente en ce point P aux deux coniqgues ABCDP,
A'B'C'D'P.

Ce théoréme peut étre considéré comme une géné-
ralisation du théoréme d’Aubert. Il se déduit facilement
du théoréme bien connu suivant :

Tutorime. — Considérons une conique variable
passant par quatre points fixes A, B, G, D et rencon-
trant en M, N, deux droites fixzes AP, BP issues de A
et B; la droite MN passe par le point d’intersection
de la droite CD et de la tangente en P a la conique
ABCDP.

En effet, les points M, N décrivent sur AP et BP deux



(38)
divisions homographiques qui ont le point P commun;
la droite MN passe par un point fixe O situé sur la
tangente en P a la conique du faisceau qui passe
par P; une conique particuliére se compose des deux
droites AB,CD), donc ce point fixe O est sur ladroite CD.
Ceci étant : dans le théoréme précédent, la conique
considérée passe par les quatre points A, B, G, D, etles
deux droites CP, DP rencontrent la conique en €'/, D';
la tangente en P a la conique ABCDP passe par 'inter-
section O des droites AB, C'D’; la conique A'B'C/D'P
montre que le point O est sur la tangente en P. Donc
ces deux coniques sont tangentes en P et la tangente
en P est PO.
Les autres combinaisons montrent que les cinq autres
points sont sur cette droite A.

APPLICATIONS.

[. Soient I, " deux coniques se coupant en quatre
points A, B, G, D. Prenons le centre d’homologie P sur
la conique T', on obtient le quadrilatére homologique
A'B' C' D' inscrit dans la conique I"; a cette figure, il
correspond une droite A tangente en P aT.

Exemple. — Les normales PA, PB, PC, PD menées
d’un point P a une conique la rencontrenten A, B, C/,

D', la droite A correspondante est tangente en P a
I'hyperbole d’Apollonius.

Avec les symétriques des points A, B, C, D par
rapport an centre O’ on aurait une droite A tangente
en ce point a cette hyperbole; la conique A’B'C' D' O’
est tangente en O’ & I'hyperbole d’Apollonius.

11. Le point P peut étre supposé a I'infini.

Exemple. — Si dans un cercle on méne quatre
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cordes paratleles AA/, BB/, CC/y DD/, on obtiendra une
droite A paralléle aux cordes, qui sera une asymplote
de deux hyperboles, I'une passant par A, B, C,D et
'autre par A/, B', ¢/, D',

1. La conique peut étre remplacée par un systéme
de deux droites.

Ezemple. — Un cercle est rencontré par deux
sécantes en A, B, C, D; prenons, sur le cercle, le centre
d’homologie P; il correspond quatre points A’,B',, D’
sur les deux sécantes, ce qui donne quatre points
situés sur la tangente en P au cercle.

IV. Le quadrilatére ABCD peut étre remplacé parun
triangle el une tangente en un sommet ou par une corde
et les tangentes aux extrémités.

Ezemple. — Soientune conique, unaxe AB, le cercle
ayant pour diaméire cet axe et les tangentes aux
sommets correspondants A, B. Prenons le point P sur
la conique, les droites PA, PB rencontrent le cercle
en A’, B'; la tangente en A’ au cercle rencontre la
tangente en B au point B, etlatangente en B'au cercle
rencontre la tangente en A au point A,; la droite A{B,
est tangente en P a la conique.

V. Supposons, pour Lerminer, que trois points A,
B, Csoient confondus et considérons la conique oscula-
trice en ce point; elle rencontre la conique donnée
en D el passe par un point P situé sur la tangente en D
a cette conique donnée qui est rencontrée en A’ par PA.,

DA’ rencontre la tangente en A au point E, la tan-
gente en A’ rencontre AD enF; la droite EF est
langente en P.
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Je me bornerai a ces quelques applications et je
laisserai au lecteur le soin de transformer la propriété
par polaires réciproques.

GORRESPONDANCE.

M. G. Fontené. — La régle donnée a la page 349 du
volume des Nouvelles Annales pour 1911, relativement au
signe du discriminant, peut s’énoncer ainsi :

Le discriminant de I’équation

arm"+... .+ g
étant mis sous la forme

a”l—'lglll-—i -+, . .

ce discriminant est égal au produit des carrés des différences
mm—1:
des racines par un facteur dont le signe est celuide(—1) 2

Cela donne bien le signe + si m ou m — 1 est multiple de 4,
si m est de l'une des formes 44, 4k + 1. le signe — si m ou
m — 1 est simplement pair, si m est de I'une des formes 4k + 2,
Gk —+3.

CERTIFICATS DE CALCUL DIFFERENTIEL ET INTEGRAL.

Besangon.

QUESTION DE cours. — Etude du mazimum et du minimum

d’une fonction d’une, de plusieurs variables indépen-
dantes.
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Mazimum et minimum relatifs.
Mazimum et minimum dans le cas d’une fonction
implicite. .
Application : mazximum et minimum du carré de la
distance d’un point & une surface z = f(z, y).
Méthode de Fermat. Application.

' EPREUVE PRATIQUE. — Lignes asymptotiques du conoide

e (2):

Déterminer ¢ de facon que l’une d’elles ait pour équation
a(xh+ yb) = (yr—x2)2 (y2+ 7?).

Déterminer la fonction de variable complexe z =P + (Q
satisfaisant a 22y P + ¢{y2— 2?) + 22y (x2+ y?)t=o.
(Juin 19710.)

EPREUVE THEORIQUE. — 1° Intégrer I’équation aux dérivées

partielles
0z 03 s+ 2

Tor 7 W Vzlt yi—a

dans laquelle a est un nombre positif donné.

Démontrer que les surfaces intégrales sont des surfaces
réglées.

2° Déterminer celle des surfaces intégrales qui contient
la courbe qui a pour équations

r =23, 4 yi=fal.

Exprimer les coordonnées d’un point quelconque z,y, z,
de cette surface S en question en fonction des deuxr para-
métres u, v obtenus en posant

r = ucosv, ¥y = usinp.

3° Déterminer les lignes asymptotiques de cette surfaceS.
4° Déterminer les trajectoires orthogonales des généra-
trices rectilignes de cette surface S.
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EPREUVE PRATIQUE. — Intégrer Uéquation différentielle

2yy = 2(yr4+1)+ Yyt — 3y

Il existe en particulier une intégrale passant par le

point x =o0, y =—1, et admettant pour tangente en ce

point une droite de coefficient angulaire y' = o, construire

cette courbe. (Juillet 1911.)
Bordeaux.

PREMIERE QUESTION. — Considérant la surface £ enveloppe
de la sphére variable

(x —ar+|y—fla)p+32=1.

1 Trouver géométriquement une premiére famille de
lignes de courbure de cette surface;

2° Démontrer que la deuxiéme famille est formée de
courbes planes quise projettent sur le plan des xy suivant
une famille de courbes paralléles;

3° Déterminer géométriquement les centres de courbure
principaux pour un point quelconque de X.

) DEUXIEME QUESTION. — En désignant par P et Q deux
fonctions données des deux variables indépendantes x et y

et en posant
u= y*—ux,

trouver a quelles conditions dotvent satisfaire les deux fonc-
tions P et Q pour que la différentielle

Pdz + Qdy

admette un facteur intégrant qui soit fonction de u seu-
lement. Montrer que si cette condition est remplie ce
facteur intégrant s’obtient par quadrature.
Appliquer a l’intégration de
Pdr +Qdy =o
en supposant
P=(2y2— 22 —1)et+ (22— 37) e,
Q=2yel+az(yr+y—=z)er.
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EPREUVE PRATIQUE. — Etant donnrés trois axes rectangu-
laires, sotent C une surface conique ayant pour équation

27y —32=o0

et T une surface cylindrique ayant pour équation

VE+yy =1

ou les radicaux ont les déterminations positives.
On considére le solide A d’étendue finie complétement
limité par une portion de C et ure portion de T. Calculer :
1° Le volume de A,
2 L’aire de la portion de surface conique qué le limite;
3° L'aire de la portion de surface cylindrique qui le
limite.

SOLUTION.

1* La surface T est une surface canal. La caractéristique
qui est un grand cercle de la sphére variable constitue une
premiére famille de lignes de courbure.

20 I’angle d'une normale MC & la surface =, qui est aussi

normale 3 ce lieu des centres des sphéres, avec la normale
principale est donné par .

s
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comme le lieu ¢ centre est une courbe plane T’

y=f(n),
I

=0

=3l

et
P = Po-

Par suite la deuxiéme famille de lignes de courbure est
formée de courbes planes qui se projettent sur le plan des zy
suivant des courbes paralléles a T';

3° En un point M de £ le premier centre de courbure est C;
'autre est donné par I'intersection de MC avec la droite polaire
de T qui est ici perpendiculaire au plan de T' menée par le
centre de courbure R correspondant a C. .

(Juin 1g10.)

EPREUVE THEORIQUE. — 1. 1° Désignant par f(x, v, z) une
fonction donnée de trois variables indépendantes z, y et z,
on demande de déterminer la forme la plus générale que
peut avoir une fonction ¢(z, y, 3) des mémes variables
pour que la différentielle totale
(n %dx—«}— %dy—i—cp(x,y,z)dz
soit complétement intégrable? Montrer que, dans ce cas, la
différentielle précédente peut étre ramenée sans aucune
quadrature, a une différentielle totale a deux variables
seulement, convenablement choistes.

2° Montrer que toute différentielle totale a trois va-
riables indépendantes peut étre ramenée, en la multipliant
par un facteur convenable, & la forme (1).

Quel procédé d’intégration peut-on déduire de ce qui
précéde pour les différentielles complétement intégrables
a trois variables indépendantes?

Il. Sur la surface dont l'équation en coordonnées rec-
tangulaires est

,2
s=X—2,

34

\ étant une fonction donnée de x:
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1° Déterminer les courbes C conjuguées des sections de
la surface par les plans paralléles au plan z0) ;-

2° Déterminer les trajectoires orthogonales des projec-
tions des courbes C sur le plan z0y.

EPREUVE PRATIQUE. — Calculer, en employant le théoréme
des résidus, l’intégrale

fm ) 4 cosx
—— _ dx.
o (13 —5cosx)?

(Novembre 1g10.)

Caen.

EPREUVE ECRITE. — I. Intégrer l’équation aux dérivées
partielles linéaire

03 , , 0z
gy(za—x)g+(.r-—+-z2——y?—4az‘)@ “+2yzs=o0,

ot 3 désigne une fonction inconnue des deux variables
indépendantes x et y, et a une constante positive donnée.

En supposant que z, y, 3 désignent les coordonnées rec-
tangulaires d’un point variable, faire voir que l'une
quelconque des surfaces définies par l’intégrale générale
est engendrée par un cercle; calculer, en un point quel-
conque du cercle générateur, le cosinus de l’angle du plan
tangent a la surface avec le plan du cercle, et interpréter
géométriquement le résultat obtenu.

Particulariser la fonction arbitraire qui entre dans
lintégrale de maniére que la surface correspondante
contienne la courbe

z =o,

z(y?+ 3®) = 8ad.

¢ 11. Etant donnés (rois ares rectangulaires OX, OY, OZ,
on considére un coéne de révolution autour de OL, ayant
son sommet & l’origine O, et dont les génératrices font un
angle a avec OL. On considére d’autre part, sur la partie
positive de OX, un point fize A, & une distance donnée a
de l'origine; on méne par le point A dans le plan XOY
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une droite faisant P'argle a2 avec OX, et par cette droite
un plan paralléle @ QL. Soit L la ligne d’intersection de
ce plan et du céne.

Former l'équation de la surface engeadrée par la
ligne L quand on fait varier Vangle a, faire voir que
cette surface est réglée, et chercher lgs trajectoires ortho-
gonales de ses génératrices rectilignes.

EPREUVE PRATIQUE. — Construire en coordonnées rectan-
gulaires ’une des courbes définies par l’équation d;je-

rentielle
do = 2 VE—)? V;’—J’ dy.

Evaluer ’aire comprise entre la courbe et l’axe des z.
(Juin rg10.)

EPREUVE ECRITE. — 1. Déterminer une surface par la
double oondition :

® Que les coordonnées rectangulaires x, y, z d’un
point variable de cette surface vérifient l’équation aux
dérivées particlles

0z \? - 0z\2 3a?
ox \dy) =’
ol a désigne une longueur constante dornée;
2° Que la surface contienne la parabole
z =o,

2=2ay /.

I1. Etant donnés trois azes rectangulaires 0X, OY, OZ,
on considére la surface réglée représentée par les formules

x = rcosb,
¥y =rsinb,
z = f(8),

o r, 0 désignent deux. paramétres arbitraires, et f(8) une
fonction donnée de 6.
Détermmer sur la surface une ligne telle qu'er urz quel-‘
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conque de ses points la génératrice coupe sous un angle
constant donné a l’une des deux lignes de courbure.

Construire la projection de cette ligne sur le plan XOY
dans Uhypothése particuliére

o«
a = G,
Sf(8) = acosh,

ou a désigne une longueur constante donnée.

EPREUVE PRATIQUE. — Intégrer le systéme des équations
différentielles linéaires

du .
—-— = U+ ¢ —w- 20087 —Ssinz,
dx

dv .
—— =—2U + 30— w — T COST —- SInx,
dx

ow .
— =—3u-+2w — 4 cosx + sinx.
ox

(Juin 1911.)
Dijon.

EPREUVE ECRITE. — 1° Soient .trois axes de coordonnées
rectangulaires O zyz. Trouver une surface S telle que le
plan tangent en un point quelconque M de cette surface
contienne le symétrique par rapport a O du point de ren-
contre de la normale en M a S avec le plan Ozy. On
supposera l’équation de S sous la forme z = f(x, y), et
U'on formera l’équation A que doit vérifier f;

2° Les cylindres paraboliques ayant pour section droite
une parabole de foyer O etde directrice paralléle ¢ Oz,
sont des surfaces S ;

3° Indiquer une intégrale compléte de l’équation A

4" Intégrer le systéme différentiel des caractéristiques
de l’équation A.
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Epneuve pratiQue. — Evaluer, a 0,001 prés, lintégrale

3

Jox?—x — 24 dr

/1 r3 (22— 32+ 4)

(Novembre 1g10.)

QUESTIONS.

2485. — Les points de rencontre des génératrices perpen-
diculaires d’un paraboloide hyperbolique sont sur une hyper-
bole: les plans de ces génératrices enveloppent un céne du
second ordre dont les lignes focales sont perpendiculaires aux

plans directeurs du paraboloide.
(KLue.)

2186. — Si l'on désigne par p un nombre premier et par P
le nombre p*, a pouvant étre nul, le nombre

C:‘('p—n - (— l)k

est multiple de p.
(G. F.)

2187. — La somme des produits qu'on obtient en multipliant
trois a trois les entiers inférieurs a n est

n(n—1)(n—2)(n—3) = n(n—iu)
24 2 )

(G. F.)
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[0'6p]
\ SUR LES
SYSTEMES DE SURFACES TRIPLEMENT ORTHOGONALES

COMPOSES DE CYCLIDES.

Par M. Mavrice FOUCHE,
Répétiteur a I’Ecole Polytechnique.

1. Introduction. — Vers la fin de 19o8, M. Dar-
boux a publié dans les Comptes rendus de I’ Acadé-
mie des Sciences plusieurs Notes relatives al’étude des
systétmes de surfaces triplement orthogonales qu'il
appelle réversibles. Ce sont ceux pour lesquels le
mouvement relatif du triedre des axes de coordonnées
par rapport au triédre des trois normales engendre un
nouveau systeme orthogonal dont les axes ainsi dépla-
cés sont les trois normales. Les surfaces qui constituent
ce systéme sont des cyclides de Dupin.

Je me suis proposé d’étudier la méme question par
les procédés de la géométrie pure, et je suis parvenu a
relrouver par ce moyen, et sans aucun calcul, un grand
nombre des résullats obtenus par M. Darboux. J'ai fait
la discussion des différentes formes que peut affecter le
systéme réversible et j’ai démontré que Lous les sys-
temes orthogonaux composés exclusivement de cyclides
dérivent par inversion d’un systéme réversible. Jai
ajouté quelques remarques sur ces systeémes.

J’emploie la méthode Darboux-Combescure qui con-
siste, comme on le sait, & partager le probléme en
deux parties. On étudie d’abord le mouvement & trois
paramétres, autour d’un sommet fixe, d’un triédre tri-

Ann. de Mathémat., }* série, t. XII. (Février 1g912.) 4
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rectangle dont les arétes sont paralléles aux normales
aux trois surfaces et ensuite on cherche 3 déterminer
la translation de ce triédre de maniére que, daosla
variation de chacun des trois paramétres, le sommet
engendre une des surfaces du systéme.

2. Les lignes de courbure d’un systéme réversible
sont planes. — Soit Oz y 5 le triedre mobile dont les
arétes Oz, Oy, Oz sont respectivement paralléles aux
normales aux surfaces obtenues en laissant constant
l'un des paramétres p, s, 02, et OXYZ le triédre
fixe formé par les trois axes de coordonnées. Le dé-
placement de Ox)y z dépend de neuf rotations dont
chacune est la composante, suivant 'une des arétes du
triedre mobile, de la rotation de ce triedre déterminée
par la variation d’un seul des paramétres p, py, 2. On
connait les conditions nécessaires et suffisantes pour
que le déplacement du triédre appartienne i un sys-
téme triple orthagonal. Elles sont au nombre de trois.
11 faut et 1l suffit que trois rotations soient nulles, sa-
voir la rotation autour de Oz quand p varie seule, la
rolation autour de Oy quand p, varie seule et la rota-
tion autour de Oz quand p, varie seule. La premiére
de ces conditions exprime que quand p varie seule, le
triedre mobile Ozyz tourne autour d’un axe situé
dans le plan Oyz. Le mouvement du triédre mobile
est donc défini par le roulement du plan Oy s sur un
céne fixe.

Le mouvement inverse, c'est-a-dire le mouvement
relatif du triédre des axes de coordonnées OXYZ par
rapport au triédre Ozy s, sera donc défini par le rou-
lement de ce coéne devenu mobile sur le plan Oyz
rendu fixe. Mais, pour que ce mouvement inverse en-
gendrit un nouveau systéme orthogonal, il faudrait que
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le cone se réduisit a un plan, ce qui est impossible. Il
ne peut se réduire qu’a une droite, et alors 'axe de ro-
lation est un axe permanent situé dans le plan Oy 3.
Donc pour que le systéme soit réversible, il faut et il
suffit que quand p varie seule, la rotation du trié¢dre
se fasse autour d’un axe permanent situé a la fois dans
le plan Oyz et dans le plan OYZ et que, quand p,
ou p, varie seule, deux autres conditions analogues
soient vérifides.

On en déduit immédiatement que les lignes de cour-
bure de chacune des surfaces du sysiéme sont planes.
Eo effet, laissons p, constante et faisons varier p et oy.
Nous obtiendrons une surface du systéme donl la nor-
male sera paralléle 2 Oz et dont la représentation sphé-
rique des lignes de courbure sera fournie par le dépla-
cement du point C de P'axe Oz qui se trouve 3 une
distance de 'origine égale & I'unité de longueur. La
ligne de courbure qui correspond a la variation de p
seule aura donc pour représentation sphérique la ligne
décrite par G quand p varie seule. Mais puisqu’alors la
rotation se fait autour d’'un axe permanent, le point C
décrira un cercle de la sphére. Or, les tangentes aux
différents points d’une ligne de courbure sont paral-
léles aux tangentes aux points correspondants de sa
représentation sphérique. Donc toutes ces tangentes
sont dans un méme plan et la ligne de courbure consi-
dérée est hien plane. Il en est évidemment de méme de
toutes les autres lignes de courbure obtenues en fai-
sant varier seule soit p, py ou p,.

3. Détermination de la représentation sphérique
du systéme orthogonal. — On voit de plus que la re-
présentation sphérique de chaque surface du systéme
se compose d'un réseau de cercles orthogonaux. Or on
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sait qu’un pareil résean tracé sur une sphére est formé
des cercles dont les plans passeat par I'une ou l'autre
de deux droites conjuguées par rapport a la sphére.

Soit OABC 'une des positions du tétraédre mobile,
A, B, C étant & une distance de 'origine égale al'unité
de longueur. Nous venons de voir que si p varie seule,
«ce tétraédre tourne autour d’un axe permanent qui est
Yintersection des plans OBC et OYZ.. Donc le point G
décrit un petit cercle dont le plan est perpendiculaire
A cet axe et par conséquent paralléle au plan OAX et,
«n particulier, a la droite fixe OX. Si maintenant nous
faisons varier g, le plan de ce cercle se déplacera en
passant par une droite fixe (D) ; puisqu’il reste paralléle
4 OX, il faut que la droite (D) soit paralléle & OX. De
méme quand p, varie seule le point C décrit un cercle
dont le plan est paralltle a OY, et quand ensuite on
fait varier 5 le plan de ce cercle lourne autour d'une
droite (D’) paralléle 8 OY. Enfin, puisque les droites
(D) et (D') doivent étre conjuguées, il faut que leur
perpendiculaire commune passe par le centre de la
sphére; celle-ci est donc 'axe OZ. On voitalors que la
représentation sphérique de tout le systéme doit étre
telle que si I'une des trois variables reste constante, le
point correspondant du tétraédre mobile décrive un
réseau orthogonal formé de cercles dont les plans pas-
seront par deux droites conjuguées perpendiculaires &
I'axe de coordonnées correspondant. Il reste & voir si
une pareille représentation sphérique est possible.

Soit OABC une position particuliere du tétraédre
mobile. Par A, je méne dans le plan tangent a la sphére
les droites AQ et AR respectivement paralléles a OB
et OC; de méme par B les droites BP' et CR’ respecti-
vement paralléles & OA et OC, et enfin par C les
droites CP" et CQ’ respectivement paralleles 3 OA
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et OB. Par AQ je fais passer un plan paralléle 2 OY,
lequel rencontre 'axe OX en G et coupe le plan OXY
suivant une droite (E) paralléle a OY. Je prends sur
OX le point G, conjugué de G par rapport a la sphére
et par G, je méne la droite (F) paralléle a OZ. Les
deux droites (E) et (F) sont conjuguées. Les plans pas-
sant par A et par chacune des deux droites (E) et (F)
doivent donc couper la sphére suivant deux cercles
orthogonaux; donc ils coupent le plan tangent en A
suivant deux droites perpendiculaires, et puisque le
premier passe par AQ le second passe par AR. Sialors
J’avais mené par AR un plan paralléle a OZ, ce plan,
identique au plan passant par A et (F), aurait coupé OX
au point Gy conjugué de G. De méme les plans paral-
leles & OX et a OZ menés par BP’ et CQ’ détermine-
ront sur OY les deux points conjugués H et H, par
lesquels passeront les deux droites conjuguées (D') et
(F") paralleles 4 OX et OZ. Enfin les plans menés par
CP” et CQ" parallélement & OX et OY détermineront
sur OZ les points conjugués K et K, par lesquels
passeront les deux droites conjuguées (D") et (E') res-
pectivement paraliéles 8 OX et 4 OY.

Désignons par OU, OV, OW les intersections res-
pectives des trois plans OBC, OCA, OAB avec les
plans de coordonnées OYZ, OZX, OXY. OU est per-
pendiculaire a la fois 3 OA et 4 OX; 0V aOBeta
OY; OW a4 OC et a OZ.

La position du triedre OABC dépend de trois para—
métres. A chacune de ses positions correspondent trois.
couples de points conjugués, un sur chacun des axes.
Supposons qu'on fixe les points K et K,. On définira
ainsi sur la sphére le réseau des cercles orthogonaux
dont les plans passent respectivement par (D) et (E'),
réseau décrit par le point C. Les tangentes a deux de
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ces cercles, en 'un de leurs points d'intersection, ren-
centreront respectivement les droites (D") et (E"), et le
triedre formé par le rayon de la sphére OC et les paral-
léles menées du centre a ces deux tangentes sera l'une
des positions du triédre précédent; mais 'ensemble de
ces nouvelles positions ne dépend plus que de deux
paramétres. Si 'on déplace le point C sur celui de ces
deux cercles dont le plan passe par (D"), la rotation se
fera autour de I'axe OU qui est perpendiculaire au plan
de ce cercle puisqu’il est perpendiculaire d’une part a
la tangente de ce cercle paralléle 4 OA et d’autre part
a OX parallele a (D”). Si on le déplace sur l'autre
cercle, la rotation se fera autour de OV. Si alors on
veul passer d’une position & une autre infiniment voi-
sine, mais quelconque dans I'’ensemble a deux para-
meétres, il faudra faire Lourner le triédre autour d’'un
axe silué dans le plan OUV.

Supposons maintenant qu'on fixe les points Het H,.
On aura un nouvel ensemble de positions du triédre et
'on passera de 'une & I'autre infiniment voisine par
une rotation autour d’un axe situé dans le plan OUW.
Si alors on fixe a la fois les points H, H, et les points
K et K, le triédre ne pourra plus que tourner autour
de I'axe OU, si les trois droites OU, OV, OW ne
sont pas dans un méme plan, ce qu’on peut toujours
supposer puisque le triédre initial est absolument
quelconque, si toutefois la position du wiédre mobile
dépend bien, comme nous l'avons suppose, de trois
variables lndcpendantes.

Le triédre tournant autour de OU, les points G et
G, se déplaceront nécessairement sur OX. En effet,
on peut amener le triédre a une position infiniment
voisine quelconque dans Pensemble a trois para-
meétres en le faisant Lourner successivement autour
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de OU, OV et OW. La premiére rotation laisse fixes
les poiats H, H,, K et K,. Les deux autres laissent
fixes les points G et G,. Donc, si G et G, restaient
fixes pendant la rotation autour de OU, ils resteraient
immobiles pour tout déplacement du triédre, méme
pour un déplacement fini que 'on peut toujours consi-
dérer comme une sunite de déplacements infiniment
petits. Mais alors il arriverait que, quelle que fat la
valeur de p, le point A décrirait toujours le méme ré-
seau sphérique, et la position du triédre ne dépendrait
que de deux paramétres.

Ainsi quand le wiédre tourne autour de OU, sa po-
sition est fonction de celle des deux points conjugués
G et G, et si l'on considére I'ensemble de toutes les
positions possibles du triedre mobile, cette position
est une fonction de trois variables g, 5., p; servant a
fixer 'une la position des points conjugués G et G,,
lautre celle de H et H,, et la troisiéme celle de K et K.
Quand Pune de ces trois variables varie seule, le
triedre totirne autour de l'une des trois droites OU,
OV, OW conformément aux conditions de notre pro-
bléme, et ainsi se trouve constituée la représentation
sphérique du systéme orthogonal.

4. Cas oa Uensemble des positions du triédre mo-
bile ne dépend que de deux paramétres. — Examinons
maintenant le cas ou les trois droites OU, OV, OW
sont dans un méme plan (T). La droite OU, intersec-
tion des plans OBC et OYZ, est perpendiculaire a la
fois 3 OA et 2 OX. Donc, le plan OAX est perpendi-
culaire au plan (T). Il en est de méme des plans OBY
et OCZ. Alors ces trois plans passeront par une méme
droite OS perpendiculaire au plan (T). La position du
triédre est déterminée par celle de la droite OS, et,
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comme celle-ci a une direction arbitraire, ’ensemble
des positions du triédre satisfaisant a la condition indi-
quée, dépend de deux paramétres, comme cela résulte
d’ailleurs de la discussion précédente. Laissons fixes
les points K et K, : nous aurons encore sur la sphére un
réseau de cercles orthogonaux que décrira le point C.
Les plans de ces cercles passeront I'un par la droite
(D") paralléle a OX et I'autre par la droite (E”) paral-
lele 8 OY. Le premier contient de plus la tangente au
cercle, laquelle est paralléle a OA, et 'autre la tangente
au second cercle, parallele a OB. Donc le premier
plan est paralléle au plan OAX et Pautre au plan OBY.
Iintersection CI des plans des deux cercles est donc
parallele & OS et par conséquent aussi au plan OCZ
qui contient OS. Mais le plan OCZ passe par le point C.
Donc la droite CI est dans ce plan-la et rencontre
I'axe OZ. Mais le plan d’un des deux cercles ren-
contre OZ en K et I'autre en K,. Il faut donc que les
deux points K et K, coincident, et comme ils sont con-
jugués, ils ne peuvent se confondre qu’en l'un des
points Z, ott 'axe OZ rencontre la sphére, et les deux
droites (D") et (E”) sont en ce point-la tangentes a la
sphere.,

De méme les points G et G, se confondent en 'un
des points d'intersection X, de la sphére avec 'axe OX,
et les points H et H, en I'un des points d’intersec-
tion Y, de lasphére avec OY. Les trois variables g, g,
g2 ne peuvent plus servir a fixer la position de ces
points devenus tous immobiles. Si on laisse p, inva-
riable, on aura sur la sphére le réseau des cercles
orthogonaux dont les plans passent par I'une ou l'autre
des tangentes & la sphére en Z,, paralléles 4 OX ou a
OY. Sil'on fait varier p, ce réseau reste le méme, mais
les cercles correspondant 2 une méme valeur de p ou
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p1 sont modifiés. Il en résulte que loutes les surfaces
d’une méme famille ont la méme représentation sphé-
rique, et méme que toutes les surfaces des trois familles
ont des représentations sphériques égales, mais diffé-
rant par leur position sur la sphére. Au reste, une pa-
reille représentation sphérique d’un systéme orthogo-
nal existe bien, puisque c’est celle du systéme formé
par les sphéres tangentes a I'origine & 'un ou a 'autre
des trois plans de coordonnées. Nous verrons plus
loin que la méme représentation sphérique appartient
aussi & des systémes composés de cyclides particu-
liéres.

Enfin il ne faut pas omettre le cas particuliérement
simple ou la position du triédre mobile ne dépend que
des variables o el o, et reste lJa méme quand on fait
varier 9,.

5. Les surfaces formant le systéme orthogonal
réversible ont toutes leurs lignes de courbure circu-
laires. — Passons maintenant a 1’étude des surfaces
composant le systéme orthogonal réversible. 1l résulte
déja de la représentation sphérique trouvée que les
lignes de courbure sont toutes planes. Nous allons dé-
montrer que de plus elles sont circulaires. Soit M un
point quelconque par ol passent trois surfaces ortho-
gonales. Lorsque p varie seule, le triédre des trois nor-
males Mzy s tourne autour d’'un axe MT de direction
invariable, situé dans le plan Myz, et subit en méme
temps un mouvement de translation dont la direction
est constamment celle de Mz perpendiculaire a’axe de
rotation. Ces deux mouvements se composent en une
simple rotation autour d’un axe parall¢le au premier et
situé aussi dans le plan Myz perpendiculaire ala trans-
lation. Donc le lieu des axes instantanés dans le triedre
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mobile est le plan Myz, et le mouvement résulte du
roulement de ce plan sur un cylindre fixe. Le mou-
vementinverse est donc défini par le roulement de ce
cylindre sur un plan fixe. Si le systéme est réversible,
ce cylindre devrait étre un plan, ce qui est impossible;
le mouvement doit donc se faire autour d’un axe perma-
nent et la trajectoire du point M est un cercle. Comme
il en est évidemment de méme dans la variation de p ou
de p, toutes les lignes de courbure du systéme sont
des cercles. La condition est manifestement suffisante.
Les seules surfaces dont toutes les lignes de courbure
sont circulaires sont les cyclides de Dupin ou les sur-
faces qui en dérivent par dégénérescence, telles que la
sphére, le plan, les cones et les cylindres de révolution,
si ’on considére les droites comme des cercles de rayon
infini. Donc, en laissant de c6té les systémes banaux,
on peut conclure que : tous les systémes orthogonauzx
réversibles sont composés de cyclides.

6. Les cyclides, enveloppes de sphéres. — Avant
d’expliquer comment on peut construire le systéme
orthogonal, je crois utile de rappeler les principales
propriétés des cyclides, quoique ces surfaces aient déja
été 'objet de nombreux travaux de la part de plusieurs
géométres. J'en ai fait, moi-méme, autrefois une étude
sommaire en les considérant comme enveloppe d’une
sphére qui reste tangente a trois sphéres fixes (/Nou-
velles Annales de Mathématiques, juin, aolt et
octebre 189g2). Ici, je me propose d’en faire dériver
les principales propriétés du seul fait que toutes les
lignes de courbure sont circulaires. D’abord, une
pareille surface existe bien, car on en obtient une
en faisant I'inversion d’un céne de révolution par rap-
port & un point quelconque de ’espace. Nous savons
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déja que lareprésentation sphérique des lignes de cour-
bure se compose de cercles orthogonaux dont les plans
passent par I'une ou I'autre de deux droites conjuguées.
Ces droites conjuguées peuvent couper leur perpen-
diculaire commune en deux points distincts, ou bien
éire tangentes au méme point de la sphére. Mais ily a
des remarques générales qui s’appliquent aux deux
cas.

Le plan d’upe ligne de courbure circulaire coupe la
surface sous un angle constant. On peut donc faire
passer par chaque cercle de courbure une sphére cir-
conscrite a la surface. La surface est I'enveloppe de
toutes celles de ces sphéres qui passent par les lignes
de courbure d’une méme famille. Comme il y a deux
familles de lignes de courbure, la cyclide est I'enve-
loppe commune de deux familles de sphéres. 1l en ré-
sulte que deux sphéres appartenant a deux familles
différentes sont tangentes au point de la cyclide par ot
passent les deux lignes de courbure correspondantes,
et que chaque sphére d’une famille est tangente a
toutes les sphéres de l'autre. 11 faut trois sphéres pour
définir une famille de sphéres qui leur soient tangentes ;
mais il faat de plus choisir parmi les centres de simili-
tude de ces trois sphéres, trois de ces centres en ligne
droite, de maniére que les points de contact de la
sphére mobile avec deux des sphéres fixes soient anti-
homologues par rapport & I'un des centres. Comme il
Y a quatre axes de similitude, il y a quatre familles de
sphéres tangentes a trois sphéres données. Il faut se bor-
ner & 'une d’elles. Considérons comme positif un con-
tact intérieur et comme négatif un conlact extérieur.
Sil'on envisage toutes les sphéres tangentes a deux
sphéres fixes, les points de contact étant antihomo-
logues par rapport au centre de similitude S, les deux
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contacts seront de méme espéce ou d’espéces différentes
suivant que le point S sera le centre de similitude di-
rect ou inverse. En d’autres termes le produit des deux
contacts reste le méme quand on ne change pas le
centre de similitude. Done, dans le cas de notre famille
de sphéres tangentes a trois sphéres fixes, les produits
des contacts deux a deux restent invariables, c’est-a-
dire qu'un des contacts ne peut changer d’espéce sans
que les deux autres en changent aussi. Finalement, la
cyclide est Uenveloppe des sphéres tangentes a trois
sphéres fixes, les trois contacts restant de méme
espéce, ou changeant d'espéce en méme temps.

7. Points coniques, plans circonscrits, plans de
symétrie. — Les trois sphéres fixes se coupent en deux
points réels ou imaginaires qui sont les sphéres de
rayon nul de la premiére famille, et qui par consé-
quent doivent se trouver sur toutes les spheres de la
deuxiéme famille, a laquelle appartiennent les trois
sphéres fixes. De plus, parmi les sphéres de la pre-
miére famille figurent deux plans réels ou imaginaires
qui sont langents aux trois sphéres primitives. Toutes
les sphéres de laseconde famille doivent étre tangentes
a ces deux plans. Alors en considérant la surface
comme 'enveloppe des sphéres de la seconde famille,
on voit que la cyclide est Uenveloppe des sphéres qui
passent par deux points fixes et qui sont tangentes
a un plan fize. Ces sphéres sont par suite également
tangentes au plan symétrique du premier par rapport
au plan perpendiculaire a la droite des deux points
fixes en son milieu.

Les caractéristiques de ces sphéres sont des cercles
de la cyclide qui passent par les denx points fixes et
qui doivent toucher chacun des deux plans fixes sur
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le cercle de la cyclide qui se trouve dans ce plan.
Donc : La cyclide est le lieu des cercles qui passent
par deuzx points fixes et qui sont tangents ¢ deuz
plans fixes symétriques par rapport au plan per-
pendiculaire & la droite des deux points fizes, en
son milieu. Il est bien entendu que, dans certains cas
particuliers, les deux points fixes peuvent se con-
fondre ainsi que les deux plans fixes.

Les points fixes sont des points coniques de la cy-
clide, les plans fixes des plans circonscrits. Comme
chaque famille de sphéres contient deux sphéres de
rayon nul et deux plans, la cyclide admet quatre points
coniques et quatre plans circonscrits réels ou imagi-
naires, distincts ou confondus. Nous appellerons aze
radical d’une cyclide chacune des droites quijoignent
les deux points coniques d’'une méme famille. Parmi
les sphéres de I'autre famille qui passent toutes par ces
deux points se trouvent les deux plans circonscrits de
cette famille-1a, d’ou il suit que chacun des deux axes
radicaux est la droite d'intersection des deux plans cir-
conscrits d’'une méme famille. Ils sont perpendiculaives
entre eux et paralléles aux deux droites fixes par ou
passent les plans des cercles de la représentalion sphé-
rique.

On en déduit immédiatement que la cyclide admet
deux plans de symétrie dont chacun passe par I'un
des axes radicaux et est perpendiculaire & 'anlre au
milieu de la distance des deux points coniques situés
sur cet autre. Chacun de ces plans contient les centres
de toutes les sphéres qui passent par les points coniques
qu’il ne contient pas.

8. La cyclide est une surface anallagmatique. —
Cdne des tangentes au point conique. — Lieu des
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centres des sphéres d’'une méme famille. — L'inver-
sion transforme la cyclide en uneautre cyclide puisque
les lignes de courbure circulaires se transforment en
d’autres cercles. Si le pole d'inversion est sur 'un des
axes radicaux, et le module convenablement choisi,
toutes les sphéres passant par les points coniques
situés sur cet axe se transforment en elles-mémes et la
cyclide se reprodiit. C'est une surface anallagma-
tigue. Si le pdle d’'inversion est & I'un des points co-
niques, toutes les sphéres qui passent par ce point se
transforment en des plans qui passent par le point
transformé de I'autre point conique situé sur le méme
axe radical, et comme tous ces plans doivent étre tan-
geunts a une sphére de I'autre famille, ils enveloppent
un cone de révolution qui est la transformée de la cy-
clide. Ce cone devient un cylindre si les deux points
coniques se confondent. De la résulte que : le céne
des tangentes en chaque point conigue est de révo-
lution, puisque les cercles passant par les points coni-
ques se sont transformés dans les génératrices du
cone, lesquelles font un angle constant avec l'axe
radical.

Cette proposition résulte aussi de ce fait que le cone
circonscrit le long d'un cercle de courbure est de ré-
volution. A la limite, ce cone devient le cOne des tan-
gentes. Il résulte encore de ce qui précéde que toute
cyclide est la figure inverse d'un céne ou d’un cylindre
de révolution.

Coupons une cyclide par un de ses plans de symé-
trie (P). Les sphéres ayant leur centre dans ce plan
sont coupées suivant des grands cercles (C). Considé-
rons trois de ces grands cercles. Il existe dans le
plan (P) deux cercles (w) et (w') tangents a ces trois-la
avec les conditions de contact imposées. Ce sont les



(63)

grands cercles de deux sphéres tangentes aux trois
sphéres ayant pour grands cercles les cercles (C) choi-
sis. Elles font donc partie de Ia seconde famille et doi-
vent étre tangentes a toutes les sphéres de la premiére
famille. Donc tous les cercles (C) sont tangents aux
cercles (w) et (w') et le lieu de leur centre, c’est-a-dire
le lieu des centres des sphéres de la premiére famille,
est une conique admettant pour foyers les centres des
cercles (w) et (w'). On en déduit que :

La cyclide est Uenveloppe des sphéres qui ont leur
centre dans un plan fize et qui sont tangentes a
deux cercles fizes tracés dans ce plan, toujours avec
les mémes restrictions relatives a 'espéce des contacts.
1l reste entendu que I'un des cercles peuat se réduire a
une droite ou a un point.

De plus, les deux coniques qui constituent chacune
le lieu des centres des sphéres d’une des deux familles,
sont focales 'une de I'autre. En effet, chaque sphére S
de I'une des familles touche toutes celles de l'autre
famille en des points qui sont sur le cerclg le long du-
quel la sphére (S) touche son enveloppe. Les droites
qui joignent le centre de la sphére (S) aux centres de
toutes les sphéres de I'autre famille passent par les
points de countact et forment un céne de révolution.
Le lieu des centres de (S) est donc le lieu des sommets
des cones de révolution qui passent par une conique,
lieu des centres des sphéres de I'autre famille, c’est-a-
dire la focale de cette conique.

9. Cyclide du quatriéme ordre. Elle admet deux
plans circonscrits réels et deux imaginaires. — Re-
portons-nous a la représentation sphérique formée des
cercles dont les plans passent par les droites (D) et (E)
et supposons que ces deux droites coupent leur per-
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pendiculaire commune en deux points distincts. Cha-
que plan circonscrit 4 la cyclide doit correspondre a un
plan tangent a Ja sphére puisqu’en lous les points de
contact les normales sont paralleles. Or des deux
droites conjuguées (D) et (E"), I'une coupe la sphére et
Pautre lui est extérieure. Donc on peut mener a la
sphére par ces droites deux plans langents réels et
deux autres imaginaires. D’autre part, si la direction
d’un plan circonscrit est réelle, ce plan est aussi réel
puisqu’il doit passer par 'un des axes radicaux de la
surface, lesquels sont réels 'un et 'autre. Donc, parmi
les quatre plans circonscrits a la cyclide, il y en a tou-
jours deux réels et deux imaginaires.

10. Différentes formes des cyclides du quatriéme
ordre. — Nous pouvons maintenant passer en revue
les différentes formes que peut affecter une cyclide.

D’abord, sil'une des droites (D") ou (E") est rejetée
alinfini, 'autre passe par le centre de la sphére, la re-
présentation-sphérique se compose de méridiens et de
paralleles, et la surface est un tore.

Dans le cas général, soient (P) et (Q) les deux plans
circonscrits réels qui se coupent suivant 'axe radical
(R). L'autre axe radical (T) est perpendiculaire a (R).
Supposons qu’il ne coupe pas (R). Il coupe (P) et (Q)
en deux points A et B. Si les points coniques situés
sur (T) sont A et B, la cyclide se réduit a la sphére tan-
gente a (P)eta (Q)en A el en B. Siles points coniques
étaient en dehors du segment AB, toutes les sphéres
tangentes a (P) et a (Q) seraient imaginaires, et la cy-
clide elle-méme imaginaire. Supposons-les donc entre
A et B. Le lieu des points de contact de (P) avecles
spheres dont la cyclide est 'enveloppe est un cercle de
centre A, Tant que le rayon 3 de ce cercle est suffisam-
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ment petit, les sphéres tangentes a (P) coupentla droite
AB en deux points réels et la cyclide a la forme d’un
tore & points coniques réels que 1’on aurait déformé en
le comprimant d’un c¢6té. Quand le rayon p grandit,
les points A et B se rapprochent, et avant que le cercle
de rayon o soit devenu tangent a I'axe radical (R), ces
deux points coniques se réunissent au milieu de AB.
Alors la cyclide est I’analogue du tore engendré par un
cercle tournant autour d’une de ses tangentes.

Le rayon p grandissant encore, mais restant plus
petit que la distance de A a I’axe radical (R), les points
coniques deviennent imaginaires et la cyclide a la
forme d’un anneau plus épais d’un cété que de I'autre.
Quand le cercle de centre A est devenu tangent & I'axe
radical (R), la diminution de I’épaisseur de l’anneau
est devenue telle qu'au point de contact cette épaisseur
est réduile a zéro. La cyclide a la forme d’un fuseau a
filer qu’on aurait courbé sur son axe jusqu’a ce que les
deux pointes se rejoignent.

Si enfin le cercle de centre A coupe l'axe radical (R)
les points coniques apparaissent dans la famille des
sphéres admettant cet axe radical, et la cyclide a la
forme de deux fuseaux a filer recourbés 'un et I'autre
de maniére & se joindre par leurs pointes.

Il peut encore arriver que les deux axes radicaux se
coupent en un point sur lequel viendront alors se con-
fondre les points A et B. Le cercle de centre A est com-
posé de deux parties égales séparées par l'axe radi-
cal (R); les deux fuseaux recourbés sont égaux, et la
cyclide admet un troisiéme plan de symétrie qui est le
plan des droites (R) et (T). ' '

11. Généralités sur les cyclides du troisiéme ordre.
— Les surfaces que nous venons d’étudier sont' du
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quatriéme ordre, puisque les plans passant par un des
axes radicaux les coupent suivant deux cercles. Exami-
nons maintenant le cas ou la représentation sphérique
se compose de cercles dont les plans passent par I'une
ou l'autre de deux droites (D) et (E) rectangulaires et
tangentes en un méme point de la sphére. Alors les
deux plans circonscrits d’'une méme famille se confon-
dent comme les deux plans tangents & la sphére menés
par la droite (D). 1l y a dans chaque famille un plan
circonscrit et ces deux plans sont paralléles. Les deux
axes radicaux (R) et (T), respectivement paralléles a
(D) et a (E), sont deux droites perpendiculaires entre
elles et situées chacune dans I'un des plans circonscrits,
par exemple (R) dans (P), et (T) dans (Q). Les sphéres
(S) coupent I'axe radical (R) en deux points A et B et
sont tangentes au plan (Q). Le lieu de leurs points de
contact est U'intersection de ce plan avec le plan per-
pendiculaire a (R) au milieu de AB. Parmi ces sphéres
il y en a deux de rayon nul dont les centres sont néces-
sairement sur le lieu des points de contact. 1l en ré-
sulte que ce lieu n’est autre que I'axe radical (T). Ainsi
chacun des deux plans circonscrits touche la cyclide le
long d’un axe radical. Les plans de symétrie sont ceux
qui passent par I'un des axes radicaux et qui sont per-
pendiculaires a I'autre.

Soit MN ( fig. 1) la perpendiculaire commune aux
deux axes radicaux, M sur (R) et N sur (T). Parmi
toutes les sphéres (¥) admettant I'axe radical (T), il y
en a une qui a son centre w sur MN et qui passe en M
ot elle est tangente a (R). Elle coupe suivant un grand
cercle le plan (V) passant par MN et par (T) que nous
avons pris pour plan de la figure. Les sphéres (S) sont
alors celles qui ont leur centre dans le plan (V) et qui
sont tangentes a la fois a la droite (T) et au cercle (w),
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le contact avec ce cercle restant de méme espéce tant
que la sphére reste d’'un méme coté du plan circonscrit
passant par (T) et changeant d’espéce quand la sphére
Fig. 1.

(T)

passe de 'autre c6té du plan. Elles doivent comprendre
comme cas limite le plan perpendiculaire a (V) passant
par (R). Le lieu de leurs centres est une parabole ayant
pour foyer w et pour directrice une paralléle a (T). Le
lieu des centres des sphéres de I'autre famille est la
parabole focale de celle-la. :

Soit une de ces sphéres de la famille (S). Elle
touche le cercle (w) et la droite (T') en deux points G
et D qui d’aprés une propriété élémentaire sont alignés
sur le point M. La sphére considérée touche donc la
cyclide suivant le cercle de diamétre CD situé dans le
plan perpendiculaire a (V), plan qui contient bien,
comme cela doit étre, l'axe radical (R) dont le pied est
en M. La cyclide est donc le lieu de ces cercles CD
obtenus en faisant pivoter une droite autour de M. Les
surfaces ainsi obtenues sont du troisi¢éme ordre. Cha-
cune d’elles est complétement définie par une droite (T)
et un cercle (w) situé dans un méme plan, avec I'indi-
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cation de celle des deux extrémités du diamétre de (v)

perpendiculaire & (T) qui doit jouer le role de centre
de pivotement.

12. Différentes formes de cyclides du troisiéme
ordre. — Supposons d’abord que le cercle (w) ne
coupe pas la droite (T) et qu'on prenne pour centre de
pivotement le point du cercle le plus éloigné de la
droite (T) (fig. 1). La surface est alors tout entiére
comprise entre les deux plans circonscrits passant
par M et N. Elle a la forme d’une sorte de double
trompe ayant sa partie la plus étroite le long du cercle
de diamétre EN compris dans le plan perpendiculaire
a (T) entre (w) et (T), et s’évasant des deux coOtés indé-
finiment. On peut encore la considérer comme engen-
drée par les cercles de I'autre famille qui sont dans les
plans passant par (T). Le point M sera remplacé par N,
le cercle (w) par le cercle de diamétre EN dans le plan
perpendiculaire 3 (V) et la droite (T) par la droite (R).
On lui trouve ainsila forme d’une double trompe ayant
sa partie la plus étroite le long du cercle (w) et s’évasant
indéfiniment de chaque c6té da plan (V). Cette surface
contient les deux droites (T) et (R).

Si le cercle (w) est tangent a la droite (T), la double
trompe se rétrécit dans sa partie la plus étroite jusqu’a
présenter un point conique au point N. Mais si 'on
considére les cercles de la méme famille que (w), on
verra qu’ils sont tous tangents & la droite (T) au
point N. Le cone des tangentes au point conique se
réduit a cette droite. Ce cas est le méme que celui ot
le cercle (w) se réduirait a un point.

Si le cercle (0) coupe la droite (T) en deux. pomts A
et B (fig. 2), la surface comprendra deux trompes par-:
tant des points coniques A et B et une sorte de fuseau
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recourbé a U'intérieur de la sphére (w) de 1'autre coté
de (T). S
Supposons maintenant que le cercle (w) ne coupant
pas la droite (T), on ait pris pour pied de la droite (R)

Fig. 2.

m

le point le plus rapproché de (T), soit E(fig. 1). Alors
si I’on considére les cercles de I'autre famille, il faudra
remplacer le cercle (w) par le cercle de diamétre MN
dans le plan perpendiculaire & (V). Comme celui-cx
coupe I'axe radical (R) dont le pied est en E, la cyclide
aura la forme du cas précédent, et Ja discusssion est
épuisée.

Enfin, si les deux plans circonscrits se confondent,
la cyclide se réduit a une sphére accompagnée du
plan des deux axes radicaux, comme on le voit sur
la figure 2 en rapprochant indéfiniment le point M du
point N.

13. Sections planes des cyclides. — Il convient
d’'ajouter quelques mots sur les sections planes des cy-
clides. Toutes les sphéres d'une méme famille étant cir-
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conscrites a la surface coupent le plan sécant (P) sui-
vant des cercles tangents a la section plane. Ces
courbes sont denc I'enveloppe commune de deux
familles de cercles. Soit A le point out I'un des axes ra-
dicaux de la cyclide coupe le plan sécant (P). Ce point
a la méme puissance par rapport a tous les cercles cor-
respondants situés dans le plan (P). Si 'on prend ce
point A pour pole d’inversion avec sa puissance pour
module, les cercles demeureront inaltérés, et leur
enveloppe ne sera pas changée. Comme il y a deux
axes radicaux, les sections planes des cyclides sont des
courbes doublement anallagmatiques.

La cyclide étant un lieu de cercles contient le cercle
de l'infini. Dans les cyclides du quatriéme ordre ce
cercle est une ligne double de la surface parce que
chaque plan passant par I'un des axes radicaux contient
deux cercles de courbure qui se coupent aux deux
points cycliques de ce plan. Donc toutes les sections
planes admettent pour points doubles les points cy-
cliques du plan sécant. Dans les cyclides du troisiéme
ordre, le cercle de l'infini est une ligne simple de la
surface puisque chaque plan passant par 'un des axes
radicaux ne contient qu'un cercle de courbure ; mais
le plan de I'infini coupe en plus la surface suivant une
droite située dans les plans paralléles aux plans cir-
conscrits. Donc la section faite par le plan (P) admet
pour asymptotes deux droites isotropes du plan (P)
et une paralléle & I'intersection de (P) avec l'un des
plans circonscrits. Les points A et B, ou le plan sécant
coupe les deux axes radicaux, font partie de la sec-
tion; en ces points la tangente est située dans le plan
circonscrit correspondant, et par suite parall¢le a
P'asymptote.

Revenons au cas général : si le plan sécant est tan-
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gent en M a la surface, le point M est un point double
de I'intersection qui présente ainsi avec les points cy-
cliques trois points doubles. La section est donc uni-
cursale. Cette conclusion subsiste dans le cas des cy- -
clides du troisiéme ordre. Sienfin le plan est bitangent
ala cyclide, on trouve qualre points doubles sur la
section. Celle-ci doit donc se décomposer en deux co-
niques qui sont forcément des cercles puisqu’elles
passent 'une et I'autre par les points cycliques. Enfin,
I'inversion montre que de méme toute sphére bitan-
gente & une cyclide la coupe suivant deux cercles. Le
reste de I'intersection est le cercle de I'infini compté
comme ligne double. En particulier, toute sphére pas-
sant par les deux points coniques coupe la cyclide
suivant deux cercles.

En ce qui concerne les cyclides du troisi¢éme ordre,
remarquons que les plans paralléles aux plans circons-
crits coupent la surface suivant une droite a l'infini et
une conique; celle-ci, quand elle estréelle, est toujours
une hyperbole si la cyclide n’a pas de points coniques
réels (fig. 1). Si les points coniques sont réels, la sec-
tion est une hyperbole si le plan sécant passe entre M
et N (fig. 2), une ellipse si le plansécant est de'autre
coté de la droite (T). Si le plan sécant passe parle
point E, le centre de la conique étant justement le
point E, celle-ci se réduit & deux droites qui sont
réelles dans le cas de la figure 1 et imaginaires dans le
cas de la figure 2. Nous allons voir qu’en dehors des
axes radicaux, des droites isotropes et de la droite de
Uinfini dans le plan paralléle aux denx axes radicaux,
ces deux droites sont les seules qui se trouvent sur la
surface. Si en effet la cyclide contient une droite (D)
elle contiendra aussi la droite (D’) symétrique de (D)
par rapportau plan (V) delafigure 1. Alors le plan (W)
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des deux droites (D) et (D') coupera la cyclide suivant
une troisiéme droite qui devra contenir les points cy-
cliques du plan (W). Ce sera donc la droite deVinfini.
Mais la surface ne contient pas d’autre droite & I'infini
que celle qui est dans le plan paralléle aux deux axes
radicaux. Donc le plan (W) est paralléle & ces deux
axes radicaux, et les deux droites (D) et (D’) sont bien
celles dont nous venons de parler. Les plans bitangents
a la cyclide sont ceux qui passent par I'une ou 'autre
de ces droites. Ils coupent la cyclide suivant un cercle
en outre de cette droite. Enfin une sphére bitangente
coupe la cyclide suivant deux cercles ; le reste de I'in-
lersection est le cercle de U'infini.

14. Le systéme orthogonal. — Symétrie par rap-
port a trois plans rectangulaires. — Arrivons main-
tenant & la construction du systéme triplement ortho-
gonal réversible. Je ne m’occuperai que des systémes
réels. Considérons d’abord les systémes composés de
cyclides du quatriéme ordre, c’est-a-dire ceux qui cor-
respondent au cas général de la représentation sphé-
rique. Nous savons déja par les propriétés de cette re-
présentation sphérique que chaque cyclide du systéme
a ses deux axes radicaux paralleles a deux des axes de
coordonnées et par conséquent ses deux plans de
symétrie paralléles 4 deux plans de coordonnées.

Soient (X) I'un des plans de symétrie d’une cyclide et
(C) un des cercles de courbure de cette cyclide dont le
plan perpendiculaire & (X) peut n’éire supposé paral-
l¢le & aucun plan de coordonnées. Par (C) passe une
cyclide de la deuxiéme famille dont un des plans de
symétrie doit passer par I’axe du cercle (C), axe situé
dans le plan (X). Par hypothése, cet axe 'n’est paralléle
a aucun plan de coordonnées autre que celui qui est
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paralléle a (X). Donc le plan de symétrie de la seconde
cyclide est aussi (X). 1l en sera de méme pour toutes les
autres cyclides de la seconde famille.
On verra de méme que le deuxiéme plan de symétrie
de la premiére cyclide sera aussi un plan de symétrie

commun 2 toutes les cyclides de la troisiéme famille.
On en déduit aisément que :

Les plans de symétrie de toutes les cyclides se ré-
duisent a trois plans rectangulaires. Toutes les cy-
clides d’une méme famille sont symétriques par
rapport & deuz de ces trois plans fizes. Chacun de
ces trois plans est un plan de symétrie commun a
toutes les cyclides de deux familles.

Prenons ces trois plans pour plans de coordonnées.
Puisqu’il existe deux familles de surfaces symétriques
par rapport au plan OXY, Pensemble de tout le sys-
téme doit étre symétrique par rapport a ce plan et
comme les surfaces de la troisiéme famille ne 'ad-
meltent pas pour plan de symétrie, il faut que ces
surfaces soient deux & deux symétriques par rapport

a4 ce plan-la.

15. Les dousze tores dont siz réels et six imagi-
naires. — La représentation sphérique de 'une des
cyclides se compose des cercles dont les plans passent
par les deux droites rectangulaire (D") et (E”). Si 'une
de ces droites est rejetée a 'infini, la cyclide corres-
pondante est un tore. A chaque position des droites
(D") et (E") correspondent deux cyclides égales et sy-
métriques par rapport au plan OXY; comme chacune
des deux droites (D”) et (E’) peut étre rejetée a l'infini,
chaque famille comprend quatre tores deux i deux sy-
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métriques par rapport 4 I'un des plans de coordonnées.
Nous allons voir que de ces quatre tores, deux sont
réels et deux imaginaires.

Considérons une cyclide symétrique par rapport au
plan OXY et supposons que celui des deux axes radi-
caux (R) par ol passent les deux plans circonscrits
réels soit dans ce plan OXY et paraliele a OY. Ces
deux plans touchent la cyclide suivant des cercles par
chacun desquels passe une cyclide de la deuxiéme
famille. Mais cette deuxiéme cyclide doit étre normale
au plan (P) circonscrit a la premiére. Donc la sphére
qui passe par le cercle situé dans le plan (P), et qui est
circonscrite i la deuxiéme cyclide doit avoir son centre
dans le plan (P), et le cercle considéré est un grand
cercle de cette sphére. Or, si 'on se reporte a la
génération des cyclides expliquée aux n°* 7 et 8, on
verra que pour qu’'une sphére touche la cyclide suivant
un grand cercle, il faut que le plan de ce grand cercle
soit un plan de symétrie de la cyclide. Donc le plan (P)
est un plan de syméirie de la deuxiéme cyclide, et
comme il n’est paralléle & aucun des plans de coordon-
nées, il faut que cette deuxiéme cyclide soit un tore
engendré par la rotation du cercle situé dans le plan (P)
autour d’une droite située dans le méme plan et paralléle
al'un des axes de coordonnées, ¢’est-a-dire autour d’une
droite paralléle a (R), paralléle elle-méme a OY. De plus,
cet axe du tore devant se trouver dans un des plans de
coordonnées sera l'intersection du plan circonscrit (P)
avec le plan OYZ. L’autre plan circonscrit (Q) donne
naissance 4 un deuxié¢me lore symétrique du premier
par rapport au plan OXY.

Ainsi, le lieu des cercles de contact des plans cir-
conscrits auzx cyclides d’une méme famille se com-
pose de deux tores symétriques dont ces cercles sont
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les méridiennes, d’ou il suit que tous ces cercles sont
égaux,

Les plans circonscrits imaginaires & la premiére cy-
clide donneront naissance de la méme maniére a deux
tores imaginaires appartenant a la troisiéme famille de
cyclides, d’ou il résulte bien que chaque famille de cy-
clides admet deux tores réels et deux imaginaires.

16. Construction du systéme orthogonal. — Dés
lors, la construction du systéme orthogonal ne présenle
plus aucune difficulté. Considérons deux tores égaux
ayant leurs centres G et C' sur I'axe OZ, leurs axes
paralléles 4 OY, et symétriques par rapport a I'origine.
Joignons C et C' a un point A del'axe OX. Faisons
passer par A une parallele (R) a 'axe OY et considé-
rons les deux plans (P) et (P) passant par (R) et C et C/,
lesquels coupent les tores suivant les cercles BD
et B'D'. Une cyclide de la seconde famille sera I'enve-

Fig. 3.

“A

loppe des sphéres touchant les deux plaris P et P sur
les cercles BD et B'D’ ( fig. 3, ou I'on n’a représenté
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qu’un seul des deux tores projeté sur le plan OXZ). La
seconde famille est formée de toutes les cyclides qu'on
obtient de cette maniére en faisant faire un tour com-
plet au rayon CBD. Parmi elles figurent les deux tores
qu’on obtient en rejetant A a I'infini. Ceux-ci sont
symétriques par rapport au plan OZY et admettent
pour cercles stationnaires les deux cercles de diamétre
EF et E'F’ ou bien GH, G'H’, dont les plans sont pa-
ralleles au plan OXY.

Le troisiéme couple de tores s’obtient en faisant
tourner chacun des cercles stationnaires du premier
tore autour de la trace de son plan sur le plan OXY,
trace qui est paralléle 3 OX, etles deux autres familles
de cyclides dérivent de ces deux couples de tores
comme la seconde famille dérivait des deux tores pri-
mitifs.

17. Le systéme ainsi défini est bien orthogonal.
Il reste a vérifier que les cyclides ainsi obtenues se cou-
pent bien a angle droit.

La cyclide considérée d’abord et admettant pour
plan de symétrie les plans OXZ et OXY coupait, sui-
vant le cercle BD, le tore (C) dont I'axe est paralléle
a OY. Menons dans le plan OXZ les tangentes en B et
en D aux cercles de rayons CB et CD, lesquelles coupent
I'axe OX respectivement en I et en J, et de ces deux
points comme centres, tracons les cercles de rayon 1B
et JD. Ils appartiennent a la cyclide considérée et se
coupent en deux points L et L’ qui sont deux points
coniques de cette cyclide. Par cette droite LL' passe
un plan paralléle & OYZ qui coupe la cyclide suivant
deux cercles (S) et (S'). Chacun de ces cercles coupe a
angle droit le cercle BD en un point qui se projette au
" milieu K de BD et qui est par conséquent sur le cercle
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stationnaire du tore (C). De plus, les points derencontre
du cercle (S) avec les cercles BD et B'D’ sontles extré-
mités d’un diamétre de (S) puisqu’en ces points les tan-
gentes & (S) situées dans les plans (P) et (Q) sont pa-
ralleles 4 OY. Donc le cercle (S) qui a pour axe la pa-
ralléle 4 OX située a V'intersection du plan OXY avec
le plan stationnaire du tore (C) est un paralléle du tore
ayant pour axe cette méme paralléle 8 OX, tore appar-
tenant a la troisiéme famille.

De plus, la cyclide coupe ce tore a angle droit. En
effet, I'angle des deux surfaces est le méme tout le
long du cercle d'intersection qui est une ligne de cour-
bure commune et, au point qui se projette en K| le
plan tangent & la cyclide est le plan (P) qui est bien
normal au deuxiéme tore, puisqu’il est normal au
cercle stationnaire du premier, lequel est une méri-
dienne du second.

De méme, le cercle (S') est un paralléle du deuxiéme
tore de la troisiéme famille.

1l résulte de la que chacune des cyclides définie
comme il a été expliqué, coupe orthogonalementchacun
des tores d'une famille a laquelle elle n’appartient
pas suivant une méridienne, el chacun des tores de la
troisiéme famille suivant un paralléle. Soient mainte-
nant deux cyclides appartenant 4 deux familles diffé-
rentes. Elles couperont I'un des tores de la troisiéme
famille, U'une suivant une méridienne, I’autre suivant un
parallele. Au point M ol se coupent les deux cercles;
les trois surfaces sont orthogonales puisque chacune des
cyclides coupe le tore a angle droit et que les deux
courbes d'intersection sont elles-mémes rectangulaires.

Il reste a prouver qu’elles se coupent suivant un
cercle. . . :

Pour fixer les idées, supposons que le tore ait son
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axe paralléle 4 OY et son centre sur OZ, comme dans
la figure 3. Iladmet pour plans de symétrie les plans
OYZ et OZX et appartient 2 la famille dont les axes
radicaux sont paralléles 3 OY et 2 OX. La cyclide qui
le coupe suivant une méridienne a 'un de ses axes ra-
dicaux paralléles 3 OY et situé dans le plan OXY, et
I'autre paralléle 3 OZ et situé dans le plan OYZ. La
cyclide qui le coupe suivant un paralléle est symétrique
par rapport aux plans OYZ et OXY. L'un de ses axes
radicaux est parallele a OX et situé dans le plan OXY,
P'autre paralléle & OZ et situé dans le plan OXZ. La
premiére cyclide coupe le tore suivant un cercle dont
le plan passe par 'axe radical paralléle 4 OX (projeté
en A sur la figure 3). Donc le second cercle de la cy-
clide passant par le point M est dans un plan qui con-
tient I’axe radical paralléle & OZ. Son centre est donc
dans le plan OXY. De méme l'autre cyclide coupe le
tore suivant un parali¢le dont le plan paralléle 3 OXZ
coupe le plan OXY suivant une paralléle 2 OX qui est
I'un des axes radicaux de la cyclide. Donc le second
cercle de cette cyclide passant en M est dans un plan
qui contient 'axe radical parallele & OZ. Son centre
est donc aussi dans le plan OXY. Ainsi les deux cer-
cles doivent étre tangents 4 la normale en M au tore,
situés dans le plan paralléle & OZ passant par cette nor-
male et enfin avoir leurs centres dans le plan OXY.
Donc ils coincident etles deux cyclides se coupent sui-
vant un cercle qui est une ligne de courbure commune
aux deux surfaces. Comme celles-ci sont orthogonales
au point M, elles le sont tout le long du cercle d’inter-
section.

18. Lieu des points doubles. — Sections par les
" plans de coordonnées. — L'ensemble de tout le sys-
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téme est symétrique par rapport aux trois plans de
coordonnées, car les cyclides d’une méme famille sont
symétriques chacune par rapport a deux de ces plans
et deux & deux par rapport au troisiéme. Parmi toutes
les cyclides d’'une méme famille figure le plan par rap-
port auquel elles sont symétriques deux a deux. Par
exemple, sur la figure 3, la cyclide définie par le
cercle BD se réduit aun plan OYZ sile rayon OBD
vient coincider avec 'axe OZ. ' '

Une cyclide symétrique par rapport au plan OXY
coupe ce plan suivant deux cercles qui se coupent en
deux points G et G’ qui sont des points coniques de
cette cyclide. Par chacun de ces cercles doit passer une
cyclide de la deuxiéme famille, mais celle-la est juste-
ment réduite au plan OXY. Les points G et G’ sont
des cercles de rayon nul de la famille de lignes de
courbure autre que celle des deux cercles précédents.
Ils doivent donc étre aussi des cercles de rayon nuls
de la troisiéme famille de cyclides, d’ou il suit que les
deux familles de cyclides symétriques par rapport au
méme plan de coordonnées ont dans ce plan-la le
méme lieu de leurs points coniques. D’autre part une
cyclide de la deuxi¢me famille doit couper la premiére
cyclide considérée suivant un cercle appartenant a
la méme famille que les deux cercles situés dans le
plan OXY; mais tous ces cercles passent par les
points G et G'. Donc toutes les cyclides de la deuxiéme
famille passent par les points G et G’ et par consé-
quent par le lieu des points coniques de toutes les
cyclides des deux autres familles. Réciproquement
tout point de I'intersection de I'une des cyclides de la
deuxiéme famille avec le plan OXY se trouve sur un
cercle de courbure commun a cette cyclide et a I'une
de celles de la premiére famille, c’est donc 'un des
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points G ou G’ par o passent tous les cercles de la
famille considérée surla cyclide de la premiére famille.

Donc : Toutes les cyclides d'une méme famille
coupent le plan de coordonnées par rapport auquel
elles ne sont pas symétriques suivant une méme
courbe qui est le liew des points coniques des
cyclides des deux autres familles situés dans ce
plan-la.

Il existe trois de ces courbes, une dans chacun des
plans de coordonnées. Comme chaque famille com-
prend deux tores, ces courbes font partie des courbes
du quatriéme ordre relativement simples qui résultent
de la section d’un tore par un plan paralléle a I'axe;
elles sont symétriques par rapport aux deux axes de
coordonnées situées dans leur plan.

M. Darboux a fait remarquer que chacune de ces
courbes est une focale des deux autres parce qne tout
point conique d’une cyclide étant une sphére de rayon
nul circonscrite a la cyclide est un foyer de toute sec-

° tion plane de celte surface. (A suivre.)

[DRacx]

SUR LES CRITERES DE CONVERGENCE DE PREMIERE
ET DE SECONDE ESPECE DANS LES SERIES A
TERMES POSITIFS;

Par M. Pivr MONTEL.

1. Soit u, le terme général d’une série a termes
positifs; on appelle critéres de convergence de pre-
miére espéce ceux qui ne font intervenir qu’un seul
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terme de la série : c’est le cas du eritére de Cauchy
relatif a

V.

On appelle critéres de seconde espéce ceux qui
font intervenir deux termes : c'est le cas du critére de
d’Alembert relatif a

Uniq
—
Un

Un raisonnement classique montre que les suites

n/— u
Un et _ﬂ

Un

ne peuvent avoir des limites inégales. La méthode con-
siste & introduire la série entiére
Vp == Up ",

1
A
, . . .. 7 n
u désignant respectivement les limites de u"—“ etde yu,.

ni

N “ . I -
et 2 donner a x une valeur comprise entre = et E, A et

Si 'on suppose, par exemple, X <<, on aura
I 1
X >z > '}Iﬂ

Vn+
n

et le rapport ! aurait une limite )Lx inférieure a

Punité, tandis que :/;): aurait une limile px supérieure
4 Punité. Les résultats demeurent les mémes si I'un
des nombres A ou p est nul ou infini.

En serrant d’un peu plus prés ce méme raisonne-
ment, on peut établir d’autres propositions, plus pré-

Un+1

. . . n
cises, concernant les limites de et \upn.

n

Xnn. de Mathémat., 4* série, t. XII. ( Février 1g12.) 6
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Démontrons tout d’abord un théoréme di a

Cauchy (%) :
. n X 4 . .
Sii%*—’ a pour limite \, \[u, a la méme limite ).
n

Supposons d'abord que A ne soit ni nul ni infini;

. n . P . . .
si yu, n’avait pas pour limite 2, il existerait un
nombre ¢ tel que, pour une infinité ‘de valeurs de n,

Uinégalité
|Vitn — 2] >«

fau vérifice. En d’autres termes, pour une infinité de
valeurs de n, I'une au moins des inégalités

(1) "m>)\+a,
(2) Vi <\ —e

serait vérifiée : je dis que I'une et 'autre hypothése
sont impossibles. Posons A +¢=0»%;, A —e=1,; on
peut prendre ¢ assez petit pour que kA, soit positif.

Supposons que I'inégalité (1) soit satisfaite pour une
infinité de valeurs de n et soit x un nombre vérifiant
les inégalités

>z> 5

> -

Considérons de nouveau la série ¢, = u, z2”; le rap-

v .. , .
port-:—“- a pour limite Az <<1, donc la série ¢, est
n

convergente ; d’autre part, pour une infinité de valeurs
de n, on a

Vou>haz>1,

ce qui montre que le terme général ¢, ne pourrait

(') CaucHy, Analyse algebrique, p. 59; OEuvres, 2° série, t. II,
p. 63.
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tendre vers zéro. La premiére hypothése est donc a
rejeter.
Supposons, en second lieu, que l'inégalité (2) soit
satisfaite pour une infinité de valeurs de n et soit z
un nombre vérifiant les inégalités

1 1
):>x>T'

©n+1

Dans la série ¢, le rapport —=— apourlxmlle rxr>1;

donc, a partir d’un certain ranb, ce rapport est supé-
reur a 1 et les termes vont en croissant.
D’auatre part, pour une infinité de valeurs de », on a

Vo <z < 1,
on < (az),

. N , 1. .
et, puisque (i,xz)" tend vers zéro avec o il y aurait

dans la série une infinité de termes aussi petits qu’'on
voudrait, ce qui est impossible. La seconde hypothése
est donc, elle aussi, inadmissible.

Si X est nul, il suffit de supprimer %, dans le raison-
nement précédent; si % est infini, il suffit de sup-
primer %, et d’appeler %, un nombre fini quelconque.

2. On peut obtenir un résultat plus complet en
introduisant la notion de plus grande des limites et
de plus petite des limites d’une suite infinie. Rappelons
les définitions de ces nombres, soit

(3) Ay, Aoy coey Apy ooy

une suite infinie de nombres; un nombre A sera dit
une limite de la suite (3), si I'on peut extraire de cette
suite une suite partielle ayant pour limite A. Le plus
‘grand des nombres A est appelé la plus grande des
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limites L de la suite (3) : ce nombre peut éire + oo; le
plus petit des nombres A est appelé la plus petite des
limites de la suite (3) : ce nombre peut étre — co.
Le nombre L posséde les propriétés caractéristiques
suivantes :

1° Il n’y a qu'un nombre fini de nombres a, supé-
rieurs & L + ¢, quelque petit que soit le nombre po-
sitif ¢.

2° Il y a une infinité de nombres a, supérieurs
a I — z, quelque petit que soit le nombre positif .

La plus petite des limites est définie par des pro-
priétés analogues. Si 'on suppose que les nombres a,
sont les abscisses des points d’une droite, la plus grande
des limites sera l'abscisse du point limite le plus a
droite, la plus petite des limites sera I'abscisse du point
limite le plus a4 gauche. Nous appellerons aussi ces
points la plus grande et la plus petite des limites des
points a,.

Soient )" et )", respectivement, la plus petite et la

. . . u
plus grande des limites de la suite —31'; @ et la plus
n

. . . . n
petite et la plus grande des limites de la suite /u,, on
peut énoncer la proposition suivante :

Le segment )1\ contient le segment ' ',
On a, nécessairement ( fig. 1),
NN, p<p.
11 suffit donc de démontrer que
(4) RSN
el

(5) NS
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Pour démontrer I'inégalité (4 ), nous pouvons d’abord

Fig. 1.

» 3 ¢ »
admettre que A’ est fini, sinon le résultat serait évident.
Supposons que I'on ait
<
nous nous servirons toujours du méme procédé de dé-
monstration : soit z un nombre vérifiant les inégalités

’{';>1‘>;’;’

et considérons la série v, = u,z". Puisque 1" est la plus

. . . Upy-1 .
grande des limites de la suite o quelque petit que

soit le nombre positif ¢, on a, & partir d’un certain rang,
u
‘R4+1 < Wz
Up

et, par suite,

favt o0+ e)x;

Vn

or, )"z élant inférieur 4 1, on peut prendre : assez
petit pour que
(W +e)yr <,

et la série ¢, est convergente.
D’autre part, u” étant la. plus grande des limites de

.oon . o, .
la suite yu,, on a, pour une infinité de valeurs de n,
,V' up> }"-”_ g
que]queApétit que soit ¢ et, par suite,

Vous (u'—=)a:
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or, Wz étant supérieur a 1, on peut prendre ¢ assez
petit pour que
(W—e)z>1,

et la série v, posséderait une infinité de termes supé-
rieurs & 1, ce qui est impossible. Donc p"S ).

Le raisonnement qui préceéde suppose que A\’ n’est
pas nul; mais, si X’=o0, on a N="»1"=o0 et 'on re-
tombe dans le cas examiné au paragraphe précédent.

Passons & l'inégalité (5); on peut admettre que ¥
n’est pas nul, sinon le résultat serait évident; on peut
admettre aussi que )’ n’est pas infini, sinon 2" étant
aussi infini, on retomberait dans l'un des cas particu-
liers examinés précédemment. )’ étant un nombre fini
non nul, supposons que l'on ait

P'l< 2

el soit z un nombre vérifiant les inégalités

1 l'
';>-T>)\u

-, . .. . u
2 étant la plus petite des limites de la suite l’:'”, on a,
n

4 partir d’'un certain rang, quelque petit que soit le
nombre positif ¢,

Upniq
Un

>N—c
et, par suite,

(4 N
—:t’- > (N —¢)a.

n

Prenons ¢ assez petit pour que
(M —e)z>1,

ce qui est possible puisque 3’2 > 1; & partir d’un cer-

. (4
tain rang on aura —-!

> 1 et les termes de la série ¢,

n
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iront en croissant. D’autre part, pour une infinité de
valeurs de n, on a

Viup < p'+¢

Vo< (p+e)z;

et

si 'on prend ¢ assez petit pour que
k=(p+ce)x <1,

on voit qu'il y a dans la série ¢, une infinité de termes
inférieurs & k" et, par suite, aussi petits qu'on le veut,
ce qui contredit notre affirmation que les termes vont
en croissant a partir d’un certain rang.

Le théoréme est donc démontré : en particulier, st
le segment X'} se réduit a zéro, il en est de méme du
segment 'y, Mais ce dernier peut se réduire & zéro sans
qu’il en soit de méme du premier; en d’autres termes,

n . . . u
Vln peul avoir une limite unique, sans que %‘_—1 pos—
n

séde la méme propriété.

3. Jai voulu montrer comment 'introduction de la
série u, z" permet d’arriver a des résultats trés précis,
mais on peut établir le théoréme précédent d’'une ma-
niére directe qui en fait apparaitre 'énoncé comme plus
naturel (*). Nous allons voir que ce théoréme résulte
en définitive de ce fait que les moyennes arithmétiques
des n premiers termes d’'une suite infinie ont leurs
valeurs limites toujours comprises entre la plus grande
et la plus petite des limites de cette suite.

Soit .

A1, Ay euey Quy ey

(1) 1 est aussi bien facile de démontrer cette proposition en mo-
difiant un peu le raisonnement méme de Cauchy.
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une suite infinie admettant pour plus grande des
limites )" et pour plus petite des limites ). Nous sup-
poserons, pour abréger, qu'aucune de ces limites n’est
infinie; formons la suite des nombres

A+ Ay+...+ Ay,
n 2

b,=
je dis que toutes les limites des b, sont comprises
entre \' et »’. On a, en effet, 2 partir d’un certain

rang p,
MNMee<an< N +c5,

lorsque ¢ est un nombre positif donné arbitrairement
petit. Prenons n > p, on a

ay+ar+...+ap Apy1+...+ ap

bu =

la seconde fraction est inférieure a

pUS n_;;E e < N+,

et supérieure &

A — n—;p e> AN —c¢.

p étant fixe, prenons n assez grand pour que

a;+ag+...+ ap,
n

—e < < g5

on aura a partir de cette valeur de n,

AMN—2e < b <A+ 26,
et puisque ¢ est arbitrairement petit, la proposiiion est
démontrée.

SiI'on pose
. ap=LA,,
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bo=LyAjAy...Ap;

on en déduit que le résultat précédent s’applique aux
moyennes géométriques.
Pour établir le théoréme que nous avons en vue, il

on aura

n I3 ’
suffit de remarquer que \/u, est la moyenne géomé-

. u u
trique des nombres w;, =2, - -1y —2-:
uy Upey
n
n— Uy Un
wn=\/ uy, 2, ..y .
v ) Un—y

4. On peut, en se placant au méme point de vue,
comparer d’autres criteres de convergence de premiére
et de seconde espece (*).

\ n ® . .
Les regles yu, et l’:*' résultent de la comparaison
n
de la série u, a une progression géométrique; en com-
, . N , . 1 . .
parant la série u, i la série —5’ on obtient le premier

critére de Bertrand et la régle de Raabe-Duhamel.

Le premier critere de Bertrand conduit & étudier la
suite ‘
(6) Tn

la régle de Raabe-Duhamel a étudier la suite

(7) n<ul:::~l)'

Nous nous plagons, bien entendu, dans le cas ou

u n . . .
ZH » de méme que y'u,, ont pour limite I'unité.
n

(1) Je dois cette indication 4 M. R. Bricard.
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Nous introduirons dans ce qui va suivre, au lieu des
moyennes arithmétiques des termes d’une suite a,, des
valeurs moyennes plus générales; nous prendrons

ayay+ aa@y—+...+2%,a,

b,= )
oy~ G+ ...+ dp

les 2, élant positifs et la série Za, étant divergente. Le
résultat établi au paragraphe 3 subsistera; par une dé-
monstration toute semblable, on montrera que la plus
grande des limites " de la suite b, et la plus petite des
limites u’ de cette suile déterminent un segment inté-
rieur au segment 2’2" dont les extrémités sont la plus
petite et la plus grande des limites de la suite a@,. Et
rien ne sera modifié si I'on remplace la somme

Ay Qg . 0. Ap

par un infiniment grand équivalent.

p u ’ . . . , .
Or, - Z- — 1, étant un infiniment petit équivalent
n+1

R u .. . R
a L ——; leslimites de la suite (7) sontles mémes que
n+1

celles de la suite

u
nL — .
Un+1
I
Prenons o, = - et
ay as a
=242
b I 2 n
n— Ln b

a;=L —. vees ap=nL —,



on aura

Un
Ln

bp=

Par conséquent, les limites de la suite de Ber-
trand sont comprises entre la plus grande et la plus
petite des limites de la suite de Raabe-Duhamel.

. . . u
E'n particulier, si n< -
Un+1
1
L —

u 4 B .
2 ala méme limite.
Ln

.N .
— l> a une limite unique,

5. A chaque critere de Bertrand, on peut faire cor-
respondre un critére dc seconde espéce, comme l'a
montré M. Borel (').

Nous allons retrouver ce résultat et démontrer en
méme temps le théoréme suivant :

Soient 'y les plus petite et plus grande des li-
mites fournies par le pitme critére de Bertrand,
W oet N les plus petite et plus grande des limites
Sournies par le critére de seconde espéce correspon-
dant: le segment ' p" est intérieur au segment N')'.
En particulier, si le critére de seconde espéce donne
une limite unique, le critére de premiére espéce
correspondant donnera la méme limite.

Posons

Liz=Lz, Lyz=LL,
et

Mp(z)=x LizLyx...Lyx, hl(z)==, A(z)=1,

le (p + 2)¥™e critére de Bertrand conduit 4 étudier les

(1) E. BoreL, Legons sur les series a termes positifs, p. 6.
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limites de la saite

L 1

(8) bp= he(n) un
Lp+a(n)
Posons a, = ———; la série a, est divergente et la
Ap+i(n)

somme
A+ Ug ..ot Op

est un infiniment grand équivalent a

Lpia(n).
Sil'on écrit
A+ deQy—+...+ApQpn
Lp+e(n)

b,=

)
on aura
Ap(R—1)tn—y,

%an‘—“an,:+zZﬂ)—bn—aLp+z(n—l)=L )‘p(n)un ’

on est donc conduitau critére de seconde espéce fourni
par la suite
Ap(n—1)up—y
= A | P AR Rl o
(9) ap p+1(n) )‘p(n)un

ou par la suite équivalente (')

)‘p(")un

Ap+1(n)L _“"—)\p(n_‘_l)u,‘_‘":

on peut remplacer le logarithme par I'infiniment petit
équivalent

Ap(n)un . Ap(n) [ Un _)\,.(nq-x)],

Ap(R+1)tnr = Ap(n—+1) [ tnts Ap(n)

ou encore par
Un Ap(n 1)
Upiq An(n)

(1) Nous disons que deux suites sont équivalentes lorsqu’elles
ont les mémes valeurs limites:

N
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Nous sommes finalement conduits a étudier les
limites de la suite

1p+|(n)[ up 1,,(n+1)]‘

un+i )‘P(n)
Or, ona (')
hpln4+1) 1t 8
¥ C R D WO B W R
0 . | . )\p+1(n)
restant fini quel que soit n; comme ——— a pour

e , 1 . . .
limite zéro avec —» on peut remplacer la suite précé-

dente par la suite

Un _r
(19 [t — o= — s == |

Nous retrouvons le critére de seconde espéce sous la
forme habituelle. Or, la suite (10) est équivalente a la
suite (g) et la suite (8) est une suite de moyennes rela-
tives a la suite (g) : notre proposition est donc établie.

CERTIFICATS DE CALCUL DIFFERENTIEL ET INTEGRAL.

Grenoble.
ComPosITION. — On donne les équations
o
z =(z + et >'cosa-— v sina,

o2
y=(z+e‘)sinu+vc051

(') Borkr, loc. cit., p. 7.
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dans lesquelles « est un paramétre arbitraire, et v une
Sfonction de % :

1° Déterminer la fonction ¢ de facon que la surface
définie par ces équations soit développable, et former les
équations de son aréte de rebroussement;

2° Calculer les cosinus directeurs &, v, { de la normale
a la surface en l’un quelconque de ses points, ainsi que
les dérivées partielles p, q, 1, s, t, et vérifier que l’équation
différentielle des surfaces développables est bien satisfaite ;

3° Rechercher les lignes de courbure de la surface et ses
rayons principaux.

EPREUVE PRATIQUE. — Elant donnée l’équation

2 2
dy _(z+1) y“—w+1y2+m+3y+f(z‘),

dz = " 2 x 3z
déterminer la fonction f(x) par la condition que l’équa-
tion admette une solution particuliére B telle que,
posant y = B + yy, la détermination de y, dépende d’une
équation de Bernoulli. Ayant ainsi déterminé f(zx), on
calculera l’intégrale générale de l’équation.
(Juillet 1g10.)

ComposiTioN. — Une surface S étant définie par les
équations

x =rcos, y=rsinb, o(z) =alb + f(r);

1¥ Déterminer la fonction o(3z) par la condition que le
triangle Omn ayant pour sommets l’origine O et les
traces m, n, sur xOy, de l'ordonnée d’un point K de S et
de la normale au méme point ait une aire proportion-
nelle a z;

2* Former l’équation différentielle des lignes asympto-
tiques de S, et déterminer la fonction f(r) par la condition
que la surface S soit développable ;

3° Former les équations des génératrices, et montrer
qu’elles font un angle constant avec Oz et sont & une
distance constante de cet aze.

EPREUVE PRATIQUE. — Intégrer, par plusieurs méthodes
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st possible, les équations

dy . dz f0z =
A9z T 97z THy +i9z==,
dy dz _
B ol b e + 34y + 38z =e”.

(Novembre 19710.)

Lille.

EpreuVE THEORIQUE. — I. Question de cours. — Démontrer

la formule
I f(2) dz‘
2in) z—w

f(z) =

Applications : série de Taylor et série de Laurent.
Il. Probleme. — 1° Intégrer l’équation
pr+qy —2z=o.

2° Montrer que les lignes asymptotiques des surfaces
intégrales s’obtiennent par une quadrature;

3° La fonction soumise & la quadrature comprend un ra-
dical. Dans quel cas ce radical se réduit-il & une constante?

4° Effectuer la quadrature dans le cas o la surface
intégrale passe par la courbe y = 2z, z = 8z2.

Construire les projections sur x Oy des lignes asympto-
tigues menées par x =1, y =1.

5° Trouver les trajectoires orthogonales des projections
sur Oy des lignes asymptotiques de la surface précé-
dente.

EpREUVE PRATIQUE. — Calculer par approximation !’in-
tégrale

f“’__dL_.
0o Vexd—ax—+1

Indiquer ’approximation obtenue.
(Juillet 1910.)
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QUESTIONS.

2188. — Si les cdtés d’'un angle droit sont tangents a deux
coniques homofocales, la droite qui joint les points de contact
enveloppe une conique homofocale aux deux premiéres.

(Krve.)

2189. — Si par les extrémités d’un diamétre d’un cercle on
méne deux tangentes non paralléles a une conique concen-
trique au cercle, la droite qui joint les points du contact
enveloppe une conique homofocale a la premiére..

(Krue.)

2190. — Etant données deux coniques dans un méme
plan, on leur méne des tangentes aux points ou elles sont
rencontrées par une droite quelconque. Les sommets du
quadrilatére ainsi formé, qui ne sont pas les points de ren-
contre de tangentes a une méme conique, sont sur une
conique appartenant au faisceau ponctuel déterminé par les
deux coniques proposées. (THIE.)
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[O0'6p]
SUR LES
SYSTEMES DE SURFACES TRIPLEMENT ORTHOGONALES
COMPOSES DE CYCLIDES;

Par M. Maurice FOUCHE,

Répétiteur & PEcole Polytechnique.

(SUITE.)

19. Discussion des divers cas. — Pour discuter les
divers cas qui peuvent se présenter, nous allons étu-
dier les dispositions des trois couples de tores et leurs
interseclions avec les plans de coordonnées.

Rappelons que chaque tore coupe celui des trois
plans de coordonnées par rapport auquel il n’est pas
symétrique suivant une courbe du quatriéme ordre qui
est le lieu des points coniques communs aux cyclides
des deux autres familles. Les formes de ces trois
courbes définissent chacune des dispositions qui peu-
venl se présenter.

Désignons par a le rayon moven d’un tore, c’est-a-
dire le rayon du cercle stationnaire, par r le rayon du’
cercle méridien et par /% la distance du centre du tore
a lorigine. Le tore a des points coniques réels si a
est inférieur 4 r, el n’en a pas si a est supérieur a r.
La section de ce tore par le plan paralléle & son axe,
situé & une distance & de son centre, peut présenter
une assez grande variété de formes.

Ann. de Mathémat., ¢ série, t. XII. (Mars 1912.) 7
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Quelle que soit la forme du tore, la section est :

Imaginaire si.............. h>a+r;
Un point siv.e.oineiea.n... h=a-+r;
Une courbe ovale sans ondu-

lation si..vovueineennnnnn ash<a+reth>r—a.

Ensuite, il faut distinguer si le tore a des poinls co-
niques réels ou imaginaires, et dans le cas des points
coniques réels si le cercle stationnaire est plus grand
ou plus petit quele cercle intérieur de I'équateur.

Si les points coniques sont imaginaires, on a

a>r,
et la seclion est :
Un ovale ondulé si...... .. a—r <h<a;
En forme de 8si......... . h=a—r;
Deux ovales séparés =i..... . h<a—r.

Si les points coniques sont réels et sile cercle sta-
tionnaire est plus grand que le cercle intérieur de
I’équateur, c’est-a-dire si

r
a<lr et r—a<a ou a>»2—,

la section est :

Unovaleondulési.................. r—a<h<a,;

Un ovale avec un point isolé au centre si h=r—a;

Un ovale ondulé avec un ovale simple a
Pintérieursi......oovvvniiiion., h<r—a;

Deux cercles qui se coupent si......... h=o.

Si enfin le cercle stationnaire est plus petit que le
cercle intérieur de I'équateur, c’est-a-dire si

r
alr—a ou a<;;
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la seclion est :

Un ovale sans ondulation avec point isolé i
AU CENLIe Si...evoievreinnnnnnnnnnnn h=r— a;
Un ovale sans ondulation avec un ovale
simple a l'intérieur si................ ash<r—a;
Un ovale ondulé avec ovale simple a I'in-
LEPIEUT ST vuv v s e eeennn h<a;
Deux cercles qui se coupentsi.......... h=o.

Considérons les deux tores dont les axes paralléles
a OY sont situés dans le plan OYZ. Un autre couple
est composé dc deux tores ayanl leurs axes paralléles
a OZ et admettant pour cercles stalionnaires les cercles
méridiens des premiers situés dans les plans paralléles
a OXY : EF, et GH sur la figure 3.

Si 'on désigne par a, 7, /i les longueurs correspon-
dant, pour ces tores, a @, r, h, on aura :

a=r, I'|=h, h|=a.

Pour le troisiéme couple on raisonnera de méme en
partant du second, et I'on pourra dresser le Tableau

suivant :
a, a,, a,. ryr,r,. hy Iy, by,
1 couple...... a r h
2™ couple..... . r h a
3= couple...... h a r

Eu laissant de c6té pour le moment les cas d’égalité,
il y a toujours une des trois longueurs qui est plus.
grande que chacune des deux autres; supposons que

ce soit a, .
a>r, a>h.

Il y a toujours un couple de lores sans points co=-
niques réels coupant le plan de coordonnées correspon-
dant saivant une courbe réelle.
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Il'y a en tout quatre cas a distinguer :

1° h>a—r et h>r;
2° r<h<a-—r,
ce qui suppose
a>2r;
3° a—r< h<r,
ce qui suppose
a<2r;
4° hla—r et h<r.

Premier cas -
h>a—r, h>r.

Les tores du premier couple n’ont pas de points co-
niques réels et coupent le plan de coordonnées corres-
pondant suivant une courbe ondulée.

Pour le second couple on a

r<h, r<alr—+h, a>h>h—r,
ou
a; < ry, ay < by < ay+ rq, hy>r —a.

Dounc les tores du second couple ont des points co-
niques réels et ils coupent le plan de coordonnées cor-
respondant suivant un ovale sans ondulations.

Pour le troisiéme couple on a

h<a, a—h < r<h,
ou
ay < Iy, r—ay< < as.

Les tores sont a poinls coniques réels et la courbe
plane est un ovale ondulé.

. Deuxieme cas :

r<h<a—r.
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La premiére courbe se compose de deux ovales sé-
parés.
Pour le second couple on a :

r<h et a>r—+h,
ou
ay << ry et hy>a,+ ry.

Les tores du second couple ont leurs points coniques
réels, et leur intersection avec le plan de coordonnées
correspondant est imaginaire.

Pour le troisiéme couple on a

h<a, r<a—h, r<h,
ou

ay < ryy,  ha < ry—ay, hy < as.

Les tores onl leurs points coniques réels et la courbe
plane correspondanle se compose de deux ovales inlé-
ricurs, le grand étant ondulé.

Trovsieme cas :
a—rh<r.

La premiére courbe est ondulée.
Pour le second couple on a

r>nhn et r<a<r—+h,
ou
ay>r et ay < hy<a +r.

Les tores n’ont pas de poinls coniques réels, et la
courbe plane correspondante est un ovale sans ondu-
lation.

Pour le troisiéme couple

h<a, r>h, a—h<r<a+hn
ou
a, < ry, hy> as, ro—ay < h, < ry+ as.
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Les tores ont leurs points coniques réels et la courbe
plane est un ovale sans ondulation. :

Quatriéme cas :
h<a-—r, h<r.

La premiére courbe se compose de deux ovales sé-
parés.
Pour le second conple :

r>h, a>r—+h,
ou
ay>ry, hy>ay+ry.

Les tores n’ont pas de points coniques réels et la
courbe plane correspondante est imaginaire.
Pour le troisiéme :

h <a, r <a —h, r >h,
ou
a, < ry, hy < ry— as, ho> a,.

Les tores ont leurs points coniques réels et la courbe
plane correspondante est un ovale sans ondulation avec
un ovale simple & intérieur.

En résumé nous trouvons pour les quatre cas :

° Un couple de tores sans points coniques réels et
deux couples a points coniques réels.

Courbes planes : trois courbes réelles dont deux
ovales ondulés, et un sans ondulation.

2° Un couple de tores sans points coniques réels el
deux couples a points coniques réels.

Courbes planes : deux ovales séparés, un ovale on-
dulé avec ovale simple a I'intérieur, une courbe ima-
ginaire.

3° Deux couples de lores sans poinls comques réels,
un couple & points coniques réels.
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Courbes planes : trois ovales dont un seul est on-
dulé.

4° Deux couples de tores sans points coniques réels,
un couple a points coniques réels.

Courbes planes : deux ovales séparés, un ovale
sans ondulation avec ovale intérieur, une courbe ima-
ginaire.

Il résulte de cette discassion qu’il n’y a jamais plus
d’une courbe plane imaginaire. On en conclut qu’au-
cune des trois familles de cyclides ne peut se composer
de cyclides ayant toutes leurs pgints coniques imagi-
naires, car, s'il en était ainsi, les lieux des points co-
niques des cyclides de cette famille situés dans deux
plans de coordonnées seraient imaginaires. Ainsi, cha-
cune des trois familles du systéme orthogonal se com-
pose soit de cyclides ayant Loutes des points coniques
réels, soit de cyclides ayant des points coniques réels,
et d’autres n’ayant que des points coniquces imaginaires.

20. Cas ou toutes les cyclides d'une méme famille
ont leurs points coniques réels. — On peut chercher
la condition pour que toutes les cyclides d’ane méme
famille aient lears points coniques réels. On peat con-
cevoir que tous ces points coniques réels soient sur les
axes radicaux paralléles & un méme axe de coordon-
nées, ou bien les uns sur ces axes-1a, et les autres sur
les axes radicaux paralléles 4 un autre axe de coor-
données.

Reprenons la construction indiquée au n° 16 (fig. 3)
-La cyclide qui a pour plan circonscrit le plan (P) a pour
axes radicaux la parallele 2 OY projetée en A et la pa-
ralléle 3 OZ menée par le point K, milien de BD, soit
la droite KLR qui coupe 'axe OX en R. Les points co-

‘niques situés sur le premier de ces axes radicaux sont
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a Pintersection de cet axe avec le tore. Daos la rota-
tion de la droite CA autour de C, le point A parcourt
en entier 'axe OX pourvu toutefois que le centre du
tore ne soit pas sur I'axe OX. Il est donc impossible
que la droite qui se projette en A rencontre Lloujours
le tore en deux points réels. Donc i les points coniques
sont toujours réels sur des axes radicaux paralléles ils
se trouveront sur la droite KR. Ces points coniques
sont les intersections L. et L'’ des cercles de rayon IB
et JD tangents & la droite AC. L’axe radical de ces
deux cercles est la droite KR, el la puissance du

point K par rapport a ces deux cercles est égale a KB:
et aussia KL =< KL’ = KR2 — RL?, d'ot

Donc pour que les points L et L’ soient réels 1l suffit
que KR soit plus grand que KB. 1l faut d’abord que
KR ne devienne pas nul, c’est-a-dire que I'axe OX ne
doit pas rencontrer le cercle stationnaire du tore.
Eunsuite, st 'on fait tourner la droite CA, le minimum
de KR se présente quand CB est dirigée sur CO et la
valeur de ce minimum est SO = /. — a. La condition
cherchée est donc :

h—a>r ou h>a-r,

c’est-d-dire que le tore, quelle que soit sa forme, ne
doit pas couper le plan OXY; cela se présente dans les
cas 2° et 4°, en choisissant convenablement le couple
de tores. Ainsi, si 'une des familles se compose de cy-
clides ayant toutes leurs points coniques réels sur des
axes radicaux paralléles, 'une des trois courbes planes
est imaginaire, ce qui du reste était évident, puisque les
points coniques de la premiére famille situés sur l'autre
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axe radical sont Lous imaginaires. Si I'on se reporte
aux n°* 2 et 4 de la discussion, on verra que c'est le
second couple de tores qui ne coupe pas le plan de
coordonnées correspondant. Donc c’est la troisiéme
famille de cyclides qui a tous ses points coniques réels,
et le lieu de ces points coniques est la section plane de
la premiére famille qui se compose de deux ovales
séparés décrits, 'un par le point L, Pautre par le
point L/,

nfin, le cas ol tous les points coniques d’une inéme
famille seraient réels, mais les uns sur l'axe radical
parallele a 'un des axes de coordonnées, les autres sur
I'autre axe radical est impossible. Il faudrait en effet,
pour nous reporter loujours a la figure 3, qu’au mo-
ment ou les points coniques disparaissent sur I’axe ra-
dical paralléle a OZ, ils apparussent sur 'axe radical
parallele 2 OY. On aurait ainsi pour ce cas limite une
cyclide ayant deux points coniques confondus sur I'un
de ces axes radicaux et deux autres confondus sur
'autre axe. Or une pareille cyclide n’existe pas. On
peut du reste se rendre compte de la méme impossibi-
lité sur la figure 3 ol I'axe OX coupe le contourappa-
rent extérieur du tore en un point T. Les points co-
niques apparaissent sur I’axe radical de la cyclide pro-
jetée en T quand la droite CBD prend la direction CT,
mais alors la longueur KR devenu K/’ est plus petite
que l'oblique K'T égale a r, de sorte que si 'on reporte
le point légérement sur la gauche de la figure, on aura
une cyclide sans poinls coniques réels.

En résumé, saul dans le cas ot I'un des tores a son
centre a l'origine des coordonnées, il n’y a jamais plus
d’une famille de cyclides ayant toutes leurs points co-
niques réels. Ces points coniques sont situés sur des
axes radicaux paralléles, et les cyclides de la méme
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famille sont toutes du type du tore déformé a points
coniques réels.

21. Cas particuliers. — Les cas limites sont assez
nombreux ; lear énumération serait fastidieuse et sans
grand intérét. 1l est du reste trés aisé de voir ce que
deviennent les configurations précédentes quand une
ou plusieurs des inégalités se trouvent remplacées par
des égalités. Je me bornerai & indiquer quelques cas
particuliers.

Si I'une des longueurs est nulle, ce sera rou A. Sup-
posons que ce soit /. Alors le premier couple de tores
se compose de deux lores coincidant sans points
doubles réels, et coupant le plan OXY suivant deux
cercles égaux qui ne se coupent pas. Le second couple
se réduit aux cercles EF et GH ( fig. 3, ot l'axe OX
doit étre transporté sur la droite HF). Le troisiéme
couple se réduit aux deux sphéres engendrées par les
cercles stationnaires du premier tore lournant chacun
autour de leur diamétre paralléle & OX. Ces deux
sphéres coupent le plan OXZ suivant un méme cercle
réel. La famille de cyclides contenant ces deux sphéres
dérive par la construction du n°® 16, du couple de tores
réduitanx deux cercles EF et GH. Elle se compose des
sphéres passant par le cercle situé dans le plan OXZ.
La famille qui dérive du tore unique présente celte
particularité que toutes les cyclide's qui la composent
ont un axe radical commun projeté en C, et par suite
les deux mémes points coniques imaginaires au point
ou cet axe coupe le tore. Enfin la troisiéme famille se
compose de cyclides passant par les deux cercles EF
et GH. Toutes les cyclides qui la composent ont aussi
les deux mémes points coniques imaginaires sur

. Paxe OY projeté en C.
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Si c'est r qui est nulle, le premier couple de tores
se réduit a deux cercles coupant le plan OXY en deux
pdinls isolés sur I'axe OX. Le second couple seréduit a
deux sphéres qui ne coupent pas le plan OXZ, et le
troisiéme couple a un seul tore & points coniques réels
qui coupe le plan OXZ suivant les deux cercles égaux
qui remplagent les premiers tores. La famille qui dérive
des deux cercles par la construction du n° 16 se com-
pose des sphéres orthogonales a ces deux cercles, ayant
pour plan radical commun le plan OYZ qu’elles cou-
pent suivant un méme cercle imaginaire. La famille qui
dérive des deux sphéres se compose de cyclides passant
par les deux cercles et admetltant par conséquent pour
points coniques communs les deux points d’intersec-
tion de ces cercles avec I'axe OX ; c’est celle qui com-
prend le tore, et toutes les cyclides qui la composent
sont du type du tore déformé. Enfin, la troisiéme
famille dérivant du lore et comprenant les deux cercles
égaux se compose de cyclides du type a deux fuseaux
ayant pour points coniques communs les deux mémes
points de 'axe OX.

Si deux des longueurs sont nulles, A=r=o, le
premier couple de tores se réduit & un cercle situé dans
le plan OXZ et ayant son centre a I'origine, le second
a deux points sur axe OX et le troisiéme a une sphére
unique ayant son centre a l'origine. Les familles qui
dérivent du cercle et des deux points sont composées
de sphéres, et la troisiéme se compose de cyclides a
trois plans de symétrie.

C’est du resle le seul cas ol se rencontre ceite par-
ticularité; pour qu’'une cyclide ait trois plans de symé-
trie, il faut que ses deux axes radicaux se rencontrent.
En vertu de la construction du n® 16 (fig. 3), il faudra
donc que le point A se confonde avec le point R, et
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par suite avec le point K. Cela arrivera si I'axe OX
coupe le cercle moyen du tore, et si 'on fait passer la
droit AC par le point d’intersection ; mais cette cir-
constance ne peut se présenler pour toutes les posi-
tions de la droite AC que si le tore se réduit a une
sphére ayant son centre sur l'axe OX, c’est-a-dire
sih=r=o.

Le cas le plus remarquable est peul—étré celui ou les
trois longueurs sont égales : @ =r = h. Alors tous les
tores sont égaux ; ils ont pour méridienne deux cercles
égaux tangents et les lieux des points donbles sont des
ovales de Cassini ayant leurs foyers & une distance du
centre égale au rayon de ces cercles, avec leur petit axe
égal & la distance des foyers et un rayon de courbure
infini aux exirémités de ce petit axe. Ce qui fait I'inté-
rét de ce cas parliculier, c’est que toutes les cyclides
d’une famille sont respectivement égales a celles des
deux autres familles. Parmi ces cyclides, il en est &
points coniques réels du Lype du tore déformé, d’autres
sans points doubles réels et d’autres & points doubles
réels du Lype a deux fuseanx,

22. Disposition des cyclides d’une méme famille.
— Revenons au cas général. Les cyclides d’'une méme
famille présentent des dispositions remarquables sur
lesquelles il convient d’insister.

Il y a deux familles de cyclides qui se composent de
surfaces admettant le plan OXY pour plan de symé-
trie. Les cyclides d'une de ces familles coupent ce plan
chacune suivant deux cercles (w) et () ayant leur
centre sur ’'axe OX. Mais ces cyclides sont deux a deux
symétriques par rapport au plan OYZ. Nous avons
ainsi deux familles de cercles, celle des cercles (w)
et celle des cercles (p), les cercles de chaque famille
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étant deux a deux symétriques par rapport a l'ori-
gine O. Les cyclides de la seconde famille coupent éga-
lement le plan OXY suivant deux familles de cercles
(w') et (¢) ayant leur centre sur OY et les cercles de
chaque famille élant aussi deux a deax symétriques
par rapport a l'origine.

[l faut de plus que les cercles (') soient orthogonaux
aux cercles (w) ou aux cercles () : supposons que ce
soit aux cercles (). Alors les cercles (») seront ortho-
gonaux aux cercles (¢’). Nous aurons ainsi sur le
plan OXY deux réseaux de cercles orthogonaux (w)
ct (w') d’une part, (o) et (¢') d’autre part. De la résulte
que l'origine O aura la méme puissance m parrapport
a tous les cercles (w), la méme puissance — m par rap-
port a tous les cercles (w'), la méme puissance n par
rapport & tous les cercles (9), et la méme puissance
— n par rapport a tous les cercles (').

Une cyclide est complétement déterminée par les
cercles (w) et (9) & condition qu'on choisisse 'un des
centres de similitude de ces deux cercles, S. Elle sera
le lieu des cercles décrits dans les plans perpendicu-
laires au plan de ces deux cercles et admeltant pour
diaméires les segments EF qui joignent deux points
antihomologues. Soient (fig. 4) A, B, C, D, les inter-
sections de deux cercles avec la droite de leurs centres
prise pour axe OX, les points antihomologues ¢tant A
et D, Bet C.

D’aprés ce qu’on vient de dire, on aura pour toutes
les cyclides de la méme famille :

OA < OB = m, OC < OD = n.

Mais la cyclide considérée coupe le plan OXZ
suivant les cercles ayant pour diaméwre AD et BC.
On aura donc encore, pour toutes les cyclides de la
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méme famille :

OA < OD =m/, OB < O0C=n'

avec la condition :

mn= m'n'=0A.0B.OC.OD.

On voit ainsi que toutes les cyclides d’une méme
famille, et par suite le systeme orthogonal tout entier
est complétement déterminé par les trois nombres m,
n, m’, comme il I’était par les trois nombres @, r, &. La
valeur de m permet en effet de déterminer le cercle
(AB) quand on s’en donne le centre; la valeur de »/
permet de placer le point D sur I'axe OX et celle de n,
le point C, ce qui détermine complétement la figure.
On obtient toute la famille en déplagant le centre du
cercle AB.

De méme, le systéme entier est complétement
déterminé si Uon se donne une seule cyclide et le
point O sur U'un des azes radicaux de cette cyclide.

[l est aisé de construire alors P'un des tores qui ont
servi a Ja construction du n° 16.

Considérons en effet ( fig. 4) les deux plans circon-

Fig. 4.

scrits & la cyclide donnée qui se coupent suivant une
droite projetée en S, et dont ’un touche les cercles
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(AB) et (CD)en H et K respectivement. La droite SHK
rencontre OY en T. On trace dans le plan OXY les
deux cercles de centre T et de rayon TH et TK les-
quels sont orthogonaux respectivement aux cercles (AB)
et (CD). Le tore cherché a son axe paralléle 2 OZ pro-
jeté en T, Son équateur se compose des cercles TH
et TK et sa méridienne est le cercle ayant pour dia-
meétre HK et situé dans un plan perpendiculaire au

plan OXY.

23. Systémes orthogonaux composés de cyclides
du troisiéme ordre. — Etudions maintenant les sys-
témes orthogonaux dont la représentation sphérique se
compose de cercles passant tous par un méme point de
la sphére. Dans ce cas Loutes les surfaces d’'une méme
famille ont la méme représentation sphérique qui se
compose des cercles passant par un point de la sphére,
et tangents en ce point a 'une ou l'autre de deux
droites rectangulaires situées dans le plan tangent a la
sphére et passant par le point de contact. Nous avons
déja va (n° 11) que les cyclides correspondantes sont
du troisiéme ordre et qu’elles admettent chacune deux
plans circonscrits le long d’une droite et paralléles au
plan tangent a la sphére au point par ot passent tous
les cercles de la représentation sphérique. Ces deux
droites sont d’ailleurs paralléles aux droites (D) et (E)
autour desquelles pivotent les plans des cercles de la
représentation sphérique, et toutes les lignes de cour-
bure des cyclides de la famille correspondante sont des
cercles dont les plans passent par 'une de ces droites.
Dans la représeatation sphérique du systéme orthogo-
nal, il y a trois réseaux de cercles orthogonaux, un pour
chaque famille, et les six droites correspondantes sont
paralléles aux trois axes de coordonnées, les deux
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droites correspondant 3 une méme famille étant lan-
gentes & la sphére 4 l'une des extrémités d’un des
diamétres de la sphére paralléles aux axes de coor-
données.

Il en résulte déja que tous les plans circonserits aux
cyclides sont paralléles a I'un des plans de coordonnées
et loutes les droites stationnaires paralléles a 'un des
axes de coordonnées. Ensuite on démontrera comme
au n° 14 que toutes les cyclides d’'une méme (amille
sont symétriques, chacune par rapporta deux des plans
de coordonnées el deux a deux par rapportau troisiéme.
Dés lors, le systéeme peut étre construit de la maniére
suivante :

Tragons dans le plan OXY une droite MN ( fig. 5)
parallele @ OY, coupant OX en C, et un cercle ayant

Fig. 5.
Y
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sou cenlre sur OX et coupant cet axe en A et B. L'une
des cyclides de la premiére famille pourra étre définie
par ce cercle et cette droite en choisissant A ou B pour
pied de I'autre droite stationnaire. Ces droites station-
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paires sonl en méme temps les axes radicaux de la cy-
clide. Par exemple, si I'on méne la droite ADE coupant
le cercle AB en D et la droite MN en E, la cyclide sera
le lieu des cercles ayant leurs plans perpendiculaires
au plan OXY et admettant DE pouar diamétre, lorsque
la droite ADE pivote autour de A. La méme cyclide
pourrait encore étre définie par le cercle du plan OXZ
ayant CB pour diamétre, la paralléle menée par A 4 OZ,
etle point C comme centre de pivotement.

L’une des cyclides de la seconde famille devra passer
par le cercle de diamétre DE et sera symétrique par
rapport au plan OXY. Mais la premiére cyclide est
Penveloppe des sphéres dont les grands cercles situés
dans le plan OXY sont tangents au cercle AB et a la
droite MN. L’une de ces sphéres a pour grand cercle le
cercle tangent en D au cercle AB et en E a la
droite MN. Alors la sphére orthogonale, circonscrite a
la deuxiéme cyclide, aura son centre au point I, inter-
section de MN avec la tangente en D au cercle AB.
Celte deuxieme cyclide contenant le cercle DE aura
Pun de ses axes radicaux dans le plan perpendiculaire
au plan de la figure passant par DE, et puisque cet
axe radical doit étre paralléle a I'un des axes de coor-
données et situé dans I'un des plans de coordonnées,
ce sera la parallele & OZ projetée en A', intersection
de la droite DE avec OY. L’autre axe radical sera pa-
ralléle 2 OX. Donc cette deuxiéme cyclide sera définie
par un axe radical paralléle 3 OX un centre de pivote-
ment A’ situé sur 'axe OY, et un cercle situé dans le
plan OXY passant par A’ et ayant son centre sur OY.
Elle est alors complétement déterminée.

D’abord, le centre de pivotement A’ est, comme on
vient de le voir, a 'intersection de ED avec QY. L’axe
vadical devant étre tangent a la sphére de centre F en
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un point du cercle DE passe nécessairement par E;
c’est la paralléle 3 OX meaée par E, laquelle coupe OY
en (/. Enfin, le cercle passant par A’ dans le plan OXY
doit passer aussi par D, puisque ED est le diamétre
de I'un des cercles de la cyclide dont le plan est per-
pendiculaire 4 OXY. 1l coupera donc OY en un second
point B’ qu’on obtient par l'intersection de OY avec la
droite BD perpendiculaire 2 ED. Ce cercle est bien,
comme il doit étre, tangent au cercle de centre F, car
il est orthogonal au cercle AB, puisqu’il est circonscrit
au triangle A'D B’ lequel a ses c6tés respectivement per-
pendiculaires a ceux du triangle ADB auquel est cir-
conscrit le cercle AB, d’ou il suit qu’on passe de 'unx
a 'autre par une homothétie suivie d’une rotation d’un
angle droit.

En faisant pivoter la droite A’DE autour de A/, on
construira ainsi toutes les cyclides de la seconde
famille. Celles de la troisiéme s’obtiendront de la méme
maniére en remplagant respeclivement le cercle AB, la
droite MN et le centre de pivotement A dans le
plan OXY, par le cercle BC, la paralléle 8 OZ menée
par A et le centre de pivotement G dans le plan OXZ.
Enfin les cyclides dela premiére famille se construisent
de la méme maniére en partant d’une de celles de la
seconde ou de la troisiéme famille.

24. Le systéme est bien orthogonal. — Pour véri-
fier que le systéme ainsi formé est bien orthogonal,
considérons un point M de la cyclide initiale. Par ce
point passent deux cercles de courbure DE et 3:.
Une cyclide de la seconde famille passe par DE, une
de la troisiéme par d: et ces deux-1a coupent orthogo-
nalement la surfacc initiale d’aprés la construction:
méme. De plus, elles sont orthogonales entre elles au.
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point M puisque leurs intersections DE et 8¢ sur la
cyclide initiale sont perpendiculaires.

Alors, en reprenant, avec des modifications faciles,
le raisonnement qui termine le n° 17, on démontrera
que toute cyclide de la deuxiéme famille coupe chaque
cyclide de la troisi¢éme famille orthogonalement suivant
un cercle de courbure et réciproquement.

Supposons maintenant que la premiére famille ait
été construite au moyen d’une cyclide (C,) de la
deuxiéme famille. Cette cyclide (C;) coupe une des
cyclides (C;) de la troisiéme famille suivant un cercle de
courbure (S;). Soit N un point du cercle (S,). Par ce
point N passent sur les deux cyclides (C,) et (Cs) deux
autres cercles de courbure (S;) et (S,), et les tangentes
a ces trois cercles au point N forment un triéde trirec-
tangle, puisque les cyclides (C,) et (C;) sont ortho-
gonales et que les cercles de courbure d’une méme
cyclide sont orthogonaux. L'une des cyclides (C,) de
la premiére famille passe par le cercle (S;) et est ortho-
gonale & la cyclide (C;). Donc son plan tangent con-
tient la tangente a (S;) et est perpendiculaire au plan
des tangentes a (S3) et (S,). C'est donc une des faces du
triedre trirectangle et les trois cyclides sont orthogo-
nales au pointN.

Lc raisonnement du n° 17 montre alors que les cy-
clides (C,) et (C;) se coupent suivant un cercle le long
duquel elles sont orthogonales. Ainsi toutes les cy-
clides de la premiére famille coupent orthogonalement
celles de la troisiéme.

Considérons enfin deux cyclides (C)) et (C;) des
familles 1 et 3 se coupant orthogonalement suivant un
cercle (S;) et admettant deux autres cercles de cour-
bure (S}) et (S;). Nous savons déja que par (S}) situé
sur (C}) passe une cyclide de la seconde famille ortho«
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gonale a (C)). La répétition du raisonnement précé-
dent montrera qu’elle est orthogonale 4 (C}), de sorte
que toute cyclide de la seconde famille est orthogonale
a toutes les cyclides de la premiére et ainsi se trouve
achevée la démonstration.

La construction indiquée au n° 23 montre que la
deuxié¢me cyclide est complétement déterminée par le
cercle DE situé sur la premiére, d'ou il suit que la
deuxiéme famille est complétement déterminée par une
seule cyclide de la premiére ; mais puisque toutes les
cyclides de la deuxiéme famille sont orthogonales a
toutes celles de la premiére, on retrouvera la méme
deuxiéme famille si 'on applique la constrauclion du
n® 23 a 'une quelconque des cyclides de la premiere
famille, et plus généralement, le systéme complet peut
éire déduit, par la construction indiquée, d’une seule
cyclide, pourvu qu'on donne en méme temps l'origine
des coordonnées sur la perpendiculaire commune aux
axes radicaux de cette cyclide.

23. Dispositions des cyclides. Réalité des points
coniques. — On peut faire deux remarques utiles sur
les formes des cyclides et leur intersection avec les
plans de coordonnées.

Les raisonnements du n° 48 relatifs aux points co-
niques des cyclides du quatriéme ordre s’appliquent
sans changement aux cyclides du troisiéme ordre ; mais
celles-ci coupent suivant des coniques les plans paral-
léles a leurs plans circonscrits. Donc :

Toutes les cyclides d’une méme famille coupent sui-
vant une méme conique celui des trois plans de coor-
données par rapport auquel elles ne sont pas symé-
triques. Cette conique est le lieu des points coniques des
deux autres familles situées dans ce plan-la. 11 y a
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ainsi trois coniques situées chacune dans un des plans
de coordonnées, dont chacune est focale des deux
autres. L'une est une ellipse réelle située par exemple
dan le plan OYZ et ayant ses foyers réels sur OZ; la
seconde, une hyperbole située dans le plan OXZ ayant
pour sommets réels les foyers de 'ellipse précédente,
et pour foyers réels les sommets da la méme ellipse sur
'axe OZ. La troisiéme est une ellipse imaginaire située
dans le plan OXY et admeltant pour sommets les
foyers imaginaires de l'ellipse et de 'hyperbole précé-
dentes.

On en conclut qu’aucune des cyclides du systéme
n’a de points coniques réels dans le plan OXY.

Appelons premiére famille celle des cyclides qui ont
leurs plans circonscrits paralléles 8 OYZ. Celles-la
passent loutes par l'ellipse située dans ce plan-la, et
ont leurs points coniques réels sur 'hyperbole située
dans le plan OZX, laquelle a pour axe transverse
['axe OZ. Les deux axes radicaux de ces cyclides sont
paralléles a OY et & OZ. Ce dernier rencontre toujours
Phyperbole. Donc, les cyclides de la premiére famille
ont toutes leurs points coniques réels sur des axes radi-
caux paralléles, ce qui du reste résultait aussi de ce fait
qu’elles admettent une section elliptique par le
plan OYZ.

Les cyclides de la deuxiéme famille seront celles
dont les plans circonscrits sont paralléles au plan OZX.
Elles passent toutes par ’hyperbole précédente et ont
leurs points coniques sur lellipse ; mais I'axe radical
paralléle & OX peut occuper toutes les positions pos-
sibles comme cela résulte de la construction du n° 23;
il arrive donc qu'il coupe ou ne coupe pas l'ellipse en
deux points réels. Donc les cyclides de la seconde
famille ont leurs points conigues tantdt imaginaires et



(118)

tantdt réels sur des axes radicaux paralléles. Il y en a
deux qui ont leurs points coniques confondus.

Enfin, la troisi¢me famille comprend les cyclides
dont les axes radicaux sont paralléles 3 OX et a OY;
celles-]a coupent le plan OXY suivant I'ellipse imagi-
naire, et elles ont leurs points coniques les unes sur
I'ellipse, les autres sur ’hyperbole. Comme une cyclide
n’a pas plus de deux points coniques réels, si I’axera-
dical paralléle 3 OX coupe I'hyperbole, I'axe radical
paralléle 3 OY ne coupera pas 'hyperbole ; maisil peut
se faire qu'aucune de ces deux droites ne coupe la co-
nique correspondante, et cela arrivera nécessairement
pour certaines cyclides de la famille, car autrement, on
aurail un cas limite ot 'une des droites serait tangente
a lellipse et l'autre a I'hyperbole et par suite une
cyclide ayant deux points coniques doubles, ce qui est
impossible.

Ainsi, il n’existe pas de famille composée exclusive-
ment de cyclides sans points coniques réels, sauf un
cas particulier sur lequel nous.reviendrons plus loin.

(A suivre.)

[B1a]

SUR UNE PROPRIETE DES MATRICES LINEAIRES;
' Par M. Liox AUTONNE.

Prenons. deux matrices linéaires n-aires u et ¢,-dont
une au: moins, par exemple u, est invertible, | | # o.
Nommons § = uv, n = vu, les deux matrices-produits.
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On a CERRETT

utu = u-luvu =v;

les deux matrices § et v, sont semblables.

Le raisonnement tombe lorsque ni « ni ¢ n’estinver-
tible; la proposition ne subsiste pas non plus, ainsi
qu’on le reconnait sur un exemple simple,

0 O 1 o
u = ) v = 5
I O 0. 0

():u, n =0,

On peut donc se poser le probléme saivant: Quelles
sont les conditions J, nécessaires et suffisantes pour
que les deux matrices-produits § et v soient sem-
blables ?

Le présent travail conlient la solution du probléme.

On reconnait d’abord que les deux matrices n-aires
9 et v ont méme polynome caractéristique (E = rn-aire
unité),

]pE—Ol:lpE_nlzprz h"P(P)’

ol 9(p) est un polynome de degré A, avec o (o) 3£ o.
La réponse a la question est fournie par la propo-
sition ci-dessous. '

TutoriMme. — Les conditions J sont les suivantes :
4 et v’ ont méme rang, pour s=1, 2, ..., w, © étant
un entier positif-qui ne dépasse pas n — h.

1° On conservera la terminologie et les notations

employées dans mes précédentes recherches sur les

. e, . ¢
matrices linéaires ().

(*) L. Sur les formes miztes ( Annales de UUniversité de Lyon,
1905). — II. Sur les coordonnées pluckériennes de droite dans
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Avant d’entamer la démonstration du théoréme, il
convient de rappeler ou d’établiv quelques théories
préliminaires.

2° Soient @ = (asg), b==(bsg) (2, =1,2,...,n)
deux matrices n-aires. Formons dans la matrice-
produit ab, la somme des éléments principaux, c’est-a-
dire situés sur la diagonale principale; cette somme

est
Z(Qb)aa=zaaﬁ bﬁa
3 a8

et ne change pas quand on permute « et 3, c’est-a-dire
a et b. Cette somme est donc la méme pour les deux
matrices-produits ab et ba.

3° Rangeons dans un ordre déterminé les

n n!
(m) = ml (n—m)!

combinaisons de n indices pris m & m, et numérotons
ces combinaisons au moyen d’'un indice [ variant

. n . . .
de 1 a ( ) Associons dans la matrice n-aire a les
m

lignes d'indices ky, k,, ..., km et les colonnes d'indices
J 11y J2s «-+y Jm pour former un mineur de degré m

A//'=<k.l k'z cee l\:m).
Jt J2 --o Im

U'espace @ n — v dimensions (Journal de U’Ecole Polytechnique,

2 série, 11° cahier). — UI. Sur les matrices linéaires échan-
geables a une matrice donnée (Journal de I’Ecole Polytechnique,
2% série, 14* cahier). — IV. Sur les matrices linéaires non inver-

tibles (Annales de I’Université de Lyon, 1gog). On reaversa i la
présente liste par des notalions comme (/ndex, ) par exemple.
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On aura la matrice

)

que jai nommée Ana (Index, II, Chap. VII). On a
dans ce travail établi la propriété A,ab=Ana.Anb.

4° Formons le polynome caractéristique |pE — a|
de lamatrice a, o E est la n-aire unité. Ce polynome
est

i=n

F(9)=29"—"(-—1)"Qn

i=0

d’aprés des théories connues; le coefficient Q; est la
somme des éléments principaux dans la matrice

n .

i) —aire A;a (3°).

Au lieu de a prenons le produit ab, Q; est la
somme des éléments principaux dans la matrice
djab = A;a.A;b, cest-a-dire (2°) dans la matrice
A;b.Aja = A;ba. Donc les deux matrices-produits ab
et ba ont méme polynome caractéristique. .

5° Décomposons le polynome caractéristique de la
n-aire a en ses successifs (Elementarteiler)

IpE—al:ﬂ(p—l))‘, n=3A\.

Nommons A la matrice A-aire

{
1 !

A=1]o0 1 ! ’
o o o [

qui admet le successif unique (p—{)*. A sera
(Index,1V; Preliminaires, Chap. Iy une composante
de a. Seient A, A,, ... les composantes rangées dans
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un ordre quelconque ; la n-aire

a-(M)

sera semblable a @ et seva la forme typique de a. On
aura, pour une n-aire invertible convenable R,
A =R""'aR eta sera mise sous forme typique.

La forme typique ne dépend que des successifs, qui
la définissent sans ambiguité, a 'ordre des compo-
santes prés, lequel est facultatif.

6° Supposons que la n-aire a ait une puissance
nulle et que p soit 'exposant minimum tel que a? =o.
Les successifs de a seront des puissances de p. On
aura (Index, 111, 21°)

& = &o fois le successif pro

L | PSP P> > Pl
&1 » P
PRSP . Gt el P0=p’
i=k
&i » oP; / i
............. RO RS %
Sk » prE =

Vi=&+ & +...+ &5

a posséde vx successifs. Combien en possédera a* ?

On fera usage du théoréme de Bromwich (/ndex, 1V;
premiére Partie, Chap. II). Divisons p; par s; nom-
mons ¢; le quotient et ¢; << s le reste. Le successif oPi
de a sera remplacé dans a* par s successifs, savoir :
les s — ¢; successifs 0% et les ¢t; successifs p?itt. Si
$>>p;, on posera q; = o0, ¢; = p;; a’ aura p; successifs
linéaires. '

7° Nommons P; le systéme des g; successifs p?: et
{; le nombre des successifs de as. En verta de ce qui
précede, P; fournit a [ le contingent sg; sans que ce
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contingent puisse dépasser p;g;. Iy s'obtientsans peine
par un schéma trés simple..

8° Tragons (le lecteur est prié de faire la figure)
dans un plan p paralléles horizontales équidistantes
(1), (2); +eey (8)y +oey (p); (2) est au-dessus de (1);
(3) est au-dessus de (2), etc. Rangeons les systémesP;
de gauche 3 droite dans ’ordre croissant des indices.
Faisons correspondre, a P;, p;2; points rangés g; a g;
sur les paralléles (1), (2),..., (pi). On voit de suite sur
le schéma que /s est le nombre des points du schéma
situé sur la droite (s) ou au-dessous de cette
droite. ‘

9° Posons ((s)) = l;— L, et formons la suite des
entiers

((2), (B --s ((P)):

On aura
((2) =(B) =--=((pr)) =1k= &+ &1+ 8k

Quand s dépasse ps, ((s)) saute de Yk & Y41 = Yk — Zk-
On a ainsi les entiers gy et pi.
((px+1)), -+ oy ((Pr-1)) sont égaux 3 yy_,, mais

((Pr—1+1)) = Yh2= Yh—1— &k~15

ce qui fournit gx_, et ps_, et ainsi de suite.

En définitive : chacun des deux systémes d'en-
tiers ((2)), -+, ((P)) et piy gi (i=1, 2, ..., k) définit
lautre systéme sans ambiguité.

La connaissance des entiers ((s)) assure celle des
successifs.

La connaissance des nombres assure aussi celle des
successifs.

10° On vérifie sur-le-ehamp; sur la forme typique (5°);
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que chaque successif réduit d’une unité le rang d’une
matrice a lelle que a?=o. On a donc, pour la ma-
trice a (6°),

rang de a*=Rg.as=n — ;.

Soit & une seconde n-aire, dont une certaine puis-
sance s'annule. Si |'on a @ pour entier minimum tel
que a®= %= o, les relations

Rg.as=Rg.b%, §=1,2y...,W,

entraineront, d’aprés ce qui précéde, I'égalité des
entiers /; pour a et b, I'identité des successifs et enfin
la similitude de a et b.
11° Nous sommes maintenant & méme d’aborder la
démonstration du théoréme.
12° Soient les quatre n-aires u, v, § = uv,n =vu
et A et B les formes typiques (5°) de 6 et 0. On aura,
pour des n-aires invertibles L et M convenablement
choisies,
6 =L1AL, n =M-18M,
A =UV, $ =VYU,
U=LuM-1, V=M¢L-L

13° B el n ont méme polynome caractéristique (4°);
donc
[pE—8]|=[pE—n|=p""¢(p)

ol »(p) est un polynome de degré k, avee 9(0)5£ o.
On aura pour les deux formes Lypiques

A o h B o k
A= = .
(0 a )n-—h’ 2 (o b )n—-h

h n—h h n—h

o(p)=lper—A| =|per—B|, [A]#o0,
P"_"=|Pen—h’—‘al=|Pen—h—b|7 lBl¢0;

ex== h-aire unité; e,_j==(rm— k)-aire unité. A et B
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sont inverlibles tandis que a® = b =o0 pourw<n—r.
14° On peut écrire en toute hypothése

Uy Upe h (Vi Vi h

U = ) V= { 3
Uzl Uz: n—~h \.Vn Vgg n—"n
h n—~h h n—n~h

U,;, V,,=matrice h-aire; Ujss, Vas = matrice
{n—h)-aire; U,,, V,;=tableau a /4 lignes et
n —h colonnes; U,,, Va, = tablean & n— £ lignes et
h colonnes,

15° On vérifie immédiatement que pour un entier
positif s quelconque

(o) UBs=AsU, VAs=nV.
En effet, par exemple,

s fois. s fois.

A i

UBs=UVUVU.,.VU=UV...UVU =AU,

Il viendra
U?M:(U“ U12>(B“ 0>=<[{11B‘ Unb‘>
Uy Us o b Uy Bs Ugbs
—anu= (™ °><Un U1¢>=<ASU“ ASU”).
o af Usy Uy asUy asUy,
%UHB’=A"UM Ujp b5 = AsUy,,

(,) U2|85= a—‘U" ngb“": as ng.

De méme
Vﬂ5=(vn Y:z) <A"' 0>=<V11A“ Viz“"')
\Var Vi o a’ Vo As Vgyas
st (B‘ (4] (Vgi V13> . (stll BsV12>
- - o bs Vz[ \rzz - bs V“ bs Vg, ’
% Vi As=BsVy Vipas=BsVy,,

<)) ‘/'“ As = bs Vgg Vg:a5= bs V,g.
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16° Dans les relations (1) et (2) ci-dessus, faisons
s =, a”=0"=0(13°). 1l viendra notamment .

0= A%U;,= U,;; Be=B®V,,= V,, A5,

et, comme |A |0, |B|5 o,
0="Ujs=Usp = Vip=Vy.

De la finalement, pour s =1,

(3 { UpnB=AUy; Upb =al,,,
)

ViuA =BV Vya=5V,,,

et, comme A = UV, B— VU,

6H A=U|1Vu B=V,Upy,
! @ = Uy Vys b= Vy,Uss.

A ct B étant invertibles, U, et V,, le sont aussi.
1~° A et B sont semblables, car

U71AU, = U7 U VU=V, Uy =B,

A et B ont mémes successifs el sont (5°), par suite,
identiques, étant toutes deux typiques.

Pour que § et 7, (12°) soient semblables, il faut et il
suffit que

A o B o
A= et D= R
o a o I
le soient; A et B le sont déja; il faut donc que a el b
soient semblables.
Comme (13°) a® = {®= o, les considérations du 10°

s’appliquent. Les conditions de similitude, nécessaires
et suffisantes, sont

Rg.as= Rg.bs,
(5)

s=1,2,..., .
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Or
Rg.As=Rg.As+Rg.as=h+Rg.as,
Rg.Bs=Rg.Bs+Rg.bs=h + Rg.bs.
18° Nous pouvons donc énoncer la proposition sui-
vante, but et résultat de toute la présente discussion :

Tutorkme. — Soient les quatre matrices n-aires
u, v, d =ue, n=vu;

[pE—0]=|pE—n]=p""*¢(p), 9(0)o,

E = n-aire unité.

Pour que O et n soient semblables, il faut et il
suffic que W et r* aient méme rang pour
s=1,2, ..., @, ot Uentier w ne peut dépasser n— h.

19° Si 8 et 7 sont semblables, X et 3 sont sem-
blables et, étant typiques, sont identiques,

A=B=29Q, a=0b=uw.
Les relations (4) du 16° donnent

Uy Vii= VU= 9,
Uzy Vag = Voo Upp = w3

U,, et Vy, sont échangeables ainsi que U, et V..

[D2b] ' ‘
SUR QUELQUES SERIES NUMERIQUES;

Par M. CamiLLe DENQUIN.

[. La formule connue

™ ix+i+_l_+
(1) _6-—1_'-22 33 i o
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qui équivauat, ainsi qu’on le reconnait immédiatement,
4 la formule

1
3t

I
=R

(2) A= Z:—; =14 o + ;'; -+
s’établit d’habitude, soit en comparant les développe-
ments de sinz en série et en produit.infini, soit en
développant la fonction z* en série de Fourier.

Je me suis proposé d’établir directement la for-
mule (2) en la rattachant ala formule de Leibniz,

N
Il
|

(3) B

W -
+
Crl -
|

N) |-

par une élévation au carré. Comme Ja série (3) n’est
pas absolument convergente, la régle ordinaire de
multiplication des séries n’est pas applicable, et il faut
des précautions spéciales pour meltlre les calculs a
I’abri de toute objection.

La méthode que jai employée conduit a la som-
mation d’une série numérique double intéressante : la
formule (11) qu’on trouvera plas loin parait nouvelle.

1I. Nous établirons d’abord une formule de som-
mation pour la série

(1) Co= 2 N 2 N 2
N 77 (2g+1) | 3(29+3) 5(2q+5)+”'
T (27 1)(2g -2 +1)
n=20

Cette série, ou ¢ désigne un entier positif arbitraire, est
évidemment convergente.
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Ecrivons suceessivement

29

T(2g+1 " ag+1’
29 oo I

5(cg +3) 3 2g+3
2q o I

(2g —1)(hg—1)  2g—1  4g—1’
2g 1 0

(th+l)(4q+l)= 29 41 _/;q+x’

2q i I
(2n+1)(29 +2n-1) 2n-+1 ‘).q—l—Qll-—I-I’

En ajoutant toutes ces égalités, et en Lenant comple
des termes qui se détruisent, on trouve

1

e .
29 —1

I
ch=.l_+

ol =

En doublant, et réunissant dans le second membre
les termes équidistants des extrémes, il vient

2q N 2q P 29 - 29
1(2g—1)  3(2¢—3) 77 (29—3)3  (2¢g—1)1t

2gCy =

et finalement

r=qg-1

- 1
(3) o= Z (-.zr+|)(:zg—zr-—-—|)'

r=

1Il. Dans la suite du raisonnement, nous intro-
duirons la série double ayant pour terme général

2 2
(an+1n@rn+4m=+3) (en+1)@2n+4m-+5)
= 4 ,

T (an+1)(2r+4m+3)(2n+4m+5)
Ann. de Mathémat., * série, t. XII. (Mars 1912.) 9

(6,) Umpn =
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m el n prenant séparément” les valeurs Oy 152,.00. En
vertu d’un théoréme général ('), celte série a lermes

o e 1
sest’c rgen r st de la forme ——
positifs est convergente, car tp, p € Fomay
fétant un polynome de degré supérieur a 2.
Nous poserons :

m=w®o np=ow

(7) ’D = 2 2 Wion.

m=0 n=0

Les termes w,,, , peuvent étre écrits dans un ordre quel-
conque, sans ue la somme D soit modifiée.

IV. 1l estfacile d’établir une relation entre la série D
et les séries G, considérées plus haut (4).

On a, en effet, en donnant & ¢ successivement les
valeurs 2am -1 et 2m —+ 2,

n=—ow

Comer = ¥ 2

LT d (2 1) (20— fm+ 3)
n=—~0
n="o

Camer =3, :

»121110—2— ('zn+|)(2n+,im+5)’
n=0

d’o0, en retranchant ces séries terme a terme,
‘ v n=—o

. \ 2:
Com+t— Coppge = Um.n.
=0

Donnons & m successivement les valeurs o, 1, 2, ... et
ajoutons; il vient, en profitant de ce que les termes de
la série D peuvent étre écrits dans un ordre arbi-
traire ' ' ' '

m=o

(8) 2 (Can-l - sz+2) =D.

m=0

(') Voir, par exemple, JORDAN, Traite d’Analyse, t. I, p. 304.
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V. Cela pose, considérons - un nombre /'m de
termes de la série de Leibniz, et écrivons’
1 . I i

B,= L !
PN TS T T p—1  Gp+1

Elevons au carré, en écrivant d’abord les carrés des
termes du second membre, puis les doubles prodmls
négatifs, puis les doubles produits posmfs Il vient

. I 1
B/'=]—'__+_:+"‘+——'_
9 (4p+ 1)

2
(2n+1)(2n+4m +3)

)
(2n+1)(2n+4m+5)'

Dans les deux X, m et n sont des entiers positifs ou
nuls. Dans le premier X, 2n + 4m + 3 est au plus
égal 2 4p + 1. Dansle second X, 2n+ 4m +35 est au
plus égal a 4p +1.

Il est clair qu’a tout terme du second £ correspond
un terme du premier, pour lequel m et n ont respecti-
vement les mémes valeurs. En réunissant deux a deux
les termes correspondants, il ne restera- dans le pre-
mier I que les termes pour lesquels 27 4 4m + 3 est
égal & 4p + 1. On écrira donc

I

2 _I. e —
Bl=1+ — ...~ Gpin

2 2
—2[(2n+1)(2n+4m+3)_(2n+1)(2n+!.m+5)]
2 (l—o— e — )
Chp+1\3 7 bp—1

Rappelons que, dans le £ de la seconde ligne, n et m
sont lels que

an 4+ 4m—+5354p—+1.
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Faisons maintenant croitre p indéfiniment; la, pre-

miére ligne da second membre tend vers la somme

1 I
-t -
9 2

A=1+

O

La seconde ligne tend vers — D, somme changée de
signe de la série double introduite au n° III. Quant au
terme complémentaire. ‘

2 (l 1 1 )
— e il S L ’
4p+1\3 7 p—1i

il tend vers zéro; en eflet, la somme entre parenthéses
est moindre que la somme des 4p — 1 premiers lermes
de la série harmonique, somme asymptolique, comme
on sait, & L(4p —1). Donc, etc.
Enfin B, tend vers B= l—r- On a donc
e
(9) B’:E:A—D.

VI. Nous obtiendrons une autre relation en écri-
vanl B, d’une maniére différente, a savoir en groupant
les produits de fractions dont les dénominateurs ont la
méme somme. On trouve ainsi

Bi=P+Q,
en posant
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et

I NIV R VR (4p+|)|}

[ T 1
— e+ i+
S L3Gp+1) (4P+I)3]

..............................

| . I

T lGp—mhip+1) <4p+:>(4p~—n>]
1

MDD

‘On voit tout d’abord que les termes de la somme
alternée égale a P sont, d’apres la formule (5), égaux en

valeur absolue aux sommes successives C;, C,...,Cqp.
On a donc

P= ((4‘-— (::2)—"?-.- -+(Cgl,r 1 C’I’)'

Si Pon fait croitre p indéfiniment, le second membre
de cette égalité tend vers D, ainsi qu’on l'a vu [ for-
mule (8)]. ,

En second lieu, Q se présente sous la forme d’une’
somme alternée dont les termes décroissent visiblement
en valeur absolue. On a donc

__1(4P+l)+"'+(

e JU S
°o<Q< 4pa4-1)1

La somme qui figure dans le dernier membre des
inégalités précédentes peut s’écrire

1

( 1
(—————2P+1)<I+§+...+ 4p+l>.

Elle tend donc vers zéro, quand p augmente indéfi-
niment. Il en est par suite de méme de Q.
On a donc, en résumé,

a
o

(ro) .. . . B2= =D,

f=2)

1
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ce qui, rapproché de la formule (g), donne

»

1 I L
I+ — 4 — 4+...=A =

9 Y -8— . C.Q.F.D.

VII. Il résulte, comme on le voit, de I'égalité (10) et
de la définition de D que I'on a

1 w2
) 2 (‘;n—i—1)(2n+4m+3)(2n—'—4m+:>) =6
0

Cette formule peut étre généralisée de la facon sui-
vante : posons

N\ 2
E= E : - ~
! (1+2n)(3+2n+4my)(d+2n+ 4my)
0

52—‘222‘[(14-211)(34‘2”*“4”“) ]
- 4ms)

X(54+2n+4my - 4y (74 2n—+ fmy—+-

et ainsi de suite.

5 D a e
E, n’est autre que S et le mode de génération des

sommes double, triple, etc., est suffisamment indi-
qué, E, étant une somme multiple d’ordre p +1
(variables n, m,, ma, ..., mp).

Cela posé, en se servant du développement de cosz
en produit infini, il est facile de vérifier quel’on a

N B 4. S I A . I nl“H
Ll—;(z) Ez——?!"<4) te l,,;—6—+—1)!<'4—> -

Il serait intéressant de demonuel directement la
formule de récurrence

Ep= ——

E,,.
P o

=la

Par ailleurs, on pourrait, comme autre généralisation
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de la formule (11), chercherdes formules de sommation
pour les séries doubles a_yant com me terme 0éneral

. 1 :
- . el
(am-+bn—+c)y(am-+b6n+c)(a"m-+06"n+c")

Um,n=

a, by ..., c" étant des constantes a priori quelconques.

BIBLIOGRAPHIE,

Exercices pe Géoverrie; par F.G. M. — 5¢ édition;
1 vol. in-8 de xx1v - 1298 pages, chez A. Mame et fils,
a Tours, et J. de Gigord, & Paris.

. Les nombreuses éditions de ce Livre attestent son succes,
Celle-ci se distingue des précédentes par I'introduction de
questions nouvelles et par des notes biographiques et biblio-
graphiques qui donnent au livre de I'attrait.

Les exercices de F. G. M. constituent sans doute un des plus
riches recueils de problémes géométriques qu’il y ait au monde,
et sont, pour les professeurs, une mine précieuse d’énoncés.

PoLI1EDRI, CURVE E SUPERFICIE SECONDO I METODI DELLA
GEOMETRIA DESCRITTIVA; par Gino Loria. — 1 vol. de
xv - 235 pages (en langue italienne) ; chez Ulrico
Hoepli, a Milan. Prix: 1 lire 50.

Cet Ouvrage fait partie de la Collection bien' connue des
Manuali Hoepli, 1l fait suite & un traité de Géométrie des-
criptive du méme auteur, eta pour but d’illustrer les méthodes
générales par des applications aux polyédres, aux courbes et
aux surfaces. Il est illustré de 62 figures fort claires: =

L’usage est en France d’étudier &’ patt'la représentation par
projections orthogonales'(méthode de Monge) et la represén-
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tation par projection centrale ou perspéctive. A I'étranger, on
aborde volontiers les deux méthodes simultanément, et le
savant professeur de Génes se confirme a cette conception de
la Géométrie descriptive, plus large peut-étre que la nétre. Il
emploie surtout les deux plans de projection classiques, mais
plusieurs problémes sont traités par la perspective.

La premiére Partie'de I'Ouvrage est consacrée aux figures
limitées par des plans et des droites (résolution de triédres,
polyédres ); la seconde Partie aux courbes (courbes planes,
courbes gauches, étude particuliére de I'hélice) ; la troisiéme
Partic aux surfaces (surface de révolution, hélicoides, cones
et cylindres, surfaces réglées développables et gauches).

La premiére Partie n'exige que la connaissance de la Géo-
métrie élémentaire, les deux derniéres Parties font appel a des
notions d’un ordre plus élevé. L’auteur a pris soin de résumer
les principales propositions dont il avait a faire usage.

Ie Livre de M. Gino Loria, trés intéressant en lui-méme,
fait, en outre, connaitre des points de vue et des modes d’expo-
sition qui différent notablement des ndtres. Nous pensons
qu’il sera lu avec profit par les professeurs de Géométrie des-
criptive.

NUEVOS METODOS PARA RESOLVER ECUACIONES NUME-
ricAs ; par José Isaac del Corral. — 1 vol. in-8 de xxua-
303 pages (en langue espagnole); chez Adrian Romo,
a Madrid. Prix: 7 pesetas.

Les méthodes de résolution numérique proposées par 'auteur

reposent sur I'emploi d’une fonction auxiliaire qu'il appelle
eulérienne, ct qui se déduit du polynome

f(x)=asxm+...+ a,

par la formule

. d i -
Ef(z)=mf(z)— f(2)=—am+ [ﬁf(,x)] .
La considération de leulérienne conduit a une série de
théorémes sur les équatiens algébrigues, entiérement analo-
gues, ainsi qu’on peut s’y attendre, aux théerémes de Rolle,
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de Budan, de Sturm, etc. L’auteur applique aussi les eulé-
riennes au calcul numérique des racines réelles et imaginaires.

Les nouvelles méthodes sont-elles supérieures aux anciennes?
Au lecteur d’en juger. En tout cas, il rendra justice a leru-
dition et au talent d'exposition de M. del Corral.

R. B.

GERTIFICATS DE GEOMETRIE SUPERIEURE.

Lille.

EPREUVE ECRITE. — 1° Démontrer la propriété fonda-
mentale des lignes géodésiques d’une surface, et former
leur équation différentielle; en coordonnées curvili-
anes(uv), l’élément linéaire étant donné sous la forme

ds* = f2dut+ 2 fg cosw. dudv + g2do?;

2" Définir ’angle de contingence géodésique et la
courbure géodésique; faire voir que celle-ci ne différe
pas de la courbure tangentielle

3o Donner l’intégrale premiére de l’équation des lignes
géodésiques dans le cas ou les lignes coordonnées (u, v)
Jorment un systéme de Liouville. Application aux sur-
JSaces de révolution et a I’hélicoide gauche.

(Juillet 1911.)

EPREUVE ECRITE. — 1° Question de cours : Une surface

N

étant rapportée a ses lignes de courbure et le dst ayant
pour expression f*du®-+ g®dv?, former les relations
qui existent entre les coefficient f, g et les courbures

. IR . , .1
principales ——» —; quelles conditions doivent remplir —,
Rl R2 Rl

1 . . .
Tz Pour que les lignes de courbure soient isothermes ?

2° Application : Démontrer que, en dehors des surfaces
canaux et des surfaces de révolution, les seules enveloppes
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de sphéres (a un paramétre) qui sotent divisées en carrés
par leurs lignes de courbure sont définies de la maniére
suivante : la sphére enveloppée reste orthogonale a une
sphére fixe et son centre décrit une courbe située tout
entiére dans un plan passant par le centre de cette sphere
Size. (Novembre 1gi11.)

. SOLUTIONS DE QUESTIONS PROPOSEES.

2090.

(1908, p. 46.)

© Soient P (a, B, v) un point fize quelconque situé dans le
plan du triangle ABC; 0 le centre de la conigue inscrite en
a, B, v; A(\, 1, v) la polaire de O dans le triangle ABC
et Q la conigue inscrite en ABC aw triangle des droites A,
By, Cv. ST un point O (x, y, 5) déerit Q :

1° La polaire p de O tourne autour de §;

2° Le centre 0y de la conique inscrite ¢ ABC en x, y,
décrit la polaire py de P,

3¢ Les paralléles @ PA, PB, PC mences par O coupent
BC, CA, AB,en ), ', v et lon a la droite A'(N w'v');

4" Les paralléles @ OA, OB, OC menées par P coupent
BC, CA, ABen Ay, 1y, v et Uon a la droite Aj(h 4 v1);

5° Le point w (A} Ay) est le miliew de OP et décrit la
conique NV qui passe par les milieuxr des cités de ABGC et
les points a, B, v;

6° S¢ P coincide avec U'orthocentre H de ABC, 0 est le point
de Lemoine, Q le ceréle ABC, A' la droite de Simson et V
le cercle d’Euler. (SoNDAT.)

SoLuTioN
Par M. R. BouvaIsrt.

I suffit d’établir Ics propositions précédentes dans le cas ot
le point P coincide avec 'orthocentre H du triangle ABC, et
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de les généraliser au moyen d’une transformation homo-
graphique laissant invariable la droite de I'infini.

Dans ce cas, le point 8 est le point de concours des médianes
antiparalléles, c’est-a-dire le point de Lemoine du triangle,
les droites AX, Bp, Cv sont les tangentes au cercle circons-
crit en A, B, C, cercle qui n’est autre que la conique Q.

1° Soient u, ¢, w les points d’intersection de la polaire p
d’un point O du cercle circonscrit avec BC, CA, AB; si I'on
se donne le point u, les points ¢ et w sont déterminés et
uniquement; si, d’autre part, ce point u coincide avec B par
exemple, il en est de méme du point w, ce qui montre que p
passe par un point fixe. Si u coincide avec ‘A, p devient la
symédiane issue de A; le point fixe cherché est donc le point
-de Lemoine 6. ;

2* SiT'on se donne le point de contact d’'une des coniques
(0;) avec I'un des cotés du triangle ABC, cette conique est
déterminée et uniquement. Les coniques (0;) forment, par
suite, un faisceau tangentiel dont les points limites (coniques
évanouissantes) sont (A, X), (A, u), C,v), le lieu de leurs
centres est donc la droite w; w; w3, w;, w,, et w; étant les
milieux des segments AX, By, Cv. Si M’ et M” sont les milieux
de CA et AB, on a visiblementw; M'. v; M" = w; A?; les points
wy, 0, wy appartiennent, par suite, & 'axe radical du cercle
circonscrit et du cercle des neuf points, c’est-a-dire a I'axe
orthique, polaire de H.

3” Nous tombons sur le théoréme de Simson.

4° Soit O’ le point diamétralement opposé a O sur le
cercle ABCj; les poles des droites AO’, BO’, CO’ par rapport
au cercle conjugué au triangle sont les poifts d’intersection
des cotés de celui-ci avec les paralléles menées par H aux
droites AO, BO, CO; ces points X', ', ¢ sont sur la polaire A’
de O’ par rapport au cercle conjugué au triangle. Soit v le
point d’intersection de A"avec OO’, on a

How.HO'= HA.HH, = %HO.HO’

(Hy étant le pied.de la hauteur issue w de HA),d’ott Hw = é HO,

5° Le point w étant le milieu de OH est lé point de con-
cours des droites A et A’ et il décrit visiblement le cercle de
neuf points.
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2103.

(1908, p.479.)

Etant données 4§ sphéres Cy, Cq, Cy, C; de centres Oy, Oy,
03, O,, une sphére quelconque = coupe les axes radicaux
IA,, IA,, 1A;, A, de ces sphéres prises 3 & 3 en Ay, Aj, A,
Ay, As, AL AL AL Les quatre points Ay, A,, A3 A,, sont les
centres radicaux de Cy, C,, C;, C, prises 3 a 3 avec une
sphére S. De méme A, A}, A}, A} sont les centres radi-
cauz de Cy, C,, C;, C, prises 3 & 3 avec une sphére S'.

1° Montrer que S et 8' peuvent se déduire lune de
lautre de la facon suivante : leurs centres w et w' sont
deux points inverses par rapport au tétraédre Oy Oy O; O, -
et la somme des puissances du point | par zappmt a ces
deux sphéres reste constante quand E varie.

2° Montrer qu’il y a une surface lieu des points v et v’
tels que S et 8’ soient orthogonales quel que soit le rayon
arbitraire attribué a U'une d’elles et étudier cette surface.

( GILBERT.)

SoLuTION

Par M. R. BouvaisT.

1” Prenons le point I comme origine d’un systéme d’axes
de coordonnées rectangulaires : soient

Ci=a+ '+ 2t—o2mz—2By —avi5+3=o0
* (i=1,2,3,4)

les équations des sphéres C,
S=2+y+ 32— 2ax —2by —2c5+d=0
la sphére = et enfin

S =24 y24 32— 222y — 2y Y1 — 2351+ 1 = 0,
S'=2r+ yr 43— 22Ty 2) Y2 — 285+ 13 =0

les sphéres S et S'.
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—~~

Soit
ay ‘31 Tt
D as 3: Y2 I
1 B Yz 1
%y {35 Yo 1

nous désignerons par U;, Vi, Wy, Ay, les coefficients de a;, 8;,
Yi, 1 (pris dansla ligne 7) dans le développement de D.
L’axe radical des sphéres C,, C;, G, a pour équations

z . . .
— = £— = —— et I'équation aux p des points d’intersection
U, V,~ W, q P p

de cette droite avec I sera
P2 (Ut +VI4+- W) —ap(aU;+bV,+cW )+d=o.

Soient p,, p; les racines de cette équation correspondant aux
Pus P4 q resp

points A, et A}. Le point A, sera le centre radical des sphéres

Cs, C3, C, et Ssi 'ona

— ‘2‘05(12U1 + Bsz -+-‘{2W|) -8
:—‘2‘01,(.7/‘1 U1+}’|V1+Z|W1) —+ 1

ou puisque a, U+ By Vi-+va Wi+ A= o,
(1) 20,(@1 Uy + p Vit 5 Wi+ Ay) =1, — 83

nous aurons, de méme, si A} est le centre radical de
’
C!y C31 CL) S?

(2) 20 (Ui y3 Vi+ 2, Wi+ A) = t3— 3;
d’ou I'on déduit
hoa (@1 Ui+ y1 Vi+ 5. Wi+ Ay)
X (@ U+ ya Vi+ 232 Wi+ Ay) = (¢ — 0) (¢3— 3)
ou encore

(1 Ui+ Vi+ 3 Wi+ A) (23 U+ 2 Vi+ 2. Wi+ Ay)

U3+ Vi+ W3
_ (41— 28) (s —129),
=g

le premier membre représente le produit des distances des
points w et w’ au plan Oy O; Oy, on voit de méme que le pro-
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duit des distances de ces deux points aux plans O; O; O,
04 0, 0, 0; O, O; est égal a (i:ié)(dtz—__ﬁl’ ce qui prouve

que ces paimts soal inverses par rapport au tétraédre
0,0,0;0,.

Des relations (1) et (2) on déduit la suivante :

/ ,
U,< zla—*— x’N>+V, n AR h>

ty— ty— G t(—s—rtz—s )
z 2y ti+2ty— 20
W (S B ) [ —2f
+ l<t1—0 tg—a,) ! (ti—o)(t2—0)>
1< 1 1 ) aU,+bV;+cW,
— -+ - - -

Ta\p o d
ou
x z, _a X1 Y b
U'<z1~a+1,—a d)*v'(z,—a””:,_-a d>
; 2 - Te _(_',‘-\ A t1+t1——28 .
+“‘<t,-—a P— ol)+ =) (ta—0) ¢

Si entre cette relation et les trois relations analogues nous
éliminons

xy - Ty a

ti—e¢  th—é d’
b

I R
tij—o lg— 0 d

1l ) L) c
— —_— — 3
ti—8  th—9  d

il vient, en désignant par A le déterminant adjoint du déter-
minant D, .
N Ly~ lyg— 26 — o
(11— 8) (12— 8) ’
D ¢tant par hypothése non nul, puisque les points
0y, O4, O3, O, ne sont pas dans un méme plan, A West pas
nul et 'on a

t|+12—28=0,

ce qui montre que la somme des puissances du point I par
rapport 4 S et §’ est constante.
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2° Si les sphéres S et S’ sont orthogonales, on aura :
(1) 1T+ Y1 Yo+ 5152 =0}
si nous désignons par
P;=x cosa;+ ycosB3;+ zcosy,—p,=o (i=§,2,3,4),

les faces du tétraédre O; O, O3 O,, nous aurons, les points w
et w' étant inverses par rapport a ce tétraédre,
(2) 3 COS a; -~ ¥2 €08 B+ 55 oSy — p;

A

Ty cosa;—+ ¥y o8B+ 5y cosy;— p;’

éliminons x5, y2, 3, A entre les relations (1) et (2), ces rela—
tions étant symétriques en x; ¥y 51, &2 ¥2 5p le résultat de
I'élimination sera la surface lieu des points w et w' telle que
les sphéres S et 8’ soient orthogonales. Le résultat de I'élimi-
nation est

cosa; C€osfy CoSsYy w5 P

cosay cosfs cosyy P, P2

A 1 = 0;
COSx3 COS 3 COSY3 IT Ps3
3

cosa, cosfy

[«
=3
w
-2
S

2]
=}
o2

z Y
ce qui peut s’écrire
cosay 0SBy COSYr po

cosay cosB; cosyy p3
2[)2 P3 PL ! = 0.
cosa, cosf, cosv, pu

~
x Y r1 n

le lieu cherché est une surface du quatriéme orvdre passant
par les arétes du tétraédre 0,0,0;0;,.

Remarques. — On a

—2 —2
Jo +I[w —RY— R =2,
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et si les sphéres S et S’ sont orthogonales
P 8

—2
ww' = R2 + R2,
ce qui donne
—2

- L —2
o +Taw' —oww =28

ou encore

N
Twlw' cosw|w =3,

les points w et w' étant inverses par rapport au tétraédre
0,0:0;0,, cette derniére relation donne une définition géo-
métrique de la surface lieu de w et ' (surface qui est visi-
blement anallagmatique dans I'inversion tétraédrique).

On peut étudier la surface au moyen de cette relation, qui
peut s’écrire, en appelant w} la projection de w’ sur Jw,

folw)=23.

On voit donc que, si w est un point de la surface, son
inverse par rapportau pointI, la puissance d’inversion étant ¢,
étant o'}, le plan perpendiculaire & Iw en w] passe par le
point w’ inverse de w par rapport au tétraédre.

Cette remarque permet, par exemple, de déterminer immé-
diatement les droites autres que les arétes du tétraédre suivant
lesquelles la surface considérée coupe les faces de celui-ci. Sur
la face 0,030, par exemple c’est l'intersection de cette face
avec le plan perpendiculaire 3 O;I au point O] tel que

0,1.0/1 = 3.

QUESTIONS.

2191. On considére un rectangle variable ABCD circonscrit
a une ellipse dont l'un des foyers est F.

Le centre du cercle circonscrit au triangle FAB, son ortho-
centre et le centre de son cercle des neuf points ont pour

lieux des cercles.
E.-N. BaRrIsien.



[M!'3e, M22c]
EXTENSION DES THEOREMES DE FREGIER
AUX COURBES ET AUX SURFACES ALGEBRIQUES;
Par M. C. SERVAIS,

Professeur a ’Université de Gand.

1. On joint le sommet M d’un triangle MAB a un
point S du coté AB; les droites menées par les som-
mels A et B, paralléles respeclivementaux cbtés oppo-
sés, rencontrent MS aux points Ay, B,. On a
T I

MS ~ Ma,

{ -

{a)

e

1B,

Soient X le point (AA,, BB,), O le milieu de AB,

S’ le point d'intersection de MS avec la paralléle menée
par X au c6té AB. On a

(A,B,MS') = (ABO =) = —1
ou
1 1 2 1

MA, TMB, NS _ MS’

Soient A, le point d’intersection de MS avecla
perpendiculaire élevée au point A sur MA; a, b, n les
semi-droites MA, MB, MS; on a

MA = MA, cos(na), MA :sin(bn) = MA,:sin(ba),

donc

cos(na)sin(ab)‘

(b) MA, = MA, s

(') FREGIER, Annales de Matheématiques de Gergonne, t. VI,
p. 229 et 231; t. VI, p. g1.

Ann. de Mathémat., 4° série, t. X1I. (Avril 1912.) 10
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2. On joint le sommet M d’un tétraédre MABC 4 un
point S de la face ABC; les plans 2, 3, v menés par
les sommets A, B, C respectivement paralléles aux
faces opposées rencontrent MS aux points Ay, B,, C,;

on a
1 1 ¥ 1

(e) MS T MA, T MB, TG,

Soient 8/, B/, (' respectivement les points (BC, AS),
(2, MS'), (v, MS'); 5" le point d'intersection de MS
avee la paralléle menée par 8" 4 MA; les droites B'B,,
C' C, sont aussi paralleles & MA. On a, d’aprés 'éga-
lité (a),

1 I 1 I 1 [
R YT T NS’ = MB, NG,
1 _ I ) i _ 1 1 . 1
NS T MY Ma, | Ma, T MB, TG,

On désigne par y, 5 deux semi-droites faisant avec
la semi-droite z=MS un triédre trirectangle; par «,
b, ¢ les semi-droites MA, MB, MC; par o%, v,
%y PaYas %3 B3y les cosinus directeurs de a, b, ¢ rela-
tivement au triédre 2ys. Le plan a4 a pour équation

x—MAx, »y—MAS, - MA,

% 2a V2 =0;
A3 ;3:2 V3
par suile,
MA, = M Sntabe)
sin(xbe)

Le plan mené par A perpendiculairement & MA
coupe MS en A, on a

MA = MA,. a2y,

donce :
1 1 sin(abe) 1

(d) MA, T MA, %y sin(abc)
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Un céne du sécond ordre ayant pour triédre prm-
cipal yz a pour équation

Az?+ By?+ Cz2=o.
Le triédre abe est conjugué a ce codne sil’on a

A11“2+ B Btﬁz-*— C‘{x‘{2= o,
Aojaz+ BBy B3+ Cyyvs=o,
Axyay+ BBy B3+ Cyavs =o.

De ces égalités on déduit

Aoy (s — 23y1) = BPa(Bayi— Bivs),
Aoy (o .31— %2 ;ex) = C‘,’s(?l‘.’-z— B:“ﬁ)»

ou
(e)> sin(zca) - é sin(yca) sin(rab) A sm(zab)
Az B '}32 ’ 23 C T3
Les égalités (e) et leurs analogues donnent

sin(zbe) By _ sin(zca) fo _ sin(zab) By A
sin(ybc) a;  sin(yea) 2y sin(yab) a; )
Al
G

b

sin(zbe) vy _ sin(zca) vy _ sin(zab) 13
sin(sbc) %y sin(sca) 2, sin(zab) ay

N ?
Ces relations constituent pour le triédre principal du
cone la propriélé analogue a celle exprimée par la
relation
tang(ax)tang(a’'x) = coust.

pour le couple rectangulaire zy d’une involution de
rayons. On peut écrire ces relations sous la forme

sin(zbc) sin(azz) _ sin(xca) sin(bxz) _ sin(xab) sin(cwz)
sin(ybc) sin(ayz) sin(yca) sin(bysz)  sin(yab) sin(cyz)
sin(zbc) sin(azxy) sin(zxea) sin(bzy)  sin(xab) sin(czy)
sin(zbc) sin(azy) sin(sca) sin(bzy) sin(zab) sin(‘cz.y)‘
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Elle sont alors applicables a deux tri¢dres conjugués
quelconques.

3. Deux cordes p, q issues dun point M d’une
courbe algébrique d’ordre n et conjuguées dans
une involution rencontrent la courbe aux points P,,
Py, .oy Prcy3 Quy Quy ooy Qu_y. Les droites P, Q,,
P.Q,, ..., Po_yQ,_, déterminent sur la conjuguée
n de la tangente en M, dans I’ involution considérée,
les points X,, X,, ..., Xu_y. Le conjugué harmo-
nique de M relativement au systéme de points X est
un point S indépendant du couple pg choisidans
Uinvolution.

Soient A, B les conjugués harmoniques de M rela-
tivement aux systémes de points P, Q. La droite AB
est la droite polaire du point M par rapport au systéme
de droites PyQy, P;Q,, ..., P, Q,_y, et le point
S=(n, AB) est le conjugué harmonique de M relative-
ment an systtme de points X,, X,, ..., X,_;. Les
points A, Bappartiennent ala conique polaire du pointM
relativement & la courbe algébrique considérée et le
point S est le pole de I'involution déterminée sur cette
conique par les couples pg. Le point S est donc indé-
peundant da couple choisi pg.

4. Les paralléles menées par les points Py, P,, ...,
Py, Qi Qu. ..., Qu_y respectivement auzx droites q

et p déterminent surladroite n les points P}, Py, .
' ’ ’ ,
pll—l? QH Q21 c ey Qn_.; on a

n—1 N Y 1 I
® MS “Z MP] + MQ;’

car si les paralléles menées par les points A, B respec-

‘g
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tivement & ¢ et p coupent la droite n en A’ et B/, on a

n—iI I n—i 1
MA’ —2 MP}’ MB’ “2 MQ; "

Mais, d’apreés'égalité (a), on a

done

Ainsi symétrique de M par rapport au point S est le
conjugué harmonique de M relativement au systéme de

. / i ;. ' ' ’
points P, P,, ..., P, _; Q\, Q,, ..., Q,_,.

5. Au point M d’une courbe algébriqgue on méne
deux cordes p, q conjuguées dans une involution
dont le couple rectangulaire est formé par la tan-
gente et la normale n au point M. S¢ R est le rayon
de courburede lacourbe aupoint M; N, Ny, ..., N,_,,
les segments comptés & partir de M et déterminés
sur la normale n par la courbe considérée; S la con-
Juguée harmonique de M par rapport aux points X,
Xoy ooty Xpy (3);0na

I 1 n—1i tang(np)tang(ng)

I
(2) N_;+N—z+'“+Nn—1_ NS = >R

On désigne par P le point de rencontre de la nor-
male n avec la perpendiculaire élevéeaun point Py surp.
L’égalité () permet de remplacer larelation (1) par la
suivante :

. n-—i cos(n 1
sin(pq ) —=— S = tang(np)tang(ng) sm((nz))Z’M_PT

sin(np)
- cos(nq)zl MQ"
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Dans 'involution considérée au point M le produit
tang (np). tang (ng) est constant, et si dans la précé-
dente égalité on substitue au couple pg la tangente et

la normale au point M, 'un des points P}, P}, ..., P, _,

est 'extrémité du diamétre du cercle osculateur en M

"

')
ce sont les points de rencontre ‘de la

et les autres sont a Dinfini. Quant aux points

" "
2y ° n—4?

normale avec la courbe. On a d’ailleurs dans cette
hypothése

cos(ng)=r1, sin(pg) =—sin(np) =1,

donc
1 RS 1 n—1 _ tang(np)tang(ng)
NN, TN, T NS T 2R ’

6. Si N’ est le segment déterminé par la conique
polaire du point M sur la normale n, R’ le rayon de
‘courbure de cette conique en M, on a, d’aprés la for-

mule (2),

1 1 _ tang(mp)tang(ng)

TTMS T 2R’ )
Mais

n—I 1 _—l_+ " 1

NTOUNTN, T Ny
donc

R'=(n—1)R.

Si Ry représente le rayon de courbure au point M
d’une courbe polaire d’ordre n — A de ce point, onade

méme :
R'=(n—h—1)Ry;
par suite,
1 n—h—1 1
R,~ n—1 R

Ainsi @ En un point d’une courbe algébrigue, les
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courbures des polaires successives de ce point for-
ment une progression arithmétique ().

7. Si I'involution considérée (pg) est orthogonale

on a
n—I_ 1 - I 1
MS “5R TN, TN,

T
[ T i~ 2).
i\.‘l,vl ( )

On conclut de 1a : S¢ la conique polaire de M est une
hyperbole équilatére, on a
1

I 1 1
— vttt S =0
2R :\] 1\-_ Nn_1 ’

car le point S est alors a U'infini. Dans cette hypothése
on a aussi

1 1
2 MP; *2 MQ;

8. Les arétes a, b, ¢ d’un triédre ayant son som-
met en un point M d’une surface algébrigue
d’ordren, et conjugué aun céne donné, rencontrent
cette surface aux points P, Py, ..., Py_y; Qy,
Qay ooy Quy; Ry Ry, oo, Ryt Les plans P, Q, Ry,
P, Q. Ray ..., Pu_y Qu_y Ry déterminent sur le
rayon polaire x du plan tangent en M, relativement
auw cone considéré, les points Xy, X,, ..., X, . Le
conjugué harmonique deM relativement au systéme
de points X est un point S indépendant du triédre
conjugué choist.

(') MouTARD, Nouv. Ann. de Math., 186o, p. 195. — C. SERvVAIS,
Bull. Acad. Belgique, 189z, p. 364.

(*) PoxceLET, Traité des propriéetes projectives des figures, t. 11,
1886, n° 362. Cette formule, établie par Poncelet a I'aide d’autres
considérations, met en évidence la propriété (3) pour une involu-
tion orthogonale et par projection pour une involution quel-
conque.
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Soient A, B, C les conjugués harmoniques de M
relativement aux systémes de points P, Q, R. Le
plan ABC est le plan polaire de M par rapport au sys-
téme de plans P, Q,R,, P,Q.R,, ..., Po_ i Q. R,
et le point S==(x, ABC) est le conjugué harmonique
de M relativement au-systéme de points X,, X,, ...,
X, _i. Les points A, B, C appartiennent a la quadrique
polaire du point M relativement a la surface algébrique
considérée; donc, d’aprés le théoréme de Frégier, le
point S est indépendant du triédre conjugué pgr
choisi.

9. Les plans menés par les points Py, Pa, .., P, _y,
Qi Qoy .oy, Qu_y, Ry, Ry, ..., Ry, paralléles res-
pectivement aux plans be, ca, ab déterminent sur
la droite x les systémes de points P, P,, ..., P, |,

' 4 ’ ’ ' .
QLQ, ., Q , R, R, ...,R,_ ;ona

(3) =2 !\1;”1 > MZ}; > MIR’I :

Car si les plans menés par A, B, C paralléles respec-
tivement & bc, ca, ab délerminent sur la droite z les

points A’, B', U/, on a

n—1 n—I I n—I1 1
™MA 21\11’” MB' =Z MQ,T MC ‘2 MR}

Mais d’apres I'égalité (¢),

1 I I I

MS T MN T MB T MC?

P N N L
MS =2 MNP, 4 MO, + MR,

Ainsi : S¢ MM'= 3 MS, le point M’ est le conjugué
harmonique de M relativement au systéme de

donc
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pOints P,n P:.n cevy P;x—n Q,n Q;a tey Q:z—nR/n sz’ cey
R,
10. Si a, b, c est un triédre conjugué a un céne
dont le triédre principal est formé par la normale x
et deux tangentes rectangulaires y et 5 au point M
de la surface; R, R’ les rayons de courbure des sec-
tions normales xy, s au point M; N,, N,, ..., N,_,
les segments comptés & partir de M et déterminés
sur la normale x par la surface ;S le conjugué har-
monique de M par rapport auzx points X,, X,, ...,
Xn_1 (8),0na

cos(za) n—1 _ cos(xa) <L I . 1 >
sin(zbc) MS  sin(zbe)\N; TN, T N,
cos(ya) 1 cos(za) 1

sin(ybc) 2R + sin(zbc) 2R

On désigne par P le point de rencontre de la nor-
male z avec le plan mené par P, normalement 2 la
droite a. L'égalité (d) permet de remplacer la rela-
tion (3) par la suivante:

(n—1) sin;;zsbc) _ sin(:l)c)z M;)”l - sin(:',ca) z MlQ_rl
- sin(:ab) 2 M;:{’; .
D’aprés les égalités (e) cette relation peut s’écrire
(n—1) sinlflezsbc) _ sin(:bc)z M;,u; - % sin(lé};c'a)z M:Q;,
" % 51n€;ab)2_MlFI;_.
Si dans cette égalité on substitue au triédre abe le

triédre zyz, I'un des points Q) et I'un des points R
sont les extrémités des diametres des cercles de cour-
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bure des seclions zy, zz et les autres points Q’, R”
sont & I'infini. Quant aux points P}, P}, .,. ce sont les
points de rencontre de la normale avec la surface. On
a d’ailleurs, dans cette hypothése,

sin(abc) = sin(xbe) = sin(yca) = sin(zab),

. “1'—_-1(32:‘(3:1}
par suite,

n—i I 1 1

MS TN,TN, T TN, IR

A A e,
En remplagant L’ ¢ par leurs valeurs (égalités f),

‘ona

%y n—i1i %y o
sin(zbec) MS sin(xbc}ZNl
- By L T .
sin(ybc) 2R sin(zbc) 2R’
11. Sile triédre a, b, c est trirectangle on a

A=B=0C_,
el l'on a

IL——I_ I ) 1 ! ; 1 + I “ 1
MS TN, TN, """ T Np: 2R T 2R

égalité qu'on peut déduire immédiatement de

S =2 AN TN

Le cone de sommet M étantisotrope, deux tangentes
vectangulaires quelconques et la normale en M a la sur-
face algébrique forment un triédre conjugué a ce cone.
De la I’égalité connue

I

1
B | = const

TR

En particulier, si R, R; sont les rayons de courbure
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principaux, on a

”“'—I+.L+ SN S
MS ~ N, N, T N, " 2R, T 3R,

Cororrarres.— St au pointM la courbure moyenne
est nulle, on a

n—1 1 - [ - 1
MS — N, N, T N,

Si la quadrique polaire de M est un hyperbo-
loide équilatére, on a

1 1 I 1 I
— e o e e . s ——— = 0.
2‘R‘ ‘2R2 N; N2 Nn—l

12. Siles points Sy, S, sont les points S (3) rela-
tifs au point M pour deux sections normales de la
surface en M et perpendiculaires entre elles, on a

X 1
S, -+ NS, = const.

Car, soient R et R’ les rayons de courbure au pointM
de ces sections, on a (7, 11)

n—l_I+L+_I_+ +1
MS; ~ 2R ' Ny Ny 7 Naoy

n—iI 1 1 1 I
_MSz =°2—R—,+-Wl-+—“]\,—z+...+w”—-1‘)
n—1 1 I [

donc
L L L .. 4+ = const
MS, MS, =~ MS N,  No T Nua

Conorramres. — Le point S relatif au point M
pour la section normale a une tangente inflexion-
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nelle de la surface en M est identique au point S
relatif au point M pour la surface.
Carsi R = o0, on a

n—I

I {
]ng——N—l—f-N—"—l—...—l--—-,

et, par suite,
MS] = MS.

Sila courbure moyenne est nulle au point M, ona

i I
MS;, T MS, ~ MS

19

[0'6p]
SUR LES

SYSTEMES DE SURFACES TRIPLEMENT ORTHOGONALES
COMPOSES DE CYCLIDES ;

Par M. Mauvrice FOUCHE,
Répétiteur 2 I'Ecole Polytechnique.

(FIN.)

26. Relations métriques. — Désignons par a, b, ¢
les abscisses respectives des trois points A, B, G, situés
sur 'axe OX (fig.5); par a', ', ¢’ les ordonnées des
points A/, B', (¢, situés sur I’axe OY et qui jouent les
mémes rdles dans l'une des cyclides de la seconde
famille; enfin par a@’, 4", ¢" les cotes des points ana-
logues A", B", C’, situés sur 'axe OZ et correspondant
al’une des cyclides de la troisiéme famille.

1° Tous les cercles de diamétre A’B’, étant orthogo-
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naux au cercle AB et a son syméirique par rapport
4 OY, admetlent 'axe OX pour axe radical, et de plus

Fig. 5.

la puissance commune au point O par rapport a tous
ces cercles a la méme valeur absolue que celle de ce
méme point O par rapport au cercle AB, mais le signe
conlraire :

OA' < OB'=—0A < OB ou a'b'=—ab.

2° On a, par le théoréme de Thales,

oc AE AC

0A ~ AA’ ~ A0’

1 le ra rt oG reste invariabl 1
ce qui prouve que le rapport ==, res va e pour

toutes les cyclides de la deuxiéme famille. On peut

encore en déduire
cC—a

’
c
— = 5
a -—_—a

qui, par multiplication avec l'équation précédente,

donne
b'c¢'= bc— ab.
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Il en résulte que les produits @'d’ et b'c’ restent
constants pour toules les cyclides de la deuxiéme
famille. De méme il y aura pour chaque famille deux
produits analogues qui resteront invariables.

Posons

(v) ab=m, bc = n.

On aura pour la seconde famille

(2) a'b'=—m, bc'=n—m.
On aura de méme pour la troisieme

(3) a”b’;zm-—-n, b"c"=— n.

Rappelons aussi que chacun des trois rapports

oG oc oc”
(4) OA’ OA’ OXN
est invariable.

Nous reviendrons plusloin sur les relations entre les
valeurs de ces trois rapports.

On voit que le systéme orthogonal est complétement
défini par les deux nombres m et n. Il est aussi défini,
comme on vient de le voir, par une des trois coniques
focales qui sont les lieux des points coniques, ce qui
dépend aussi de deux paramétres.

27. Cas particuliers. — L'un des paramétres m
ou n est remplacé dans I'une des deux autres familles
par m —n ou n— m. Les cas particuliers que nous
voulons examiner sont ceux ot I'un de ces paramétres
est nul : m=o0, n =0 ou m = n. Mais comme on peut
toujours supposer que la famille qui a un paramétre
nul est la premiére, el qu’on peut échanger les points A
et B en considérant I'un ou 'autre des deux modes de
génération de la cyclide par ses lignes de courbure cir-
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culaires, il suffira de faire ’hypothése
m=ab =o.

Il peut alors se faire que ce soit le facteur a ou le
facteur b qui soit nul.

Supposons d’abord
a = o.

La figure 5 prend alors la disposition de la figure 6.
On voit que le point A se confond avec le point A, ce
qui est conforme & I’équation

a'b'=—m=o.
Quant aux cyclides de la troisiéme famille on les
obtient en remplacant dans la construction le point A

par le point G, I'axe OY par I'axe OZ, et la droite CM
par Paxe OZ. La figure 6 prend alors la disposition de

Fig. 6.

i
‘j
m

la figure 7. On voit que A” coincide avec C', ce qui est
conforme aux équations (3) qui deviennent

al/b’—__ bl/c/’: —_ n’
d’ou
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a n’étant pas nulle. C'est le point A” qui est le centre
de pivotement d’une des cyclides (Cs).

Fig. 7.
z
c"|A”
o
0 B c
A X

Alors les cyclides de la troisiéme famille, ayant
leurs plans circonscrils confondus, se réduisent aux
sphéres orthogonales au cercle de diamétre BC situé
dans le plan OXY et ayant leurs centres sur 'axe OZ,
lesquelles passent nécessairement par un méme cercle
du plan OXY.

[’une des courbes focales est ce cercle de centre O
situé dansle plan OXY, ce qu’on vérifie immédiatement
sur la figure 6 ot Heest 'un des points coniques de Ja
cyclide (C;). On a OH2 =0C'. OB'=10V'¢ quiest con-
stant comme on I'a déja vu. A

Comme toutes les cyclides des deux premiéres
familles doivent couper orthogonalement toutes les
sphéres du faiscean qui constitue la troisi¢me, elles
passent toules par les deux sommets de ce faisceau qui
sont ainsi deux points coniques communs & toutes ces
cyclides. Clest a ces deux points situés sur I'axe OZ
que se réduisent les deux autres focales.

On a

be=b'c'=n.
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Si n est positif, Bet C sont du méme co6té de O qui
coincide avec A ( fig. 6). Les cyclides des deux pre-
miéres familles auront des points coniques imaginaires
dans les plans autres que OXY, et dans ce plan-la les
unes des points coniques imaginaires, les autres des
points coniques réels, suivant que les points ABC
ou A'B’C’ se succéderont dans 'ordre ABC ou ACB.
Puisqu’il y a des points coniques réels, les sphéres de
la troisi¢me famille coupent le plan OXY suivant un
cercle réel. On reconnaitra facilement que le rayon
de ce cercle est égal a \/n.

Si n est négatif, B et C sont de part et d’autre de A;
les spheéres coupent le plan OXY suivant un cercle
imaginaire et les cyclides des deux autres familles ont
toutes des points coniques réels sur I'axe OZ.

Si maintenant nous supposons b = o, il résulte des
équations (1) que m et n sont nulles, et par suite, en
vertu des équations (2) et (3), ' et 4", Cela veut dire
que toutes les cyclides du systéme passent par
Vorigine.

Dans la figare 5 il faut faire coincider B avec O.

- oc . .
Alors puisque le rapport o3 st invariable, toutes les

cyclides d’'une méme famille sont homothétiques et,
cela étant vrai pour les trois familles, le systéme tout
entier ne change pas si on lui fait subir une transfor-
mation homothétique avec O pour centre.

Une cyclide quelconque aura ses points coniques
imaginaires si A et G sont de part et d’autre de B, et
réels s’ils sont, du méme coté. A cause de ’homothétie,
la méme disposition se conservera dans toute une
méme famille, de sorte que chaque famille se compose
soit de cyclides sans points coniques réels, soit de
cyclides a points coniques réels sur un méme axe
radical. *

Ann. de Mathémat., 4* série, t. XI1L. (Avril 1912.) B
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Soient dans le plan OXY (fig. 8) les points A et C
situés de part et d’autre de Porigine sur I'axe OX, et le

Fig. 8.
W- "
(3 E
&
]
A o/8 [ X
L}

cercle de diametre OA. Ce cercle et le point G défi-
nissent une cyclide de la premiére famille dont les
points coniques sont imaginaires. Cette cyclide coupe
le plan OYZ suivant deux droites OU et OU/, et
puisque loutes les cyclides de la premiére famille sont
homothétiques par rapport au point O, elles passent
toutes par ces deux droites comme cela doit étre, puis-
qu’elles doivent couper le plan OYZ suivant une méme
conique réduile ici aux deux droites OU et OU'.

Si alors nous appliquons la construction da n° 23, il
faudra mener par A une sécante quelconque ADE qui
coupe le cercle en D et, en E, la pavallele 2 OY menée
par C. Le point A’ est a 'intersection de DE avec OY,
et le point C’est la projection de E sur OY. Alors'une
des cyclides de la deuxi¢me famille sera définie par le
cercle de diamétre A’B dans le plan OXY, et la droite
EC'. Elle aura ses points coniques réels sur la perpen-
diculaire au plan OXY menée par A’; le lieu des points
coniques des cyclides de cette seconde famille se com-
posera des droites OU et OU’. Enfin, on verra de méme
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que les cyclides de la troisiéme famille auront égale-
ment leurs points coniques réels sur les mémes droites.
En résumé, le systéme se composera d’une famille sans
points coniques réels et de deux familles a points
coniques réels. ’

Si I'on avait supposé la premiére famille & points co-
niques réels on arriverait & la méme conclusion, car

cela fit revenu a prendre pour premiére famille celle
" que nous appelons la deuxiéme.

28. Relations entre les trois rapports. — On arrive
encore 3 la méme conclusion en cherchant les relations
entre les trois rapports

ocC ocC’ oc”
OA’ 0A’ O&
Posons
oC .. OA 1
oa=h dov FEEw

La figure 5 donne pour le cas général

OC' _AE _AC _ A0 -0C
OA’ A0~ 7 AO

=% = =1—h.
Pour la troisiéme famille, il faut remplacer C par A,

N 1
c’est-a-dire & par 5 On aura donc

oc¢ 1
OA" — h

Finalement on a pour les rapports correspondant
aux trois familles :

L et 711.-’
1—h et ——l_h’
h—1 h




Si I'on pose

h =

on aura
hE B =—1,

ce qui montre qu'il y a au moins un rapport négatif :
supposons que ce soit . Alors k' et h" sont positifs.
Donc il y a toujours un rapport négatif et deux po-
sitifs.

Dans le cas particulier ot 'origine est en B, a une
valeur négative de & correspondent des cyclides sans
points doubles réels et inversement. Donc, dans ce
cas particulier, il y a une famille de cyclides sans
points doubles réels et deux autres a points coniques
réels.

29. Systémes réversibles composés de cones et de
cylindres. — Il reste a signaler le cas o la représenta-
tion sphérique estlaméme pour toutes les surfaces d’une
méme famille et ou le triédre reste immobile gquand
on fait varier I'un des paramétres, «v par exemple
Alors, dans la variation de ¢, les plans tangents a
chacune des deux surfaces w = const. et ¢ = const.
restent les mémes, et la ligne correspondante est droite
puisque sa tangente resle invariable. Chacune de ces
deux surfaces est donc développable. De plus c’est un
cone ou un cylindre de révolution puisque les lignes
de courbure de I'autre famille doivent étre circulaires.
Finalement le systéme se compose de deux familles
de cones de révolution orthogonaux de méme sommet
et de sphéres concentriques ayant leur centre au som-
met commun, ou bien de deux familles de cylindres de
révolution orthogonaux autour du méme axe, et de
plans passant par cet axe.
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30. Tous les systémes orthogonaux composés de
cyclides dérivent par inversion des systémes réver-
sibles. — Observons d’abord que si on transforme
par inversion un systéme réversible on obtiendra bien
un systéme orthogonal composé de cyclides qui, en gé-
néral, ne sera plus réversible. Je dis qu'on peut obte-
nir par ce moyen tous les systémes orthogonaux com-
posés de cyclides.

Soit en effet un pareil systéme. On a déja vu au
n° 18 que tout point conique d’une cyclide étant un
cercle de rayon nul est aussi un point conique d’une
cyclide d’une autre famille, et qu’il appartient, en qua-
lité de point ordinaire, & toutes les cyclides de la
troisiéme famille. Ces remarques, et les conclusions
qu'on en tire que toutes les cyclides d'une méme
famille passent par une méme courbe et que les trois
courbes ainsi obtenues sont focales 'une de l'autre,
s’appliquent aussi bien aux systémes non réversibles.

Si 'on considére les deux cyclides qui se coupent
orthogonalement le long d’'un cercle voisin du point
conique, les cones qui leur sont circonscrits le long
de ce cercle seront aussi orthogonaux. lls sont de révo-
lution autour de l'axe de leur cercle d'intersection.
Donc, a la limite, les cénes des tangentes au point co-
nique dans les deux cyclides seront des cones de révo-
lution supplémentaires, ayant par conséquent le méme
axe.

Soit S, (fig. 9) le point conique commun a deux
cyclides (Cy) et (C,) des deux derniéres familles; S', le
deuxiéme point conique de la cyclide de la deuxiéme
famille et S7 celui de la cyclide de la troisieme famille.
Nous supposons les droites S, S} et §,S] différentes.
Soit aussi S; X I’'axe commun aux deux codnes des tan-
gentes. Tracons les deux cercles SS) et S, S tangents
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4 S, X. Chacun d’eux fait le méme angle avec tous les
cercles de la cyclide correspondante passant par S,
et S’ ou par §, et S7. Nous les appellerons les cercles
azxiauz.

Par chaque cercle de (C,) passant par S, et S| passe
une cyclide (C,) de la premiére famille qui coupe (C;)
suivant un cercle passant par S, et S et orthogonal au
précédent. Or, les deux cones des tangentes, de som-
met commun S, étant supplémentaires, deux géné-
ratrices perpendiculaires de ces deux cbnes sont dans
un méme plan avec I'axe commun S;X. Soit (w,) un
cercle de (C,) passant par S, et §). Le plan passant
par S, X et la tangente en S; a (w;) coupe le cone des
tangentes de (C;) suivant deux génératrices dont une
seule est perpendiculaire a la tangente a (w,). Au
cercle (w,) correspond donc, sur la cyclide (Cs), un
cercle unique (w;) passant par S, et S et tangent a
cetle génératrice, et il y a une cyclide (C, ) passant par
(wy) et (w3).

Les deux cercles axiaux, étant langents entre eux,
sont situés sur une méme sphére () qui peut du reste
se réduire 4 un plan, et dontle plan tangent en S,
passe par 5,X. Ceute sphére, passant par les deux
points coniques de chacune des deux cyclides (C,)
et (C;), les coupe chacune suivant deux cercles (n°13) :
(wh), (wy); (wy), (wy) qui sont orthogonaux deux a
deux, puisque le plan tangent & () passe par S,X.
Par exemple, (w}) est orthogonal a (w}) et (v}) a (w}).
De plus, toujours ‘parce que le plan tangent a la
sphére (X) passe par S, X, cetle sphére est orthogo-
nale en S, a chacun des deux cénes des tangentes, et
par suite orthogonale & chacune des deux cyclides (C,)
et (Cs) tout le long des cercles (w'). Il en résulte que
la sphére (Z) est doublement circonscrite a chacune



(167)
des deux cyclides (C,) et (C)) qui passent, 'une par (w})
et (w}) et 'autre par (o)) et (w}). Mais une cyclide ne
peut étre circonscrite 4 une méme sphére le long de
deux cercles de courbure de familles différentes, sans
se réduire a la sphére elle-méme. Donc les deux cy-
clides (C') et (C)) se réduisent a la sphere (Z).

Ainsi, chacune des trois familles de cyclides com-
prend une sphére. Ces trois sphéres sont orthogonales
“et chacune d’elles est orthogonale a toutes les cyclides
de chacune des deux familles a laquelle elle n’appar-
tient pas. Les lignes focales, lieux des points coniques,
sont situés sur chacune de ces sphéres.

Prenons alors pour podle d’inversion I'un des points
communs aux trois sphéres. Celles-ci vont se transfor-
mer en trois plans rectangulaires, dont chacun est
orthogonal & deux familles de cyclides. Ce seront donc
des plans de symétrie. Les axes des cyclides devant leur
éire perpendiculaires seront paralléles aux arétes du
triédre trirectangle formé par ces trois plans. Donc, la
représentation sphérique du systéme sera celle du
systéme réversible, et le systéme fui-méme sera réver-
sible, car, pour qu’un systéme soit réversible, il suffit
que sa représentation sphérique le soit el que toutes
les lignes de courbure soient des cercles (n° 5).

Il convient de remarquer que si les trois sphéres
ont leurs points communs imaginaires, I'inversion et
le systéme réversible seront aussi imaginaires.

31. Cas particuliers. — Supposons maintenant que
les trois points Sy, §', S soient en ligne droite et que
I’axe commun des deux cbnes des tangentes de som-
met S, soit la droite S, X différente de S, S' S
cone des tangentes en S, est symétrique par rapport
au plan de symétrie contenant I'axe radical S'S/. Donc
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son axe OX est dans ce plan-la. Donc le plan (P)
contenant les deux droites S, 8, S’ et S; X est un plan
de symétrie commun aux deux cyclides (C,) et (Cs), et
les deux cercles axiaux sont dans ce plan-la qui rem-
place la sphére da numéro précédent. La conclusion
n’est pas changée.

Admettons enfin que l'axe S,X coincide avec la
droite S, 8 8", et que celte particularité se présente
pour deux cyclides (uelconques des deux derniéres
familles, afin qu’on ne puisse pas refaire le raisonne-
ment précédent en choisissant deux autres cyclides.

On voit alors immédiatement que les deux cercles
axiaux sont remplacés par la droite 8,5, S'. Les cercles
infiniment petits situés dans le voisinage de S, ont
leurs plans paralléles, ce qui rejette a I'infini 'un des
axes radicaux de la cychide. Donc, toutes les cyclides
des deux derniéres familles sont de révolution, et il
faut que ce soit autour du méme axe, puisqu’elles se
coupent suivant des parall¢les. La troisiéeme famille se
compose des plans méridiens.

Si I'on fait une inversion quelconque, les plans méri-
diens deviennent des sphéres passant par un cercle fixe
et formant par conséquent un faisceau. Les paralleles
deviennent les cercles orthogonaux aux sphéres du
faisceau. lls passent donc tous par les deux spheéres de
rayon nul du faisceau, et toutes les cyclides des deux
derni¢res familles ont deux points coniques communs.
Il en était donc de méme des cyclides primitives. Alors
une inversion avec i’un de ces points coniques comme
pole donnera deux familles de cones de révolution
orthogonaux et les sphéres concentriques, ce qui est
bien encore un systéme réversible.

32. Systémes orthogonaux admettant une famille
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de sphéres et deux familles de cyclides. — Si l'on
fait 'inversion en partant d’un systéme réversible gé-
néral, on trouvera un systéme orthogonal composé de
trois familles de cyclides avec trois courbes focales
situées sur trois sphéres dont une, deux, ou les trois
peuvent se réduire a des plans. Les seuls cas particu-
liers & considérer sont ceux ot une ou deux familles se
réduisent a des sphéres ou & des plans. Au lieu de les
faire dériver par inversion d'un systéme réversible, il
est préférable de les étudier directement. D’abord,
toutes les sphéres d’une méme famille forment un fais-
ceau, puisque chacune d’elles est orthogonale a une
infinité de sphéres dont chacune est circonscrite a
I'une des cyclides des deux autres familles. Ensuite
tout cercle de courbure d’une cyclide quelconque doit
étre orthogonal & toutes les sphéres du faisceau et
par conséquent passer par les deux sommets de ce
faisceau, d’ou il suit que Loutes les cyclides admettent
pour plan de symétrie le plan radical du faisceau des
sphéres. Enfin, les cyclides doivent couper ce plan
radical suivant un réseau orthogonal. On peut alors
construire le systéme orthogonal comme il suit :

Tragons dans un plan (P) un réseau orthogonal com-
posé soit de cercles, soit de droites, et prenons deux
points A et B réels ou imaginaires symétriques par rap-
port au plan P. Une cyclide quelconque de 'une des
deux premiéres familles sera le lieu des cercles passant
par A et B et s’appuyant sur une des lignes du réseau.
La troisi¢me famille est le faisceau des sphéres compre-
nant les points A et B comme sphéres de rayon nul. Il
convient de remarquer que les cyclides des deux pre-
miéres familles coupent le plan (P) suivant un deuxiéme
réseau qui est l'inverse du premier par rapport au
pied H de la droite AB sur le plan P avec un module
égal & — HAz.
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Si le réseau se compose de deux faisceaux de cercles,
et qu'on prenne pour pble d’'inversion Vun des som-
mels de ce [aisceau, on le transformera en un réseau
composé de cercles concentriques avec leurs rayons, et
nousaurons une famille de cyclides du troisiéme ordre.
Si le réseau est formé de droites rectangulaires, toules
les cyclides seront du Lroisiéme ordre et 'on retrouvera
le systéme réversible particulier, déja signalé au n° 27.

Nous n’avons pas jusqu’ici distingué les inversions
réelles ou imaginaires.

Si les points A et B sont réels on pourra prendre
P'an d’eux pour péle d’'inversion, et le systeme sera
transformé en un systéme réel formé de cones de révo-
lution orthogonaux de méme sommet et de sphéres con-
centriques.

Si les points A et B sont confondus au point H,
chaque cyclide est le lieu d’une famille de cercles tan-
gents en H & Ja droite perpendiculaire au plan (P) et
Pinversion donne un systéme de cylindres de révoluation
orthogonaux ayant leurs génératrices paralléles, avec
les plans perpendiculaires & ces génératrices.

Si enfin les points A et B sont imaginaires, toutes les
sphéres du faisceau coupent le plan (P) suivant un
méme cercle. En prenant pour péle un point de ce
cercle, on transforme le systéme en un aulre compre-
nant deux familles de cyclides de révolution autour du
méme axe (tores ou cOnes) avec leurs plans méridiens.

33. Systémes comprenant deux familles de
sphéres. — On obtiendra un pareil systéme si I'axe
rvadical d’un des faisceaux de cercles orthogonaux passe
par le point H et si la puissance de ce point H par rap-
port aux cercles du faisceau est égale 3 — HA?2. Ce sys-
téme résulte en général de I'inversion du systéme com-
posé 1° des cdnes de méme sommet S, de révolution
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autour du méme axe ; 2° des plans passant par cet axe;
3° des sphéres de centre 8. Mais 'inversion contraire
n’est réelle-que si les points A et Bsontréels. S’ils sont
imaginaires, le systéme se transforme en un systéme
de révolution défini en faisant tourner le réseau de deux
faisceaux de cercles orthogonaux autlour de ’axe d'un
de ces faisceaux. L’un des faisceaux de cercles donne
des sphéres, I'autre des tores, et le systéme est com-
plété par les plans méridiens.

Si enfin les points A et B se confondent le systéme
inverse comprend des cylindres de révolution de méme
axe, leurs plans méridiens, et les plans de leurs sec-
tions droites.

34. L'axe du céne des tangentes en un point
conique d’une cyclide faisant partie d’un systéme
triplement orthogonalest tangent & la courbe focale
qui passe en ce point. — Je terminerai ce travail par

Fig. q.

quelques remarques relatives aux systémes orthogo-
naux composés de cyclides.
Soit 8, (fig.9et10)un pointconique commun a deux
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cyclides (C;) et (C;3) de la deuxieme et de la troisiéme
familles, (R,) I'axe radical de (C.) passantpar S5, sur
lequel se trouve un autre point conique S, (T;) I'axe
radical de (C,;) passant en S, sur lequel se trouve un
autre point conique S). Les cercles axiaux des deux
cyclides passent respectivement par S, et S et par S,

Fig. 1o.

s, s, S,

et 8" et sont langents & une méme droite S, X qui est
I'axe commun des deux cOnes de révolution tangents a
chacune des deux cyclides au point Sy. La sphére qut
les contient fait partie de la premiére famille; elle est
tangente & S, X et contient la focale par ol passent
toutes les cyclides de cette premiére famille dont cha-
cune coupe (C;) et (C3) respectivement suivant deux
cercles orthogonaux passant l'un par S, et S|, 'autre
par S, et SI.

Le plan tangent en S, & I'une de ces cyclides (C,)
doit étre normal a chacun des deux co6nes de sommet S,
respectivement tangents aux deux cyclides (C,) et (Cs).
Donc, il passe par leur axe commun S,X. Donc, la
droite S, X est tangente a toutes les cyclides (C,) et
par suite a la focale par ol elles passent toutes.
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35. Lieux des axes radicauz; enveloppe des plans
de symétrie des cyclides d’'une méme famille. — Le
plan (P) perpendiculaire a S, X en S, contient le cercle
derayon nul S, commun aux deux cyclides (C,) et (Cs).
Donc il contient aussi le second axe radical (T,) de la
cyclide (Cy) (fig. 9 et 10); mais celui-ci est encore
dans le plan perpendiculaire a S, S| en son milieu et
ce plan-la passe comme le plan (P) par le centre w du
cercle axial de la cyclide (C,). Donc (T,) est perpen-
diculaire au plan 5,5{X de ce cercle axial et passe
par son centre w. Pour la méme raison le second axe
radical (R;) de la cyclide (C;) passe par le centre o' du
cercleaxial §, 5], etest perpendiculaire a son plan. Done
ces deux axes passent par le centre de la sphére (U,)
qui contient les deux cercles axiaux et qui est lasphére
appartenant a la premiére famille.

De méme, 'axe radical (R,) passe parle centre de la
sphére (U,) appartenant a la troisiéme famille. Sur cet
axe radical se trouvent les deux points coniques S, et S
qui sont tous deux sur la focale (IF,), laquelle est sitnée
sur la sphére (U,). Cette focale est une courbe du qua-
trigme ordre puisque c’est 'intersection d’'une sphére
ct d’une cyclide. Les droites (R,) passant toutes par le
centre de la sphére (U,) engendrent un cone dont
chaque génératrice coupe la focale en deux points.
Donc ce cone est du second ordre et la focale (F) est
I'intersection de la sphére (U,) et du cone.

Cette méme focale est aussi linlersection de la
sphére (U,) et du cone engendré par ('T;), lequel a son
sommel au centre de la sphére (U,). Il en résulte que
ces deux cones ont leurs plans de symétrie paralléles
et méme qu'ils ont leurs quatre génératrices isotropes
respectivement paralléles.

Le plan de symétrie de la cyclide (G,) qui passe
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par (R.) contient 'axe du cbne des tangentes S, X, mais
S,X est tangente a la focale (F,) qui est sur le cone
engendré par (R,). Donc le plande symétrie dont nous
parlons est tangent au cone engendré par (R).

Pour la méme raison, le plan de symétrie de la cy-
clide (€C;) passant par (Tj) enveloppe le cone décrit
par (T,) lequel a son sommet au centre de la sphére
(U,). De plus, ce plan de symétrie est perpendiculaire
a (R,). Donc te cone qu’il enveloppe est le cone sup-
plémentaire du cone (R,) ayant son sommet au centre
de la sphére (U,). Les deux cones (R,) et (T,) sont
donc supplémentaires et ont par conséquent leurs plans
de symétrie paralltles. Fipalement :

Les lieuz des axes radicaux des cyclides se com-
posent de six cones du second ordre, deux pour cha-
cune des trois familles. Ces cones ont deux & deux
le méme sommet qui est le centre d'une des trois
sphéres du systéme. Les deux cdnes qui corres-
pondent & une méme famille de cyclides sont sup-
plémentaires. Ces siz cones ont leurs plans de symé-
trie paralléles. Enfin les plans de symétrie des
cyclides sont les plans tangents & ces six cdnes, cha-
cun le long de la génératrice correspondante.

36. Les directrices des focales. — Tout point G
d’une des trois focales (F,) est un foyer de chacune
des deux autres, c’est-a-dire que la sphére de rayon
nul G est bitangente & chacune des focales (F,) et (F,).
Jappelle directrice de (F,) correspondant au loyer G,
la droite qui joint les points de contact de cette sphére
avec (F,).

Considérons le point S, ( fig. 9) comme foyer de la
focale (F.) située sur la sphére (U,) et comprenant les
points coniques S; et S, de (C;) situés sur I'axe radi-
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cal (Ry), et cherchons la directrice correspondant a ce
foyer.

La sphére de rayon nul S, touche la cyclide (Cj)
suivant un cercle de rayon'nul dont le plan est perpen-
diculaire a S;X. La sphére (U,) coupe ce cercle en
deux points qui sont les points de contact cherchés. Or
le cercle de rayon nul S, appartient & la famille des
cercles de courbure de (C;) qui admettent pour axe
radical (R,;). [l passe donc par les deux points coniquesS,
et S (fig. 9, ot I'en a représenté schématigquement les
éléments imaginaires) situés sur cet axe. Ces points
étant sur la sphére (U,) sont les points de contact
cherchés, et la directrice est la droite (R;). On verra
de méme qu’au second point conique S de (Cj) situé
sur (T;) correspond le méme axe radical (R;). Donc :

A chacun des points coniques d’'une méme cyclide
situés sur un méme axe radical correspond, sur la
focale qui comprend les deux autres points coniques
de cette méme cyclide, une méme directrice quin’est
autre que ledeuxiéme axeradicaldelamémecyclide.

Remarquons que le cercle de rayon nul S, se com-
pose des deux droites isotropes S,S,, S,8) qui sont
perpendiculaires a S, X. De méme I'axe 5,X, du cone
tangent a la cyclide (C;) au point S, est aussi perpen-
diculaive 2 S5, 5,. Enfin, la droite isotrope est perpen-
diculaire a elle-méme. Donc les trois droites S,X,,
S: X, et §,S, sont dans un méme plan, ce qui prouve
que les axes des deux cones se rencontrent. En consi-
dérant les deux autres points coniques de la cyclide
(Cs), on en déduit sans peine que les quatre azes des
cones de révolution tangents a une cyclide aux
quatre points coniques, passent par un méme point
de Uintersection des deux plans de symétrie.



(176)

37. Le groupe de six cyclides. — Toules les cy-
clides du systéme orthogonal se répartissent en groupes
de six, de telle sorte que deux cyclides quelconques
d’un méme groupe ont un point conique commun.

Considérons toujours le point conique S, commun
aux deux cyclides (C,) et (Cy). La cyclide (Cs) admet
deux autres points coniques Sy et S situés sur son axe
radical (T,). De méme la cyclide (C;) admet sur son
second axe radical (R,) deux points coniques S, et S|.
Le cercle de rayon nul S; commun aux deux cyclides
(Ca) et (Cy) doit passer par les 4 points coniques S, 8},
S, et S} ; mais il se compose de deux droites isotropes
passant par S,. Il faut donc que ces qualre points
soient deux a deux alignés sur S,. Par exemple, I'une
des droitesisotropes est S; S, S; et 'autre S, 5, S;.

Considérons maintenant Ja cyclide (G;) qui a un
point conique en S, commun avec (C,). Elle admettra
sur son autre axe radical deux autres points coniques
oy ct o, et I'on démontrera comme précédemment que
P'un de ces points, 7, par exemple, est surla droite iso-
trope S, S;. Mais S, est sur la focale (F,), S, sur la fo-
sale (F,), Sy sar (Fy) et 5, sur (Fy); o, et S, sont donc
tous deux sur la sphére (U,). Or la droite isotrope
S,S; ne rencontre la sphére (U,) qu'en un seul point
a distance finie, lequel est S,. Donc o, se confond avec
S,, etlacyclide (G,) quia déja un point conique com-
mun avec (C,) en a un antre commun avec (C;). En
général, si deux cyclides de familles différentes ont
un point conique commun, toute cyclide de la
troisieme famille qui a un point conique commun
avec lune des deuxr en a aussi un commun avec
Pautre.

Ou encore : St deux cyclides de familles diffé-
rentes ont chacune un point conique commun avec
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une cyclide de la troisiéme famille, elles ont un
point conigue commun.

Avant d’aller plus loin, remarquons que deux cy-
clides de la méme famille ne peuvent pas avoir un point
conique commun appartenant i la méme famille de
lignes de courbure. En effet, les axes radicaux des deux
cyclides ayant en commun le point S, devraient passer
par le centre d’une méme sphére. Donc ils coincide-
raient. Mais cet axe radical ne rencontre qu'en deux
points la sphére U, sur lequel se trouvent les points
coniques d'indice 1. Donc les deux cyclides auraient
non pas un, mais deux points coniques communs sur le
méme axe radical. Alors, a cause de I'orthogonalité
avec les cyclides des deux autres familles, les cones des
tangentes en chacun de ces points coniques seraient
identiques, et les deux cyclides coincideraient.

Il y a deux cyclides de la premiére famille (C,) et (C))
qui ont un poinl conique commun avec (C,), par
exemple (C,) a le point conique commun S; et (C}) le
point Si. Celles-la ont aussi chacune un point conique
commun avec (C;) savoir : (C)a S, et (C)) a §;. Con-
sidérons maintenant les deux cyclides (C,) et (C;) qui
onl en commun le point conique S;. Il y a une
deuxiéme cyclide (C;) qui a un point conique commun
S’ avec (C,) et, puisque (C;) en a un commun avec (GC,),
(C})en a un aussi commun avec (C;), lequel, étant
situé sur la focale (F,), ne peut-étre que S, ou S ; mais
ce ne peut étre S, pmsqu "alors les cyclides ((Jg) eL (C))
auraient un point conique commun.

De méme considérons les deux cvelides (C,) et (Cy) -
qui ont en commun le point conique S,. Il y a une
deuxiéme cyclide (C}) qui a le point conique S} com-
mun avec (C,) et, puisque (C,;) a un point conique
commun avec (C), (C}) en a un commun avec (C,),
lequel ne peut étre que S;.

Ann. de Mathémat., §* série, t. XII. (Avril 1912.) 12
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On peul alors dresser le Tableau suivant dans lequel
nous supprimons les parenthéses pour abréger, etot le
symbole — veut dire : « ont un point coniue commun
qui est ».

C2C3——>Sj, CgCg——*S(, C;C3—>S'1I, Cg C'3—>S'1,
C3C—'Sy, G0 —8,, GCy—8,, C;Ci— 8,
C102-—> 53, CI‘ Cy—> S/s, C| C/s‘,-—> S’s, C1 Cg — S;.

On voit que les cyclides (C) et (C}) ont chacune un
point conique commun avec (C,). Donc, elles ont entre
elles un point conique commun que nous désignerons
par S}, ce qui permet d’ajouter au Tableau précédent :

C, Cy— SY,
C;C, — S5,
C, Cy— SI.

Considérons enfin la cyclide (C)) qui a en commun
avec la cyclide (G,) le point conique S;. Il y a une
deuxitme cyclide (C}) qui a avec (C)) un autre point
conique commun Sy ; puisque (C))ena un commun avee
(Cy), (C) en a un aussi commun avec (Cg). Ce ne peut
étre que Sy ou S'. Ce ne peut étre S, parce qu’alors (C})
coinciderait avec (C,) et cette cyclide (GC,) aurait
avec (G,) les deux points coniques communs S} et S,.
Donc c’est le point 8, el C), coincide avee (C)).

Ondémontrerait de méme que Loute C)’cli(lc, ayant un
point conique commun avec I'une des trois cyclides (()
et différant des cyclides (C), coincide avec une autre
des cyclhides ((V).

Le groupe est alors constitué par les six cyclides
(G (Cy), (Cy), (C), (Cy), (C)), et 'on peu complé-

ter comme il suit les Tableaux précédents :

C,Cy— S}, CyCy—8,, C,C,— S,
CsC— S, C,C,—Sy, C,C)—Su,

C\Cy—>8Y, C)Ca—>Sj, C;Chm>S]

3
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ce qui montre bien que les six cyclides forment un
groupe se partageant en huit sous-groupes de trois
cyclides. Les trois points S appartenant 4 un méme
sous-groupe sont sur une méme droite isotrope.

38. Les dousze axes radicaux et les trois quadrila-
téres plans. — Les six cyclides du groupe admettent
douze axes radicaux.

Tous ces axes radicaux doivent passer par 'un ou
P'aatre des centres des trois sphéres (U,), (U,), (Us).Bien
que les droites isotropes soient imaginaires, représen-
tons-les schématiquement sur la figure 10. 81 I'on con-
sidére les points coniques d'indice 1 communs & deux
cyclides d’indices 2 et 3, tels que S,, S, 8", S}, on verra
que les quatre axes radicaux S, S, 887 appartenantaux
cyclides (C,) et (C)) et 5,87, S, S| appartenant aux cy-
clides (Cj) et (C}) sont dans un méme plan. Les quatre
points Sy, S|, S, S sont ainsi les quatre sommets
d’un quadrilatére plan inscrit dans la focale (F,), et
dont les cotés opposés vont se couper aux centres des
sphéres (U) et (Uy). Il y a ainsi trois de ces quadrila-
téres. Par chacun des sommets de chacun d’eux passent
deux droites isotropes dont chacune passe par deux
sommels des aulres quadrilatéres, ce qui constitue les
huit droites isotropes contenant les douze points
coniques.

Par le centre de la sphére U, passent 4 axes radi-
caux dont deux appartiennent & une famille et deux a
une autre. En combinant ceux qui n’appartiennent pas
4 une méme famille, on trouve quatre plans-contenant
chacun deux dvoites isotropes. 1l y a ainsi douze plans
dont chacun contient deux droites isolropes.

La tangente a la focale qui contient le point S, en ce
point est, comme on I'a vu au n° 35, perpendiculaire a
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¢hacune des deux droites isotropes qui passenten S,.
Comme une droite isotrope est perpendiculaire a elle-
méme, on en conclut que les tangentes aux focales en
trois points en ligne droite S,, S,, S; sont dans un
méme plan.

Chacune des trois focales est une ligne double de la
surface réglée, lieu des droiles isotropes S, Sy, S,
car, en chaque point S, d’une de ces focales, la surface
rvéglée admet deux plans langents qui sont déterminés
par la tangente & la focale et chacune des génératrices
isotropes. On peut alors déterminer I'ordre de cette
surface réglée par le raisonnement suivant :

L’intersection de la surface avec le plan de I'infini se
véduit au cercle de 'infini ; mais comme 'ordre de la
surface dépasse nécessairement deux, ce cercle est une
ligne multiple. Le degré cherché est done pair. Suppo-
sons qu'il soit égal & 2n. Le cercle de V'infini est une
ligne de multiplicité n. La surface doit couper la
sphére U, suivant une courbe d’ordre 4n. Or I'inter-
seclion se compose : 1° de la focale, ligne double de la
surface véglée qui doit compter dans le calcul du degré
pour 8 unités puisqu’elle est de quatriéme degré; 2° du
cercle de l'infini qui doit compler pour 2n unités
puisqu’il est du second degré et est une ligne de mul-
tiplicité n. On a donc I’équation

84+2n=4{n,

d’ou2n =38. La surface réglée, lieu des droites iso-
tropes, est du huitiéme ordre.

Si le systéme est réversible, les trois sphéres sont
remplacées par (rois plans rectangulaires que nous
prendrons pour plans de coordonnées. A cause de la
symétrie du systéme, les trois quadrilatéres des points
coniques deyiennent trois rectangles situés dans ces
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plans coordonnés, ayant leur centre & l'origine et
leurs cOtés paralléles aux axes de coordonnées. Le
groupe des six cyclides se compose de Lrois cyclides
et des cyclides symétriques de celles-la, chacune par
rapport au plan de coordonnées qui n’est pas pour elle
un plan de symétrie. Les six lores qui ont servi de
point de départ a la construction du systéme réversible
forment un de ces groupes.

[D2b]
SUR LA SOMMATION DE CERTAINES SERIES:
Par M. J. HAAG.

Nous nous proposons d’indiquer certaines calégories

e séries que 'on peut sommer par 'application de la
d que 'on peut par application de ]
théorie des séries entiéres et dont des exemples ont été
plusieurs fois demandés aux examens oraux de I'Ecole

Polytechnique.

1. Sile terme général d'une série est une frac-
tion rationnelle en n dont tous les pdles sont entiers
et simples, on peut toujours sommer cette série.

Soit, en effet, la série
_ P(n)

T (nxa)y(n+b)...(n+1)

Up

ou «, b, ..., l sont p nombres entiers, positifs ou néga-
tifs, et ot P (n) désigne un polynome en n de degré au
plus égal & p — 2, afin qu'il y ait convergence. On sup-
pose, en outre, qu'on ne donne a n que des valeurs
supérieures au plus grand des nombres — @, —b,.. .,
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— {, de maniére qu’aucun terme ne devienne infini. 11
revient au méme d’admettre que tous les poles sont
négatifs et que n prend toutes les valeurs entiéres, a
partir de 1.

Cela posé, décomposons la fraction rationnelle u, en
éléments simples, soit

A B L
—_— e .
n—+a n+ B n—+1

Up=

D’aprés hypothése faite sur le degré de P (n), la
somme des résidus A +— B+ ... + L est nulle.
Introduisons la série entiére

©

f(x):E( Aar -+ Bz et L?" >

n-—+a 1w+ 0 n-+1

n=1

Elle admet pourintervalle de convergence(— 1, +1).
D’autre part, pour x =1, elle est convergente, puis-
qu’elle se réduit a la série (u, ). Donc, d’apreés le théo-
réme d’Abel, la somme U de celle-ci est la limite vers
laquelle tend f (z) lorsque z tend vers 1.

Or, il est facile d’avoir une expression simple
de f(z). Calculons, par exemple, la série entiére

-

Axn
=T A

n=1

A cet effet, nous écrivons I'identité

x? xe
—log(i—2)—2 — — —. .. — =
g( 5 =
axe
x x? n
= +— 4.+
I+ a 2+ a n+a

D’ou 'on tire

A 2 a
2(x) = ;{;[-——log(x——x)—x—%——...—x— ’
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et, par suite, .
A B L»
flo) = — loo‘(l—x)<za+——|—...—f——)

xb x!
x
—_ E F(z‘—l——’z—-t-—k ;‘)?

le signe T indiquant une somme qui doit porter sur
tous les nombres a, b, ..., L.

Si 'on fait maintenant tendre z vers 1, le premier
terme de f (x) tend vers zéro, comme on le voit en
posant1—x =}y etserappelant que A+B—+...4+L=o.
On a donc finalement la formule élégante

(1) U=-2A<1+%+...+;‘;>-

Remarquons que si @ = o, les Lermes correspondants
n’existent pas, car o (z) = -- Alog (1 —=z).

Ezxemple. — Soit a calculer la série

yn -+ 3
U= z(n—l)n(n»—-))
n=2

(examens oraux de I'Ecole Polytechnique, 1g11).
On écritd’abord

an—+5
U= 2n(n+1)(n—l—3)

n=1
Or

on—+5 51 3 1 1 I

n(n+1)(n-+—3)=3n 2 n+1 6 n—+3

Appliquant la formule (1), on a immédiatement

3 I I 1) 65

2. 8¢ le terme général d’'une série est le produit
par ’—:—, d’une fraction rationnelle en ndont tous les

pdles sont simples, entiers et négatifs, on peut tou-
Jours sommer cette série.
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Soit, en effet, la série

_ P(n) I
T (n+a)y(n+b)...(n+1)nl’

Un

ou a, b, ..., [ sont desentiers positifs et P(n) un poly-
nome quelconque en 2. On a

P(n) _ A _ '
(n+a)(n+b)...(n+1{) "2n+a +2M,,nl‘

On est done ramené a une somme de séries apparte—
nant aux deux types saivants :

@
npe

®
1
V= —_— =y —.
Z(n-i—a)n.' W n!

n=0 n=0

Or, celles-ci se calculent aisément en partant dw
développement de e?. On a, en effet,

»
xn+a—1
41 ex = -,
n!

n=0
d'olt
e n+uw -
x
ni(n—+a) J,
n=20
= e:t[_fva——l_ (a—])z‘“—’

“+(a—1)(a—2)xe3— . ]+ (—1)2*(a—1)!
En faisant 2 =1, il vient
V=elt—(a—1)+(a—1)(a—2)
—(a—1n)(a—2)(a--3)+...+ (—1)2"1(a—1)!]
+(—1)r(a—)!
Quant 4 W, on 'obtiendra en faisant x =1 dans la
série enliére

npxn—1
T

X,=¥V
pas

n=1

n!

laquelle se détermine, de proche en proche, au moyen
de la relation de récurrence

Xp:- Xp—!"“xxlp—n_
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sachant en outre que

@ o
Y=Y =
=1

CERTIFICATS DE CALCUL DIFFERENTIEL ET INTEGRAL.

Lille.

EPREUVE THEORIQUE. — 1. Question de cours. — Existence
de Uintégrale définie.

I1. Probléme. — Etant donné un point M d’une courbe(C),
on méne la tangente MT, la normale MN, et ’on déter-
mine le point P par U’intersection de la perpendiculaire
menée par M & ’axe Ox et de la paralléle menée par T

J

P

a MN; on joint le point P au centre de courbure C relatif
au point M; la droite CP rencontre Oz en Q.
1° Déterminer la courbe (C) connaissant !’abscisse X

de Q;
2° Cette détermination se raméne aux quadratures si X
est fonction de z; on prendra cette fonction sous la forme

X =2 f(2);
3° Traiter les cas particuliers suivants :

f@y=k fl@)=%  flz)=a,

out k est une constanle.
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EPREUVE PRATIQUE. — Calculer

® Vi+ztdz
3ri+ 2w +1
(Novembre 1910.)

EpREUVE THEORIQUE. — I. Question de cours. — Surfaces
développables. Définition. Indiquer quelles sont leurs
lignes asymptotiques et leurs lignes de courbure. Toute
surface développable satisfait a l’équation rt —s?=o et
inversement les intégrales de l'équation rt — s>= o sont
les surfaces développables.

II. Probléeme. — La droite

Zsine — y cosp = ¢ — COsP
enveloppe une courbe G dont on donnera la définition
géométrique.

Soit w le centre de courbure relatif & un point M de la
courbe C; sur la normale wM, on prend le point P tel que
wP=kwM.

Le point P décrit une courbe; construire la tangente en
un point de cette courbe, en supposant d’'abord que k est
une quantité five, puis une quantité variable.

Déterminer les courbes I' qui coupent les normales wM
sous un angle constant 0.

Soit en particulier Ty celle de ces courbes qui passe par
le méme point que la courbe G pour ¢ = o; déterminer sa
développée.

EPREUVE PRATIQUE. — Thtégrer Uéquation différentielle
]’m_}’"—}’,'*“}’ — (24.2,__ 4)e1‘+ 3.
Déterminer lintégrale qui satisfait aux conditions
initiales suivantes :

’

r =o, y=u, y'=—1, y'=o.

Calculer a o,001 prés l’ordonnée du point d’abs-
cisse x = 0,8 ainsi que le coefficient angulaire de la tan-
gente en ce point. (Juillet 1911.)

Lyon.
EPREUVE THEORIQUE. — 1. Intégrer ’équation aux dérivées

partielles
2pchzx +2qyshx —zshx =o.
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Déterminer la'st;l:faée intégrale qui contient la droite
V r=y=23 ‘
et celle qui contient la parabole
r =o, t=am(y —a).
Qu’arrive-t-il si 'on cherche & déterminer une surface
intégrale passant par la chainette z =0, y = achz?

Il. Chercher les lignes asymptotiques de la surface qui
a pour équation

z cotang (%) =1— zcotangs.
Nota. — On pourra poser z =y, y = ux, et exprimer

ainsi z, y, s en fonction de u et ¢.

EPREUVE PRATIQUE. — Soit
=X=42— gox — g3.

Je considére les intégrales

xm dx f dz
Ym= ) B = —

VX (z—a)yX’
exprimer y, et y3 en fonction dey,, y1; puis 3, en fonction
de zy, yo, ¥1; on distinguera les deux cas ot a est ou n’est
pas zéro de X.

Posant enfin x = pu, y = p'u, dire quelles formules on
en déduit relativement aux fonctions elliptiques.
(Juillet 1910.)

EPREUVE THEORIQUE. — . 1° Ezprimer p(2u) en fonction
rationnelle de pu;

. , u
2° Etant donné pu = a, calculer p (—) =t. Peut-on
2
interpréter géométriquement la signification des racines

de l’équation en t obtenue, en utilisant la cubique définie
par les équations

r=pu, p=pu;
3° 2w et 2w’ étant les périodes de la fonction ellip-
’

. (O] , .. , :
tique pu, on suppose w et - réels et positifs; a étant réel,
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a quelle condition les quatre racines de l’équation en t
sont-elles réelles ? Si ty < t, < t3 < t, désignent ces quatre
racines, rangées par ordre de grandeur, et si l’on pose
p(va) = ta, déterminer vy, vs, vs, vy, v €tant un'nombre tel
que pv =a;

4° e, désignant le plus grand zéro du polynome
433~ £22 — &3, 00 &9, &3 sont les deux invariants relatifs
@ pu, on suppose en particulier a = e¢,. Etudier ce cas

. w
spécial. Calculer p (-—) et p ( -+ w>

I1. Soit y = p(mu), :r—pu : trouver la relation qui
existe entre x yJYs —‘Z, ~d— Montrer que st m est un nombre

entier réel, U’ equatlon différentielle obtenue admet une
intégrale de la forme y = R(x), R désignant une fonction
rationnelle de x.
Formules pouvant étre utiles :
P(u+p)+pu+pg= l(u)’
4\ pu—pv
pru=4{piu— g2 pu—gs.

La formule a obtenir dans la premiére question est
1 2 :

(p? w—+ 7g2> +2&3pU
(A

W)=
p(2u) f4PPu—grpu—g,

EPREUVE PRATIQUE. — On considére la cubique gauche T
qui, rapportée a des axes de coordonnées rectangulaires,
est définie par les équations

x =1, y =12, z =13,

Soit M l'un de ses points. Le plan osculateur P au
point M a la cubique T coupe l'are Oz au point A. On
considére la surface réglée S engendrée par la droite MA
lorsque le point M décrit la cubique T'. On demande de
trouver les lignes asymptotiques de la surface S.

Dansleplanx Oy on considére les deuz points B(z =y =1)
et C(z =1, y =2). Par le point B passent deux lignes,
projections des lignes asymptotiques de S sur le plan xOy,
parallélement & Oz; par le point C passent deuz lignes,
projections des lignes asymptatzques de S sur le plan xOy,
parallélement a Oz. Ces quatre lignes forment un qua-~
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drilatére miztiligne BECD, dont B et G sont deux simmets
opposés. On considére le cylindre qui a pour base ce qua-
drilatére, dont les génératrices sont paralléles a Oz, et
qui est limisé a la surface S. Trouver le volume de ce
cylindre. (Novembre 1910.)

EPREUVE THEORIQUE. — 1. Soient OX, OY, OZ, trois awes
de coordonnées rectangulaires. Une surface S jouit de la
propriété sutvante : si M(x, y, 5), est un point de cette
surface, N, le point ou la normale en M a la surface S
coupe le plan XOY, P, le pied de la perpendiculaire
abaissée du point M sur le plan XOY, on a PN = a, a dé-
signant une longueur constante. Trouver l’équation aux
dérivées partielles du premier ordre dont la surface S est
ure surface intégrale.

II. Trouver une intégrale compléte de cette équation
aux dérivées partielles.

III. Déterminer la bande caractéristique d’éléments
linéaires, (z, y, 2, p, q), définie par un élément
(@9, Yo, %0, Poy qo) dont les coordonnées satisfont a
léquation aux dérivées partielles. Quelle est la nature
des courbes caractéristiques?

IV. Chercher l’équation du céne T, enveloppe des plans
tangents aux surfaces intégrales qui passent par un point
donné, (x, y, 3). En déduire l’équation aux différentielles
totales des courbes intégrales.

V. Chercher la surface intégrale engendrée par les
courbes caractéristiques issues du point x =y =o, z = h.

VI. Déterminer les deux surfacesintégrales qui passent
par la droite x = y = 3.

VII. Chercher les courbes intégrales situées dans le
plan z =z, et en particulier la courbe intégrale C de ce
plan qui passe au point 3 =x =a, y =o.

VIIL. Déterminer la surface intégrale qui contient la
courbe C.

EpPREUVE PRATIQUE. — I. Calculer U'intégrale de surface

I=ff(wdydz+ydzdz+zdxdy),
s
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la surface S étant définie par les équations
x = (a—+ bcosp)cosy,
y=(a-+bcosy)siny,
z=bsing,
a et b sont des constantes, © et Y varient de o @ 2%.

II. Chercher sur la surface quia pour équation en axes
de coordonnées rectangulaires, s = cosx cosy, le liew des
points ou l’indicatrice est un systéme de droites paralléles,
le lieu des points ou U'indicatrice est formée d’hyperboles
équilatéres conjuguées, et, enfin, trouver les lignes

asymptotiques. (Juillet 1911.)
Marseille.
EPREUVE THEORIQUE. — 1° On peut intégrer l'équation
différentielle

d
(@2— ) —ay=o

en prenant pour nouvelles variables les quantités y et}—/-

Les courbes intégrales (C) sont unicursales et n'ont aucun
point a Uinfini;
2" Comment définit-on les diverses significations de

Uintégrale
f dz
(S4r1)(s*+3-+1)

lorsque le point 5 décrit dans son plan un chemin quel-
conque allant d’un point zy @ un point z?

3" Sile chemin choisi est fermé et est formé par l’une
des courbes unicursales (C) ne passant par aucun point
singulier, distinguer les différents groupes de courbe (C)
qui différent par les valeurs d’intégrales qu’elles four-
nissent.

SOLUTION.
. x
1"Si = =1¢, on a
Y
rydy +tdt=o,
d’ou les courbes (C)
x?

D — 4+ Y= aqa?,
(D) ATy
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ou
a? . .
X = —;sm'z? et y=asln<p.

Quand a varie, les courbes (G) se succédent boucles dans
boucles, comme le prouvent I'étude du coefficient angulaire
des tangentes a l'origine et la forme en huit des courbes;

3° Les points singuliers et leurs résidus sont :

m=-+i, m'=—1i, b=a, b= a2,

1 1 3—1y3 . 3+iy3
€ = —— - €yl == ——— g = — TS e—————
m 2) m 27 &b 6 ’ a 6

s . 13 .
Les valeurs de séparation sont a?=1, o Les deux premiers

groupes de courbes (C) donnent zéro. Le dernier groupe

donne, pour un seul tour, z:
EPREUVE PRATIQUE. — 1° Condition pour qu'une série-de
sections circulaires d’un ellipsoide soit une série de lignes
de courbure;
2° Les péles d’une fonction méromorphe sont simples et
disposés d’aprés la lot

an=Vne"

+la

Les résidus sont donnés par la formule

n--1

™

n *

n—i

Former, d’aprés la régle d’Hermite, l’expression d’une
2 I

Jonction qui ne difféere de la fonction méromorphe que

par une fonction entiére.

SOLUTION.

1” Toute sphére passant par une section circulaire coupe la
surface suivant une seconde section circulaire.

Tout systéme de cercles lignes de courbure correspond a
un systéme de sphéres inscrites.

La compatibilité des deux conditions impose que les
deux systémes de sections circulaires soient confondus. Donc
I'ellipsoide est de révolution.
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2° La fonction d’Hermite est

hed -

n -+ 1 1 z 35?2 z3
"n—1_ 1.7_r+|.7:+2,-n:+3 LR
%

: -
z—nde nte 2 n 4 n®* ¢ nde ¢

(Juin 1910.)

EPREUVE THEORIQUE. — 1° Déterminer les lignes asympto-
tiques de la surface représentée par les équations
x = (14 u)chy,
y = —u)shp,
z=u,
oa shy et cho représentent le sinus et le cosinus hyperbo-

liques de l’argument ¢ et o u ety sont lesvariables indé-
pendantes;

2° Méme question en supposant que l’on remplace shy
et chy par le sinus et le cosinus ordinaires, sinv et cosv;
3° Rapprocher les deux questions.

EPREUVE PRATIQUE. — Conditions pour que lintégrale
dé finie
= / T2 e
, 1+
att un sens.
Démontrer que l'on peut mettre cette intégrale sous la

Sforme
1
P~V P
J = ————dx.
o 1+

2m —+1

Démontrer que, st l’on pose p = — .— en prenant
27

pour m et n des nombres entiers tels que p satisfasse aux
conditions trouvées plus haut, on a ausst

J +® o xm dy
"' 1+ x2m .

— o

Enfin, a U'aide de cette derniére forme, montrer que
{on a
T

T smpm

.

(Juin 1911.)

et —
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{D4d]

MAXIMUM DU MODULE DES FONCTIONS ENTIERES
DE GENRE UN ET DELX;

Par M. G. VALIRON.

Je me propose de donner ici une limite supérieure
précise du maximum du module d’une fonction entiére
d’ordre non entier et de genre un ou deux. Pour les
fonctions de genre un, le résultat que j'indique est une
généralisation de la formule donnée par M. Lindelof
dans son Mémoire sur les fonctions entiéres (p. 63),
mais la méthode est différente. Je ferai usage des
résultats obtenus par M. Denjoy dans le premier
Chapitre de sa These.

1. Notations et résultats acquis. — On peut évi-
demment se borner & considérer un produit canonique.
Nous désignerons suivant’'usage par a,, az,. .., @, .
les zéros; par r, le module de a,; par p le genreet
Pexposant de convergence; enfin, nous posons

.1'+£+,..+'—
E(z,p)=(—z)e * P

’

de sorte que le prorluit s’écrit

n=ow

rs) =]]E (a—‘”, p>.

Soit p[1+4 B ()] un exposant net de la suite des
Ann. de Mathémat., f° série, t. XII. (Mai 1912.) 13
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zéros ('); on a, pour n > n,,
n< ,.ﬁ[wﬁtr..)],
I'égalité ayant lieu pour une infinité de valeurs de n;
1-+a(y)

par suite, si y f désigne la fonction inverse de
2+ on a pour n > n,

1+ 0a(n)
razn P

la fonction a«(z) satisfait aux deux conditions
suivantles:

(A) lima(x)=o, lima'(z)z logx = o.

=0 =0

Nous poserons
1+&(n)

(1) R,=n ?

on aura donc
rpz R, (n> ny).

Soit alors M(«) le maximum de |E(z,p)| pour
z|=u; M (u) estune fonction croissante de w«, on a

donc
r \ ”
M{— M(——
("n) < <Rn>’
et, par suile, en désignant par M (r) le maximum du

module de F (3) pour|z|=r,

n=w

(2) M(_r)<l_[1\1 <T{i,:>

n=1

Le calcul de M (u) a été fait par M. Denjoy (These,
p- 17)-

(') Pour cette délinition, voir mon article Expression asympto-
tigue de certaines fonctions entiéres (Nouvelles Annales).
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P y S i;
our u_1—|—P
( tog[M(u)] = [ ur Z0EY 4,
3) ¢ oo

e

sin(p +1)0 .
sinph p+1’

Pour u21+ 1,
14

2
—_—— —
(4) M(u)=(u—1)e ? P
I
le maximum correspond, pour u<1+; r=u, et

| B |
pour w1 —4,—1-5 Az = ue®d.

2. Calcul de certaines sommes. — Soit a un
nombre réel supérieur & un, définissons n’' par les
ipégalités

r .
(5) Rn’§E<Rn’—H;

nous désignerons par n, un nombre tel que, pour

x> ng, o (x) el o (x)xlogx soient Lrés petits (infé-

rieurs en valeurabsolue 3 un nombre positif n) et nous
])

. and o P :
supposerons r assez grand pour que (7 soit
arbitrairement petit (< 71).

Ceci posé, considérons la somme

n
R}
— 2—p);
2,,, (g2—p);
o
en posant
14+a(n'+0)

%:(n'—-}—e) E (0 < B <),
on a

'; P n'+0 [1+a(rnl
}_,R,{:@,R,’{,.;- P Pde (o< 8,<1).
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Mais nous avons

q-
i[__p_-an+a(r)]-9-]
drlp—+gq

S
=z“+°‘“',lp[x+ ga(z) _q_xlogxa'(@‘)]
p+gq p+gq

q
[1+a(x)) =
= (1+¢5)x P (1),
«d’olt
< . o | nsaan ] ,
ZR,’,:O,R,{.-{—W rz Pla, 1-437),
no

et, d’aprés la condition imposée a n’,

n
4 r g q ) "
2RZ=0,R,’,,+ ® n <(I_{> (t-eq);

p+9q

enfin, en utilisant I'inégalité (5),
n

RY _ 1

o

De la méme fagon, on pourra effectuer le calcul de la

somme
c 7
r
mr (92p+ )
a1 "
on trouvera
= 7
N p
7) z-—‘—=n' at(i+¢_g).
n’+lR;IL 7= P

(') Dans tout ce qui suit, ¢ affecté ou non d’indices représente
une quantité tendant vers zéro ave¢ 7, et d’une facon uniforme,

. . 1
par exemple e;> V73 m tend d’ailleurs vers zéro avec —-
P

(*) Pour ¢>>o0 ona,en effet, R} < (£>q ; pour ¢ <o, R,, =£
\ .

Rn’+l

i tend vers un.
n

, 3
{1 +¢,), ¢, tend vers zéro avec—, car
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Enfn si nous considérons la somme

nous pourrons 'écrire
Z logR, = 6; IogR,, -+—f l+ az(x) Iog:v dr,

et comme

d [l+a(1‘)

_ I+a(z) _
T ; x(logx—l)] = ——T———logz'—i—s(x).

(n'()< x < n")y
nous aurons

(8) Z log Ry = 0 log Ry + 7’ log£ —n'(1 +s')é

oy

= n'logr—n'(l+e)[—;-+loga].

3. Fonctions entiéres de genre un. — Pourp_. I,
I'inégalité (3) devient :

log[M(u)]=f"udu (u§l+;—);

donc pour u<2, on a

(3" logM(u) = %3»

et pour u 22,

4" M)y = («—1)e~.
L’inégalité (2) devient alors

.2
n=aw® 7

o o (i) = [ TG —) ] =7
1

n=1

-
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ol le nombre n' est défini par la double inégalité

r
er'§ ')' < Ru’-Hv

Nous allons donc appliquer les calculs du paragraphe
précédent, en prenanta = 2.
Nous avons

n
’”

r l:,. pn'—n, _ n -
H<Rn ')e RoRpt.. Ry H' ¢

ny

. R, ;
pn, Sl (1))
no

-_— s
RnoRn‘,-o-i...Rn,e AeB.

Nous obtenons alors

n
logA = (n'— ng)logr —2 logR,,

o

et, en utilisant 'égalité (8) ou a = 2,
logA =n'(1+¢) [—; + logz] — no log r.

De méme, d’aprés 'égalité (6),

g=w n=n'

=Yg -3

q=1 n..no

__n(l—o—s)[ _zq(p+q) 9q]

et enfin, d’aprés I'égalité (7),

L
re
2R2

n'+1

20
=n'(14¢ I
1+ 2



(199 )
I’addition de ces divers résultats nous donne
2p 20

fogM(MEK+n'(14+¢) | —— + —— +

T

I
2—p o1 P

(,:a
? i o
+log2——2m2q] nylogr,
qg=1

ou K dépend de n, et r, K<< nohr; par suite, en pre-

n . . ’
—— croissent indé-

r
n
nant 7 assez grand, comme — el fogr
0

finiment, on a

1 N <t 2p 20 1
(9) OgM(”—"““)[Q_p*p_ﬁp

/]:m
loma — e 1.
e Z’](‘I"‘P) ‘zq]

qg=1

L’égalité a lieu lorsque les arguments des zéros sont
convenablement choisis. Le crochet qui figure au
second membre peut s'écrire sous une forme plus
simple : on a

p 1 I
b == ’
g(g+p) g g+p

J=w = g==

Eq(p—ﬁq)z'l_Eq'z’l 2(q+p)2'1

g=1 qg=1

le crochet considéré devient ainsi

II:m

2p 2P 1 1
__._.+ __|_. —————
5—p  p—1 -9 E(q+p)2‘l

2
=TTP+2+-P_——'T— Z(q+p>9‘1
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ce qui peut encore s’écrire, en groupant les deux pre-
miers termes et en faisant entrer le troisiéme et le
quatriéme dans le X,

z~—p 2(p+q—1)2q‘=2—9 2(9+q—1)2“

en posant

=

g .
== +22(9+q —1)27’
qg=0
nous avons
(10) logM(r)sa'(1+¢)H,;

n' est défini par les inégalités

r
Rn’é '9'_' < Ru'~H

ou
1+ (n'+0)

g

(R+0) f =

ICER

On tire de 1a

e <£§p[l+ﬁ(g)]’

/

B (x) étant lafonction considérée au paragraphe 1;or,
d’aprés les propriétés (A) qui sont vérifiées par B (z),
on a

s(5)=pm—een  (1<v<i)

ou

8(3) =80 — s

relt+8r)
20

et parsuite

n'=(1+¢)
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L’inégalité (10) prend ainsi la forme
(rr) log M(r)§(x+s)£:?",-pu+§(r)1’

oup[1+ B (z)] est un exposant net de la fonction.
Le nombre H, est défini par une série convergeant 2
la facon d’une progression géométrique, sil'on désigne
par
F(a, B, v, %),

la série hypergéométrique

a.f
T+ —L o+,

1.y

N a(a—+1)...(aep—1) B(R4+1)...(B+p—1) I
1.2...0 y(y+1)...(v+p—1)

on peut écrire

== e

1 1 p—1 1
2(p+q —1)2‘1_9—129+q—1 27

qg=0 qg=0

1 1
= E——:I-_F<l, p—1, 0, ;>,

de sorte que nous avons

4 2 I
2—’—P+P”“F<l’ o—1I, p,;>.

On peut aussi retrouver laforme donnée au nombre H:
par M. Lindeldf. Considérons d’une fagon générale le
nombre

=
1 1 1
E= = - F(I, —p, ,—)
?;0(9+9—p)64 PP b b
(p>p, c22).

H, =

Si nous considérons la série

g=w

xp—P+q

SO LG—prne
q=0
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on a
E=g(1) et g(0) =o0;

d’autre part,

(/zw ‘
xp-p-i+q 1
&'(z) p P
g=0 l—;
donc
1
xp—p—1
E-_—.[ P e
0 Z‘

] — —

c

1
En posantx =1— - bous aurons

1 1
+ — dz
E =-—f < (5 — 1)p=pP—1 zg—p+p=1{ 1+ et )
A c—1 z
_ c

f Z-prr-t(z —1)p-r-1ds
1

c—1I
F .
> l,l,p——P—\—l,l—rE ’

et comme
© 1 I
—_ [ 3PNz — )P r-lds = [ (1—uwe-r-tdu = ——,
1 Jo p—p
on aura

. c 1 ! Y
h_c—l E:—;F(\l, I.o—p—+1, |—c>’

ou encore ’égalité

1 (o] :
F('vP—Pﬁ 9,;)= 6_1F<" Le—p+1,

=)
t—¢
En particulier, pour p — 1, ¢ =2, nous obtenons
F(l, p—1,p, i) =2F(1,1,p, —1),

en portant dans Uexpression de H,, on a

__4 4 .
H2_2_9+P__1AF(|, HLe,—1):
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c'est I'expression trouvée par M. Lindelof. La série
F (1,1, p, — 1) converge d’ailleurs trés lentement.

4. Fonctions de genre deux.— Dans ce cas, p =2,
les expressions du maximum M () deviennent: pour
us: 3

2
sin3 0
Sln ).

u
(3") logM(u):z[ u?cosf du (u o< = )
<o

3

>
ouru Z —
P =3

u?

U4 —
i) M(u)=(u—1)e *.
De I'égalité u = sin3 6 nous tirons
sin 0
400520—1

2 cosf
d’ot1, comme 0 << 6 < g;

u+\/u?+4.

4 >

cos ) =

. 3
et par conséquent nous avons, pour u < >

[0

u?
wud 4 2u’(x-|— —,>
2L du

(12) logM(u) = 2f
)

ut  ud us
3 b 40
1.3...(2¢—3) ug+3 +
1.2...9 (29 +3)237

4

e

—+(— l)‘l‘“

Nous aurons ici

M(r)< ﬁM <-é—l> HM(-R’-> IIM <RL)
en posant l "

Rn’§ % < Rares.
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. n' .
Le calcul de IIM(B'—) est analogue a celui fait
\ n . -

1
précédemment, il suffira d'utiliser les résultats du

3
paragraphe 2, ep prenant @ = - Nous aurons

n' %; r r? R,
r rn’—n, "‘[ﬁ:+2k3.+l°g('—_"—)]

H“’<nn)=me"° ’

n,

el nous obtiendrons

n
(13) I I M (T&L> = g (1+eL—nrologr
n
no

ou L est défin1 comme 1l suit:

e _ P

i q(p+9)<3>q;

2

L=—'——+—log§—i—i e
P 2 2 0—I

9

ici encore, nous pouvens transformer cette expression

I
. 9(e+q) g9 g-+p
d’ot
1 3 3 3 1 9 9 1
4 L =- = e - —_ 2 2
(14) p+]0°2+2+2p-—x+8+49—2
I t
- 3 '1_2 3\¢
1 (q+9)<;) t 9<;>

I 3 _); i
I reste a calculerH M <R-n> ; le logarithme de cette

n’+1
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expression est

n=-+ o
r+ r3 s
e T ot oo +- .-
2 8Rs  3RZ 4oR}
n=n'+1

_ ‘1.3...(2q-—3) rg+3 .
(=0 1.2...9 (2g+3)237RE?+3 R E

si, dans la parenthése, on remplace chaque terme par

R LI
sa valeur absolne, on a une somine inférieure a T R
n

comme on le constate aisément, et comme la série

QR . .
zﬁqconverge, on peut intervertir 'ordre des somma-
n

tions, et écrire 'expression précédente :

1 . re 1 - r3 -
8 hed Ry S 4md Ry
n'+1 n'+1 -
- ll.3...(2q——3) ] r2q+3
(= 1.2...9 (29 + 3)2%7 R27+3 e
n'+1
Par suite, en utilisant I’égalité (7), nous aurons
»
{ 2
o[ [™(x;)
n'+1 8 3\ 3
=n' < e r_° (2
_”('+')[128<4—9)+3 3—.o<z> Al
+(_|)q+l"3"'(2q_3)
1.2...9
P 32g-+3 !
“ g3 (g +3—p) 25'I+3+”'J'

Nous allons tranformer le nombre entre crochets de la
formule précédente en posant

) ) N SN S 2g —1 .
(2¢+3)(2¢g+3—p) b—po 29+3 (p—4h)(2g+3—p)

égalité qui s’obtient en décomposant la fraction ration-
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nelle en ¢
2
(zq—l)(2q+3)(2q+3——p)'

en fractians simples ; nous obtenous alors

(15) logﬁM <Fr_,)

n'+1

=n'(|+a)[ 81p 27 ¢t

128(4—p)+ 8 4—p
1
—Q+ Y= p)(?»—p)“]’

| o

ol nous avons

- e
P—-l—l——a(lﬁ)—i—...

-3...(29—3) _ 932 _5
2...q'z'l <|6> +"'—(I+E) -7

1 1 /3)\29+3 s x?)\?
X - 3—ﬁ<;—> +...=f x2<1+7) dz,
2¢ + 3 237 \ 2 Jo 4
1 1

2%
R=1-+. (—1)7 -
3—p
2 9 \17
X5—p+ <-_6> -
2 q !
_pfl 3—p 5—p 9
__l()’ 2 0 2 lG)

Le calcul numérique de Q se fait immédiatement:
ona

1
P O A = (L

/ Jy 20
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en portant ces valeurs dans I’égalité (15), on obtient,
aprés quelques réductions,

(16) log]:[M<E";)

n'+1

=n'(l+e)[log2—-2§l-+%-7i—i—7
Y 1 \
(4=0)B =2
13=p 5—e _ 9)]_.
XF(’)‘) > ’ 5 Ib.)]-—lt(l-{—&)s.

La comparaison des égalités (13) et (16) nous donne
alors, a la condition de prendre n’ assez grand, pour que

nylogr soit négligeable, ainsi que H M <-’—>,
1

R,
< I = en'(1+EH;
M(r):l IM(R,,) e
1

ol le nombre H; est égal a L+ S; donc

) Hy=L4S=2_'" __ 9 -
(17) 3 -+ 4 4—P+4(P—'2)

><F<la 993>+27 !
TR TR =G0

1 3—p 5—p 9.
XF(\;’ 2 ' 2 ’—|6>’

le calcul de ce nombre H; revient au calcul de deux
séries qui convergent a la fagcon de progressions géomé-
triques.

Enfin, on voit, comme au paragraphe précédent, que

| ri+plp

= ()
n I € <%>9

[1+ B(x)]p étant un exposant net; par suite, nous

’
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obtenons I'inégalité
(14€) (3)9 H, #U+AO

’

(18) M(r)se

ou Hj est le nombre défini par 1'égalité (17). L'égalité
a lieu sur une infinité de cercles (avec €20), si les
arguments des zéros sont convenablement choisis et si
rn=R,.

5. Généralisation de quelques résultatsde M. Lin-
delif. — M. Denjoy a égalemenl montré que le
maximum M(u) de E (z, p), pour | 2| = «, sausfait a
{'inégalité

M(u) < eAw (pSrsp—+1);

le nombre A est inférieur ou égal & un, pourp22 (*);
pour p=1o0na A<y, v désignant la racine de I'équa-
tion & +log (z —1)=0 (v=1,27,...,).

On peut, en appliquant ce résultat, préciser les
résnltats bien connus de M. Lindelof; je les générali-
seral en méme temps en introduisant I'exposant net.
En désignant toujours par n, un nombre tel que, pour

n > Ny,

[2(z)| <, |zlogzra'(z)| < n;
posons
s TI(&) T 1)

n' étant défini ici par les inégalités

Rp S r < Ry

ny .
_’_-_. hngrP .
IIM<R,.> < el
1

{') Thése, page 2}.

Nous aurons
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puis

“ 1
\l
AN —

n
B N[ r no+1 R”:
H <R,,> <e :
n+1

ArP*t v !

()< ™
- \ e

ry+1

En utilisant encore ici les inégalités

n' nt d ,
1 xr . pn 1 1
E _R,’;’ <f ] —pfp_R”(l+E)’

ng-+1 ny p[l—f—a(.l‘)]

z
X 1 ® dx on' 1
—_— ) LA
Z pPt1 <f +1 - — +1 ([+e)’
=i R;, o P sary PHLI—9 RE
n'+1 x 4]

nore

nous aurons, en prenant n’ assez grand pour que
soit trés pelit,
-——-p—A————n'll+Ei
NI(,‘)<6\/:—+—L—9H,’J—-/M .
En introduisant I'exposant net, on a
n' = ppli+30N__§ (o <O <r);

donc, nous obtenons, pour les fonctions de genre
supérieur ou égal a deux, I'inégalité

___PUFE) e+
(19) Mir)<e'r+i=eipg—r

K
et pour les fonctions de genre un

LIRS oiiep
(20) M(r)<e'P—t—eirg—p .

L’inégalité (1g) peut étre utilisée pour les fonctions
de genre supérieur & deur, pour lesquelles le calcul
d’une limile supérieure précise parait beaucoup plus

Ann. de Mathémat., f série, t. XIL (Mai 1912.) 14
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compliqué que pour les fonctions considérées précé-
demment. Il résulte d’ailleurs des calculs du para-
graphe 2 que la limite supérieure exacte du logarithme
de M (r), est, quel que soit le genre, de la forme
Krptt+801 ou g [1 4+ ()] est un exposant net, et K
une fonction de p seulement, et non de f (z).
Enfin, le théoréme de M. Jensen donne

M rn r\n
0> > ()"

quel que soit le nombre entier n. En désignant par n’

, . , . r
le nombre des zéros intérieurs au cercle de rayon 7, on
aura

M(r)> hn";

la considération des cas ot I'on aurait

1+x(n)
ra=n ¥
_l
quel que soit n, conduita prendre 4 = e?; or, pour une

infinité de valeurs de n, on a

1+ a(n)

ra=n ¢

st donc nous prenons r de facon que

(iaes]
/o ep/d (1) ppliHpind

"
= —,
1 e

cep

nous aurons, pour une infinité de valeurs de z,

1€ eli+Bin)

(21) M(r)y>e ¢ .

L'inégalité (21) est d’ailleurs la plus précise qu’on
puisse obtenir. 1l suffit, en effet, de reproduire en le
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modifiant un peu le raisonnement employé par M. Lin-
delof & la page 64 de son Mémoire, pour voir qu'il
existe des fonctions d’exposant net o [1 + 3 ()], et pour
lesquelles on a, & partir d’une certaine valeur de r,

1+ eit+Bin)

M(r)y<er®

E'n résumé, on voit qu’étant donnée une fonction

d’exposant net o[1+ 2 ()], la limite supérieure
pour rinfini de Uexpression
M(r)

reli+B0))
L. , ’ 1 I
est supérieure ou égale au nombre — et inférieure

ou égale & un nombre K. Ce nombre K est égal &

—
™

(") lorsquele genre est séro; a

sinwy
(/:w
1 4 +22 1
22 02—g (p+qg—1)t
1/:0 -

22-p 21-p 1
-+ F I:P_I’Pv—)’
2—p p—1 2

lorsque le genre est égal & un; a

2
3\3p 2 (3 2-9F<"P_"’ “E)
I e ) B
(L, 3= 3=p _ 9}
+<3\3*PF<;’ 2 a2 x(i)
2/ (4—p)(3—p)

lorsque le genre est deux; enfin K est inférieur a
2

pri—p)(p—p)

lorsque le genre p est supérieur a deux.

(1) Voir 'article déja cité des Nouvelles Annales.
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Dans le cas ou, quel que soit n << n,, on a
‘ 1+a(n) '
'n=n e )
le dernier calcul du paragraphe 2, appliqué a I'iné-
galité de Jensen donne

12 plteBin))
M(ry>e? )
celte inégalité est la plus précise qu’on puisse obtenir,
tant qu'on ne faitaucune hypothése sur les arguments
des zéros (!).

On peut également introduire le nombre des zéros
compris dans le cercle de rayon r: soit n ce nombre ;
pour une infinité de valeurs du nombre n” défini plus
haut, on a

., rplt+B0r
n = —e—(x “+€),

et comme n S re 148! nous aurons
e, Tt (1+8(r1]
n'> —(1+¢), relt+Birl < en(1+¢);

et, par suile,
(22) \l—e)a—[en<logM(r)<(l—+—e)Ken,
)
inégalité valable pour une infinité de valeurs de n.
Cette double inégalité pourra servir dans I'énoncé des

réciproques; tous les résultats de M. Lindelof relatifs
au cas ol

reft+Bl = Arp(logr)*i(logar)®s. .. (loggr)®,

s’étendent immédiatement au cas général.

(') On le voit en ap pliquant la méthode employée par M. Lin-
deldf (p. 68).
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[R8a] ‘ ‘
SUR LES INTEGRALES DES QUANTITES DE MOUVEMENT;
Par M. Er. DELASSUS.

1. Lesintégrales premiéves, autres que celle des forces
vives, que l'on rencontre constamment dans les pro-
blémes de dynamique sont celles qui sont fournies par
lesthéorémesclassiques desprojections ou des moments
des quantités de mouvement et il faut y ajouter l'inté-
grale trés fréquemment fournie par les équations
d’Euler dans le cas des solides de révolution.

Je me propose de montrer qu’en utilisant la notion
de vitesse d'un systéme de vecteurs, on peut définir une
catégorie générale d’intégrales premiéres linéaires dont
toutes celles que nous venons de signaler ne sont que
des cas particuliers et dontnous donnerons 'expression
générale au moyen de la force vive.

2. Considérons un systéme matériel dont la quantité
de mouvement est le syst¢tme Q de vecteurs, Q' étant
la vitesse de Q. ,

Soit, d’autre part, S un systéme variable de vecteurs
choisi arbitrairement, et S' sa vitesse.

On a la formule

(1) —-M'(S Q) =M (S, Q)+ M'(§, Q).

Mais nous avons la propriété cinématique, exprimée
par I'égalité géométrique

(3)+(Q) =0,
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et la propriélé dynamique, exprimée par Uégalilé
géométrique
(3)+ (Fa.0) =o,

5 étant le systéme des forces d’inertie et Fau le
systéme des forces données et de liaison. On en déduit

(2) (Q)=(Fus)

ce qui permet d’écrire I'égalité (1) sous la forme
d ,
(3) M8, Q) = M8, Q)+ M\(S, Fu)-

La formule (2) constitue ce que nous appellerons le
théoréme général des quantités de mouvement et la
formule (3) ce que nous appellerons le théoréme
général des moments des quantités de mouvement.

3. Si I'on applique au systéme Q la construction
indiquée de sa vitesse au moyen de la réduction en un
point fixe, on retrouve immédiatement, en vertu de la
formule (2), la représentation géométrique classique
des théorémes sur les quantités de mouvement.

SiI'on applique la formule (3) & un couple fixe, la
vitesse S’ est nulle et les moments se réduisent aux
projections sur une droite fixe de sorte qu’on retrouve
lethéoréme des projectionsdes quantitésde mouvement.

Si I'on applique la méme formule & un vecteur fixe,
la vitesse S’ est encore nulle et!’on retrouve le théoréeme
ordinaire des moments des quantités de mouvement,

4. Si la condition dynamigue
M(S, Fa,0) =0
et la condition cinématique

M(S, Q) =o
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sont a chaque instant réalisées simultanément, 'éga-
lité (3) devient
d qt
37 M (57 Q) =0

et donne l'intégrale premiére
(4) M'(S, Q) = const.,

que, sous cetle forme générale, nous appellerons in¢é-
grale des quantités de mouvement.

5. En distinguant les forces de liaison des forces
données, la condition dynamique peut s'écrire

MY(S, F4) + M(S, §,) = o,

elle doit avoir lieu a priori sans connaitre le mouve-
ment réellement pris par le systéme, c’est-a-dire sans
connailtre les forces de liaison, comme conséquence de
la nature du systéme $4, et de la seule chose que 'on
connaisse sur §, & savoir que son lravail est nul pour
tout déplacement virtuel compatible avec les liaisons en
supposant, ce quenous ferons toujours, que les liaisons
ont lieu sans frottement.
La condition se décompose donc en deux autres :

La premiére R
Mi(S, F4) = o

ne donne lieu a aucune remarque, elle est ou n’est pas
vérifiée suivant la nature de S et des forces données;
Pour que la seconde soit vérifiée, il faut que U'égalité

MY(S, F) =0
soit une conséquence de
Travail virtuel de §,= o,

ce qui exige que ce travail virtuel puisse s’exprimer
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sous forme dé moment. Ce fait ne se présente a
priori que dans le déplacement d'un solide ou plus
généralement dans un déplacement d’ensemble d’un
systéme matériel. Ce déplacement, qui ales mémes
propriétés que les vitesses d’un point d’un solide, pourra
se représenter par )

Se,
S étant un systéme de vecteurs dépendant dela position
du systéme et ¢ un facteur infiniment petit qui doit
éire considéré comme une variable indépendante. Pour
ce déplacement virtuel d’ensemble que nous supposons
constamment compatible avec les l:alsona, on aura

B(F1) = M'(S¢e, §/) = eMY(S, &) = o;

donc :

Pour que la condition dynamique soit remplie
par les forces de liaison il faut et il suffit que Sc
soit constamment un déplacementvirtuel d’ensemble
compatible avec les liaisons.

6. La condition cinématique
M'(S8,Q)=o0

doit étre remplie a priori, c’est-a-dire quel que soit le
mouvement compatible avec les liaisons. On peut
trouver des cas trés généraux ou il en est ainsi :

1° S est un systéme fize.

La condition est bien réalisée car S’ est un systéme
nul.

2° S est un systéme invariable entrainé par la
translation du centre de gl'dvité.

Réduisons simultanément S et Q au. centre de
gravilé, ce qui donne R, G et o/, v; R et G sont inva-

mables en glandeur et direction et sublssent la transla-

tion fpf du centre de gravité (M massé tolale). Dans
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cette translatlon le couple G reste equlpollent a lul-
méme el ne donne rien pour S/ qui se réduit a la
vitesse du vecteur R c'est-a-dire & un couple G' per-
pendiculaire au plan R, . On a alors

Mi(S', Q) = M{(G', p) + MY(G/, %),

le premier terme est nui comme moment d’un couple
et d’un vecteur orthogonaux et le second comme
moment de deux couples de sorte que la condition
cnnemallque est bien réalisée.

3° Le systeme matériel est un solide ayant un
pomt [ize et S est un vecteur attaché au solide sur
un axe de révolution de Uellipsoide d’inertie du
point fixe.

Réduisons simultanément S et Q au point fixe O, ce
qui doune Retp,y. Soient Oz ’axe derévolution et Ow
la vitesse du solide. Les expressions bien connues des
composantes de v sur les axes de l’ellipsoide montrent
que v est dans le plan z0w. La vitesse S est ici celle
du vecteur R attaché au solide sur O3z, dont l'ori-
gine O est fixe et qui subit la rotation w; elle se réduit
aunvectcur R’ perpendiculaire au planR, w, c’est-a-dire
au plan 20w qui contient v.

On a
M(8’, Q) = M* (R, p) + M*(R', v);

le premier terme est nul comme moment de deux
vecteurs concourants el le second comme moment d’ un
vecteur et d’un couple 01lhogonaux de sorte que la
condition cinématique est bien réalisée.

4° Le systéme matériel est un solide et S est un
vecteur attaché a ce solide sur un aze de révolution
de son ellipsoide central d’inertie.

Falsons la reducuon de Q au cenlre de gravité G,
uous obtiendrons un vecteur ? et un couple v. Si nous
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faisons la réduction analogue de la vitesse du solide,

nous aurons la rotation w et la translation ﬁ- et nous

verrons encore que v est dans le plan G, w Gz étant
I’axe de révolution,

La vitesse du vecteur R attaché au solide sur G z se
compose d’'un vecteur R’ pelpendrculalre au plan R,p
done perpendlcu]alre ap.

Dans I'expression

M:(S, Q) = M'(R', 2) + M'(R', y) +~ M*(G', p) =+ M'(G', ¥),
le premier terme est nul comme moment de deux vec-
teurs concourants, le quatriéme comme moment de
deux couples et les deux autres comme moments d’un
vecteur et d’un couple orthogonaux, de sorte que la
condition cinémaltique est toujours réalisée.

7. Un déplacement virtuel infiniment petit d’un
systéme matériel est défini par un systéme d’accrois-
sements 8q des paramélres ¢ qui définissent sa position.
Si 'on multiplie tous les é¢g par une méme quantilé,
on obtient un déplacement virtuel qui n’est pas distinct
du premier. On peut dire que ce déplacement est
défini par

b _ %9y _ % _
A Aa : An
les '\ étant des fonctions de ¢4, ¢, ..., ¢u qui contien-
nent implicitement un facteur indéterminé i (qy, ..., ¢n)
et ¢ étant une variable indépendante infiniment petite.
Supposons que ce déplacement virtuel soit un dépla-
cement d’ensemble et considérons les déplacements
8z, 8y, 65 des points du systéme, ils possédent la
propriété fondamentale des moments; si, dans ces
expressions des 8z, 8y, 83, on supprime le facteure, on
remplace le déplacement dechaquepoint parun vecteur
fini et ces vecteurs possédent aussi la propriété des
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. moments, donc sont les moments d’un certain systéme S
etles déplacements des points sont les moments de Se.
Ce systéme $ est défini a un facteur - prés. La condi-
tion dynamique, étantrelative a S, contient § en facteur,
donc est ou n’est pas réalisée sans avoir a préciser la
valeur de ce factear, Il n’en est pas de méme de la
condition cinématique car celle-ci est relative a §' qui

varie avec . On a, en effet,

(s8y=32 1 o5,
donc
M(S0Y, Q] = SIMI(S, Q) +0M/(S, Q).

Si le moment est nul pour S/, il ne le sera pas en
général pour (S6).

Nous voyons ainsi que le facteur § se trouve déter-
miné par la condition cinématique.

8. Supposons donc que le déplacement virtuel d’en-
semble Se satisfaisant aux conditions dynamique et
cinématique soit défini par

N N
0q1= ME, cey 8q n= MnE,

les % étant des fonctions bien déterminées de g et de ¢.
L’intégrale des moments correspondante pourra
s’écrire
;—M‘(Ss, Q) = const.
Le moment qui y figure est le travail du systéme Q

de vecteurs dans le déplacement d’ensemble Se; c’est
donc la quantité

Em(z’ ox +y' 8y + 7' ¢z)

étendue & tout le systéme matériel. En raisonnang
comme pour I'établissement des équations de Lagrange,
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on ’écrit sous les formes successives

Nig[Bm(er 2 1y 2 0_~=>J
T m{x oq +y og + 3z og ’
R - , 0x’ Oy 080
Soa[Zm(= 57+ 575

IT
0ql q’
ou enfin

~ . 0T
EZ)\d_q—”
de sorte que Pexpression analytique de l'intégrale des
quantités de mouvement est

T -
2)\ 5? = const.

9. Cette forme analytique donne l'explication du
fait bien connu que, la plupart du temps, les intégrales
de quantités de mouvement ou les intégrales d’Euler
qu’on apergoit & priori sont données analytiquement
et d'une fagon immédiate par les équations de Lagrange
comme conséquence de ce qu’'un des paramétres ne
figure pas dans le travail virtuel et ne figure que par
sa dérivée dans la force vive.

Cela provient de ce que le déplacement virtuel
d’ensemble correspondant est relatif 4 la variation d’un
seul paramétre, ¢, par exemple, et a pour équations

Bq,:e, 8q2=...=3q,¢=0,
de sorte qu'on a
)\1=[, )‘2="'=)‘n=0’

et que l'intégrale des quantités de mouvement a la

forme simple

o const
77 '



(221)

Con snderons alors I'é quatlon de Lagrange relahve aq,

oT\ T
m<091> d —'Qly

Q. est le travail de §;dans le deplacement Se, il estnul
en vertu de la condition dynamique; d’autre part, quelle
que soil la solution choisie, on a

aory_
m("qﬁ)_o’
o _
dgy

i1l en résulte

qui, devant avoir lieu pour toute solution, c’est-a-dire
quels que soient les ¢ et les ¢', montre que ¢, ne figure
pas dans T. L’équation de Lagrange relative a ¢, se
réduisait done d’elle-méme a la forme simple

2 () 2
E("‘ﬂ -

et donnait bien I mtegrale considérée de< quanmes de
mouvement comme mtegrale lmmedlate.

10. A un point'de vue tout élémenlaire et pratique,
une intégrale des quantités de mouvement n’est visible
a priori sans aucun calcul que si la condition dyna-
mique est réalisée par suite de la disposition des forces
données sans se préoccuper de lears intensités et ce
fait, qui existe toujours pour les forces données inté-
rieures, ne peut se pfoduire pour des forces données
extérieures que si S est un (‘ouple auquel toutes les
formes sont orthogonales ou si S est un vecteur ren-
contré par toutes les forces. Sid’ailleurs S representant
un déplacement d’ensemble, ne vérifie pas complete-
ment les conditions caractensthues des cmq cateﬂorles
du paragraphe 6, mais si sa llgn’e d’action quand S est un
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vecteur, ou sa direction quand c’est un couple, vérifie
ces conditions, U'intensité seule de S contient le facteurf
qui peul ainsi étre déterminé de fagon qu’elle soit cons-
tante. 1l suffit donc, pour I'existence de I'intégrale, de
faire ces hypothéses plus simples, de sorte que, au point
de vue pratique, nous avons cinq catégories d’intégrales :

1° Le systéme admet dans chaque position une trans-
lation virtuelle d’ensemble suivant une direction fixe a
laquelle toutes les forces données extérieures sont
orthogonales.

C’est l'intégrale classique du centre de gravité. Nous
Pappelons intégrale de translation.

2* [Le systéme admet, dans chaque position, une rota-
tion virtuelle d’ensemble autour d’une droite fixe ren-
contrée par toutes les forces données extérieures.

C’est U'intégrale classique des aires. Nous l'appelons
intégrale de rotation.

3¢ Le systéme admet, dans chaque position, une
rotation virtuelle d’ensemble autour d’une droite subis-
sant la translation du centre de gravité et rencontrée
par toutes les forces données extérieures.

Nous dirons qu’on a alors une intégrale de rotation
de seconde espéce.

Ces intégrales nouvelles, auxquelles conduit tout
naturellement la théorie générale développée précé-
demment, sont classiques dans le cas trés particulier
ol 'axe de la rotation virtuelle d’ensemble passe par
le centre de gravité. Mais elle se présente trés (véquem-
ment sous sa forme générale; c’est, par exemple,
ce qui arrive dans le mouvement d’une sphére homo-
géne pesante pouvant librement rouler et pivoler sans
glisser sur un plan incliné fixe : ona I'intégrale de rota-
tion de seconde espéce pour la ligne de plus grande
pente menée parle point de contact de la spheére.
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4° Le systéme est un solide ayant un point fixe pour
lequel ellipsoide d’inertie posséde un axe de révolu-
tion A. Le solide posséde une rotation virtuelle autour
de cet axe A qui est rencontré par toutes les forces
données.

C’est I'intégrale classique d’Euler qui exprime que
la composante sur A de la rotation v est constante.

5° Le systéme est un solide dont I'ellipsoide central
d’inertie posséde un axe de révolution A. Le solide pos-
séde une rotation virtuelle autour de cet axe A qui est
rencontré par toutes les forces données.

C’est encore l'intégrale classique d'Euler qui exprime
que la composante de la rotation w sur I’axe A est cons-
tante. )

Pour abréger, nous désignerons ces cinq catégories
parles lettres T, R, R, E, E'.

11. L’importance considérable des intégrales de la

forme
oT

9 = const.,
fournies par les équations de Lagrange quand certains
paramétres n’y figurent pas par eux-mémes, provientde
ce que ces intégrales permettent I’élimination immé-
diate des paramélres correspondants, ce qui constilue
ane réduction du probléme qui peut méme donner
I'intégration compléte par quadratures, quand on a
I'intégrale des forces vives et n —1 telles intégrales
immédiates.

On est alors amené & se poser la question suivante :

Un probléme de dynamique posséde un groupe
d’intégrales de quantités de mouvement des caté-
gories T, R, R, E, E'; est-il possible de choisir les
paramétres de facon que ces intégrales se présentent
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toutes simultanément sous la forme immédiate
;%r, = const.?

Si le groupe d’intégrales posséde cette propriété,
nous conviendrons  pour abréger de dire que ¢ est un
groupe normal. Supposons qu’il en soit ainsi.

Chaque intégrale du groupe sera défini par un
déplacement virtuel daos lequel les A seront tous nuls
saufun qui sera égal al’unité, c’est-a-diredonttous les 8¢
seront nuls sauf un égal 4 =. A chacune d’elles corres-
pondra ainsi un paramétre g. Soient ¢, ¢a, ..., ¢r ces
parameétres.

Quels que soient les ¢, sil’on donne a I'un quelconque
des parameétres ¢,, ..., ¢- un accroissement infiniment
petit, le déplacement du systéme est un déplacement
d’ensemble, ¢’est-a-dire pour lequel la variation &/ de la
distance de deux molécules quelconques est nulle, de
sorteque lestindépendantdegq,, ..., g etles pafamétres
se décomposeront en deux groupes; ¢,y ..., ¢p seront
les paramétres de forme et ¢y, ..., ¢, les paramétres de
position. Si, ayant fixé les parameétres de forme, on fait
varier d’une facon quelconque les parameéires de posi-
tion, on a un solide & r paramétres et la vitesse para-
métrique V; de ce solide, c¢’est-a-dire sa vilesse quand
on fait varier seulement le paraméire g; considéré
comme étant le temps, est précisément le systéme S; de
Uintégrale correspondant a ce paramétre. Danc :

Pour que des intégrales de quantités de mouye-
ment d'un méme probléme de dynamique forment
un groupe normal, il faut que les systémes S corres-
pondants puissent étre considérés comme les vitesses
paramétriques d’un méme solide. '

Comme un solide dépend au plus de six paramétres,
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on voit qu'un groupe normal d’intégrales de quantités
de mouvemeut contient, au maximum, six intégrales.

12. Considérons un point dépendant de deux para-
métres i, ¢ et supposons que ses vitesses paramétriques
soient les moments de deux syst¢mes fixes de vec-
tears U ¢t 'V que nous supposerons étre simplement
des vecteurs ou des couples. U et 'V peuvent évidem-
ment étre deux couples fixes : c’est le cas du point dans
un plan, u, ¢ étant ses coordonnées cartésiennes.

Supposons que U soit un vecteur [ixe que nous
prendrons pour Oz. Les coordonunées de U et V seront

U...........o 0 ®

toutes ces quantilés étant des constantes. En expri-
mant de deux facons les vitesses paramétriques du
point, on a

0z _ w oz =f+qz—r
Ju s o 7 o
d)’__ waTr o‘y—1—+—l‘1‘— 3
dJu ? dv ! P2
0z o 05 r . 0z
du gp TPy T4
. ?x 02y
et en égalant les deux valeurs de 90’ celles de S
92z
et celles de Juav’
wpz = wy,
wgs=—wi,
0= wpr+wgqgy.

Si le point ne décrit pas un plan paralléle a zO0y,
5 est variable et les deux premiéres exigent

p=g=t=n=o.
Ann. de Mathémat., §° série, t. XIL (Mai 1g12.) 1o
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Si, au contraire, sz décrit un plan paralléle 3 zOy,
z ety sont des variables indépendantes puisquele point
dépend effectivement dedeux paramétres et la troisieme
montre que p el ¢ sont nuls, ce qui entraine §, n nuls
d’aprés les deux premiéres. On a donc loujours la
méme conclusion.

Si r =0, V est un couple parall¢le au vecteur U.

Si r n’est pas nul, V n’est pas un couple et nous
devons seulement examiner st 'V peut étre un vecleur;
la relation quadratique fondamentale se réduit a

r{=o

et donne T = o, de sorte que V aurait méme ligne d’ac-
tion, Oz, que U. En faisant varier « ou en faisant
varier ¢, on aurait les mémes déplacements; doncle point
ne dépendrait, en réalité, que d’un seul paramétre.

Il n’y a donc que deux hypothéeses a faire :

Ou bien U et V sont deux couples fixes;

Ou bien U et V sont un vecteur et un couple qui
sont fixes et paralléles.

413. Considérons maintenant un solide a deux
paramétres u, ¢ dont les vilesses paramélres seronl
les deux systémes U et V de vecteurs, systémes qui
seront supposés réductibles, soit a un couple, soit a un
vecteur unique. Les vitesses paramétriques d’un point
quelconque du solide sontles moments de U et V; donc
on peut appliquer le résultat du paragraphe précédent,
de sorte que si U et V sont fixes, ces deux systémes
sont deux couples ou bien un vecteur et un couple
paralléles.

Supposons que U et V soient deux vecteurs subissant
la translation du centre de gravité. Considérons le
triedre T autaché au solide et le triede T’ paralléle a T
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mais ayant une origine fixe; il dépendra des deux
paramétres u, ¢ et ses vitesses paramétriques U, V’
sont deux rotations équipollentes aUetV. U’ et V' sant
alors deux vecteurs fixes qui, d’aprés ce qui a été
trouvé au paragraphe précédent, ont forcément méme
direction de sorte que U et V sont paralléles.

SiU etV sont un vecteur fixe et un vecteur entrainé
par la translation du centre de gravité, la démonstration
précédente s’applique encore, U et V sont paralléles.
Prenons pour Oz le vecteur fixe U et considérons les
deux vitesses paramétriqueducentredegravité(a,b,0);
la seconde est forcément constante en grandeur et
direction; on a donc

l.‘)a_ b l)a_c
=k m=e
w_
o @ o

d’ou 'on conclut immédiatement
c=c=o.

La seconde vilesse paramétrigne du centre de gravité
étant nulle, c’est qu’il se trouve sur V. Ainsi : si U est
un vecteur fixe et V un vecteur subissant la translation
du centre de gravité, U et V sont paralléles et V passe
par le centre de gravité.

Supposons enfin que U et V soient deux vecteurs
concourants atlachés au solide, le méme raisonnement
prouverait leur parallélisme; donc U et V auraient
méme ligne d’action et le solide ne dépendrait que d’un
paramétre. Il y a done impossibilité.

14. Les propriétés précédeutes vont nous permetire
de préciser la composition d’un groupe normal d'inté-
grales T, R, R/, E, E’; mais auparavant, il est nécessaire
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de faire une remarque dans le cas ot il y a deux inté-
grales R’ paralléles. Soient p et o, les deux vecteurs
paralléles unitaires et de sens contraires portés sur les
deux axes entrainés par le centre de gravité. Les deux

intégrales sont
M!(p, Q) = const., M'(gy, Q) = const.;

elles peuvent se vemplacer par deux combinaisons
linéaires quelconques a coefficients constants et, en par-
ticulier, par

M'(p, Q) =const.,  M'(g, Q) -+ M'(p1, Q) = const.
Or la seconde peut s’écrire
Mt (p, 1), Q] = const.

et comme 9, 3, forment un systéme invariable subissant
{a translation du centre de gravité et que p el g, sont
égaux, paralléles el de sens contraires, 'ensemble o o,
cst un couple subissant une translation, c'est-a-dire un
<couple fixe, de sorte que deux intégrales R, R’ paralléles
peuvent se remplacer par 'une d’elles et par une inté-
grale T perpendiculaire. En tenant compte de ce faitet
supposant loujours cetle réduction réalisée, on peut
dire, comme conséquence immédiate du paragraphe
précédent :

Un groupe normal ne contient jamais plus d’une
intégrale de chacune des catégories R, R', E, E/ et
contient au plus trois intégr ales T.

Si le groupe contient une intégrale R, il contient
au plus une intégrale T qui doit étre paralléle a R
et, s'il contient une intégrale R', R’ doit aussi étre
paralléle a R.

Si un groupe normal contient une intégrale R, il peut
<ontenir au plus une intégrale T, une intégrale R’ et
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une intégrale E ou E; il est donc, au plus, d’ordre 4.

S’il ne contient pas d’intégrale R, il conlient au plus
une intégrale R', une intégrale E ou E’ et trois inté-
grales T, de sorte qu'il est au maximum d’ordre 5; donc
Uordre maximum d’un groupe normal d’intégrales
T, R, R, E, E est cing.

On peut distinguer des cas précis :

1° Le systéme n’a pas de point fixe et, si c’est un
solide, son ellipsoide central n’est pas de révolution.

On n’a pas d’intégrales d’Euler, de sorte qu’on ne
peutavoir que des groupes normauxd’ordre maximum 4,
s'il n'y a pas d’intégrale R, et d’ordre maximum 3, s’it
y a une intégrale R.

2° Le systéme a un poinl fixe et, s’il estsolide, P’ellip-
soide d'inertie de ce point n’est pas de révolution.

Il n’y a pas d’intégrale d’Euler; les déplacements
d’ensemble ne peuvent ére que des rotations autour
d’axes passant par le point fixe; donc il est impossible
d’avoir des intégrales T et R’. Un groupe normal ne
pourra étre composé que d’une seule intégrale R ; le
probléme peut comporter deux ou trois intégrales de
celte nature autour du point fixe, chacune d’elles forme
a elle seule un groupe normal, mais leur ensemble ne
forme jamais un tel groupe.

3° Le systéme est un solide dont Pellipsoide central
est de révolution.

On peut alors avoir desintégrales de loutes les caté-
gories; c’est le seul cas ou I'on puisse trouver parfois
un groupe normal de 'ordre maximum cing.

4° Le systéme est un solide ayant un point fixe pour
lequel I'ellipsoide d’inertie est de révolution.

D’aprés ce quia été dit dans le second cas, il n’y a
pas d’intégrales T et R’ et un groupe normal se compo-
sera au plus d’'une intégrale R et d’une intégrale E.
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5° Le systéme se réduit a un point matériel. Les
intégrales R’ et E/ n’ont pas de sens; il ne peut y avoir
que des intégrales T et R.

Un groupe normal sera composé uniquement d’inté-
grales T et seraau maximum d’ordre 3 ou sera composé
d’une intégrale R el, au plus, d’une intégrale T paralléle
a R, il sera au maximum d’ordre 2.

15. Ce qui précéde montre pourquoi des problémes
qui paraissent extrémement voisins, possédant tous
deux l'intégrale des forces vives et un méme nombre
d’intégrales de quantités de mouvement, sont, en réalité,
tout & fait dissemblables au point de vue de I'intégra-
tion. Cela tient & ce que, pour I'un, les intégrales des
quantités de mouvement forment un groupe normal
tandis que, pour 'autre, 'ensemble de ces intégrales
ne peut former un tel groupe, de sorte qu’a ce point de
vue le fait d’en avoir plusieurs n’a aucune importance;
il ne pourra étre ultilisé qu’au moyen d’artifices parti-
culiers au probléme considéré.

Comme exemple, il suffit de citer les deux cas
classiques de Lagrange et d’Euler pour le mouvement
d’un solide autour d’un point fixe.

La connaissance a priori d’un groupe normal d’'inté-
grales de quantités de mouvement sert pour la réduc-
tion et Vintégration des équations & condition que les
paramétres soient choisis de fagon que toutes les inté-
grales du groupe soient simullanément sous forme
immédiate. Il en résulte que cette recherche des inté-
grales de quantités de mouvementdoit se faire an début
du probléme, avant méme de choisir les paramétres,
puisque ce sont les résultats qu’elle donnera qui gui-
deront le choix de ces paramétres.

On commencera par choisir comme on voudra les
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parameétres de forme du systéme matériel. On sera alors
ramené a un solide dont on connaitra i priori des trans-
lations ou rotations paramétriques. A chaque translation
on fera correspondre, comme paramétre, le déplacement
fini d’un point du systéme, estimé suivant cette direc-
tion; a chaque rotation on fera correspondre l'angle de
rolation, et, de cette fagon, on aura bien des paramétres
tels que chaque déplacement relatif 3 une intégrale du
groupe soit déterminé par des A tous nuls, sauf un égal
a l'unité et toutes ces intégrales se présenteront sous
forme immédiate (').

AGREGATION DES SCIENGES MATHEMATIQUES
(CONCOURS DE 1941).

COMPOSITION DE CALCUL DIFFERENTIEL ET INTEGRAL-

1. Soient A une droite donnée, O un point fixe sur
cette droite.

Déterminer les surfaces S telles que la trace du
plan tangent en un point quelconque M, sur le plan
AOM, coupe le rayon vecteur OM suivant un angle
donné o.

La recherche des surfaces S se raméne a {’inté-
gration d’une équation linéaire aux dérivées par-
tielles E; indiquer comment on peut engendrer les

(') Les propriétés exposées dans les parvagraphes 11, 12, ctc.,sont
des cas particuliers, exposés élémentairement, de propriétés plus
générales signalées dans une Note Sur les intégrales linéaires des
€quations de Lagrange, présenlée a I'Académie des Sciences
(3 juillet 1911) et qui seront développées ultéricurement dans un
Mémoire des Annales de I'Ecole Normale supérieure.



( 232)

surfaces S a U’aide d’une caractéristique choisie de
cette équation.

1. Les surfaces T qui coupent les rayons vecteurs
issus d’un point donné O sous un angle donné sont
les intégrales d’une équation ¥ aux dérivées par-
tielles du premier ordre.

1° Léquation F admet-elle des surfaces S comme
solutions particuliéres?

2° Déterminer les surfaces X.

Comment une surface T peut-elle étre engendrée
a laide d’une caractéristique choisie, par seul
déplacement du plan de cette courbe? Quelles sont
ses lignes de courbure?

3° Une surface I déterminée peut étre engendrée
d'une infinité de facons comme enveloppe de sur-
faces S ou X particuliéres.

On peut toujours choisir la famille d’enveloppées
de telle sorte qu’en tout point de contact Uenveloppe
et l'enveloppée aient mémes centres de courbure
principaux.

4" Toute surface S peut étre obtenue comme inté-
grale commune a Uéquation F et a une équation
lincaire aux dérivées partielles du premier ordre
dont Uorigine est analogue a celle de I’équation E.

Sorution pArR M. C. CLAPIER.

1. Supposons que OA soit la verticale du point O,
pris comme origine des coordonnées. Déterminons le
point M par son rayon vecteur OM = r, sa cote z et sa
distance i I'axe A, p = Vziey?.

I.e plan tangent au point M d’une surface S passe
par une droite déterminée MT située dans le plan AOM
et faisant avec OM un angle donné «. Il en résulte que
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les surfaces S doivent satisfaire 4 une équalion aux
dérivées partielles du premier ordre et linéaire.

Pour obtenir cette équation, désignons par T le
point de rencontre du plan avec A, l'axe des s et
posons .
dz=pdxr +qdy.

S1 M, est la projection de M sur l'axe A, nous
aurons

MiT=—px—gqy

et, si l'on désigne par § la latitude du point M,
N
MMT == —a—0;
il en résulte
pPZ+qy=ptang (a+9H).
Substituons tang = %, nous obtenons I'équation
aux dérivées partielles E,

p-+Ahz

=’ k = cota.

(1) px+qy=p

el

Les équations différentielles des caractéristiques sont

de _dy dz
T ¥y T o+ks
Ppk—z

On déduit une premiére intégrale,
(2) Yy = tang o,

et une combinaison intégrale

zdr+ydy dp dz .
B e
Ppk—-z

par suite
pdp + sds =k (pdz — zdp),
dlog (p* +3%) =2k darctang g;
(3) r=cet,
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Comme il était facile de le prévoir a priori, le lieu
du point M dans le plan MOA déterminé par I'angle ¢,
est une spirale logarithmique de pole O et coupée sous
I’angle « par le rayon vecteur.

I’équation (3) représente une infinité de pareilles
courbes, qui peuvent se déduire de 'une d’elles soit
par homothétie, soit par une rotation autour du poéle.

Les surfaces S sont déterminées par la congruence
des courbes (2) et (3) qui contiennent les constantes
arbitraires ¢ et c.

Une surface S sera engendrée par une des logarith-
miques précédentes dont le plan tourne autour de
I'axe A, pendant qu’elle-méme est animée d'un mouve-
ment de rotation autour de son pole.

~ Sil'on suppose ¢ constant nous avons les surfaces S'
engendrées par la révolution des logarithmiques autour
d'un axe A de leur plan. Leur équation est
(4) roe= c.e[r arccos'g‘

11. Une surface ¥’ est telle qu’en un point M le plan
tangent touche le cone de révolution engendré par MT
tournant autour du rayon vecteur OM. Elle doit donc
vérifier une équation aux dérivées partielles F.

Pour former celle-ci nous prendrons trois axes de
coordonnées rectangulaires quelconques passant par O
et nous substituerons la variable r a4 z, de maniére a

poser
dr=pde+qdy.

Avec ce changement de variables, nous aurons

03 s  r(pr+qy)—rnr
x%—i-ya;-—@-— o ’

3

f

.+<‘_’f‘)'+("_z>’ _ (1 plgt)—ar(pr+gqy),
Jxr ady 22
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Et, si nous exprimons que le rayon vecteur coupe la
surface T sous I'angle «, nous obtenons I'équation F,

rsin?a[r(1+p*+q?) —2(px +qy)|

) —(pr+qy—rr=o.

Elle est de la forme

F(pz+4qy, s, p, q)

et les équations de Cauchy nous donnent

(6) ap _dg. P _9 _1,
P q9 Po G0 S

Cette intégrale nous permetira d’intégrer par la mé-
thode de Lagrange.
L’équation
. dr—pdr —qdy=o,
ou bien
sdr— dt = o, = poZ + qo¥,
pourra étre intégrée. 1l suffit de calculer s a l'aide
de (5); on trouve

vri(pleqy)—1¢

t
§ = -+
r rcota

Nous prenons le signe + devant le radical et nous
substituons cette valeur dans I'équation

sdr—dt = o,
il vient
(rdt—ztdr) cota:[vﬂ(pgqu)——-ﬂ]d/',
dr cota t
—_—— __d-,

r . . 12 r
Po+ 90— 3
r t 1
Iog-c- = cota arc cos—

T VPieqd

Finalement nous obtenons I'intégrale complete

kuccmm
(7) r=ce r/pi+qi
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avec les deux constantes arbitraires, ¢ et L0 = tang .
0

Les surfaces (7) représentent des surfaces de révo~
lution dont I'axe est dans le plan des zy. Pour obtenir
la méridienne, coupons par ce plan 5 = o0; nous obte-

nons
o = cekle—p,

équation qui représente une spirale logarithmique L,
de pole O et d’angle V=0

Le plan des z) étant quelconque, on voit qu'une
intégrale complete est engendrée par une spirale loga-
rithmique L prise dans un plan quelconque fixe = pas-
sant par l'origine et tournant autour de l'un de ses
rayons vecteurs. Elle dépend de deux parameétres : la
direction de P'axe dans le plan = et la constante ¢ de
laquelle dépend L.

Si 'on choisit pour axe la droite O4A, donnée dans
la premiére partie (I) : 1° on voit que les surfaces S
sont des solutions particulieres de P'équation F; ce
sont des intégrales complétes.

2° Pour obtenir l'intégrale générale, il suffit de
prendre 'enveloppe des intégrales completes détermi-
nées par I'équation (7).

Les surfaces T sont engendrées par les courbes du
complexe des caractéristiques associées suivant une
certaine loi. Ces courbes ont pour équation

reos+ysingh

\ karccos -
g v=1r—ce =o,
o ’ 9 +bﬁ) =o0
de op

Elles dépendent des paramétres ¢, b et u.
La deaxiéme équation (8) s’écrit
— bk xsiny.—ycosg =o,
Vrt—(x cosp + ysiny)?
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ou bien
(zsinp. —ycosp)?+ 32 = b2A2(xsinp — y cosu)?,

. 1
(9) Zsinp—ycosp =yz, {——‘—/‘Z———zﬁf_—l‘

Cette derniére équation (g) est I'équation d’un plan
qui contient la courbe de contact de la surface (7) avec
son enveloppe. Il passe par 'axe de cette surface de
vévolution ¢ =o0; donc les caractéristiques sont les
méridiennes des intégrales complétes.

Ce sont des logarithmiques L tracées dans des plans
passant par l'origine; elles dépendent bien de trois pa-
ramétres : la divecuon de leur plan = et 'orientation
dans ce plan fixée par la constante c.

Si l'on suppose ¢ donné, le plan (g) enveloppe un
cone de révolution. La surface I correspondante est
engendrée par une logarithmique déterminée dont le
plan = roule sur un céne fixe. 1l est clair que la géné-
ratrice est ligne de courbure et que les trajectoires de
ses points forment I'autre systéeme de lignes de cour-
bure. '

Si 'on prend ¢ = fonct(p), le plan (g) enveloppe
un cone quelconque T'. Une surface ¥ quelconque sera
engendrée par une caractéristique choisie L, dont le
plan = roule sur le cone ' pendant qu’elle-méme subit
une rotation autour de O dans son plan. La caractéris~
tique reste ligne de courbure pour la surface X; le
deuxiéme systéme des lignes de courbure est formé par
leurs trajectoires orthogonales : ce sont des courbes
sphéniques.

3¢ La surface Z est 'enveloppe d’une famille d’inté-
grales complétes ayant leurs axes dans le plan des zy.
Or on peut remplacer une de ces surfaces intégrales
par une nouvelle intégrale compléte ayant son axe dans
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le plan tangent au cone T mené par I'axe de la pre-
miére.

De sorte que I peul étre engendrée d’une infinité de
facons comme enveloppe d’intégrales complétes.

En particulier, si on prend la famille d’enveloppées
dont les axes décrivent le cdme T, il est clair que 'en-
veloppe et 'enveloppée auront mémes centres de cour-
bure principaux.

Le cone I' constitue 'une des nappes de la surface
des cenlres; I'autre nappe est engendrée par la déve-
loppée de la logarithmique génératrice; cette courbe
est elle-méme une logarithmique.

4" Une surface I déterminée est engendrée par une
logarithmique Ly qui coupe son rayon vecleur suivant
I’angle «. Elle est donc telle que son plan tangent’
coupe le plan de sa caractéristique suivant une droite
déterminée MT. Cette condition exprime que ¥ satis-
fait & une équation aux dérivées partielles du premier
ordre linéaire.

Pour l'obtenir, écrivons I'équation du plan de la
caractéristique sous la forme (g), ol v est une fonction
donnée de ., y=f(p); MT a pour coefficients direc-
teurs

qf +cosp, —pf-+sing, pcosp -+ gsing

el nous avons en posanl

dz = pdzr + qdy,
(qf +cosp)z + (—pf +sinp)y +(pcosp+ g sinp)z
ry(qf—+cosp)—+(pf—sin )2+ (pcosi + g sinp)?

COSA =

qu’on peut écrire
(o) gz —py)+rf 2Pl
{ = rtcos?a[f(pr+ q%) +2fP'+ 1 + P?]
x sinp — y cos p = zf, P =pcosp+¢gsing;
& cosp + ysinp = zf, P'=—psinp+ qcosp.
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Si nous faisons dans cette équation f==o, ce qui
revient i supposer que le plan de la caractéristique
passe par l'axe des 3, nous devons retrouver 1'équa-
tion (1).

On trouve en effet

2 cosp+ ysinp =p,
2 r2

(p +2P) — %_T (1+P2)= o,

équation du deuxiéme degré en P, d’ou on déduit

o+ ks

(11) P:my

x=gpcosy, y=psiny,

ott les signes se correspondent. En prenant le signe +
on a I'équation (1) qui correspond a I'angle o formé par
le rayon vecteur OM avec la tangente dirigée MT; le
signe — correspondraita I'angle © — a et donnerait les
mémes caractéristiques L dont I'équation dans leur
plan est r = cet», R = cotV.

Changer le signe de & revient & prendre la symé-
trique de L par rapport au rayon vecteur origine.

L’équation (10) nous donnera de méme deux équa-
tions aux dérivées partielles linéaires; 'une d’elles
correspondant & £ = cota répondra a la question. Déve-
loppons cette équation en remarquant qu’on a

gz —py =(Pf+Pf)z
pr+ qt= P24 P'?;
il vient
2 [f(fP+[f'P)+P+f]
= rtcos?a[ f2(P2+ P?) + o fP + 1+ P?],

qu’on peut écrire

{ B[+ )P+ f' 1+ fP)]?

(12) | =rtcostal(1+ )P+ (14 fP')2].
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Si 'on pose
1+ f2=m, 1+ fP'=Q,

nous avons une équation homogéne du deuxiéme degré
en (P, Q).

, . . P
Developpant et résolvant par rapport a =, on lrouve

Q

P —mf'z23 rcosa ym2z2— mr2costa 4 mf'2 2

Q m2z2— m cos?art

En tenant compte de la relation

V= f2 2=

on aura finalement 'équation linéaire cherchée

P — mf'zr=/mcosasinar?

13 m
3) ( mzs?— r2cos?a

b

~

P =pcosu—+ ¢qsinp,
Q=/f(—psinp—+ gcosu)+1,

dans laquelle p doit étre envisagé comme constant.
Cette équation doit en effet admettre 'intégrale

rsing — y cosu = f(u),

JS fonction donnée et définissant le cone enveloppé par
le plan de la caractéristique.

Cette équation (13) comporte le double signe, comme
il fallait s’y attendre, et cela pour les mémes raisons que
Péquation (11). Pour lever I'ambiguité, il suffira de
choisir ce signe, de maniére a retrouver 1'équation (1)
lorsqu’on fait dans (13)

. .0
S=o, m=1, f==t.
z

On est ainsi amené, par raison de conlinuité, a prendre
le signe —.
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[I7a]

SUR UNE CONGRUENCE EXTRAITE DE LA CONGRUENCE BINOME,
FACTEURS PREMIERS DE CERTAINS NOMBRES ;

Par M. G. FONTENLE.

1. Jai proposé, dans les Nouvelles Annales, la
question suivante (2137) dont une solution a été donnée :
En désignant par p un nombre premier, par x et y
deux nombres premiers entre cux, un nombre de la
Jorme

rr—yr

ou PV 4 P2y -, 4 P!
r—y Y J

a tous ses diviseurs premiers de la formeP = kp +1,
a lexception du diviseur p qu’il admet dans U hypo-
thése x —y = mult. p, dans cette hypothése seule-
ment, et qu'il admet alors une seule fois (en suppo-
sant p #£2).

Dans une Note relative & cette question (1911, p.70),
M. E. Cahen, se placant dans P'hypothése y =1, in-
dique qu’on peut obtenir un théoréme plus général
en remplacant p par un nombre non premier n, el en
substituant au poldvnomc

a1 P2, 1

le polynome f#(x) qui a pour racines les racines pri-
mitives de {’équation binome z"—1=o0, et dont le
premier coefficient est 1.

Je n'ai pas pu savoir si ces faits sont déja connus.
Quoi qu'il en soit, M. Cahen m’ayant indiqué la régle
pour les diviseurs exceptionnels, j’en ai cherché (avec y

Ann. de Mathémat., }* série, L. XIT. (Juin 1gr2.) t6
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quelconque ) une démonstration que je donne ici, parce
qu’elle différe sensiblement de celle i laquelle M. Cahen
était arrivé.

2. Voici d’abord, avec les notalions essentielles, I'in-
dication de la marche que nous suivrons.

Soit n=p*qg#rY ... un nombre dont les facteurs
premiers sonl p, ¢, r. ...: nous extrairons la con-
gruence

(A) T — yhr== (modP),

P étant premier, y étant supposé connu, de la con-
gruence

n n n

/ n
(xh — yr)y = <.’I,""/ _},W> LU (xl"/"" ._yl”/”(), ..

(B)

fl
°

(mod P),

(xon (s (e
(a7 — y/’> ai— 1) i yr).

le premier nombre étant le polynome qui a pour ra-
cines les racines primitives de [’éguation binome
2" —y" = o, et dont le premier coefficient est 1. Celte
congruence est de la forme

N ANy - AxyNla- yN=o0 (modP),

N étant Vindicateur de n, N=1wu(n), et nous la dési-
gnerons d’une manicre abrégée par I'écriture

./'_.,( Ley)==o (modP);

on suppose, bien entendu, » non congru a zéro suivant
le module P.

Nous chercherons (I1) les conditions de possibilité
de la congruence (B), et cette étude nous donnera des
renseignements sur les facteurs premiers d’'un nombre
de la forme f), (2, ¥ ). el ¥ étant deux nombres pre-
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miers entre eux ; la recherche en question est liée a

étude préhiminaire des congraences hinomes dout fe
module est un facteur premier de I'exposant (I).

3. Le polynome F (i, y') étant homogéne en x et y,
si I'on considére la congruence
F(z,y)=o0 (modP),

» élant donné, non multiple de P, & chaque valeur

de = correspond un nombre % tel qu'on ait

yxt=z (mod P),

puisque x n'est pas multiple de P ; c’est le lemme du
théoréme de Fermat. La congruence devient, aprés
suppression du facteur y~,

F(g, )=o (modP).

Cela permettrait de supposer y =1. J'ai préféré
laisser y quelconque, en vue de la symétrie.

[. — SUR LES CONGRUENCES BINOMES
DONT LE MODULE EST UN FACTEUR PREMIER DE L’EXPOSANT.

Nous allons considérer les congruences

(A" h— = (modp),
(B") Se(@yy)=o0  (modp),

le module p étant un facteur premier de I'exposant n.
(Nous mettons un accent pour indiquer ce fait.)

4. Tutorkme |. — Le module p étant un diviseur
de n, et p* étant la plus haute puissance de p qui
divise n, on a

oo R\
(1 T — yn= (xf"‘ — y”“) (modp),
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cette notation indiquant que le premier membre est
identiquement congru au second, c'est-a-dire que les
coefficients des termes semblables, dans les deux
membres, sont congrus (mod p).

En eftet, dans le développement de la puissance qui
est au second membre, les coefficients des termes autres
que les deux termes extrémes contiennent le facteur p ;
pour p 3£ =, les termes extrémes sont z" et — y”, el,
pour p = 2, le dernier Lerme est y” ou —y” + 2 y".

[Jobserve a ce propos que le théoréme relatif aw
nombre des solutions d’une congruence a module pre-
mier compte chaque solution une seule fois, la con-
gruence £” — xr =o (mod p) ayant ses p solutions dis-
tinctes. |

5. Tukonime . — Dans les mémes conditions.
on a

(2) Jno (fg_)?("u) (modp);

(3

P

les deux membres sont du méme degré, puisque
'on a

) n
c(n)= ?<_P;;) X ol p*).

crivons U'identité algébrique
L A A A
Sutax,y) < (‘.r/' — y”) (rv’/ —}"/) s &ar"’/" —y"'/") o

RN

. n ’ n n
—(xn— " )K.T’"l -y”") e (.T’"’” —yl”’"“"\) .= o0.
En posant
n
— = A,

r*

le théoréme 1 donne pour le premier terme, relative-



ment au module p,

n

. X p% ot
(2) P —. =l — L) y.
L ( 3 >""
1 _
) x! —=\zl -,
n ( h \ p%t
(«{) ‘rlﬂlll o ‘xlll s
n /7 h \ p*
() z9"” = (z-‘l"‘ — , -
e P ,
et, pour le second terme,
(2') T — yn = (gh — yh )" .
n s h )p’/ 1
r 4 -
8h M — (\x’l — .. s
n ( 2 \ p%
(v 29" — o\ —~...) ) )
n h \ p%t
[ aPITs —\x’/"“—...,) , cees
....... e,

Le premier membre de I'identité algébrique ci-
dessus, quand on y remplace chaque bhinome par la
puissance de binome qui lui est identiquement congrue
(mod p), se transforme en un polynomeidentiquement
congru 4 zéro (mod p). Ce polynome contient le fac-

leur
/L Loy
[(.T".—.}//'r(z"/—...>...<x’/"—...,...‘ s

dans lequel le coefficient de la plus haute puissance
de x est I'unité; en supprimant ce facteur, on a encore
un polynome identiquement congru a zéro (mod p),
comme le montre le mécanisme de la division. On a
ainsi, en remplacant p*~' (p — 1) par 2(p%),

ip®

f,,(.z',y)x[(x‘i/l——...j)...(z‘;l_/";—...)... .

L3 o(pe)
—Lz"—_y”)(x ’/"-—...)...] =0, (modp).
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Le second terme étant divisible par le polynome qui

multiplie f», on peul, comme ci-dessus, supprimer le
facteur commun, et I'on obtient

Su—(fu B2 o (modp);

c’est ce qu'il fallait établir.

[Le théoréme 1I permet de retrouver le théoréme 1.
Le binome z" — y" est le produit des facteurs f relatifs
aux diviseurs de n. En désignantpar %, u. ... les divi-
seurs de g8 v ..., les diviseurs de n sont

Ap%, Ap¥r Lo hp, A

up*,  up*clo o up,

v

"
.y creeeey e eres 3
en appliquant le théoréme II, on voit que le binome

n— y" est identiquement congru (mod p) au produit
des polynomes

(f)\ )q)([)'t,\+.,.+;;(/»‘+|

(S’

or le produit des polynomes f3, f, ... est le hinome
n

ou (e,

’PM

2" 7 3" le binome % — 3 est donc identiquement
congru ( mod p) au polynome

AN
<.,.1""__},/"") .

c'est le théoréme 1.]
Si 'on prend en particulier n = p*, on a l'identité

-(,,_, Ao, n LI

n
@l x? y" o=y 2 (x—y)

La vérification formelle se réduit A faire voir que le

nomhyre

PA
Cp p__t)_(— ] ’I‘
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avec P = p*' est un multiple de p; j'ai proposé la
question dans les Nouvelles Annales, et M. Bricard
m’en a indiqué une solution qu’il doit publier.

6. Il résulte de ce qui précéde que la congruence
B Sl y)y=c¢o (modp »,

le module étant un diviseur de n, a comme solutions
les solutions de la congruence

‘b Sl y)=o0 (modp ),
I
extraite de la congruence hinome

n n

7. .
ta') 2 —y =0 (modp .

Nous reviendrons au n® 10 sur la question de savoir
a quelle condition la congruence (b') est possible.

II. — ETUDE DES CONGRUENCEsS (B). APPLICATION.

-
7. Reprenons les congruences

(A zh—yn=o0 (mod P ),
(B falx,y)=0  (modP),

en vae de chercher les conditions de possibilité de la
seconde. En désignant par ¢ le plus grand commun
diviseur de n et P — 1, la congruence (A) admet 7 solu-
tions ; ce sont les solutions de la congruence

(o) b —yb=o (modP ).
1° Si 3 est n, c'est-a-dire si I'on a

P—1=Akn, P =An-u,
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la congrnence (A) a n solutions ; la congruence (B) a
alors N solutions.

2° Si ¢ n’est pas n, c’est-a-dire si P n’est pas de la
forme &k n -+ 1, la congruence (B) ne peat avoir comme
solutions que des solutions de la congruence (2); en
général, elle n’a pas alors de solution.

8. Le diviseur o n’étant pas n, la congruence (B)est
comprise dans la congruence
_/Il‘ll_. ')/ll

= 5 =0 (modP ),
re-—y

ou, en posant n =106 x 6§, § =1, dans la congruence

rob-1 ,ale_w),a .- zam_;u),;»a_h . ,,;-J,&e— =0 (modP),

Si la congrueunce (B) admel comme solution une
solution de la congruence (), cette solution vérifie
« fortiori la congruence qu’'on vient d’écrire, et 'on
doit avoir, le nombre des termes de cette congruence
élant b,

f) xya"’*" = tmodP);

il faut done que I soit un diviseur de §, un diviseur
n .

de <. Les modules exceptionnels P, pour lesquels la
4

congruence (B) est possible, ct qui ne sont pas de la

forme A n + 1, ne peuvent donc étre que des diviseurs

premiers de n, soit p. ¢, 7, ...

9. Prenons P=p. Le plus grand commun divi-
seur 5 den el p —1 ne peut renfermer le facteur p;

.. n
c’est un diviseur de — ou ¢f r¥.... La congruence
P>

() x—yl=o (modp)
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est alors comprise dans la congruence

n n

: e e .
() 2" —y’ =0 (modp),

et il faut voir d’abord si la congruence
(B") Sulx,yr=o0 (modp)

admet des solutions de la congruence (a’). On a vu au
paragraphe 1 que cette congruence (B') a comme solu-
tions les solutions de la congruence

(b Sotx.yi=o (modp ),

7

extraite de la congruence ().

10. A quelle condition la congruence (4') aura-t-elle
des solutions ? Cest une question que nousavons laissée
sans réponse a la fin du paragraphe I, et que nous pou-
vons maintenant résoudre. En appliquant a la con-
gruence (') ce qu'on a dit de la congruence (B), on
voit que p ne peut étre un module exceptionnel pour

cette congruence (&) puisqu’il n'est pas un facteur
n
p*

premier de — - La congruence (/') n’est donc possible

. « o n
que si p — 1 est divisible par[’—a ou gbrY. ..,
n
p—ri=k— =kxgqgdri.. .,
[)1

ce qui exige d’abord que p soitle plus grand des fac-
teurs premiers de 7 ; cette congruence (&') a alorsautant
de solutions qu'il y a d’unités dans son degré. [ Le plus

.« . . ~ n
grand commun diviseur de n et p — 1 élant 6= —,
pﬁl

. ! T f¥e Q !
la congruence (%) ne differe pas de la congruence (a’).]
Le seul module exceptionnel pour la congruence
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Ju (2, y)=o0 est donc le plus grand des facteurs
premiers du nombre n, soit p, & condition encore
que p — 1 soit divisible par}%, c’est-a—dire que ¢f,
rY, ... solent des diviseurs de p — 1 ; et la congruence

Sfulz,y)=0 (modp)

a alors comme solutions [ multiples d’ordre ¢ (p*) ] les
solutions de la congruence

Salx,y)=0 (modp ),

s

solutions en nombre égal au degré de cette derniére
congruence.

-Soil y=1.0n a

n )/:u
O
oM — 1 = <x" —1 (modp

et
folzi= [\ (modp).
-
En supposant que p — 1 est divisible par 1‘%’ les ra-

cines de la congruence
(B") Sutx)y=o0 (modp ),

racines qui sont en nombre égal au degré de celle
congruence, ne sont pas racines primilives de la
congruence

(A" rr—1=0 (modp),

laquelle n’a pas de racine primitive. Par exemple, si
n = p, la congruence

=14, .+1=o0 (modp)
ou
) (x —1)P-1=0 (modp)
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admet la seule racine z =1, qui n’est pas racine pri-
mitive de la congruence

zP—1=o0  (modp), ou (x—1r=0 (modp.
Mais on peutdire que les racines de lacongruence ('),
pour y =1, sont les racines primitives de la con-

gruence (a'), le module p n’'étant pas exceptionnel

n . .
pour I'exposant 7z quine contient pas le facteur p.]

11. De la cette conséquence, que nous avions sur-
toul en vue :

Tuéorime. — Un nombre de la forme
Sutx, ¥,

x et y étant deux nombres premiecrs entre eux, a
tous ses diciseurs premiers de la forme

P =/in—+,
si cen'est qu'tl peut admettre comme facteur pre-

mier le plus grand des facteurs premiersde n, soit p,
Il Uadmet s¢ p —1 est divisible par L; ou géry ...
r

p——l:k{-%:/qu@r‘.’...,

c'est-a-dire si gB, rv, ...sont des diciseurs de p — 1,
et st Uon prend pour x ety deux nombres satisfai-
sant & la congruence

(0 falz,y)=o0 (modp ),
. p*

extraite de la congruence

(a')

n
.

2" —yP =0 (modp);
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avec Uhypothése faite sur p --1, la congruence (b')
donne, pour chague valeur de y, autant de valeurs
de x qu'il y a d'unité dans son degré [racines primi-
tives de la congruence (@), quand on suppose y = 1].

En effet, si P est un diviseur premier du nombre
considéré, lequel diviseur ne peut exister dans y puis-
qu’il devrait alors exister dans z, premier avec y; la

congruence
Julz,y)=0 (modP ),

dans laquelle on doune a 3 la valeur qu’il a dans Pex-
pression ci-dessus, tandis que 'on regarde x comme
une inconnue, est une congruence possible, puisqu’elle
est satistaite lorsqu’on donne a .z la valeur qu’il a dans
Pexpression. '

12. /11 v aurait liew de rechercher st le facteur
exceptionnel p, lorsqu’il existe dans le nombre
Ju(z, ¥), peut y entrer plusieurs fois.

Je montrerai plus loin que, avec n=p*, il n'en est
rien.

13. Les diviseurs premiers de la forme An +1 sont
des nombres impairs ; par suite, s{ n est impair, h est

pair, et Ion a
P=oak'n-—+1.

Ce fait est en relation avec le suivant. Le nombre n
<lant impair, on a

.z““'——_}/f" = xn_},n ) lxn_(_}/‘)nl;

par suite, le polynome f3, (2, ) ne différe pas du po-
lynome f, (z, — y), ou encore le polynome f, (z, ) ne
differe pas du polynome f,, (2, —y). Deés lors, si P
est un diviseur régulier pour les nombres de la forme
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Jn(x, ), cest aussi un diviseur régulier pour les
nombres de la forme f,, (z, y), et 'on a

P=Xan—+1.

14. Le nombre premier 2 sera un diviseur excep-
tionnel si 22 est une puissance de 2, auquel cas les
nombres que 'on considére sont des formes suivantes :

22 T4y, 28+ y8,

z et y étant impairs. Ces nombres sont d’ailleurs sim-
plement pairs (voir le n® 17).
Ce cas excepté, le polynome f, (z, y) élant
N AaN—y - AayN-l 4 pN
N N
le coefficient du terme en %32 est impair; car, s'il
était pair, en prenant z et ) impairs, on aurail un
nombre pair, ce quin’est pas.

1. — CAS PARTICULIER,

15. La question qui sc¢ pose au n* 7, en tenant
compte des n® 8 et 9, est celle de savoir si la con-
gl‘uel)(‘,e

(B Sa(z,¥y)=0 (modp)

admet des solutions d’une congruence

-

(o' 8 —y8==0  (modp).

<. L n . . .

5 élant un diviseur de — . Je vais lrailer celle (uestion
dans 'hypothése n=p* indépendamment des faits qur
font I'objet du paragraphe I. J'en profiteval pour ré—
soudre, dans ce cas particulier, la question posée au

n° 12.
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16. Si d’abord n est un nombre premier p, les con-
gruences (A) et (B) sont, pour reprendre tout le rai-
sonnement,

(A) aP—yr=o0 (mod P,
(B) PV P2y L yP =0 (modP ).

Si P — 1 n’est pas multiple de p, comme la con-
gruence (A) n’admet alors que la solution z =y, la
congruence (B) ne peut admettre que cette solution, et
elle Padmet pour P=p. (On ne se préoccupe pas,
dans le raisonnement actuel, de I'ordre de multiplicité
des solutions, qui est indiflérent.) On obtient donc le

—_ I’
théoréme dun® 1,saut a montrer que lenombre =——2"

Y
quiadmet le diviseur p dans ’hypothése z—y— mull.p

’admet alors une seule fois. On a, en effet,

! =y _ 1‘)’—1—/l)l’—yl’
N
r-—y h

) —
Ep P e P(l _yl’—2h+ -pyhe=34-hr-1
tous les coctlicients, & P'exceplion du dernier, étant
divisibles par p : comme on suppose £ multiple de p,
le second membre est divisible par p, et I'on a

D —1)
Nep=ypro s ZL TV g op oy her g o py
P2t
en exceptant le cas p =2, tous les termes du second
membre, a partir du second, sont divisibles par %, donc
par p, tandis que le premier terme y7 ' n’est pas divi-
sible par p, et, par suite, le quotient N : p n’admet plus
le facteur p.

I7. Soit maintenant n = p*. l.es congruences (A)
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et (B) sont
(A) Zh— gyt =o0 (mod P),
(B) =) — 6 (modP),
af — yP
ou, en pOS&DL
n n

X =27, Y =y”,

[A] XP—Yr=o (modP),

[B] Xp=t - Xp—2Y 4+, .+ YP-l=o0 (modP);

on aura, d’aillears, a tenir compte du fait que z et y
doivent fournir des valeurs pourxet y, et ilne faudrait
pas substituer & I'élude des congruences (A) et (B)
I’étude pure et simple des congruences [ A] et [ B].

Si P n’est pas de laforme kn + 1, la congruence (B)
ne peut admettre qu'une solution d’une congruence de
la forme

(a) b — yi= (mod P),
o élant une puissance de p autre que n; on verra,

comme dans le cas général, que P doit étre un diviseur
n . .
de =, ce quiexige P=p.
[On peut d’ailleurs modifier un peu le raisonnement
"y g . n
du cas général : ¢ étant un diviseur de >’ la congruence

écrite ci-dessus est comprise dans la congruence

n n

1"’——)/1—’50 ou X—Y=o0 (mod P
la congruence (B) ou [B] est vérifiée par N\ =Y si
P = p (cas précédent).

Mais alors, p — 1 élant premier avec o, la congruence

(«) xa_yaso (modp)



( 236)

n’admel que la solution # = y. La congruence (B), en
dehors de 'hypothése P = An + 1, n’est donc possible
que dans 'hypothése P=p, et n’admet alors que la
solulion z =y.

Donc : En désignant par n une puissance d’'un
nombre premier p, par x et 3y deux nombres pre-
miers entre eux, un nombre de la forme

xu__}»n 2”7—1. 21/7—-21 l 24/;»1)
— ou x’ ~+ al U S y

ou encore un nombre de la forme

Xr—Yr

XV ou Xp=t4- Xp-2Y ., - Yot

”n

n n
N=al, Y=yb

a tous ses diviseurs premiersde la formeP =fkn—+1,
a lexception du diviseur p qu’il admet dans Uhy-
pothése x —y = mult. p, dans cette hypothése seule-
ment, et qu’il admet alors une seule fois (en suppo-
sant n £ 2).

Pour établir ce dernier point, rappelons que, X élant
premier avec Y, X —Y étant multiple de p, le nombre

Xr—Yr . .
<= admet une seule fois le facteur premier p, en

exceptant le cas p=1. Voyons ce ¢qui a lieu pour p =2,

X etY étantz?et 32, ourtet ¥, ou x¥et ¥8, ..., aver
x et y impairs. Le nombre considéré estici X + Y,
" n

ouz?®- y*, n élant une puissance de 2 aulre que 2
. A n .
lui-méme, de sorte que 5 estpair; ona alors

n "

X=(2h+1 =40 +1 " =mult. j +1;
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n

n
X+Y=(2h+1)?4(2k+1)=mult. § + 2,

et ce nombre est simplement pair. Le cas n =2 fait
donc seul exception.

IV. — AUTRE CAS PARTICULIER.

18. Soit encore.
n = pg,
L et g étant deux nombres premiers distincts.
Avec P=p, & étant an divisear de =, ou ¢, on a
o=1 ou ¢, el la question est de savoir si Ja con-
gruence

B (xr1—yr1)(x—y)

(21— y9) (2l — yP)

o~
~

[ (modp)

admet des solutions de 'une des deux congruences
(2 r—y=o, zi—yi=o (modp ).

D’abord, Phypothése 2 =y ne vérifie pas la con-
gruence (B'); celle-ci peut s’écrire, en effet,

xp—1q m(l'-?)’l_y'l—t-. . _+‘y(p——l"f/
Pt Pty -yt

== (modp ),

et, pour xr =y, son premier membre se réduit a
yr=1 -1, Ce point réglé, reste Phypothese c =g¢; la
congruence (B') est comprise dans la congruence

P — yP7 '

(B, P) prrp—

o (mod p),

laquelle se décompose en deux congruences seulement:
la congruence (B'), d’une part, et la congruence
/ P —yP
(P) P A
rT—x
Ann. de Mathémat., 4 série, t. XII. (Juin 1912.) 17

=o0 (modp),
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d’auatre part. Les solutions de la congruence
(Q) ri—yi=o0 (mod p)
conviennent 2 la congruence (B', P); comme les solu- .
tions de celte congruence (Q), autres que la solu-
tion x =y, ne vérifient pas la congruence (P), elles
vérifient la congruence (B').

Cette constatation est suffisante, sans qu’il soit né-
cessaire de démontrer que le premier membre de la
congruence (B') est identiquement congru (mod p) au

polynome
(a:“l — yr\r-t,
N x -“}" ’

Pordre de muluiplicité des solutions de la congruence
(B') est indifférent.

V. — REMARQUES.

19. Remarque I. — Reprenons la congruence

(A) zn—yn=o0 (mod P),

dans I’hypothése
P=/lkn+n1;

. elle a alors n solutions. Si G est une racine primitive
du nombre premier P, de sorte qu’on ait
Ghn= (modP ),
Uexposant An étant le plus petit qu’'on puisse donner
a G pour avoir le reste 1, on peut écrire (1)
¥ = GB,

- (') La congruence 2" — Y == 0 (mod P) a n solutions si Y est tel

qu’on ail .
\ Pt

Y 7 =1 (mod P);

on doit avoir pour cela Y = G =(G?)".



et les nvaleurs de 2 sont

r = G2, 2—P=mut.dedb =0,k 2k ..., (n—10)k;

on peut encore écrire
y = Gku+p, r = G+, L=0,0,2 e, —1.

La congruence (B)a alors z(n) solutions, pour les-
quelles la différence 2 — 3 est le produit de A par un
nombre premier avee n et non supérieur a n, ou encore
la différence A — w est un tel nombre.

Par exemple, si » est un nombre premier p, la
congruence

PVl 2y 4o -yl 0 (mod P,

en supposant
P =1/p -,

a p — t solutions : on peul écrive

Yy = G35, r = Gx,

2 — 3 = mult.de Xk (a .~ %),
au encore .
V= Ghu+g,
r = ‘;/':”4'?.
A=o.1.9,....0—1 (sauf w).
20. Revargue I, — Dans un article dont 'idée pre-

miére appartient a M. Bricard (Nouvelles Annales,
1910, p. 217) j at étudié direclement les nombres de la
forme z* + 71+ 12 L'idée essentielle est que les deux
congruences

ab == «) = 32=0

. . (mod )
be +b0n =120

entrainent la congruence
ci = ) = 12=0,

en supposanl .L pl‘emier Qvee n.,
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Cette remarque se généralise, et, pourcing nombres
a, b, ¢, d, e par exemple, les deux congruences

abed + abe.h + ab. N2+ a. k3 + N = o,
bede — bed N + be 124 b 134 W =

entrainent la congruence

cdea - ede ) +— cd. 12+ ¢ W3+ A =0

et, par suile, deux aulves congruences analogues,
A étant premier avec le module; il suffit, pour le voir,
d’éliminer & entre les deux premiéres congruences ; on
ordonne par rapport a b, on multiplie la seconde con-
gruence par @ + A, la premiére par A, on retranche, on
divise par b qui n’est pas congru a zéro puisque A ne
I'est pas, et ’'on a

|ede +hied +ch=+212)j(@a+~h)—alcd +ch +=h¥)h=0;

les termes «n(cd + ¢k + 22) disparaissent, et 'on ob-
tient la nouvelle congruence. Mais ce point de départ
ne méne ici a rien, les choses étant trop complexes.

1 C2] -
SUR LES APPLICATIONS GEOMETRIQUES
DES INTEGRALES CURVILIGNES;

Par M. A. BUHL.

1. Les intégrales curvilignes jouent, a coup sir, en
Mécanique et en Physique un réle beaucoup plus im-
portant que partout ailleurs. Je laisse de coté les inté-
grales attachées a une fonction analytique f(3), car c’est
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un point sur lequel on s’arréte peu dans les cours qui
s’adressent aux futurs techniciens. Cest pour ceux-ci
qu’on devrait pouvoir présenter de nombreux calculs
d’intégrales de ligne, uniquement dans le domaine réel,
dés qu’on a donné la définition de ces intégrales.

Or c’est ce qu'on ne fait pas suffisamment. On dit
aux éléves que les applications mécaniques et phy-
siques seront nombreuses, mais on ne se serl guére,
surtout dans l'espace a trois dimensions, d'intégrales
curvilignes exprimant des étres simples, des concepts
géométriques élémentaires, des volumes par exemple.

Je pense que ce qui suit paraitra combler, au moins
partiellement, une telle lacune.

Je prends des volumes d’apparence classique qui
pourraient tous s'exprimer individuellement par des
intégrales doubles; je montre que la connaissance de
certains d’entre eux permet de déterminer les autres au
moyen d'intégrales de ligne, toujours autachées a des
contours trés simples et parfaitement langibles. Cela
ne vaut-il pas mieux que de proposer d’intégrer une
fonction imaginée au hasard le long d’un arc pris éga-
lement au hasard ? Si un exercice de cette derniére ca-
tégorie peut apprendre a calculer, il ne montre guére
I'intérét du calcul. Mieux vaut avoir les deux choses.

Je me permets de renvoyer le lecteur intéressé par de
telles considérations & un Mémoire, d’un degré un pen
plus élevé, Sur les applications géométriques de la
Jormule de Stokes publié dans les Annales de la
Faculté des Sciences de Toulouse (1910). lei je suis
resté dans des exemples trés élémentaires et je n'ai
employé, parmi les formules du Mémoire en question,
que celles que je pouvais rétablir facilement sans, lg
secours de la formule de Stokes ni d’aucune autre for-
mule nécessitant une démonstration spéciale.
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Jestime que tout ce qui suit est proposable comme
exercice, aux éléves d'un cours de Mathématiques
générales. Ven ai fait Pexpérience & la Faculté de
Toulouse.

It pour bien faire remarquer que je n’exagére en
rien la simplicité de mes problémes, qu’il me suffise de
dire que toutes les intégrales curvilignes qu’on rencon-
trera dans ce ui suit se raménent toujours, et d’une
maniére immédiate, & des intégrales définies ou les élé-
ments différentiels sont de la forme wu”d w.

2. Soit, dans I'espace 4 trois dimensions, un contour
ferm¢ X, fixe en général, parlequel passe une cloison S.
Des volumes peuvent avoir S pour facette commune et
étre cependant complétement diflérents par ailleurs.
Tel serait le cas de cones avant S pour base gauche
eommune mais dont les sommets seraient distincts.
Deux volumes d’une telle nature ont éeideniment une
différence qui ne dépend pasde la cloison S mais seu-
lement de son contour X. Car déformer S, sans tou-
cher & X, c’est ajouter un méme volume, en forme
d’onglet, aux deux volumes considérés. Celane change
en rien leur différence.

Cette remarque, absolument intuitive, est suscep-
tible d’applications immédiates, a la fois élémentaires
et inléressantes.

3. Volumes cylindrigues principaux. — Projetons
tous les points de S et de X, parallélement a I'axe Oz,
sur le plan Oxy. On définit ainsi le volume classique,
a surface latérale cylindrique. Je désignerai ce volume
par U.. Si T'on avail projeté, parallélement 3 Oz ou
a0y, on aurait eu des volumes analogues que je dési-
gnerai par U, et U,. Les trois volumes ainsi définis,
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eonsidérés deux a deux, ont des diffiérences qui, d’aprés
le paragraphe précédent, ne doivent dépendre que du
contour ¥. Evaluons ces différences et commengons
par considérer U, — U,. Puisque sans altérer cette dif-
férence, nous pouvons déformer S, construisons cette
cloison comme suit. Coupons £ par un plan paralicle
a Ozy, ce contour I étant, pour simplifier, supposé
tel que ceci ne donne que deux points d’intersection A
et G (fig.1). Par C je meéne une paralléle & Ox et

R

par A une parallele i Oy. B étant I'intersection de ces
paralléles, nous prendrons pour cloison S le lieu de la
brisée ABC quand sa cote varie. Dans ces conditions,
le volume U, est engendré par le déplacement et la dé-
formation d’un rectangle ABGH. De méme U, est en-
gendré par BCDE.

Quand le point A parcourt X comme l'indique la
fleche et qu'il monte de dz, le rectangle AHFE
engendre un volume zy dz dans lequel se trouve la



(264 )

partie correspondant au rectangle BGFE, partie qui se
retranchera a la descente. Donc finalement

U,—U,= [wydz.
JE

Par des raisonnements analogues ou plus simplement

par permutations circulaires on a le groupe des trois
formules

\ Ur—U, = [ zyds:,
(n +Uy—U; = f)*:d;r,

’ U.—U,= /‘z.r dy.

Celles-ci ne sont pas distinctes. L'addition des trois
donne, en effet, o = o, l'intégrale obtenue dans 'addi-
tion portant sur une différenticlle exacte d(zy 3).
Dans ce qui suit, cecine doit pas empécherde calculer
ies trois intégrales curvilignes précédentes ; c’est seu-
lement, ce calcul fait, qu’on cherchera a voir, a titre
de vérification, si la somme de leurs valeurs est bien
nulle.

4. Premicre application des formules (1). Soit
une sphére de rayon R ayanl son cenlre a I'origine.
Soient M un point de la sphére et I’ sa projection sur
Oxy. Quel est le lieu de M si 'angle MOP doit tou-
jours étre égal a Vangle POz =67

Ce lieu a évidemment pour équations, en coordon-
nées semi-polaires r et i,

r = R cos0, 5= Rsinb.

La premiére équation représente la projection de la
courbe sur Ozy; c’est un cercle de diamétre OA,
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A étant le point ou la sphére coupe Ox. Je viens done
simplement de définir la courbe de Viviani.
La cloison S sera ici la portion de surface sphérique
comprise entre ’arc de courbe obtenu en faisant varier §

de o a = et le quart de circonférence TA, T étant le

sommet de la courbe situé sur Oz. Le contoar ¥ de S
est parcouru dans le sens direct, dans lequel on laisse &
sa droite 'intérieur de S.

Calculons alors les seconds membres des formules ( 1).
Des équations semi-polaires de la courbe, nous dédui-
sons les équations cartésiennes

z = Rcos?6,  y = Rcoshsinb, z = Rsinb.

De plus, on remarquera que 'intégration le long du
guart de cercle TA donne un résultat nul car alors ona
toujours 3" =o.

Dans ces conditions, les formules (1) devienuent

U, —U, = R:‘j cos*f sinfh o = ! R3,
0 2
jut
Uy —U.=—2R3 [ cos26 sin3h dh = — 2 Re,
Jo 15
™
) .
U, — U, = R3J sint cos*h cos2fdy = = K.
0

ces intégrales se calculant d’une maniére absolument
immédiate en posant u == cos .

Remarquons que la somme des ‘trois seconds
membres est nulle conformément a la remarque termi-
nant le n° 3.

Or on sait maintenant, par un calcul classique
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maintes fois eflectué, que

U, = (% - ;) Ry, U,— <: — ‘—)) R,
‘ . 6 1)

Un lecteur qui comparerait ces formules avee celles
du Mémoire Sur les applications géométriques de la
Jormule de Stokes (n° 3) remarquerait que les signifi-
cations de U, et U, ont é1é échangées. Ceci tient sim-
plement a ce que la figure n’est pas supposée construite
de la mnéme maniére.

5. Seconde application des formules (1). — La
définition donnée an paragraphe précédent pour la
courbe de Viviani peul éire généralisée en supposant
que Pangle MOP est égal a n fois 'angle PO 2. On
trouvera (uelques mots d’historique a ce sujet dans le
Recuedl d’Exercices de I'. Frenet, 5¢ édition (Pro-
blémes 2496, 503, 510).

Prenons simplement n = 2. La nouvelle courbe aura
pour équations semi-polaires

r = Rcosaf, z = Rsin26.

La premiére de ces équations représente la projection
de la courbe sur Oz y; c’estla rosace a quatre feuilles
engendrée par la projection de O sur un segment, de
longuear constante 2R, qui glisse sur deux droites rec-
tangulaires passant par O et bissectrices des axes O z).
Une des feuilles a Oz pour diameétre et la moitié de
son périmeétre est complétement parcourue, de A en O,
quand 4 varie de o a % La cloison sphérique que je

me propose de considérer se projelle sur cette demi-
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feuille. Calculons les seconds membres des for-
mules (1).
On a d’abord pour la courbe les équations carté-
siennes

x = R cos 260 cos, ¥ = Rcos2bsin0, z = Rsinaf.

La encore les intégrations le long du cercle TA

donnent un résultat nul et les seconds membres (1)

sont
s

T .
2R3 [ cos326 cosl sinf db,
<0

E]

—R3[ c0520sin20 sin0(cos20 sin) + 2 sin20 cosh) db,
0

k]

Raf cos20sin28 cosf(cos26 cos —2sin26 sinb) df.
0

Si l'on pose 2§ =1, cesintégrales deviennent respecti-
vement

1]

1 .
- R3 cos3z sinx dx,
2

1 I 3 .
———R3[ cos—.(—cos:——cos’:—i—l sint d=,
2 Jy .2 2

0

I : 1 3 .
- R3 / cos:(—cost—f—-—cos?:-—l) sinz dx.
2 2 2

Si maintenant on pose cos = « elles deviennent

1

Uem U= 1R [ wiau = Ry

A

1 Ly 3 7
U,——U;:——-P@f <-u?—-u3+u)du=——7’§ﬁ3,

2 01 2 2 4
U,—Uy= +Rs L 3uw_y)dau= Lms.

h * 2 o 2 2 48

La somme de ces trois expressions est bien nulle.
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Nous sommes donc en mesure maintenant de con-
naitre U, U,, U; dés que nous connaitrons une seule
de ces trois quantités. Or. un calcul classique donne

Mo i rdr ki E L
U;=[ dﬁ[ ;/Tl-—_——_l—-rdl_Hi‘( )7

%) 12 9

d’ou, en vertu des formules précédentes,

I ;;_E____‘Q) Jp— S_E._:;7 -
U.=R (u =) Uy=R(— 1

\

Entre les plans passant par Oz et d’azimut o et%
existe, au-dessus de Ozy, un demi-onglet sphérigue
dont le volume est précisément 1—7'2'[{3. L’excés du vo—
lume de ce demi-onglet sur les trois volumes U est
rationnel. C’est un vésultat bien classique quand il

s'agit de U; mais qui semble moins remarqué pour les
deux autres volumes.

6. T'roisieme application des formules (1). — Con-
sidérons maintenant la courbe sphérique qui se projette
sur Oz y suivant une lemniscate de Bernoulli ayant son
point double en O et l'un de ses sommets au point A
ou la sphére coupe Ox.

Cette courbe sphérique aura pour équations semi-
polairves

r2= R2 cos20, s = /2 Rsin0,

ou pour équalions carlésiennes
2= Rycos2bcosd, y=Rycosafsinh, z=/2Rsinb.

La cloison sphérique que nous considérons se pro-
jette sur la demi-boucle de lemniscate située dans
I'angle Ozy. Calculons encore les volumes Uy, U,, U,
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attachés a ladite cloison. Le contour d’intégration com-
prend toujours un arc TA donnant un résultat nul et
les seconds membres de (1) sont

‘/'—),R311 cos28 cos2 sinf 0,
0
z
—VaRs [ sin30 sin20 d,
Jy

™

V2R3 f cos30 cos® sin0 df.

0

Si l'on pose cos § = u, ces intégrales deviennent

! I B
Ur— Uy = ‘/;R?'/‘ w(ou— 1) du= IT5\/;
|

1 >
l?A,-—U;=\/iR3"/‘ (u'l-—l)(/;u‘-’——|)du=—3l—_——4—‘—/—ER3,
1
- ! 3—a2y2
U.— U,= y2R? [ w2 (furt—3)du = ——XZR3,

Leur somme est bien nulle.
Reste a calculer 'un des trois volumes U,, Uy, U..
Or un calcul facile donne

™ R
N RVcos20

- - Sy — 5
U:=f def VR dr = k(L — LL_’)
o A 12 9

d’ou, en vertu des formules précédentes,

U,,=R3(i—22‘/2—?'b), U,.=R3<-'—-'—-28‘/;—‘Z)v

12 90 2 90

Ces volumes sont contenus dans le méme demi-
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onglet que celui considéré a la fin du paragraphe pré-
cédent. L’excés de ce demi-onglet sur chacun d’eux ne

contient que y/2 comme irrationalité numérique.

1. Volumes cylindro-coniques. — Soit toujours le
contour ¥ par lequel passe la cloison S. Nous continue-
rons a supposer, pour plus de simplicité, que I'axe Oz
ne lraverse pas S. )

Si nous joignons tous les points de S et de ¥ a 'ori-
gine nous formons un volume conique V, de sommet O.
D’aprés le raisonnement général du paragraphe 2, la
différence U — V, ne dépend que du contour X, ce
qu’on peut voir divectement sur la figure 2. Soit

Fig. a.

A’B' un arc infiniment petit de I, arc se projetant en
AB sur Ozy. On concoit immédiatement que I'élé-
ment de volume OABB'A’O est celui de U, —V,.
D’autre part, si AP est un arc de cercle de centre O,
cet élément de volume peut étre remplacé par
OAPP'A'O. Ce dernier élément est une pyramide dont
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la base APP'A a pour aire 57 df etdont la hauteur est
OA =/. Le volume de cetie pyramide est donc

1) zr2df et on a finalement
(2) U;—\'o=—éj‘;sr?d6.

8. Volumes et atres sphériques. — Dans mon Mé-
moire Sur les applications de la formule de Stokes,
Jai appliquf’- la formule (2) a divers objets. Iei je n'en
retiens qu un.

Si le contour X est sur une sphére de centre O et de
rayon R et si la cloison S est la portion de surface
sphérique contenue dans X, S ayant alors une aire 5, on
a Rz =3V, et la formule (2), devenant

(3) 5;U;-—I{7:f:r‘-'dw
.

(e

donne le moyen, le volume U; étant connu, d’avoir =
pav une simple intégrale de ligne. Et réciproquement.

9. Premicre application de la formule (3).
Reprenons les données géométriques du paragraphe 4
et notamment la méme cloison S dont nous chercherons
I'aive 5. La formule (3) donne

(E — _) Ri— Rg = Rsf sinh cos26 b,
2 3 o

d’on, sans pcine,

izl

Celle aire retranchée de celle du huitiéme de la
sphére donne R? pour exces, ce qui est le théoréme
bien connu da a Viviani.
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10. Seconde application de la formule (3). —
Reprenons les données géométriques du paragraphe 3.
Cette fois la formule (3) donne

T 1Y
~ —-)R¥—Ro=R3
(5-3)

car il y a toujours, comme au paragraphe précédent
d’ailleurs, un quart de cercle TA le long duquel on
a =0 et qui, par suite, donne une valeur nulle

dans l'intégration. Pour 26 =< la formule précédente
devient

s|

f sin20 cos?28 db,

0

wld

7 1\ 5, 1 .
(X-EE)R2—6=.; /‘ sinz cos?z d=,

RN

et l'intégrale définie qu’il faut calculer est la méme que
celle du paragraphe précédent. Elle a pour valear .

3
d’otl finalement

Cette aire est comprise dans un demi-fuseau sphé-

. s .
rique dont Pangle au sommet est - et dont [aire

4
R2. L’excés de 'aire du demi-fuseau sur Paire =

]

est

esl

W=

R2. Le résultat est encore bien connu, mais la

méthode employée ici pour y parvenir parait I'étre
beaucoup moins.

11. Troisieme application de la formule (3). —
Reprenons les données géométriques du paragraphe 6.
Alors la formule (3) donne

<I' - m————\) R3. - Ro = /2R3 [ sinf cos26 d6.

0

k3
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Posant cosf = «, il vient

- . 1
<;_L‘./.%:2>R2-a=ﬁR2f (2u?—1)du,
4 1

V2
s=az[’4_‘_(‘/;_r)].

et enfin

Cette aire, retranchée du demi-fuseau considéré au
paragraphe précédent, donne pour excés R? W2 —1),
ce qui, comme tous les voluraes considérés au para-
graphe 6, ne contient qu’une irrationalité quadra-
tique.

Avant d’abandonner les cloisons sphériques remar-
quons qu’a propos des trois cloisons qui ont été consi-
dérées nous avons calculé les volumes Uy, Uy, U; et
'aire o.

Les méthodes classiques verraient la quatre inté-
grales doubles, ce qui a été remplacé ici par un seul
calcul d’intégrale double et trois calculs d’intégrales

simples étendues a un contour E. Le bénéfice parait
indéniable.

12. Volumes conoidauz. — De tous les points de
la cloison S et de son contour X abaissons des perpen-
diculaires sur une droite fixe que nous prendrons, par
exemple, pour axe Oy.

Nous pouvons définir ainsi un volume conoidal W,.
Considérons en méme temps les volumes cylindriques
U et U;. Si nous coupons le tout par un plan normal
a Oy, le solide conoidal donne une section en forme
de triangle et les solides cylindriques deux sections en
forme de trapéze. De plus, on voit sans peine que le
double de I'aire triangulaire égale la somme des aires
trapézoidales. Une telle égalité, multipliée par dy,

Ann. de Mathémat., be série, t. X1I. (Juin 1g12.) 18
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donne une égalité entre éléments de volume et I'on
conclut par intégralion

2W,=U,+ U..

13. Volumes bicylindriques et aires correspon-
dantes. — Dans mon Mémoire, Sur les applications
géométriques de la formule de Stokes, }’ai étudié
plusieurs conséquences de la formale précédente. Ici
je n’en retiens qu’une. Supposons que la cloison S

appartienne a un cylindre circulaire T' de rayon R et
d’axe Oy et que Paire de cette cloison soit 5. Alors

2W, =R,

et comme, d’autre part,

U;—Ux——-fz.rd_y,
z
ona

(4) 2U;— Ro =fzz:dy,

formule comparable a (3). Ce sont les volumes U,
que j'appelle bicylindriques pour rappeler qu’ils sont
limités, vers le haut, par une cloison S qui appartient
a un cylindre (circulaire) el, laléralement, par un
cylindre dont la base dans Oy peut étre une courbe
fermée quelconque. On voit que ces volumes U; et
l'aire o correspondante sont liés par une simple inté-
grale de ligne.

14. Application de la formule (4). — Coupons le
cylindre T par un cylindre absolument identique mais
d’axeOs. Le noyau commun aux deux solides nous
donne, dans le triedre Ozys, un volume

R
U.= f (Rt — %) do = S RO,

“o
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La courbe d’intersection des deux cylindres est une
ellipse d’équations

x = R cos®H, y = Rsinb, z = Rsin®,

si bien que la formule (4) donne immédiatement & = R2.

Dans le Recueil d’ Exercices de F. Frenet on trouve
des calculs de U; et de 5 au moyen d’intégrales doubles
{5° édition, Problémes 501 et 509).

15. Contours tels gue U, = U, = W .. — D’aprés
y P

la derniére des formules (1), on voit que ces contours =

sont ceux qu’on peut tracer sur une surface

(5) sz =f(y)

la fonction f étant quelconque et le contour ¥ étant
simplement choisi de maniére a éviter des difficultés
singuliéres relatives a f.

Mais des applications bien simples et des plus élé-
gantes s’obtiennent, sans qu’on ait a s’inquiéter de
telles difficultés, en prenant, pour f(y), un simple
polynome.

Dans mon Mémoire, Sur les applications géomé-
triques de la formule de Stokes (n° 4), je suis déja
revenu sur les surfaces (3). Voicid’abord une premiére
remarque non faite a 'endroit cité.

Supposons que 'on coupe une des surfaces (3) et le
contour X y tracé par deux plans paralléles a Ozzx.
Surla figure 3, AB et CD sont les fragments de courbe
plane obtenus dans la surface (5) par les plans sécants.
BC et DA sont les fragments du contour £ compris
entre ces plans.

Je dis que I'intégrale de z2 dy est nulle non seule-
ment le long de T mais aussi le long da contour mixte

ABCDA. En effet, f(y) dy prend des valeurs égales
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et de signes contraires de B en C, puis de D en A; ces
deux portions du contour d'intégration donnent donc

Fig. 3.

&

au total un résultat nul. Et quant aux portions AB
et CD elles donnent, chacune pour leur compte, un
résultat nul parce que, le long de ces portions, y est
constant et, par suite, dy nul.

D’aprés la formule qui termine le paragraphe 12, on
voit que les cloisons, pour lesquelles ona U, =U,,
donnent aussi W, = Us.

Sile contour ¥ se trouve sur le cylindre circulaire T
défini au paragraphe 13, Pégalité W, =U, s’écrit
aussi Re=12U..

16. Contourscylindriques pour lesquels Rs=2U,.
— Cherchons un exemple de tels contours, ce que I'on
peut présenter comme une seconde application de la
formule (4).

Pour rendre nul le second membre de (4), nous
avons le choix entre toules les surfaces (5). Je prendrai
simplement f(y) = ky; d’ou, pour Z, la courbe

xr?+ 32 = R?, zx=ky
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intersection du cylindre T avec un paraboloide hyper-
bolique qui admet pour génératrices Oz et la droite,
non tracée sur la figure 4, qui passe par A, paralléle-

\ k ., .
ment a Oy z, avec une pente =; toutes les génératrices

de I'autre systéme étant paralléles 2 Ozy, on se repré-
sente facilement la quadrique en question.

Fig. 4.

& B’

Mais il est peut étre encore plus simple d’éliminer =
entre les équations précédentes et d'observer que
I'intersection étudiée a, sur Ozy, une projection
d’équation

k2yr= z2(R2— 2?).

C’est la un huit (') dont le point double est en O et

(') Cette courbe se rencontre dans de nombreuses projections
d’intersections de quadriques, ce qui a été particulierement mis en
lumiére dans les excellents Exercices de Geometrie descriptive
de F. G.-M. (4° édition, 1909, p. 399, 694, 730, 780 et passim).
C’est évidemment la courbe R2y*=z*(R*—a?), dont les ordon-
nées sont affectées d’un facteur constant et, quant a cette derniére,
on parait la désigner de plus en plus sous le nom de lemniscate
de Gerono proposé par F. G.-M. (loc. cit., p. 399). Cette dénomi-
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dont la figure 4 représente le quart en AB'O. Le con-
tour T sera ABTDA. On voit que dans ce contour on
fait intervenir non pas toute l'intersection du parabo-
loide et du cylindre mais seulement I'arc ABT qu’on
fecrme par le quart de cercle TDA, ce qui est permis
d’aprés la remarque faite au paragraphe précédent.
On a directement
U.= Jo (R’—x?)dx_l}/:

0

ce qui est aussi W,. Alors
R3

v

17. Contours tels que U;=V,. — La formule (2) qui
peut s’écrire

L — =1 X
U;—\’o_g‘[;g(xdy ydx —3£zx2d<w>y

nous montre immédialement que de tels conlours sont
situés sur les surfaces

(6) zx2=f()—,>;

x
parmi lesquelles on peut particuliérement remarquer
z3r2= k3

s xys = k3, Z(xr+ y2) = A3,

Mais on peut placer tout de suite ici une remarque

nation est reproduite en eflet dans les Notes de bibliographie des
courbes geometrigues de M. H. Brocard, ouvrage qui semble avoir
été le prototype de tous les ouvrages encyclopédiques publiés ensuite
sur les courbes remarquables (Voir, par exemple, G. LoRria, Ebene
Kurven, p. 174). On peut la retrouver également sans sortir des
Nouvelles Annales (PHILBERT DU PLESSIS, 1904, p. 261). Je I'em-

ploie couramment dans mon cours de Mathématiques générales de
Faculté des Sciences de Toulouse.



(279)

analogue & celle déja faite au paragraphe 13. Un con-
tour ¥ étant tracé sur une surface (6), on pourra en
déduire une sorte de quadrilatére limitant une cloison
pour laquelle on aura aussi U;=V,. Nous obtiendrons
ce quadrilatére ABCD en coupant S par un plan pas-
sant par O 5 et d’argument fixe 6, ce qui donnera deux
points d’intersection A et B, puis par un autre plan
analogue d’argument 9, <<8,, ce qui donnera deux
autres points C et D. On parcourt ABCDA dans le sens
direct. De B en C, puis de D en A, les éléments en d0
se détruisent; de A en B ou de Cen D, 6 est constant
et, par suite, df nul.

Quand de tels contours sont tracés sur la sphére de
centre O et de rayon R et qu’ils enferment une aire
sphérique s on a, comme on I'a déja remarqué au
paragraphe 8,
3Vo= Ro;
d’ou

3U;= Ro,

ce qu'on aurait pu écrire immédiatement d’apres (3).
18. Remarque générale. — Considérons I'intégrale

curviligne

() fpdx+Qdy+Rdz

étendue a un contour fermé I et cela sans faire aucune

hypothése sur le probléme qui en entraine la considé-

ration.

L’expression différen tielle Pdx + Q dy + Rd s peut

toujours étre ramenée a la forme
da + B dy,

a, £,y étant l;‘ois fonctions de z, ¥, 5 & déterminer,
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(Voir, par exemple, P. ArreLr, Traité de Mécanique
rationnelle, 2° édition, t. III, p. 453. — G. Darsoux,
Comptes rendus, 15 el 22 novembre 190g.)

Dans ces conditions I'intégrale précédente prend la
forme

(8) .[ﬁd‘{,

car l'intégrale de da est nulle le long d’un contour
fermé, sauf singularités que nous nous arrangerons a
laisser de cOLé par un choix convenable de X.

Construisons maintenant des surfaces 3 = f(v),
J étant une fonction arbitraire.

En général, on pourra toujours tracer, sur ces
surfaces, une infinité de contours non singuliers
pour lesquels Uintégrale- (8) et, par suite, {’'inté-
grale (5) seront nulles. L’assertion est évidente puis=-
qu’il n’y aura & considérer, en derniére analyse, que
Iintégrale de f(y)dy, c’est-a-dire d'une différentielle
exacle, le long d’un contour fermé.

De plus, en partant d’un de ces contours X, on pourra
toujours en déduire des contours de forme quadrilaté-
rale possédant la méme propriété. Pour cela on coupera
ce contour I et la surface 3 = f(y) qui le porte, par les
deux surfaces

1=0C, =0y

C, et G, élant des constantes différentes. On obtiendra
ainsi un quadrilatere ABCDA, ou AB et CD sont les
intersections de 3 = f(y) par les deux surfaces précé-
dentes cependant que BC et DA sont des arcs de
compris entre ces mémes surfaces. le long de AB et
de CD on aurady=o0; le long de BC, les éléments
JS(v)dy aaront des valeurs correspondant a la variation
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de y de G, a G, tandis que sur DA on retrouvera les
mémes ¢éléments alors que vy varie de C, a C,.

On voit que ces considératlions générales donnent,
comme cas particuliers, les remarques faites aux para-

graphes 15 et 17.

[R3a]

SUR LES COORDONNEES LINEAIRES GENERALES;

Par M. M. MICHOUX,
Eléve de Mathématiques spéciales a Clermont-Ferrand.

1. Nous nous proposons de définir ici un systéme
général de coordonnées pour les vecteurs et systémes
de vecteurs. Ces coordonnées, qu’on pourrait appeler
coordonnées lindaires générales, offrent la plus
grande analogie avec les coordonnées penlasphériques
générales de feuillets sphériques dont M. J. Haag a
exposé la théorie dans une Note du numéro de
février 1911 des Nouvelles Annales. Nous allons
reprendre systématiquement les différents résultats
contenus dans cette Note et les étendre au cas qui nous
intéresse.

2. Nous rappellerons d’abord rapidement quelques
résullats et quelques définitions bien connus.

Etant donnés deux vecteurs (A B,), (A, B,) par leurs
six coordonnées (X,,Y,,Z,,L,,M,,N,), (X5, Y,,...,Ny)
relatives a un systéme d’axes rectangulaires Ozyz, leur
moment relatif, que nous désignerons par la notation
942, et qui peut étre défini comme étant égal & six fois
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le volume algébrique du tétraédre construit sur les
deux vecteurs, est donné par la formule

0ia=L{X,+ M Yy, + NyZy+ Lo X+ M1Y1+ NzZl.

Plus généralement étant donnés deux syslémes
de vecteurs (S) et (8') par leurs coordonnées
X,Y,Z,L,M,N) et (X, Y, ..., N') leur moment relatif
a pour expression

v

()  0(S,8)=LX -+ MY+ NZ+L'X+MY~+NZ

et représente six fois la somme algébrique des volumes
de tous les tétraédres obtenus en associant successive—
ment tous les vecteurs du systéme (S) avec tous les
vecteurs du systéme (S').

Dans le cas ou (S') se confond avec (S), I'expression
précédente devient

(2) 0(S)=2LX +2MY +2NZ

et prend le nom d’automoment du systéme (S). Les
systémes d’automoment nul sont ceux qui sont réduc-
tibles a un vecteur unique.

3. Ceci rappelé, choisissons six systémes fixes (S;)
(i=1,2,3,4,5,6) de coordonnées (X;, Y;,Z;,L;, M;, N,)
et linéairement indépendants, c’est-a-dire tels que le
déterminant

X, Y, Z, Ly M; N,
Xe oo v oo .. Ng
soit différent de zéro.

1l ‘est clair qu’a tout systéme (S) (X,Y,Z,L, M, N)
on peut faire correspondre six nombres z,, z,,..., Z¢,
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non tous nuls, par les équalions linéaires

{ 6
X =Z z;: X;,

i=1

3) ,

et réciproquement.

Les systemes (S;) serontappelés les systémes fonda-
mentauz et les nombres (z;) seront les coordonnées
du systéme (S) ou (z) par rapport & ces systémes fon-
damentaux.

On peut les interpréter de la maniére suivante :
ce sont les nombres par lesquels il faut multiplier
tous les vecteurs de chaque systéme fondamental
pour que lUensemble des six nouceaux systémes
obtenus soit équivalent au systéme (S).

Il est clair que le systéme (S;) a toutes ses coor-
données nulles, saufla coordonnée (z;) qui est égale &
Punité.

L’automoment du systéme (S) devient la transformée
de DPexpression (2) par la substitution linéaire (3),
c’est-a-dire une forme quadratique a six variables (z;).
Nous la désignerons par Q(z), et nous I'appellerons la
Jorme quadratique fondamentale. L’équation

(4) Q(zx)=o

caraclérise les systémes d’automoment nul, ¢’est-a-dire
équivalents & un vecteur unique.

Si I'on se reporte a la formule (1) en se rappelant
les propriétés d'invariance de la forme polaire, on voit
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que le moment relatif de deux systémes (S), (5') est
6

(5) 8(S, S’)=Q(x[x’)=-;-2xﬂi%.

i=1

Cela permet une interprélation trés simple des coef-
ficients de Q(z). Si I'on pose

Q(x) =22Afj.z‘l-xj,

on voit immédiatement que le coefficient A;; est égal
au moment relatif des systemes fondamentaux (S;)

et(Sj). :

4. Nous appellerons coordonnées adjointes du
systéme (S) les six nombres (y;) définis par

1 0Q

Y=y o

Au moyen de ces coordonnées, la forme fondamentale
Q () se transforme en son adjointe w (y).
L’automoment du systéme peul s’écrire

6
© 0(8) = 2(2) = w(y) =X a1y

i=1

De méme le moment relatif de deux systémes (S), (5')
1 M
s'ecrit

(7) 8(8,8)=a@|a) = w(y|y)= Do yi= D @iy,

i=1 i=1

La définition des coordonnées adjointes nous
conduit naturellement a celles des systémes fonda-
mentaux adjoints (s;) (i=1,2, 3, 4,5, 6). Le
systéme (g;) sera défini par les conditions suivantes :
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toutes ses coordonnées () sont nulles, sauf la coor-
donnée (y;) qui est égale & I'unité.

Il résulte des formules (6) et (7) que le systéme (o;)
sera complétement défini par les conditions suivantes :
Ses cing moments relatifs par rapport auzx systémes
Jondamentaux (S;) (j2£7i) sont nuls, et son mo-
ment relatif par rapport a (S;) est égala Uunité.

Nous pouvons donner maintenant une interprétation
trés simple des coordounées (z;) et (y;) dusysteme (S)
en appliquant les formules (7). On trouve en effet

6
e(sa 5;) ZZZ‘!}/; = Ty

i=1

[
6(S, S;) =2x}_y,—=)',z
i=1
Les coordonnées (z;) et ( y;) sont donc respectivement
égales aux moments relatifs du systéme (S) par rapport
aux systémes (s;) et (S;).
Il y a donc réciprocité compléte entre les systémes

(5:) et (S;). En posant

w(y) =22 @YY

on montrerait comme précédemment que le coefficient
a;;j est égal au moment relatif des systémes (o;) et (a;).

5. Les considérations qui précédent nous permettent
de retrouver immédiatement, avec une interprétation
trés simple, la généralisation bien connue des coor-
données pliickériennes de droites (*). Etant donnée
une droite (D), si nous prenons sur (D) un vecteur
quelconque, les coordonnées de ce vecteur varient

(') Voir G. Kexics, Géometrie reglee, Chap. 1.
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praportionnellement quand on change sa grandeur.
On peuat donc prendre pour coordonnées homogénes
de (D) six nombres z; proportionnels aux moments
relatifs de (D) par rapport aux systémes (o;) et
vérifiant la relation (4)

) Q(z) = o,

ou bien six nombres y; proportionnels aux moments
relatifs de (D) par rapport aux systemes (S;) et
vérifiant la relation

(8) w(y)=o.

Des formules (7), (4), (8) résulte la condition bien
connue de rencontre des deux droites (z) et (z')

(9 Q(z|z)=0(z—a')=o

ou
w(y—y')=o.

6. Cherchons un ensemble de systémes fonda-
mentaux (S;), dans lequel le syst¢éme adjoint (o)
coincide avec (S;).

Pour cela il faut et il suffit que les moments relatifs
de (S;) par rapport aux cinq autres systémes fonda-
mentaux soient nuls ('), et que son automoment soit
égal a 'unité.

Les formes quadratiques Q () et w(y) se réduisent
donc a

6 6
o) =Nah e =Dl
i=1 i=1
et I'on a
Yi=z;.

(*) On peut dire, en employant une locution empruntée a la
théorie des complexes linéaires, que les systémes fondamentauz
sont deux a deuzx orthogonaux.
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Par suite, il n’y a plus lieu de distinguer les coor-
données adjointes des coordonnées fondamentales.

Dans le cas d’une droite on retrouve les coordonnées
de Klein.

7. Un systéme également fort important est celui ou
I'on prend pour systémes fondamentaux (S;) les six
vecteurs formés par les arétes d’un tétraédre. Prenons
par exemple pour systémes (S;), (S.), ..., (S¢) les

.vecteurs

(A1AL), (ArAz), (A1AL), (AsAL), (ALAy), (AqAy).
Cherchons la forme quadratique fondamentale.

D’aprés la signification donnée plus haut des coeffi-

cients de cette forme, nous pouvons I’écrire immédia-
tement. On a, en supposant que le volume A, A, A, A,

-

soit égal a 5

Q(z) = 2(x1 2y + 2375+ T376).

Cherchons les systémes adjoints. Le systéme () par
exemple a un moment relatif nul par rapport aux
systémes (S;) (£5£1), et égal a 'unité par rapport au
systéme S,. De méme pour les autres. La forme
adjointe est donc

w(y) =2y y1+¥s¥2+ Ve )s)
Les coordonnées adjointes (y;) coincident dans leur
ensemble avec les coordonnées (z;), mais les coor-
données égales n’ont pas méme indice.

Les nombres z; ou y; sont appelés dans ce cas les
coordonnées tétraédrigques du sysiéme de vecteurs.
Dans le cas d’un vecteur unique on retrouve les coor-
données de M. Keenigs avec leur interprétation géomé-

trique ().

(1) Voir G. Kanias, Legons de Cinématique.
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Voici une application simple : cherchons les équa-
tions des surfaces du deuxieme degré (ily en a une
simple infinité) passant par le quadrilatére gauche
AyAA A3A,. Une génératrice variable rencontrant
A, A et A, A; appartient aux deux complexes spéciaux
d’équations

ses autres coordonnées vérifiant la relation (4), on a
ZqZ5—t+ T3¢ = O.

Une génératrice fixe du second systéme a des coor-
données (x}) satisfaisant de méme aux équations

— — 1ol [
zy =o, z{=o, x\ T, + 2Ty = 0.

La condition de rencontre de ces deux droites se réduit
d’apres (g) &

Ty X3+ Ty x5= 0.

Si donc m désigne une constante quelconque, les
équations '

xr;=o, x,=o0, Z3= mxg, Xy Z5—+ T3Z5= 0

définissent une quelconque des demi-quadriques qui
s’appuient sur AyA, et AyA;, et démontrent la pro-
priété suivante :

Le rapport des volumes des tétraédres construits,
d’une part, sur un vecteur quelconque d’une généra-
trice variable d'un hyperboloide et, d’autre part, sur
deux vecteurs fixes, portés par deux génératrices du

méme systéme, est indépendant de la génératrice
variable.
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[05]] :
SUR LA THEORIE DES LIGNES ASYMPTOTIQUES;

Par M. Henrt PERROTIN.

Il nous a paru intéressant de résoudre la questiom
suivante : « Choisir trois fonctions z, y, z de deux
variables u, ¢, telles que, si on les considére comme
les coordonnées d’un point mobile sur une surface, .
u et v soientles parameétres des lignes asymptotiques
de cette surface » (1).

1. Soient z, y, 5 les coordonnées d’un point, mobile
sur une surface, exprimées en fonction des para-
métres u, ¢ de ses lignes asymptotiques. Par ailleurs,
sotent P, Q, R les paramétres directeurs de la.
normale exprimés en fonction des mémes variables;.
I’équation différentielle des lignes asymptotiques,

dP dx +~dQdy +dRdz=o

doit se réduire & du dv = o; on doit donc avoir
0P 0z _9Q dy R 95 _
Juou " 0w du " ow ou
() ? oP 0z _9Q dy R 0z

00 ov %dv+5;¢)v=0’

et, d’apres la définition des fonctions P, Q, R,

ox oy 9z
) Poa*Qu R =2
2
ox ady 9z
P +Q5 TRy =o

(') Le plan général de ce travail nous a été aimablement indiqué
par M. V. Jamet, professeur a la Faculté des Sciences de Marseille.

Ann. de Mathémat., 4 série, t. XIL. (Juillet 1g12.) 19
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D’ou se déduisent les relations suivantes :

s‘l’f:x( R_ 0—9),
Ju Ju Ju

(3) <%=x< %2 %,?)’
(4) (Z=u(rE—P5)

( dv
0z /0Q oP
o =w(Pg —Q 707)
A et p représentant des fonctions de uet de ¢. Il est
aisé de voir que A = — u.

En vertu des relations (3), on trouve en eflet

P Q R

oP oz 0Q dy = OR 01._)\ 3—[) %—Q— z-—-R

;)—;E—FWE-FB‘JE— u 12 w |,
oP 0Q IR
dv v Ov

et similairement en s’appuyant sur les équations (4)

P Q R
ooz 0Qay  oRas_ |0 I IR
Juode du oo " dwae B ¥

P 9Q OR
ou Ju ou

Les deux déterminants ci-dessus sont égaux et de
signes contraires ; de plus, les premiers membres des
deux derniéres équations sont égaux, ce dont on
s'apercoit en différentiant la premiére des équa-
tions (2) par rapport & ¢, la deuxiéme par rapport
auw.
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2. Soient encore
p=VXP,
7 =vAQ,
r =y/\R,

on pourra remplacer les équations (3) et (4) par les
sulvantes :

[ 0z _ or 94
sau'—q;)_u_ ou’
Iy op or
r VRO APy N i
(3) ) ou = "ouPou
9z  dgq op .
| 0w =Pou Y90’

dz _ dgq or

\&7_'55 75’

. jO0y __ or op
©) T
9z aq

op
o0 =99 ~Poy

En comparant la premiére des équations (5) avec la
premiere des équations (6) et tenant compte de la

condition
itz I*w
Juov odvou’

on trouve, aprés simplification,

orr 92
(7) 5000 — "E%; =o.

Des quatre autres équations appartenant aux groupes
(5) et (6), on déduira deux autres relations analogues,
entrainant, avec la précédente, les proportions ci-
dessous :

9 p 1 0%q 1 0*r

1
p ouov g oude 1 oude
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Soit O la valeur commune de ces trois rapports. Les
fonctions p, ¢, r devront étre trois intégrales d’une
méme équation de Moutard, savoir :

02p
(8) r)udv—ep’

ou O désigne une fonction de u et de ¢.

3. Réciproquement, si trois fonctions p, ¢, r de
deux variables «, v vérifient une méme équation de
Moutard, elles sont proportionnelles aux paramétres
directeurs de la normale & une certaine surface S, dont
les lignes asymptotiques ont pour paramétres direc-

g y
teurs u, ¢.

En effet, deux de ces fonctions ¢, r, par exemple,
vérifient’équation

0 r 02q
q~—— — I~ =0;
Ju 0y ou dov

on en déduira, par suite,
J [/ or dq 0 daq or
lrm—rid)=m(rE—a5)
On en conclura que les fonctions

or _ ,-?_(Z ,-?_Z _ or

7 ou ou’ v 7 o

sont les dérivées partielles d’une méme fonction z, de
telle sorte qu’on aura

Jx or dq

ou

or , oq or

dv o 7 do
On trouvera également deux-aulres fonctions y et z
satisfaisant aux conditions (5) et (6) et, par suite, aux
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suivantes
or 9z
pdu 7 E + d_zZ =0
dy ’
pd& +q ;; = 0,
op 0z  dq dy 03 o
du du ' du ou du ou_ !
op dz  dq dy  dr 93
P At - — =0,

R ]
dv op av dv dv dy
ce qui démontre I’énoncé.
4. Signalons le cas ou, dans I'équation (8), O se

réduit & une constante a, et observons que la transfor-
mation

SIS
Q=

nous conduit immédiatement au cas ot @ = 1.
Nous rechercherons donc uneintégrale de I'équation

ap
(()) ou dy _‘P*

satisfaisant aux conditions suivantes :

Pour u = u,, cette intégrale se réduira a4 une fonc-
tion donnée V de v; el pour v=y,, 4 une fonclion
donnée U de u. Il demeure d’ailleurs entendu que
U (uy) et V (¢,) auront une valeur commune A, celle
que doit prendre l'intégrale p pour u=u, et v = v,.
Il faudra seulement que la fonction U soit uniforme et
finie dans un domaine contenant le point u, et qu’il en
soit de méme pour la fonction V contenant le point ¢,.

Remarquons d’abord que I'équation

dip
ouow P

(9)
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admet une intégrale p,, définie comme il suit :

(v —ug) (v — vg) (u~uo)2(9—90)’+

(10) pr=1-+ o Tt

(u—uog)(v—vo)"
12,22, ..n?

la somme de cette série étant uniforme et finie, quel-
ques valeurs qu’on attribue aux variables u et ¢.

Elle admet également les intégrales p, et p,, définies
comme ci-dessous :

pr= ‘°f U () de+ =) [ (u—t) U()dt+...
(v —vy)" "(u—l)
-+ o n=n)! U(l)dl—i—...,

1ty

pr=Va ¥ "°f V() di+ ‘;,““VJ =0V () dt+...

(u—uy)n—1, (p-t)n—:

(n—1)! ve (n—2)! V(e)at
(1 — uy)n Y (o — t)n—t
. J Tm=o Vit)det+....

o

On remarquera que la convergence uniforme de ces
deux séries est assurée par les conditions imposées aux
fonctions u, ¢, de sorte que l'intégrale p, définie par
I'équation

P =p:+ ps—Apy,
remplit toutes les conditions du probléme.

Comme, d’autre part, les fonctions p, et p, se
rattachent directement & la fonction p,, il suffit de
connaitre celle-ci pour former l'intégrale p qui nous
occupe.

Si nous désignons, en effet, par p, (u, v, ug, ¢,) le
second membre de I'égalité (10), on a les deux identités
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suivantes :

p2= U+f df_‘ﬁ_‘%%ﬂ"_)u(t)dt,

M=V+/'%ﬁ%¥22wow.

L'intégrale générale cherchée se présente sous la
forme

p=U+V~Am+j‘%£%¥iQWUm

+/'%ﬂ%¥ﬁﬂwom.

5. Montrons maintenant comment I’on peut exprimer
simplement la courbure totale en chaque point de la

surface définie comme il a été dit ci-dessus. [Nous

aurons, a différentes reprises, 'occasion d’écrire une
somme de trois termes, tels que chacun d’eux se déduit
du précédent par une permutation circulaire effectuée
sur les lettres o, y, 3 ou p, ¢, r. Nous abrégerons
en écrivant simplement un terme de cette somme,

récédé du signe . Rappelons d’abord la relation
p 8 PP

suivante ou ds et ds représentent la différentielle de
I'arc et de l'angle de contingence d'une section
normale.

_ dpdr+dgdy+drds

T VPt gt ridsds

d’ot Uon déduit, en appelant R le rayon de courbure
de cette section,

1 —(dpdx+dqdy +drdz)
(11) R= ————— :

R Vo qi+ridse

D’aprés les propriéiés fondamentales des fonctions
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P> 9, ry le numérateur de la fonction inscrite au second
membre peut étre remplacé par

op ox  Op ox

LOu encore par
“op .9q ar (Z( or _ 9q
Sl&;(’dv—g“;)—kdv ‘qa—; U du dy,

-ou enfin par

14 qg r
dp dgq or
2| ou ou ou |dude,
op g o
o0 Odv  dv

-en vertu des formules (5) et (6). Soit A le déterminant
-qui figure dans cette derniére expression.
En vertu de ces mémes relations, nous aurons

_ or 0q ar KAWAE
ae= Sl(eG—rit) tu— (o5 - ril) ]
or og\?
= S <q5z—¢—r5%> du?
or 0 ar q
‘—2S ( ;E— d‘—u> (q;)—l;—)dudv
ar og\?
-+ S <qd—0— 7) dv?.

“Soient
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on aura aussl

= e [+ (5 (2]

op op  0q oq  Or or
=—(p2 ey (2252 977 200
F (P+q+r)(dudv+dudv+dudv

/] 0 or 0, 0 or
+<p£ +q£+rﬁ) (p;‘:— +q£ +r$>;

op\? og\? or\?

= 2 peal i & _—

G= (p*+gq '*"2)[(09) +<dv> +(0v> ]
op oq or\*

la formule (171) devient alors

1 —2Adudy
(12) = = ——— ’
R /pr3gr+ 12 (E du?+ 2 F du do + G dv?)
ou encore
L —2A .
R~ du dv \’
Vo a(E%% _>
pPiq24r? Edo+2F+Gdu

on en conclut que ie rayon de courbure R est maximum
ou minimum, lorsqu’on a

du dy
EZ =02
ou
(13) ﬁﬁ:i.ﬂ.
VG VE

Nous avons donc ainsi obtenu ’équation différentielle
des lignes de courbure de la surface. ‘

Sil’on veut obtenir les expressions des rayons de
courbure principaux, on remplacera dans larelation (12)
du et dv par les radicaux qui leur sont proportionnels
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en vertu de (13) : si donc on appelle R, et R, ces deux
rayons, on aura

1 —A
R~ Vprr gt 12(/EG + F)
1 +4
R: ~ Vpix g+ 12 (/EG — F)
1 — A2

(14) RiR; ~ (p+ g2+ %) (EG—F?)

En partant des valeurs de E, F, G, données au début
de ce paragraphe, on trouve par un calcul simple

op Jp
2 2 " pE s il
P+ g+ Spdu Sl’ao

9 op\? op 9
EG—F2=(p*+q?+r?) Spgg S<£> 0—5 £

Ip N op op d£ 2
SPW b()—u o S<dv)
=(p*+gq* 1)

par suite
1 —1
RiR;  (pr+qi+r2)

relation extrémement simple.

6. Nous terminerons cet exposé en cherchant quelles
doivent étre les fonctions p, ¢, r pour une surface a
courbure constante. En tout point d’une pareille
surface, on doit avoir

pi+gi+ri=a?

(a étant une constante réelle ou imaginaire).
Posons p = ap,, g =aq,, r=ar, et supprimons
les indices, 1l vient

(15) pi4+qr+ri=1u.



Les proportions

1 0p

L o'q
p ouode

1 1
g oudv 1 duov

entrainent comme conséquence

dp 9*p dq d*q +dr atr —o
ou dudv = du dudy  ou dude '

et, en intégrant pav rapport a ¢,

() () ()=

or on peut adopter au lieu de u la variable indé-

du . i .
pendantefﬁ et, par suite, cette équation n’est pas
w)

plus générale que la suivante :

ap\? g \? or\?
(15 (56) = (5%) + () =+
on aura, de facon similaire,
_ op\? dg\? _ [or\*_
) (5) = (58) = (&) =+

La relation (15) nous conduit & considérer p, ¢q, r
comme les coordonnées d’un point mobile sur une
sphére de rayon unité et, par suite, a poser

p = cosgpsinb,
q = sino sinf,

r = cos0.

Par ailleurs, le ds? de la sphére a pour valeur

ds? = dir+ sin?0 do2.

Développons par rapport & du, dv et rapprochons le
développement trouvé des équations (16) et (17), il
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de Nz . de\?
(712) +Sm’0<c71;> =1,

dgNz . de\?
(ch) +5|n*0<-a-;) =1.

L’élimination- de ¢ entre ces deux équations nous
montre que la fonction 0 est définie parl’équation aux
dérivées partielles ci-dessous :

[ 1 a9 \2 4 1 90 \2
4= — —_— —_— — = — —_— —_— —_— .
o [sinf) ‘/ ! (()u> ] Ju [sinﬁ ! (dv) ]

On ne connait pas I'intégrale générale de cette équa-
tion aux dérivées partielles, mais il serait aisé, comme
cas particulier, de trouver la fonction 0 relative aux
surfaces de révolution & courbure totale constante.

vient

(18)

[R8a] )
SUR LES FORCES VIVES EQUIVALENTES;

Par M. Er. DELASSUS.

1. En se placant au point de vue de la Mécanique
analytique, la force vive apparait uniquement comme
fonction des ¢, des ¢’ et de ¢ servant & former les équa-
tions de Lagrange du mouvement du systéme matériel
de sorte ¢u’on est naturellement conduit a considérer
comme fonction équivalente & la force vive toute fonc-
tion des ¢, des ¢' cL de ¢ qui conduil aux mémes équa-
tions de Lagrange.

Nous conviendrons de dire que toutes ces fonctions
sont des forces vives équivalentes et, lorsqu’il y aura
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lieu, nous distinguerons la force vive vraie du sys-
téme.

2. Considérons d’abord un systéme holonéme dont
les équations de Lagrange, écrites avec la force vive
vraie, sont

d (/0T oT
“ i (5g1) i3, =
et soil
T1=T +0,

une force vive équivalente a T; clle donnera les équa-
tions de Lagrange

A d /o(T+0)\ o(T+0)
(2) tﬁ( og; > g,

qui devront étre équivalentes aux équations (1) et cela,
quel que soit le systéme des forces données. Des équa-
tions (1) et (2) on déduitimmédiatement les équations

d /99 09
) i (1) = o, =

qui ne dépendent plus des forces el doivent étre véri-
liées quelle que soit la solution da systéme (r). Mais,

= Ql)

en choisissant convenablement les forces, c’est-a-dire
les Q, on peut obtenirune solution de (1) dans laquelle
les valeurs initiales des ¢, des ¢’ el aussi des ¢” sont
arbitraires, et il en résulte immédiatement que les
équations (3) doivent étre des identités en y considérant
t,les g, les ¢’ et les q" comme des variables indé-
pendantes

00
Les ¢" ne figurent pas dans les -— -5 pour qu 'ils ne

d /09 ]
figurent pas dans les‘-i-t- (dq >, il faut que les — P ne

contiennent pas les ¢ c’est-a-dire que § soit une fonc-
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tion linéaire des ¢’
0=Ayq\+... +Asq, + B;
les identités (3) deviennent alors
JdA; 0B 0A;  O0Agx\ ,
(% = 50) 2 (i — ) ghe=o

et nous obtenons les conditions

JA; OB
W—Eq—,-_o i =1,2,...1n
0A; O0A; _ <k=l,fz,...n>
oqk  0qi

qui expriment que A, ..., A,, B sont les dérivées
partielles, par rapport a ¢,,..., ¢, {», d’'une méme
fonction

8(q1y . 1 qGny t),

c’est-a-dire, d’aprés U'expression de 0, qu’'on a

de
donc
Pour que deuz forces vives d’un systéme holonome
sotent équivalentes, il faut et il suffit que leur dif-
férence soit la dérivée totale d’une fonction des
paramétres et du temps.

3. Le fait que la condition est suffisante peut se
véritier immédiatement en remarquant que de I'égalité

supposée
pp o

0= —

dt

on déduit immédiatement, par des identités bien
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CODnueS, " 9 de %
w=a(%)=

B _ o (de)_ d (on)
og:  og;\dt) dt\ 08
de sorte qu’on a bien les identités
d < 90 )__ b
-ZZ 5;—: d—q-: =0

Ce calcul ne suppose pas le systéme holonome. Dans
le cas des systémes non holonomes, les forces vives
équivalentes véritablement a la force vive vraie ne sont
pas forcément de la forme

de
T+ —
de’
mais nous ne considérerons que celles qui sont de cette
forme simple.

%. Nous devons maintenant nous proposer de cher-
cher comment se transforment les propriétés de la force
vive vraie quand on la remplace par une force vive équi-
valente.

Décomposons la force vive vraie en groupes homo-
génes

T =T+ Ty+ T,

. A as_ . o,
et faisons de méme pour —-; c¢’est une fonction linéaire

dt
des ¢’
de
—d—z =61+Go.
On aura donc
’ , de .
T=T+ 7= Ty + (Ti+8;) + (To+ &),

de sorte que la transformation par équivalence ne
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modific jamais la portion homogéne et du second
degré de la force vive.

Plus particuli¢rement, supposons qu’une force vive
T du systéme soit indépendante da temps; pour qu’une
autre force vive soit aussi indépendante du temps,

) ) de ,
il faut que © necontienne pas ¢; alors — est homogéne

par rapport aux ¢’ et 'on a

T’=T+%§—’:T2+(T,+G,)+To,

c’est-a-dire :

Toutes les forces vives équivalentes et indépen-
dantes du temps ont les mémes portions T, et T,.

De ce que la force vive vraie est une forme essen-
tiellement positive résulte immédiatement que sa por-
tion T, est essentiellement positive. C’est cette pro-
priété de Ts, et non celle de T, qui intervient dans les
discussions de problémes de dynamique; aussi, pour
abréger, nous conviendrons de Dappeler propriété
essentielle de la force vive. Du fait que la transfor-
mation n’altére jamais T, résulte donc :

Toutes les forces vives équivalentes a la force
vive vraie possédent la propriété essentielle de la
JSorce vive.

Enfin, & un point de vue tout a fait pratique, remar-
quons que si, en formant la force vive vraie, nous ren-
controns un ensemble de termes formant une dérivée
cxacle, nous pourrons le négliger; on n’altérera pas
ainsi les équations de Lagrange. En particulier, si nous
rencontrons un terme additif qui soit fonction de ¢ seu-
lement, nous pourrons le supprimer el nous suppo-
serons toujours qu'on I’a fait.
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5. Considérons le cas ou, dans Iexpression
Q1891+- oo QnBQm

du travail virtuel des forces données, les coefficients
Qi ..+, Qn sont les dérivées partielles

oU oU
o ..., &L
0q, " 9gn

d’une fonction U pouvant contenir le temps. Celte
fonction U ne correspond plus & la notion de fonction
de forces c’est-a-dire a celle de travail ne dépendant
que des positions initiale et finale, mais, au point de
vae de la dynamique analylique, cette distinction n’a
pas d’importance puisque, dans tous les cas, on arrive
d la méme forme

d <dT oT _ oU

@i \a71) ~ o7 = iz

des équations de Lagrange lesquelles, en posant

G=T + U,
peuvent s’écrire
d dG) G _
dt\dg})  dq:

ce qui montre que, pour les former, il est inutile théo-
riquement de connaitre les deux fonctions T et Uj; il
suffit de connaitre leur somme G, le calcul séparé de
T et de U apparaissant seulement comme un moyen
commode de calculer G ¢n la décomposant en deux
parties dont on connait des interprélations mécaniques
simples.

Pour ces raisons, nous conviendrons de dire que U
est une fonction de forces et que, s’il y a une fonc-
tion de forces, le systéme de Lagrange posséde une
JSonction génératrice qui est la fonction G.

Ann. de Mathémat., 4° série, t. XII. (Juillet 1912.) 20
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La fonction génératrice ne différe de T que par U
indépendant des ¢'. Si I'on décompose G et T en
groupes homogenes, on aura :

G.2=T27A
G1= Tlv
Go=To+ U;

il résulte de la premiére de ces trois égalités que la
Sfonction génératrice d’un systéme de Lagrange
posséde la propriété essentielle de la force vive.

~ La notion de fonctions génératrices équivalentes est
identique a celle de forces vives équivalentes et les
calculs développés alors nous donnent ce résultat :

Deux fonctions génératrices équivalentes ne dif-
ferent que par la dérivée totale d’une fonction des
parametres et du temps. Toutes les fonctions géné-
ratrices possédent la propriété essentielle de la force
vive. '

6. Supposons que le probléme posséde P'intégrale
des forces vives. C'est que T est homogeéne et que ¢ ne
figure ni dans T, ni dans U; cette intégrale est

T—U=h.

Les équations de Lagrange ont alors une fonction
génératrice T+ U indépendante du temps et, par
suile, une infinité de fonctions génératrices satisfaisant
a cette condition et données par

dae
G—T—%—U—i—-?ﬁ)

. . ae , C .
la fonction © ne dépendant pas de ¢. — étant linéaire

et homogeéne par rapports.aux ¢', on aura donc
G;=T, Gy=1U,
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de sorte qu’au moyen d’une quelcongue de ces fonctions
génératrices indépendantes du temps, l'intégrale des
forces vives prendra la forme

Gg— Go: h.

7. Réciproquement, supposons qu’un systéme de
Lagrange soit tel que, parmi ses fonctions génératrices,
il y en ait qui soient indépendantes de ¢. Soit G l'une
d’elles au moyen de laquelle nous écrirons les équa-
tions de Lagrange. Si nous multiplions ces équations
respectivement par les ¢/, puis qu'on additionme et
qu’on fasse les réductions indiquées par M. Painlevé (*),
on arrive a ’équation

d
; %(Gﬂ—GO) =0,

c’est-a-dire a I'intégrale premiére
G, — Gy = const.

Cette intégrale a rigoureusement la méme forme que
celle des forces vives exprimée au moyen d’une fonc-
tion génératrice et I'on peut montrer, ce que nous ferons
dans un Mémoire ultérieur, que le role particulier de
I'intégrale des forces vives dans I'intégration tient uni-
quement & cette forme. Pour ces raisons, nous convien-
drons d’appeler intégrale des forces vives l'intégrale
précédente qui existe quand G est indépendante de ¢
en remarquant que les hypothéses restrictives relatives
a l'existence de !'intégrale ordinaire des forces vives
servent simplement amettre en évidence un cas fréquent
ou l'on sail @ priori qu'il y a une fonction génératrice

(') PAINLEVE, Legons sur l'intégration des équations de la
mécanique, p. 89.
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indépendante du temps, fonction dont on sait former

Pexpression immédiate au moyen de la force vive vraie
et de la fonction de forces.

8. On est ainsi amené a se poser la question sui-
vante :

Ayant calculé les fonctions T et U et formé la
Sonction génératrice T + U qu’on suppose dépendre
de t, reconnaitre si le systéme de Lagrange admet
des fonctions génératrices indépendantes de t et les
Sormer?

Soit

G'=G+ =
-+ i’
une fonction génératrice indépendante du temps. On
devra avoir

o6 _
. ot
c'est-a-dire
G Jd (de\ d 00"
=z =wl—%)

.. , oG . L.,
donc la condition cherchée est que 7 Soit une dérivée

. . d T
tolale exacte. Cetle condition exige que d—? soit linéaire

par rapport aux ¢', donc que la portion G, soit indé-
pendante de ¢. Sl en est ainsi, on aura

oG  9G, 9G,

ot ot ot ’
et le calcul de vérification & faire pour voir si c’est une
dérivée totale exacte est bien connu.

iy . G i
Supposons cette condition remplie; — seraladérivée

oat
\olale‘—{\—v-d’une fonction W qu’ f |
n qu'on formera, par le



(1309 )
procédé connu, au moyen de quadratures successives
et 'égalité écrite plus haut s’écrira

adw d ( de)

dt ~ dt ot
d’ou

00 )

-2)7 =—W + K,

ce qui donnera © par une quadrature partielle. Ainsi :

Lexistence des fonctions génératrices indépen-
dantes du temps se reconnait par de simples di fféren-
tiations et ces fonctions s’obtiennent ensuite par des
quadratures.

9. La condition précédente permet de généraliser
encore plus la notion d’intégrale des forces vives.

Le calcul de M. Painlevé, fait sans aucune hypothése
sur la fonction génératrice, conduit & V'équation

d oG
-(T[.(Gl_ Go)—|— W =0,

. . oG C e
d’ou 'on conclat que si 57 estune dérivée Lotale exacte

oG _ aw
ot~ dt
On a une intégrale premiére

Ge—Goy+ W = h.

Nous remarquons immédiatement que I'’hypothése
faite est précisément celle qui est relative 4 I’existence
des fonctions génératrices indépendantes du temps.
Ces founctions seront données par

de L)

G=G+-Ti—t) -d—t=-—W+K,
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d’ou 'on déduit

Gy =Gay Gy =Gyt 52 =G W +K,

ce qui permet d’écrire I'intégrale considérée sous la
forme

G, — G} +K =k,
ou

G, -— G§ = const.,

"qui est celle d’'une intégrale des forces vives. Donc :

Quand ily a une fonction génératrice, l’intégrale
de M. Painlevé entraine l'existence de fonctions
génératrices indépendantes du temps au moyen
desquelles elle devient une intégrale des forces
vives.

Cetle remarque montre que tousles cas d’intégration
qui supposent Pexistence de 'intégrale ordinaire des
forces vives s’appliqueront sans aucune modification

au cas de lintégrale complétement généralisée de
M. Painlevé.

10. Ce qui précéde nous améne a dire un mot des
cas de décomposition de l'intégrale des forces vives
dans sa forme générale.

Il arrive trés fréquemment que, dans un probléme a
fonction génératrice, les paramétres se répartissent en
plusieurs groupes (a,, as,...), (bs, bs,...) et que la
fonction génératrice immédiate, ou cetle fonction con-
venablement modifiée par équivalence, se décompose
sous la forme -

G=Gys+ Gp+-...

G, ne contenant que les @ et les @', G; ne contenant
que les b et les &/, etc. Il est alors évident que le sys-
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teme de Lagrange se décompose en sysiémes partiels
ayant respectivement Gg, Gg, ... comme fonclions
génératrices, s’intégrant indépendamment les uns des
autres, et délerminant chacun les paramétres d’un
groupe ; il est d’ailleurs facile de démontrer que Gg, Gy
possédent, comme G, la propriété essentielle de la
force vive, donc sont de vraies fonctions génératrices.
Si G est indépendant de ¢, on a P'intégrale des forces
vives
Gy —Go=h;

mais Gg, Gg,... sont alors forcément indépendants de ¢
de sorte que chaque systéme partiel donne une inté-
grale des forces vives. On obtient ainsi

(Ga)‘z—(Ga)O’: hu
(Gpr2—(Golo= hy

et, si I'on fait la somme de toutes ces intégrales, on
retrouve 'intégrale des forces vives du systéme total de
Lagrange. Donc:

S’il y a séparation des paramétres en plusieurs
groupes, le systeme de Lagrange se décompose cn
systémes partiels indépendants; si U’intégrale des
Jorces vives existe pour le probléeme total, elle se
décompose en plusieurs intégrales de forces vives
correspondant aux divers groupes de paramétres.

En particulier, si un paramétre est isolé c¢’est-a-dire
forme un groupe a lui seul et si le probléme total posséde
Pintégrale des forces vives, on aura cctte intégrale
pour le groupe composé de ce seul paramétre a, c’est-
a-dite une équation

fla)ar—g(a)=h,
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de la forme classique
a'*=F(a),

qui déterminera ce paramétre indépendamment de
tous les autres.

Il est 2 remarquer que si G dépend de ¢, on ne peutl
en conclure que Gg, Gy... dépendent tous de ¢; il peut
arriver que certaines portions de G soientindépendantes
de ¢, mais elles ne peavent I'étre toutes. Les portions
Gg,... indépendantes du temps donneront des inté-
grales de forces vives, de sorte que :

Sl y a séparation des paramétres en plusieurs
groupes, il peut arriver que le probléme total
n’admette pas U’intégrale des forces vives et que,
néanmoins, {’on ait une ou plusieurs intégrales de
Sforces vives fournies par les problémes partiels.

[04g] ,
SUR LA DEFORMATION IN’I“Il\'IMIZI\I'I1 PETITE
DES SURFACES REGLEES;

Par M. J. HAAG, a Clermont-Ferrand.

Je me propose de développer ici quelques résultats
intéressants qui serattachent a la déformation infini-
ment petite des surfaces réglées et que j'ai résumés en
partie dans deux Communications a I’Académie des
Sciences (19 avril et 24 avril 19og).

I.

1. Rappelouns d’abord (') que les équations de toute

(') Voir G. DarBoux, Théorie des surfaces, t. IV, p. 24 etsuiv.
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surface (S) non développable rapportée a ses lignes
asymptotiques peuvent s’écrire

9 o8 9
x=[(627§——030 >da <egd§ 0, *)d@,

o/

{
*) ’ y=f (0G0 ) aa— (0, G —0.52) a

0?
() e (0 )

ou B, 6, 6, sont trois solutions d'une équation de la
forme

etreprésentent d’ailleurs des quantités proportionnelles
aux cosinus directeurs de la normale en M («, 3), et
liées, de plus, par la relalion

02+ 02+ 02=, —RR,

ouR et R’ désignentles rayonsde courbure principaux
de la surface en M. De sorte que, pour une surface
et un point donnés, ces trois fonctions ont des valeurs
parfaitement déterminées ().

Si @ est une solution quelconque de (B), la surface
(Sy) la plus générale qui correspondea (S)avec ortho-
gonalité des éléments est donnée par les formules

- f(()l?g--—wég—’->da (01’(’;{; 0P>dp
90, 0 o

)y,__f(ﬁg——w ’)da <e, o‘; d;)ap
ow 09, ow 003

o= f(ng e T)u-(nG-o5)

(') Il convient cependant de remarquer que la surface ne change
pas si I’on change les signes des 6; et qu’elle se transforme en sa
symétrique par rapport & lorigine si l'on multiplie tous les 6,
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Remarquons que deux solutions différentes v et o'
de (B) ne peavent jamais donner la méme surface (S,),
car s’il en était ainsi, on aurail

6, g(-(—wga_—g)-)—((o—-w')i—(::=o,

et les équations analogues en 8, et 0;. Ces équations
ne sont compatibles que pour v = ', car les déter-
9y g, 9%
ox 2 0a
trois nuls, sans quoi la surface (S) se réduirait a une

minants tels que 6, ne peuvent étre tous

courbe.

2. Cela posé, cherchons ce que doivent étre les
fonctions 6, 8, 0,5, & pour que la surface (S) soit une
surface réglée, dont les génératrices rectilignes aient
pour paramelre o.

Considérons le point m de coordonnées ,, 6, ;.
La droite Om est parallele a la normale en M a (S);
elle est donc dans le plan (=) mené par O perpendi-
culairement & la génératrice D qui passe par M. Ce
plan enveloppe, lorsque a varie, le cone sapplémentaire
du cone directeur de la surface. Nous supposerons que
ce dernier ne se réduit pas a un plan, nous réservant
d’examiner plus tard le cas des surfaces a plan
directeur. Dans ces condilions, soient a, b, ¢, les
coordonnées (fonctions de o) d’un point quelconque n
de la caractéristique du plan (w), c’est-a-dire de la
perpendiculaire OA au plan asymptote de (S), lequel
est, comme on sait, paralléle au plan tangent au cone

par \/ —1. Ceci prouve en particulier qu’on ne peut avoir toutes
les surfaces réelles a lignes asymptotiques réelles en se bornant a
considérer les solutions réelles de (B); il faut leur adjoindre les
solutions imaginaires pures.
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directeur. Quand a varie, n décrit une courbe tangente
au plan (), desorte que les dérivées a', ¥/, ¢’ de a, b, c
par rapport a a sont les coordonnées d’un poiut de (=)
non situé sur On ('). 1l suit de la que 6, 6;, 05, qui
sont les coordonnées d’'un point de (), peuvent se
mettre sous la forme

(1) O =2a+ pa, 05=Ab + pb', 6= Ac + pc',

2 et @ désignant deux fonmctions convenables de a et 3.
Ecnvons que §, vérifie (B)

('z)a(dd;\a A‘k)ﬁ-a’(% gc;ﬁ ky>+a3ﬁ—o

On a deux équations analogues oblenues en rempla-
cant a par b el c. Remarquons & présent que le déter-
minant || @ @ @’ || ne saurait étre nul, sans quoi la
courbe licu de n serait dans un plan passant par O et
la droite D serait constamment perpendiculaire & ce
plan, ce qui n’est pas possible, puisque la surface (S)
serait alors cylindrique. Les équations telles que (2)
entrainent donc les suivantes

N c))\ 02

(3) 00;3 — k) =o, 03 dzd@ —kp=o, —-—-o

o

La derniére nous montre que p ne dépend que de a.
Rappelons-nous maintenant que le point n a été choisi
arbitrairement sur la droite OA; nous pouvons donc,
sans rien changer a la surface (S), remplacer a, b, ¢,
par ga, ob, pc, p étant une fonction quelconque de a.
Dans ces conditions, 8,, par exemple, devient égal &

5 / ' Sip

(P +pp')a+poa’. Comme p ne peut étre nul (sans
quoi Om décrirait un cbne, la surface serait dévelop-

(') Ceci serait précisément en défaut si la surface était a plan
directeur, car, dans ce cas, la droite OA serait fixe, puisque
perpendiculaire au plan directeur.
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pable), on peat prendre pp =1. Cela revient évidemment
a supposer w.=1 dans les formules (1). Moyennant
cette hypothése, les équations (3) se réduisent a

‘ N
(/.) m—l\).—-o, '(-)—'6-—/(—0.
Eliminons £, il vient .
92 N
(5) mg—b—g)\zo.

L v gl S .
Inleglons par rapport a 15 :

(6) on 1

en appelant A, une fonction arbitraire de «. Nous
obtenons une équation de Riccati, dont nous connais-
sons uue solution particuliére A,. En I'intégrant par la
méthode habituelle, on est conduit, pour éviter les
quadratures, & poser successivement

L’intégrale générale de I'équation (6), et par suite
de (5), s’écrit alors
All 2AI
A=
AT A+B’
ou A et B sont deux fonctions arbitraires de « et {3
respeclivement. La deuxiéme équation (4) nous

donne ensuite
2A'B’

k=)

Nous pouvons d’ailleurs simplifier ces expressions
par un choix convenable des paramétres « et 8, qui,
jusqu’a présent, ont été supposés pris d’une maniére
quelconque. Si I'on remarque qu’aucune des fonctions
A et B ne peut se réduire a une constante (comme on
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le voit en portant, dans une telle hypothése, la valeur
de ) dans les expressions (1) de 8,,8,,9;), ona ledroit
de choisir A pour paramétre « et B pour paramétre 8.
Dans ces conditions, on a

2 2
, e
puis,
2a , _—2b , —2c ,
(7) 01—-—a+p+ay ez_a_:ﬁ+b’ 03—1_*_@4-0-

Quand a I'équation (B), elle devient

. 020 20
) 0208 = (a1

On reconnait 'équation a invariants égauzx dont
Uintégrale générale est du second rang (cf.
G. Duarsoux, Théorie des surfaces, t. 11, p. 143).
Celte intégrale générale est, comme on sait,

a(A + B)

a+ B

(9) — (A'+B"),

cn appelant A une fonction arbitraire de . et B une
fonction arbitraire de .

Si nous portons maintenant ces valeursde §,, §,, 9,
w dans (A) et (G), nous obtenons sans difficulté

2(cb bc)+f(b, b da,

o+
(D) ¢ y—o(a:_:ga)—i—f(ca —a'c") da,
_z(ba—~ab) Y o
_—m—+f(ab—ba)d1,

. '"—a' A —aB —a'B
wl=a’B’+ l(aA a’A a a )+f(A’a”—A”a')d1,

o+ f
2(bA'—b'A—bB —b B)—s-f(A’b”——A"b')da,
2+ B

‘)21=C'B’ 2(CA —CA_CB—CB)+f(A/C”—A”CI)d1.

a-+B

(B) | yy=b'B' +
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Dans ces formules, les trois fonetions a, b, ¢ peu-
vent étre choisies arbitrairement, sous la seule condi-
tion '

(10) d=fla a a'[[#o;

car, quelles qu’elles soient, 8, 6,, 0, vérifient bien (8)
et, en outre, les lignes (a) de la surface représentée
par les équations (D)sont visiblement des droites.

Finalement, nous avons, en (D), les équations de
la surface réglée (S)la plus générale n’ayant pas
de plan directeur et rapportée a ses lignes asympto-
tiques; les équations (E) définissent la surface (S;)
la plus générale qui corresponde & (S) avec ortho-
gonalité des éléments.

M. Goursat est arrivé a ces résultats dés 1896, en
cherchant des.applications de certaines propriétés géné-
rales des équationslinéaires ct dela méthode de Laplace
(Sur les équationslinéaires et la méhode de Laplace,
American Journal of Mathematics, t. XVIIT, n° 4;
Surles lignes asymptotiques, Bull. de la Soc. math.
de France, 1896 ; Comptes rendus,gmars 18g6). Il a
méme indiqué le moyen de se débarrasser des quadra-
tures qui figurent dans les deux groupes de formules,
ce qu'avait d’aillears déja fait M. Kceenigs, pour les
surfaces réglées seulement, par une méthode entiére-
meut différente (Comptes rendus, 2 janvier 1888).

3. Avant d’aborder I’étude des propriétés géo-
métriques qu'on peut déduire des formules pré-
cédentes, nous allons présenter quelques remarques,
qui seront trés utiles dans la suite.

Posons-nous d’abord la question suivante : Une
surface réglée (S) étant donnée, y a-t-il plusieurs
maniéres de mettre ses égquations sous la forme (D)?
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Autrement dit, peat-on trouver trois nouvelles fonc-
tions a,, by,c, de a donnant naissance a la méme
surface que les trois fonctions a, b, ¢? S'il en est ainsi,
a tout point M de (S) correspondent deux systemes
de coordonuées (a,B) et (x4,83,), et comme, pour
chacun d’eux, les lignes coordonnées sont les asymp-
totiques, o, est nécessairement une fonction de a et
B, une fonction de 3. De plus, les fonctions 8/, 6, 6 de
a9, Po qui correspondent an deuxiéme systéme prennent
nécessairement, au point M, les mémes valeurs que les
fonctions 6, 0,,0; de o, 3 ou que les fonctions — §,,
— 6., —8;, comme cela résulte de la signification
géoméltrique de ces quantités (n° 1) ().
On a donc, par exemple, l'identité suivante

(11) 01 (a0, Bo) = 01(2, B).
En outre,
920, 0y o
(l')) m~k(a,3)‘0,, m—/\(ao,ﬁo).ﬁ'.

Or, de (11) on tire

920, 020, da dj
04008, 0208 dx, dp,’

en portant dans (12), il vient
k(x, B) dadB =k (2, Bo) dxodfs.

Le changement de variables (a |a,, 3|Bs) doit donc
transformer en lui-méme ’élément linéaire

(13) ds?=k (2, 3) dxdp.

(') Cette condition necessaire est aussi suffisante, car les
formules (A) conservent la méme forme aprés tout changement de
variables qui ne change pas les lignes.coordonnées.
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Or, dans le cas actuel, cet élément linéaire est

2dadf

W =nre

On reconnait I'élément linéaire d’une sphére et I'on
sait que la transformation la plus générale qui le laisse
invariant est donnée par les formules

max—+n m@ —n
= —— e —_—
(14) N parq’ T TpB+g’

ou m, n, p, q sont quatre constantes arbitraires (').
Si maintenant on remplace, dans (11), 6, et §, par
leurs valeurs tirées de (7), on a l'identité

2a, da, _—2a  da

T aer Bo dn At B dx

d’olt l'on tire, en tenant compte de (14), Punique
condition

. mg — np
—_ l ————
(15) W= par gy
Si P'on avait supposé §, = —18,, on serait encore

arrivé a (13), donc a (14); seulement (13) aurait éié
remplacé par
(16) ay=—a 4 —"P

(pr+q)*

Finalement, la question que nous nous étions posée
est entiérement résolue et admet la réponse suivante :
La surface (S) étant donnée sous la forme (D), la
maniére la plus générale de Uobtenir sous la méme
Sorme consiste & faire le changement de variables
(14) et a remplacer les fonctions a, b, c de o par les
Sfonctions ay, by, ¢, de 2y déduites des précédentes
par les formules (15) ou (16).

(1) Cf. Darsoux, loc. cit., t. I, p. 30, 31.
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4. On peut se poser une question analogue pour la
surface (S,): Les fonctions a, b, ¢ étant données,
peut-on trouver deux couples de fonctions (A, B) et
(A, B)) qui, substituées dans les formules (E),
donnent les mémes valeurs pour z,y,5,?

Nous savons (n°1) que les valeurs correspondantes
de v doivent étre nécessairement identiques. D’ou il
vésulte, suivantla formule (g), que les différences
Ay=A,— A, B,=B, — Bdoiventsatisfaire a I'identité

2(A:+ By) =0

Ay By — 20t

Or, si l'on donne 4 3 une valeur numérique quel-
conque, on a une équation différentielle linéaire du
premier ordre en A,; en l'intégrant, on constate que
A, doit étre un trinome du second degré en a. De
méme, B, doit étre un trinome du second degré en B.
En employant la méthode des coefficients indéterminés,

on arrive immédiatement au résultat suivant :

Pour que les fonctions A,,B, donnent pour z,,
Y1y 31, les mémes valeurs que les fonctions A, B, il
Saut et il suffit qu’on puisse trouver trois constantes
m, n, p telles que

(17) Ay=A +ma+ na+p, Bi=B—mfB2+nfd—p.
3. Nous terminerons nos remarques préliminaires
par Pintrodaction de 'équation différentielle
(18) 0”4+ X0"+ 8" 496 = o,
dontles coefficients A, u, v sont entiérement déterminés
y Uy

par la condition que I’équation soit vérifiée par les trois
fonctions linéairement indépendantes a, b, c.

Cette équation caractérise la surface (S), aux
Ann. de Mathémat., 4* série, t. XII. (Juillet 1912.) 21
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transformations homographiques prés qui conser-
vent le plan de l'infini.

En effet, soient a,, by, ¢y trois quelconques de ses
solutions, qui soient linéairement indépendantes, on a

sao-—:ma—km,b—s—mgc,
(19) ? by=na + nd + nsc,
co=pa +pib + psec,

m, my, ..., p,» désignant neufl constantes dont le déter-
minant n’est pas nul.

Calculons les valeurs correspondantes de z, ¥, 30
que donnent les formules (D). A cet effet, nous
remarquons que les quantités ¢, by —byc, et
¢y by— by cy peuventétre regardées comme les produits

0
. . ny .
respectifs de la matrice par les matrices
P P2
a b a b ¢ .
ctfl - On en conclut que, si M,
a O ¢ a” b

M,, M,, ...,P, sont les imineurs de A velatifs a m, my,
Ma, ..., P2, on a en négligeant les constantes additives
qui proviennent des quadralures,

ry= Mz + M,y + M3,
(20) cro=Nax+ Ny + Nysz,
50 =Pax+Pyv + Pys,

formules qui définissent bien la transformation homo-
graphique la plus générale conservant le plan de
infini. )

On peut uliliser cette proposition pour simplifier
L'étude des propriétés projectives de S. Par exemple,
cherchons la condition pour que la ligne (B3) soit une
droite. D aprés ce qui précéde, cetle condition ne doit
intéresser que les fonctions A, u, v. Pour l'obtenir
rapidement, nous pouvons supposer qu'on aramené la
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droite en question a étre dirigée suivant Oz. Si nous
écrivons alors que la normale le long de la ligne (B)
reste perpendiculaire 4 Oz, ce qui s’exprime par ;= o,
nous obtenons (1)

d’ou :
c=m(a—+ P)2 (m = const.).

En portant dans (18), nous obtenonsla condition cher-
chée ’

(21) 27x+2(x(a+bﬁ)+vb(a+B)’:o.

Pour que la surface posséde deux droites (B), il
faut et suftit que I’équation (21) admette deux racines
constantes en 3, ce qui donne les deux conditions

2 A L 2pe
-_ -+ 2= const.
v

w
~ + o = const.,
N v

Pourque la surface (S) soit du second degré, il faut.
et suffit que I’équation (21 ) soit vérifiée quel que soit {3 ;

d’ou les conditions

A=p=v=o.

Dans le cas ot il y a une seule droite (3), on peut,
grace a la transformation (14), supposer qu’elle corres-
pond a la valeur B =o; la condition (21) se réduit
alors 4 v =o. Il peut arriver que cette droite compte
pour deux, c'est-a=dire que la valeur correspondante
de B soit racine double de I'équation (21); en suppo-
sant loujours celte racine infinie, cela s¢ traduit par les

(') Cette condition évidemment nécessairc est aussi suffisante,
car si‘le plan tangent en chaque point de la ligne ($) est paralléle
a Oz, cette ligne est forcément une droite paralléle a Oz, puxsque
tous ses plans osculateurs sont paralléles a cette droite.
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conditions =y = o. Ce cas se distingue du précédent
par le fait que la variation du plan tangent le long
de la droite considérée obéit a la loi de Chasles. Geci
peut s’établiv d’'une maniére intuitive en supposant que
la surface posséde deux droites () infiniment voisines.

Quant a la démonstration analytiqne rigoureuse, elle
peut se faire de la maniére suivante. Prenant, comme
plus haut, la droite pour axe des z, on trouve sans
peine que le plan tangent au point M (o, ®) a pour
équation

ad X+ 0¥ =o.

d’autre part, la cote de M est
z=f(a'b”—b’a")d1.

Le lecteur établira aisément que pour que 3 soit

. . b . ’
fonction homographique de = il faut et suffit qu’on

ait une identité de la forme.
ma' + nb'=p (m, n, p = const.).

On peut d’ailleurs, par une substitulion telle que
(19), supposer n= o, c’est-a-dire égaler @’ a une cons-
tante, d’ailleurs non nulle a cause de (10). En portant
cette hypothése dans (18) (ou l'on suppose, bien
entendu, v=0), on trouve immédiatement que la con-
dition cherchée est p = o.

IL

Nous allons maintenant passer en revue les consé-
quences diverses qui découlent des formules (D) et (E),
des remarques précédentes et des propriétés générales
de la déformation infiniment petite des surfaces.
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6. Etude de(S).— Voyons, en premierlieu, comment
les équations (D) permettent d’étudier les principales
propriétés de la surface réglée.

Rappelons d’abord que les cosinus directeurs de la
perpendiculaire au plan asymptote sont proportionnels
a a, b, c; nous les désignerons par 2,2, en posant,
par suite, PRP

(22) p?=a?+ b+ c2.
Ceux de la génératrice sont, de méme,

cb' — bc' ac' — ca' ba'— ab’

(23) o ’ o ’ o ’
avec

(24) pi=S(cb'—=be' =0 (a*—p"),

en posant

(25) o?=qa't+ b2+ c'2,

Enfin, ceux de la normale en M sont

9, 9, 03
b 22,
P2 P2 P2

On sait d’ailleurs que p; =—RR’ (n°1). On sait
aussi, d'apres la formule d’Enneper, que g} est égal,
au signe prés, au rayon de torsion < de la ligne (3) qui
passe par M. Cest ce qu'il est aisé de vérifier par une
méthode directe, qui vous donnera, du méme coup, le
signe de .

D’aprés ce qui a été vu au n°3, nous pouvons nous
borner & considérer la ligne § = . La courbe étant
supposée orientée d'une maniére quelconque et s dési-
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gnant son arc, les cosinus directeurs de sa tangente et
de sa binormale sont respectivement

LW 4 T da r " l”da U R4 r_n da,
(bc—cb)E, (ca——ac)m, (ab—ba)m,

A

0, a 6, & 0; ¢
Pz @

On en déduit ceux delanormale principale, qui doit
former un triédre trirectangle positif avec les deux
autres droites; le cosinus relatif 8 O.x est, par exemple,

1 dx

e ds

1 da \ da
=——(dosd—a'e®)=—(adsd —d"s ).
ds

l:bl(a/bll_bla//)_cf(cla”_alcll)]

s ds

En appliquant une des formules de Frenet, on a alors

au al q! a/ c’___ a”G R

s gt T ’
d’olt = = — 2. Donc, dans le cas général, on a
(27) T =—pi.

Cherchons maintenant le point central M,. La
normale en ce point doit étre dans le plan asymptote;
d’ou la condition

afy+ b0+ cl3 = o,

dont on tire
2

(28) Bo==L —a.
P .
En portant cette valeur dans (D), on aura les équa-
tions de la ligne de striction.
Calculous le paramétre de distribution . La géné-
ratrice étant orientée par les cosinus directears (23),
la mesure algébrique 4 du vecteur (MyM) est

. . 22 _ 2 _p_’ .
(29) h—9‘<a+p 1+g0)—91(“+9 9)
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D’autre part, soit V 'angle du plan central avec le
plan tangent en M, angle mesuré autour de la géné-
ratrice orientée. On a, par définition,

h
w = H.
Or, pour calculertangV, il nous suffitd’avoir les cosi-
aus divecteurs de la demi-droite gqui forme avec la géné-
ratrice et la normale au plan asymptote un tri¢dre tri-
rectangle positif. Comme nous connaissons les cosinus
de ces deux derniéres droites, nous pouvons en déduire
ceux de la premiére; le cosinus relatif a Oz, par
exemple, est

[ , , , ,
;;-‘[b(ba —ab')—c(ac'—ca )]

r '

1 a —_—ag

:—[a’p2—apg’] BN Skl
P P

hy

On a alors

Par conséquent,

(30) B =p'2—0s2 (1)

La comparaison des équations (24), (26),(27), (29

(') On peut remarquer que ce paramétre de distribution est essen-
tiellement négatif, tant que a, b, c sont réels. Il cn esl de méme du
rayon de torsion <t calculé plus haut. Mais, ceci ne doit pas nous
étonner, car nous savons (n°1) qu’en ne donnant que des valeurs
réelles 4 a, b, ¢ on n'obtient pas toutes les surfaces réelles. Pour
les avoir toutes, il faut admettre les valeurs imaginaires pures, ce
qui donne alors un paramétre de distribution et un rayon de torsion
positifs.
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et (30) nous conduit alasuivante

d’ou la formule Lrés élégante

(31) h?+ »2= 7w,

qui peul sc traduire par la construclion suivante :

Etant donnée une surface réglée, soit M un de
ses points et My le point central de la génératrice
qui passe par M. Elevons en M, une perpendi-
culaire A a MM et portons-y une longueur MoK
dgale au paramétre de distribution. Le plan mené
par M perpendiculairement & KM rencontre A ern
un point K’ tel que KK’ est égal au rayon de torsion
en M de laligne asymptotique qui passe par M. De
plus, ce rayon de torsion a méme signe que le para-
métre de distribution.

Bien entendu, on peut dive aussi que la courbure

totale en M est égale @ — ——. En particulier, la
KK’
. 1
courbure totale au point central est — el

La formule (28) nous donne immédialement la
solution du probléme suivaul: Trouver les surfaces
réglées dont la ligne de striction est en méme temps
ligne asymptotique. En effet, nous pouvons supposer
(u* 3) que cette ligne asymptlotique correspond &
8 =, ce qui nous donne la condition nécessaire et
suffisante p' = 0. On aura toutes les solutions duw
probléeme en prenant pour a, b, c trois fonctions
quelconques vérifiant U’ identité

al+ b2+ cr=1.
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Dans ce cas le paramétre de distribution est égal,
en grandeur et en signe, au rayon de torsion de la
ligne de striction. Il se réduit d'ailleurs a — o2, de
sorte qu’il sera constant st 'on prend

a'? 4 b'? 4 ¢'? = const.

7. Etude de (S,). — Les seules propriéiés de cette
surface qui semblent intéressantes sont relatives aux
lignes (a). A priori, celles-ci doivent éire planes, le
plan de chacune d’elles étant perpendiculaire & la géné-
ratrice correspondante de (S). Clest ce qu'il est aisé de
vérifier sur les équalions (E). Posons, pour abréger,
nous avons

uzf(A’a"—— A'd)da, v=f(A’b"—A”b')dx,

w =f(A’ " — A"c')da;
(32) (xy—u)(cb'—bc')
+(y1—v)(ac'—ca')+ (31— w) (ba'— ad’) = o.

Telle est 'équation du plan de la ligne («), si l'on
regarde x,, ¥, 5,, comme les coordonnées courantes.
Ce plan enveloppe une développable A dont le cone
directeur est supplémentaire de celui de (S). Elle
dépend de la fonction arbitraire A, ce qui incite a
penser qu’elle constitue la développable la plus géné-
rale admettant le céne directeur précédent. Effec-
tivement, si I'on se donne cette développable, il faat
déterminer la fonction A de fagon qu’on ait

(33) u(eb'—bc')y+v(ac'—ca')+ w(ba'—ab')y=p,

p désignant une fonction donnée de a.
Si P'on remarque que

u=Aa—2Aa+ 2fA”'a da,
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I’équation précédente s’écrit
(cb'—bc") [A"’adz—i—(ac'—ca’)[A’"bda
—+ (ba' — ab’)fA”’cda =%.

Si on la dérive trois fois de suite, en remplagant, au
fur et a mesure qu’elles apparaissent, les dérivées
troisitmes de @, b, ¢ par leurs valeurs tirées de (18),
on obtient, Lous calculs faits,

2A"3=—A(Ap'+pp+-p" )+ p—hp'—Np' —pp'—pp—p".

Donc, se donner la développable A équivaut a se
donner A” et méme A, puisqu’on peut, sans changer
(S,), njouter a cette fonction an trinome du second
degré quelconque en a, quitte & modifier B (n°4).

En particulier, s/ la développable A est un céne de
sommet O, ona p =o0; on peut donc prendre A =o.
Alors w«, ¢, v sonl des constantes nécessairement
toutes nulles, car, si elles ne 'étaient pas, I'équation
(33) exprimerait que (S) admet un plan directeur.

On voit quel est le role de la fonction arbitraire A.
Celui de B est, au contraire, de fixer la nature des
lignes planes (a). Mais, on ne peut indiquer, d’une
maniére géométrique simple, quel est le degré de
généralité qui subsiste dans le choix de ces lignes
quand on s’est donné la développable enveloppe de
leurs plans, c¢’est-a-dire la fonction A. Toul ce qu’on
peut affirmer, c’est qu’il est permis de choisir arbi-
trairement 'une d’elles; la fonction B est alors déter-
minée par une équation différentielle du premier ordre,
de sorte qu’il semble exister encore une constante
arbitraire dans la solution. Sans vouloir approfondir
cette question, qui ne présente d’ailleurs pas un bien
grand intérét, nous ferons seulement observation sui-
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vante : St¢ une ligne (a) particuliére est une droite,
les autres sont aussi des droites et la surface (S))
est développable.

En effet, si 'on écrit que z,, yy, 5, satisfont aux
équations des projections de la droite sur les plans de
coordonnées, on obtient des relations de la forme

, 2B B’ m; _
(34) m,(B —m>+rngm+a—_*_—p+nu—o,

\

ol les m; sont des constantes, les deux premiéres
n’étant pas nulles pourl’une au moins des projections.
Cette équation linéaire s'intégre aisément et donne
pour B un trinome du second degré en 83, lequel peut
étre réduit a zéro, quitte a changer A (n°® 4). Or, s
Uon fait B= o dans les équations (E), on reconnait
sans peine qu’'on obtient une surface développable dont
I'aréte de rebroussement a pour équations

A’ ’ ’ . A’ ' i
x=u+X(aA—-aA), _y_v-i—-x(bA—bA),

3=w + AX(cA’.—c’A).

On pourrait déduire de la une solution du probléme
de la déformation infiniment petite des surfaces déve-
loppables, pour lesquelles la méthode des formules de
M. Lelieuvre est en défaut. Mais, nous ne pouvons le
faire ici, d’autant plus qu’on peut résoudre directe-
ment la question en pactant de la déformation finie.

(A suivre.)

CORRESPONDANCE.

M. E.-N. Barisien. -- Propriété des podaires. — Je vous
signale la propriété suivante, qui est peut-étre nouvelle. On
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sait qu'une courbe fermée ou une courbe avec asymptoles &
distance finie a la propriété d’avoir comme podaires des.
courbes fermées.

Le lieu des points dont les podaires par rapport & une
de ces courbes ont une aire donnée, est une ellipse.

Dans le cas de la courbe a centre, le lieu devient un cercle
concentrique & la courbe. Ce cas particulier découle d’un
théoréme connu, dia a Steiner.

Soit O le centre d'une courbe et P un point de son plan. Si
S est 'aire de la podaire relative au centre O, et U l'aire de
la podaire relative au point P, on a

. —F”
U=s+x20.

La condition U = constante, entraine OP = constante.

SOLUTIONS DE QUESTIONS PROPOSEES.

2162.

(1910, p. 432.)

Soient ABCD un tétraédre régulier, E le milieu de BG,
F le milieu de DA ; on méne dans le plan EDA deux droites
EU et EK, faisant avec EF des angles de 30°.

St l'on projette en P, Q, R, S, un point M de l’une de
‘ces droites sur les plans des faces du tétraédre, la
sphére PQRS est tangente ¢ la sphére inscrite.

Si¢ M est sur EH, le point inverse M' (qui a méme sphére
pédale) est sur EK. Lenveloppe de la droite MM’ est une
ellipse tangente aux droites EH et EK aux points H et K
etdont le cercle principal est tangent aux droites ED et EA
en D et A, le point F est foyer.

Le lieu du centre de la sphére pédale est une hyperbole
ayant méme axe focal que Uellipse précédente et dont les
asymptotes sont paralléles aux droites EH et EK; le
milieu O de EF est un foyer. SonpaT.
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SOLUTION

Par M. R. Bouvaisr.

Soit @ la longueur de Paréte du tétraédre donné, nous
avons

EA=ED=-‘ﬁ, DA =a;

2
si 'on pose
. PN
FEA =0,
on a B
I 2
sinf = — cosh = —;
V3 V3’
posons

EM =/, EM' = 1',

les deux droites EM, EM' devant étre évidemment deux
droites inverses du triangle DEA. On a

PM = I sin(0 — 30°) = —l—(ﬁ— V2),

2¢/3

l _ -
MQ =/sin(0 4+ 30°) = — (V3 4+ V2);
Q ( ) Qﬁ(‘/ V2)
de méme p
- P'M = —(y3+y2),
2,‘/3(\f V2)
A = -
M= —(V3 —V2);
Q' 2‘/3(‘/ V2) ,
d’ou
PM + QM =, PM 4+ QM=10;
ot '

PM + QM + RM~+SM = P'M'+Q'M - R'M'+S'M' = ‘%—5,
<comme
RM = SM, R'M'=S'M/,

\ ’ =
RM=L(eV2 _, , RM=1 “—‘/_3—1'),
2 ‘/3 2 ¢3

RM.R'M'= PM.P'M’;

on a aussi
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d’our”
(1 20l — (I +I')ay/6 + 2a2=o.

On a, d’autre part, en désignant par I le centre de la sphére

2

. . . a
inscrite au tétraédre, EI = et

K

—2 ar  aly/6 - ar  al'y/6
= 2 — [ S T

IM 2+ 3 T’ IM 2+ q T

le centre w de la sphére pédale est le milieu de MM’ et

MM = {2 210,
comme ]
—9 1 [

21w+ l\+’\’l =m2+I—M_'2,

=2 o([l24-0'2) — a2
Tl = oot

8

ou, en tenant compte de la relation (1),
=2 ar— ol

lw —
2ay/6

soit p le rayon de la sphére pédale

——2
' /72 9y ’
ot = MM pyprwr= 3B ) =2l
12
ou
o ar— '
= = 2
ay6
N . , . a
comme le rayon r de la sphére inscrite est égal a \/E’ on
2

voit que
dow=p—r,

la sphére pédale est donc tangente a la sphére inscrite.

La relation (1) montre que les points M et M’ se corres-
pondent nomographiquement sur EH et EK et que lorsque M
vient en E,
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MM’ enveloppe donc une conique tangente a EH et EK en H
et K, son centre sera le point O, tel que

EO|= l|+lg

cos3o°,

I, et I, étant racines de I'équation

3a\/;

12— aly6+ar=o, EO,= i

’

la longueur de I'axe situé sur EF sera

ay6

({4— 1) cos30°= ,

La perpendiculaire en D 4 DE passe par O, et I'on a

DO, = av6

’

ce qui montre que les droites DE, AE sont tangentes au cercle
principal de la conique considérée en D et A. La perpendicu-
lairc en H & EH coupe EF en H' et I'on a

d’ou

a? 2

0iH.0E= % =0,F ,

le point F est un foyer de la conique.

Le centre de la sphére pédale est le milieu de MM', il est a
I'intersection des paralléles & EH et KK menées par les milieux
wet u' de EM et EM', ces droites se correspondent homogra-
phiquement et le centre de la sphére pédale décrit une hyper-
bole ayant ses asymptotes paralléles a EH et EK et ayant
visiblement mémes sommets situés sur EF que l'ellipse enve-
loppe de MM'.

Les foyers F; et F, seront tels que

I a
01F1=O|F2= DO]m‘ = ;7;’,
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d’ox
EFt = EO(— O(F1= _0_4\/_;2-;
F, est donc le milieu de EF.

Remarque. — Une étude plus compléte de la question
montre que les cercles sections de la sphére pédale par le plan
EDA sont orthogonaux a un cercle fixe bitangent a I'hyper-
bole, lieu du centre de la sphére pédale, ils enveloppent par
conséquent deux cercles dont 'un est la section par le plan
EDA de la sphére inscrite.

Autre solution par M. Krug.

QUESTIONS.

2192. Déterminer un cdne dont un plan cyclique est per-
pendiculaire & une génératrice et a la fois une ligne focale
perpendiculaire & un plan tangent. (Kuue.)

2193. Si les trois droites ¢’, @’ et &' sont partagées par les
droites a, ¢, b; b,’a, c et ¢, b, a de I'’espace dans les rap-
ports a: B, B:y et y:a: les trois droites ¢, @ et b sont de
méme partagées par les droites a', ¢, b'; b', a', c' et ¢, &', a
dans les mémes rapports. (L. Kuue.)

2194. On considére les hyperboles équilatéres qui passent
par les sommets de grand axe d'une ellipse donnée, et qui
sont tangents en un point variable de cette ellipse. Le licu du
centre de ces hypelboles est une quartique, podaire de centre
d’ellipse. (D" W. GAEDECKE.)

2193. La tangente en un point variable de lellipse de
Frégier d’'une ellipse donnée, rencontre cette ellipse en A
et B. L’aire des segments elliptiques limités par la corde AB
est constante. (D" W. GAEDECKE.)
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[04g] , -
SUR LA DEFORMATION INFINIMENT PETITE
DES SURFACES REGLEES ;

Par M. J. HAAG, a Clermont-Ferrand.
(Suite et fin.)

8. Etude des douse surfaces. — Nous allons
chercher maintenant si I'on peut obtenir des résultats
intéressants en appliquant au cas actuel la théorie des
douze surfaces, que M. Darboux a rattachée au pro-
bléme général de la déformation infiniment petite
(Théorie des surfaces, t.1V, p. 48 et suiv.).

Nous avons d’abord la surface (A) définie par les
équations

.z"—e—‘* ' 2a —a'(a+ B)

S T w  (A+B)(ax+pP)—2(A+B)’
p 8 26— b'(a+B)

(3 = S AT B (s B —2(ATB)
o 0 2¢ —c'(a+B)

© (A+B)(a+B)—2(A+B)

Les lignes (a) de cette surface sont planes et dans
les plans (w) menés par o perpendiculairement aux
génératrices (a) de (S). Si une d’elles est rectiligne,
il en est de méme de toutes les autres et la sur-
Jace (A) est développable. En effet, si I'on écrit que
Z'y y', 5 vérifient les équations des projections d’une
droite sur les plans de coordonnées, on obtient des
relations de la forme

B(z+B)—2B+mB+nrn=o0 (m, n = const.).
Ann. de Matheémat., §* série, t. XII. (Aolt 1912.) 22
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Or, cette équation, intégrée par rapport a B, donne un
trinome du second degré en B3, qui peut étre réduit a
zéro (n° 4). Mais alors, il est aisé de vérifier que (A)
est une surface développable dont Paréte de rebrous-
sement a pour équatiouns

r=——) y=— > F=— —

C
A A A
Passons maintenant 4 la surface (£), dont le point P
homologue du point M de (S) a pour coordonnées

X=x+ ¥z — 3y, Y=y+3dr—a3,
L=+ x'y,— y'xz,.

Si I'on pose, pour abréger I’écriture,

=f(b'c”—c'b")da, n_f(c’ a'—a'c") du,
_.f(a b —b'a") da,

on a, par exemple,

- 2B'(cb'— bc")+ )(bw—cv)+(a+{i)(cv—b’w)

(36) X = (A+B)(z+B)—2(A+B)

Y et Z s’en déduisant par permulations circulaires.

Oun sait que la surface (I) est rapportée a ses lignes
asymptotiques et qu’elle correspond a (A) avec ortho-
gonaliié des éléments. Pour B=o, elle est visible-
ment réglée.

Si la développable A (n° T) est un céne de som-
‘met O, on peut prendre A=u=v=w=o. Alors X
se réduit a

X=t+ 2(cb'—be') ":B).
a+[5—-§,~

Donc le point P coincide avec le point M’ de (S)
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dont les coordonnées (o', f')sontod' —=a, 3' =B — 2B

5
Par suite, () coincide avec (S). Voila deux cas o la
surface (X) est réglée; montrons qu’il n'y en a pas
d’autres, en supposant du moins que ses génératrices
rectilignes sont les lignes (a).

En effet, supposons d’abord gu’une ligne a parti-
culiére soit une droite non paralléle a D. La ligne
homologue de (A) se trouve alors dans un plan per-
pendiculaire a cette droite; comme elle est déja dans le
plan =, perpendiculaire a D, elle est forcément recti-
ligne et, par suite, on peut prendre B=o et la sur-
Sace (2) est réglée.

Ce raisonnement est en défaul si la droite ()
de (X) est paralléle a D. Mais, s’il en est ainsi, les
deux quantités S(X —E)a et S(X — £)a’ doivent se
réduire a des fonctions de a. Or, elles sont égales
respectivement a

a+f
(A'+B')(2+B) —2(A+B)

Su(cb' — be')
et
2Su(chb'— bc')
(A< B)(a+pB)—2(A+B)

Si elles ne sont pas nulles, leur rapport o +  ne
peut étre indépendant de 3. On doit donc avoir

Su(cb'— bc') = o.

On retombe sur I'équation (33 ). Elle est, en général,
vérifiée pour certaines valeurs particuliéres de «. Si
'on veut qu’elle le soit, quel que soit «, on est ramené
a I'hypothése ou la développable A est un cone de
sommet O, auquel cas (2) coincide avec (S).

9. Congruences (G). — Nous ne pousserons pas
plus loin I'étude des douze surfaces, car elle ne nous a
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pas semblé devoir donner de résultats bien intéres-
sants. Par contre, nous allons nous occuper spécia-
lement de la surface () dans le cas o elle est réglée,
B étant nul.

On sait que la droite MP est tangente en M a (S)
eten P a (X); elle engendre une congruence dont les
deux nappes de la surface focale sont des surfaces
réglées, sur lesquelles les génératrices rectilignes se
correspondent. Nous appellerons congruence (G)
toute congruence jouissant de cette propriété.

Je dis que toute congruence (G) peut étre obtenue
de la maniére précédente. En effet, soient (S) et (S')
les deux nappes de la surface focale d’une telle con-
gruence, et M et M’ deux poiats homologues quel-
conques. On sail que lorsque MM’ engendre successi-
vement les deux familles de développables de la
congruence, les points M et M’ décrivent respecti-
vement sur (S) et (S') deux réseaux conjugués. D’autre
part, par hypothése, lorsque M décrit une droite D sur
(S), M’ décrit une droite D’ sur (§’). Comme ces
droites sont des lignes asymptotiques sur les surfaces
qui les portent, on en conclut que les lignes asympto-
tiques de la seconde famille sont aussi des lignes homo-
logues sur les deux surfaces ('). Dés lors, on peut

(') Cela résulte de la propriété générale suivante : Si {’on etablit
entre deux surfaces quelconques (S) et (S') une correspondance
ponctuelle transformant deux réseaux particuliers de (S) en
deux reseauzr conjugues de (S'), les lignes asymptotiques se
correspondent sur les deux surfaces. En effet, on sait qu’en deux
points homologues M et M’, les tangentes homologues se corves-
pondent homographiquement. Par suite les tangentes asymptotiques
de (S), qui divisent harmoniquement les deux couples de tangentes
(M¢,Mb), (M¢, M0,) aux deux réseaux proposés, ont pour homo-
logues en M’ les deux tangentes asymptotiques de (S'), qui divisent
harmoniquement les couples (M'¢’, M'6"), (M’ ¢}, M'6/ ), homologues
des précédents par hypothése.
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appliquer le théoréme de M. Guichard () et affirmer
que la surface (S') peut étre déduite comme surface (Z)
de la surface (S). Or, nous avons reconnu tous les cas
ou (Z) est une surface réglée dont les droites sont les
lignes (a). Le cas de A = o0 ne donne rien, car () se
confond avec (S); la congruence se réduit aux généra-
trices de (S). Il ne nous reste donc que le casou B=o,
ce que nous voulions démontrer.

Finalement, nous aurons la congruence (G) la
plus générale en joignant les points M et P dont les
coordonnées sont données par les formules (D)
et (36), oa l'on suppose B=o. On pourra méme
Pobtenir sans aucune quadrature, puisqu’on peul se
débarrasser de celles qui figurent dans £ nC u, o, w

(n°2).

10. Posons maintenant le probléme d’une maniére
un peu différente et plus symétrique. Donnons-nous
deuz surfaces réglées sous la forme (D). Nous
aurons, par exemple, la surface (S) définie par les
fonctions a, b, ¢ de «; puis la surface (S,) (2) définie
par trois fonctions a,, b,, ¢, de o, au moyen des for-
mules telles que la suivante :
2(c1 by — byl

(D). = a + Py

-+ Eh
ot I'on a posé
3 =f( by ¢ — ¢\ b}) day,
et ou les accents indiquent des dérivées prises par
. rapport a a,.

(') Cf. G. DarBoux, loc. cit., n° 888.

(?) Bien entendu, cette surface n’a rien A voir avec la surface
(S,) des numéros précédents. Il en est de méme de toutes les nota-
tions qui vont suivre.
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Ceci étant, cherchons quelles relations il faut
établir entre o et ay, d’une part, et entre 3 et 8,
d’autre part, et quelles conditions doivent remplir
les fonctions a, b, ¢, a,, b, c, pour que la droite MM,
engendre une congruence (G) de surfaces
Jocales (S) et (8,).

On pourrait répondre a cette question en s’appuyant
sur le numéro précédent et identifiant la surface (S,)
avec la surface (Z). Nous préférons employer la
méthode directe suivante. Ecrivons que MM, est tan-
gente en M a (S) et en M, a (S,); nous avons, en
nous rappelant les cosinus directeurs de la normale

en M a (S) (n° 6),

(37) S<a’— 2a )(Ei_"E+ 2A, 2A ):o,

G—I—B a1+pj— <1+_B

(38) S<a’,— a;ib:) (\E—E'+ aiAB N “:2—2}3') ="

ou 'on a posé, pour abréger écriture,
A=cb —bc, A= ¢, b, —bsc}.
L’équation (37), par exemple, est de la forme

) m on p _
(9 GEB@Tp) TarB T I

m=—4SaAl, n=—12Sa(f—t),
p =128a'A,, g=3S8a —¢&)

Silon y donne 4 une valeur numérique quelconque,
on obtient entre § et 3, une relation homographique.
En négligeant les transformations (14), (15), (16)
effectuées, par exemple, sur (S), on peut supposer
B, =B. Portant cette hypothése dans (39), ona

(4v) q =o, R+ p =0, m -+ na, + pa=o.
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En portant dans (38), on aurait de méme
(42) g1=o, nl"f[.’l_'——‘oy.v my—+ nya + py2y =0,

en appelant my, ny, p,, q, les quantités déduites de m,
‘n, p, q par 'échange des lettres a, b, c et a,, by, c,.
Les équations ¢ =o0,'¢, =0 nous donnent d’abord
§1— E=p(c'by—0b'c)),
(43) n—mn=p(a'ci—ca}),
Li— L =p(ba)—a'by),
en appelant o un certain (acteur de proportionnalité (*).
En portant ces valeurs dans n et n,, on obtient

n=—ppi, m=—g¢p.
La deaxiéme équation (42) s’écrit alors
plp+n=o;

en la comparant avec la derniére équation (41) et
remarquanl que n et p ne peuvent étre tous deux nuls,
‘sans quoi m le serail aussi et D et D, seraient paral-
leles, on obtient p* =1. Négligeant un changement de
signe sur a@, b, ¢, prenons p =1. Nous n’avons plus
maintenant que les trois équations suivantes a vérifier :

(44) p=p1, m+pla—a))=o0, m~+p(y—a)=o.
La deuxiéme s’écrit

S[a'(a —2y) —2a]A;=o0,

a b, ¢
H * , ’ | — | — 1 . ’"
(') Ceci suppose toutefois qu’on n’a pas Pl o Mais s’il
en était ainsi, on aurait manifestement p =o; d’oa n =0, m = 0.Or,
B, _ G,

de p = m = o, on déduirait A_B L les génératrices D et D,

AT BT C
seraient paralléles et, par suite, confondues (n° 8), ce qui donnerait
une solution absurde.
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comme on a, en outre, identiquement
S[a'(ea —a1) —2a]lA =0

et que les mineurs u = BCG, — CB,, v = CA, — AC,,
w=AB, —BA, ne sont pas tous nuls, on en
conclut

a'(x—ay)—2a=\u, b (a—ay)—2b=ko,

c(a—a)—2c=2Aw.
De méme

ay(ay—a)—2a,=A\u, by (ay—a)—2by= Mo,

. i (ag—a)—a2c = A w.
On tire de 1a

2A = A(c'v — b'w), 2A,=M(c)v —byw);
p =MSa' (chv—b\w)=X1Su(c b,—b'c}),
=\ Sa (c'v —b w)=X Su(c,b'—b,c).

La condition p = p, nous donne alors A, = — 4,

car nous avons vu que p et p, ne pouvaient étre nuls.
Nous avons donc

a(a—ay) —2a=aj(a—ay)+2a,

et les deux équations analogues. Ces trois égalités’
entrainent d’ailleurs visiblement les trois équa-
tions (44).

En résumé, les conditions cherchées sont

(45) (2 —ay)(a'—a)) =2(a+ a,),
(i6) fi—E=c'by—b'c,

et celles qui s’en déduisent par permutations circu-
laires. Les équations telles que (46) ne servent
d’ ailleurs qu’a fixer les constantes d’intégration
relatives a &, n,, &, quand on a choisi celles qai s’in-
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troduisent dans £, n, {. Je dis, en effet, que si on dif-
férentie (46), on obtient une conséquence des équations
telles que (43). Effectivement, I’équation (46) diffé-
rentiée peul s’écrire

(47) (c'y day — c"da) (b'+ b)) — (b day— b"da) (¢’ + ¢) = o.

Or, en différentiant (45), on obtient

(48) (a—ay)(a) day—a"da) =— (da+ day) (a’'+ a});

et 'on voit bien que (47) est une conséquence des
équations telles que (48).

On apercoit facilement quel est le degré de géné-
ralité de la solution. On peut choisir arbitrairement
a, b, c, c’est-a-dire (S), puis la relation entre « et a.
La fonction a, est alors donnée parl’équation différen-
tielle linéaire (45), et les fonctions &, et ¢, par les
équations analogues. Quant a la correspondance entre
M et M,, elle est fixée sur deux génératrices homo-
logues par I'égalité B =8,.

Rappelons, a ce propos, que pour avoir les con-
ditions demandées sous leur forme la plus générale,
il aurait fallu identifier les équations (37) et (38) avec
une relation homographique quelconque entre §
et §,, soit

(49) m BB+ nB + phi+g =o.

On aurait eu des calcuals beaucoup plus compliqués,
qu’on peut éviter en faisant, aprés coup, sur la sur-
face (S), par exemple, les changements de variables

(n° 3)

8 nf+gq

, na —gq a a(mq—np).
—mp—p

ma—p’ (ma—p)
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Les équations (45) et (46) deviennent alors (')
(50) (maxy—na—pay+ q)(a’'— a})
=a[m(aa;— aya) + pa,— nal,
4m(bey— cby)

_— —_ L VN YN .
B Li—f=db bc‘+ma1,—nz—pa.+q

On peut enfin, dans ces équations, changer les signes
de a, b, ¢, oude a,, b,, c,.

11. Enveloppes de quadriques. — Les surfaces
(S) et (S,) étant supposées satisfaire aux condi-
tions (45) et (46), cherchons le lieu de la droite MM,
quand 8 seul varie. La correspondance entre M et M,
étant homographique, ce lieu est une quadrique. Cest
ce que vérifie un calcul élémentaire. Pour avoir les
équations de la droite MM,, il suffit de prendre celles
des plans tangents en M 4 (S) et en M, & (S,), ce qui
donne de suite

(52) ‘ZP'—Q(“"'_B):Ov 2P1_Q1<1I+B)=03
en posant, pour simplifier écriture,

Pi=Say(x —t), Qi =38a)(x—¥).
P=Sa(z—E) Q=Sa (z—t).

(') Pour faire rapidement le calcul de (51), il convient de remar-
quer que, si I'on affecte de l'indice zéro les anciennes variables, on a
identiquement

§+

2(cyby— bych) _
a,+ B -

2(cb' — be')
a—+p

E+

’

puisque la surface (S) ne change pas. Dés lors, on aura &, en faisant
By = o, donc § =— ’% En portant dans (46), c’est-a-dire
E—Eb=c b, — b,

et tenant compte de (50), on obtient (51).
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Eliminant B, nous avons ’équation du lieu
(53) Q(PQi—ng)—!—(Q‘—Q)QQ‘:‘O,

ce qui représente bien une quadrique (Q).

Lorsque = varie, cette quadrique touche constam-
ment son enveloppe suivant les quatre cétés d’un
quadrilatére gauche. En effet, la courbe de contact
comprend déja les deux droites D et D,, qui sont des
généralrices de méme systéme de la quadrique. Comme
cette courbe est I'intersection de (Q) avec une autre
surface du second degré [par exemple la surface (Q)
infiniment voisine], elle est nécessairement constituée
par les quatre c61és d’'un quadrilatére gauche (Q),
dont D et D, sont deux cdtés opposés.

L’équation (53) définit la famille de quadriques
la plus générale jouissant de la propriété précé-
dente; car si I'on posséde une telle famille, les géné-
ratrices de chaque systéme de la quadrique variable
engendrent une congruence (G), laquelle peut étre
obtenue par le procédé ci-dessus (n° 9).

Nous connaissons deux cotés D et D, du quadri-
latere (Q). Je dis que les deux autres cétés sont des
tangentes asymptotiques communes & (S) et & (S,).
On pourrait démontrer cette propriété analytiquement,
en différentiant I'équation (53), de maniére 4 avoir la
caractéristique de la quadrique (Q). Mais les calculs
sont assez longs et nous nous bornerons a indiquer la
démonstration géométrique suivante.

Soit (H) I’hyperboloide osculateur a (S) le long
de (D); il est engendré, comme on sait, par les tan-
gentes asymptotiques de (S) aux différents points
de (D). Les quadriques (Q) et (H) se raccordent le
long de (D); elles ont donc en commun deux généra-
trices (d) et (d,) du systéme auquel n’appartient pas
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(D). Soit (s) la surface engendrée par (d), par exemple.
Nous allons montrer que (Q) se raccorde a (s) le
long de (d). En effet, toul plan (IT) passant par (d)
touche (Q), (s), (H) en trois points m, m/, m", qui se
correspondent deux 4 deux homographiquement. Les
points doubles de I'homographie (m', m") sont con-
fondus en M, car ce sont les points focaux de la
droite (d), considérée comme appartenant a la con-
gruence des tangentes asymptotiques de (S), puisque
les surfaces (s) et (H) sont engendrées toutes deux
par des droites de cette congruence ('). Les points
doubles de I’homographie (m,m") sont également
confondus en M, parce que les points de raccorde-
ment de (Q) et (H) relatifs a (d) sont eux-mémes
confondus en M. Il suit de la qu'on a deux rela-
tions de la forme
1 1 1 T

—_— =k, — = k' (k, k"= const.),
M M m” Mm M m”

—
d’ou

L S g
Mm Mm'

. Or, la droite (d) appartient constamment a la con-
gruence (G) et, par suite, (s) est tangente en M, a (S,).
Comme il en est de méme de (Q), on voit que M, est a
lui-méme son homologue dans I’homographie (m, m').
Ceci prouve que X" est nul et, par conséquent, que m"
coincide toujours avec m. Autrement dit, (Q) et (s) se
raccordent le long de (d).

On prouverait de méme que Q se raccorde le long

(') Rappelons au lecteur que lorsque deux surfaces réglées ayant
une génératrice (d) commune sont engendrées par des droites
appartenant & une méme congruence, leurs points de raccordement
sur (d) sont les points focaux de cette droite.
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de (d,) a la surface (s,) engendrée par cette droite.
Finalement, le quadrilatére (Q) est bien constitué
par les droites (D), (D)), (d) et (d,) et on peut dire
que la surface réglée engendrée par chaque cété
admet pour tangentes asymptotiques les deux cotés
qui le rencontrent, car les quatre cdtés jouent évi-
demment le méme réle dans la question.

Réciproquement, tout quadrilatére variable jouis-
sant de cette propriété peut étre obtenu de la
maniére précédente.

En effet, imaginons que (Q) soit un tel quadrilatére
et considérons la quadrique () tangente a (S) le long
de (D) et passant par (D,). Elle contient évidem-
ment (d) et (d,). De plus, le raisonnement fait plus
haut s’applique sans aucune modification, car les sur-
faces (Q) et (s) admettent méme plan tangent en M, a
savoir le plan dM,D,. Donc, elles se raccordent le long
de (d). De méme (Q) est tangente & (s;) le long
de (d,). Si maintenant U'on fait jouer a (d) et (d,) les
roles de (D) et (D,) el vice versa, on peat affirmer
aussi que (Q) se raccorde a (S,) suivant (D,). Fina-
lement, le quadrilatére (Q) est, a chaque instant,
la courbe de contact de la quadrique (G) avec son
enveloppe et notre réciproque est démontrée ().

12. Les considérations géométriques qui précedent

(') On peut supposer seulement que les cites opposes (d) et
(d,) sont tangentes asymptotiques de (S) et (S;). 1l en résulte
nécessairement que (D) et (D)) sont tangentes asymptoliques de
(s)et(s,). Eneffet, (S) et (s) se raccordent tout le long de la courbe
(T') lieu de M. Donc, la tangente en M a (I') a méme conjuguée
relativement a ces deux surfaces. En outre, (d) est tangente asymp-
totique a la fois pour (S) et (s). La deuxiéme tangente asymptotique
est donc aussi la méme pour les deux surfaces. Or, ¢’est (D) pour
(S); donc aussi pour (s). On prouverait de méme que (D) est
tangente asymptotique de (s,) et que (D,) I'est pour (s) et (s,).
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nous permettent d’exposer maintenant une nouvelle
méthode de détermination des congruences (G), ou,
ce qui revient au méme, des familles de quadriques (Q).
Partant de la surface (S) donnée par les équations (D),
nous allons former une quadrique (Q) se raccordant
a (S) le long de (D) et contenant deux tangentes
asymptotiques (d) et (d,). Puis, nous écrirons que
cette quadrique touche son enveloppe suivant ces deux
droites.
Les équations de (D) sont

(54) P =o, Q=o.

Cherchons les équations de la tangente asympto-
tique (d) au point M de paramétre 3. Nous avons
d’abord I'équation (52) du plan tangent. Nous remar-
quons ensuite que les cosinus directeurs de (d) sont
proportionnels aux quantités telles que

2(cb"—bc")  2(cb —bc')

b'c"— b+ arp (@ Py

Il est dés lors facile de vérifier que (d) est perpen-
diculaire a la direction dont les cosinus directeurs sont
proportionnels a

a—(a+Bya', b'—(2+ B)b", ¢'— (a+ P)c".

De la résulte l'équation d’un second plan con-
tenant (d), a savoir
Q—20—R(a+fB)=o,
en posant
R=Sa (r—%).

Les équations de (d) sont donc

35y LTme=e (m=°‘+‘5).

Q—28—2mR=o0 2
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De méme, celles de (d,) sont de la forme

P—nrnQ=o,

(36) Q—28—a2nR=o.

Pour former la quadrique (Q), nous remarquons
qu’elle faiv partie du faisceau ponctuel déterminé par
I’hyperboloide osculateur (H) et par le couple de plans
P—mQ=o, P— nQ =o. Or, I'équation de (H)
s'obtient en éliminant m entre les équations (55), ce
qui donne

(57) H=2PR—Q(Q —28) =o.
L’équation de (Q) est donc de la forme
(58) S=2PR—Q(Q—28)+t(P—mQ)(P—nQ)=o.

Il faut a présent supposer que ¢, m, n sont trois fonc-
tions de « et chercher la caractéristique de (Q).
Dérivons donc (58) par rapport a «; il vient, en
remarquant les identités

P 9Q . OR _ ds_
E—Q—S’ -dT—R, -(g'-—-—)\R-—IJ.Q—-VP, d—a—-—)\a,

dont les deux derniéres sont obtenues en tepant
compte de (18),

(59) T=—2P(AR+pQ+vP)
—2QM +t'(P—mQ) (P —nrQ)
+t(P—mQ)(Q—38—nR—n'Q)
+t(P—nQ)(Q—-8—mR—m'Q)=o0.

Il nous faut exprimer que la quadrique représentée
par cette équation coupe ( Q) suivant quatre droites,
dont (D), (d) et (d,). Elle passe déja par (D). Si (d)
et (d,) sont distinctes, il suffit d’exprimer qd’elles
vérifient identiquement (59); on est alors conduit trés
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rapidement aux relations qui doivent exister entre ¢,
m, n. Mais cette méthode est en défaut lorsque (d)
et (d,) vicnnent se confondre et, en outre, elle offre
I’inconvénient de ne pas donner le quatriéme coté (D)
du quadrilatére (2). Aussi allons-nous suivre une autre
marche.

Exprimons que la quadrique (59) fait partie du
faisceau déterminé par (Q) et les deux plans (D, d),
(D4, d,), lesquels ont pour équations respectives

P—mQ=o, g(P—nQ)+h(Q—28—2nR)=o,

£ et h désignant deux coefficients non déterminés.
Nous devons avoir une identité de la forme

T=kiS+(P—mQ)[g(P—nQ)+ 2(Q—28—2nR)]
ou
T=iH+(P—mQ)[{(P—nrQ)+ h(Q—28—2nR)],

en posant [ = g + tk. Ceci doit avoir lieu quels que
sotenl P, Q, R. Le calcul d’identification n’offre aucune
difficulté et donne les résultats suivants :

t(n—m)

(60) (=1t —2v, h=t¢, k=—)\+———;—,
(61) t <mn'+ nm'— 2 :_ n) =X —2vmn,
(62) th—m'—np'y=9op+ 2v(m—+n).

Les équations (61) et (62) sont les deux conditions
nécessatires et suffisantes pour que la quadrigue (Q)
touche son enveloppe suivant un quadrilatére
gauche. On peul les mettre sous une autre forme, en
éliminant successivement entre elles m' et n*, ce qui
se fail par les combinaﬁsons linéaires (61) + n (62)
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et (61) + m(62); on oblient ainsi

(63) ttm— n)(1—am') = 2(h+2um+ 2vm?),
(65) t(n—m)(i—aon"y=2(A+2pn +2v n?),

Ce sont ces équations qu’on aurait obtenues par la
méthode a laquelle il a été fait allusion tout & I'heure.
Mais elles ne forment un systéme équivalent @ celui
des équations (61), (62) que si m £ n.

Les cotés (D), () et (d,) du quadrilatére (Q) ont
respectivement pour équations les équations (34), (53),
(56). Quant au c6té (D, ), il sera obtenu en coupant la
quadrique (Q) par le plan

g(P—nQ)+h(Q—28 —2nR)=o0;

on trouve facilement qu’on peut prendre pour équa-
tions de (D)

R 1?2 R ~
P[t'—zv—kt/\—*—-:(lll-"i—n)] +tQ(1—tmn)—2tc=o,
(65) ‘

P2+ Q [t' —-2v—:—l)\—l'—’:(m—+—/z)J +~2¢tR =o.

En éliminant ¢ entre les équations (63) et (64) on
voit qu'on peut choisir arbitrairement la famille
des droites (d), pourvu qu’elles soient tangentes
asymptotiques de (s). les droites (d,) étant alors
déterminées par une équation de Riccatl.

13. Nous terminerons en examinant quelques cas
particuliers intéressants obtenus en assujettissant le
quadrilatére (Q) a certaines conditions délerminées.

Exigeons, par exemple, que (Q) ait deux cités
confondus. Ces cOtés ne peuvent évidemment étre que
des cOlés opposés.

St ces cdtés sont (D) et \D.}, les équations (65)

Ann. de Matheémat., 4* série, t. XII. (Aout 1912.) 23
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doivent étre équivalentes aux équations (54); ce qui se
traduit par la condition nécessaire et suffisante ¢t = o.
Dans ce cas, la quadrique (Q) est donc I’ hyperbo-
loide osculateur a (S). Les équations (63), (64) nous
montrent que m et n sont alors les racines de 1'équation
du second degré

(66) k~+"2um-+vm?=o.

On peunt dire aussi que les 8 des deux sommets doubles
de (Q) sont donnés par

2d +au(a+8)+v(x+B)=o.

Dans le cas ou cette équation admet une racine
constante, on retrouve la condition (21) pour que (S)
admette une directrice rectiligne. Pour que les deux
autres cOtés (d) et (d,) soient aussi confondus, ¢'est-
a-dive pour que U hyperboloide osculateur a (S) soit
en méme temps osculateur & une autre surface
réglée (s), il faut et suffit qu’on ait

pr—92% = o,

Si les deux cotés (d) et (d,) sont seuls confondus,
on a m=n. Les équations (63), (64) se réduisent
alors a (66). Quant a ¢, il est donné par exemple
par (62). Réciproquement, si m satisfait a (66), on a,
s0it ¢ = o0, soit m = n, en laissant de c6té le cas on

0 . . .
m = 5 qu donnerait (3 = const. et conduirait & une

droite (d) fixe et située sur (S).

Les tangentes asymptotiques (d') et (d,) qui véri-
fient U'équation (66) sont caractérisées par la pro-
priété d’avoir avec la surface un contact du troi-
siéme ordre. On peut, en elfet, les considérer comme
situées sur deux hyperboloides osculatears consécutifs
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(H) et (H'). Or (H) contient trois génératrices consé-
cutives 1, 2, 3 de (S); (H') contient de méme trois
génératrices consécutives 2, 3, 4. Donc (d') et (d))
rencontrent les quatre génératrices consécutives 1, 2,
3, 4 et possédent bien un contact du troisieme ordre
avec (S) ('). Appelons-les tangentes hyperasympto-
tiques et appelons surfaces hyperasymptotiques de
(8) les deux surfaces réglées (s') et (s}) qu'elles en-
gendrent. Les remarques faites plus haut nous per-
mettent alors d’énoncer la proposition suivante :

Si une surface réglée (s') est hyperasymptotique
pour une autre surface réglée (S), inversement (S)
est hyperasymptotique pour (s').

On peut affirmer également que si une quadrique
variable (Q) touche constamment son enveloppe
suivant un quadridatére gauche dont deuzx cétés
consécutifs sont 'un pour l'autre des tangentes
hyperasymptotiques, un troisiéme cété se confond
nécessairement avec Uun des précédents.

Pendant qu’il est question de ’hyperboloide oscu-
lateur, nous ferons observer que I'équation (57) se

(') Analytiquement, on peut raisonner comme il suit. Soient z,,
Zyy ..., Zg, les coordonnées de Klein dela droite (D) qui engendre
{S); ce sont des fonctions du paramétre «. La demi-quadrique (H)
formée par les tangentes asymptotiques est définie par les trois
équations
(1) =X, z;=0, Z=EXzi=o0, =IXzi=o,

ou X,, X,, ..., X; sont les coordonnées kleinéennes courantes. Les
deux droites (d') et (d}) de (H) qui font partie de la caractéristique
sont déterminées par les équations (1) et celles qu’on en déduit en
dérivant par rapport a a, ce qui donne senlement la nouvelle équation
=X,r; =o. Or, ces quatre équations expriment précisément que
I'équation aux « des points d’intersection de (S) avec la droite (X))
admet une racine quadruple, clest-a-dire qu’il y a contact du
troisiéme ordre.
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préte trés bien a son étude. C’est ainsi que le centre ©
est donné par

P=o, Q =3, R = o;
.d'ott 'on tire
r—t=cb"—bc", y—m=ac"—ca", z—{=0ba"—al"

Cherchons les surfaces réglées dont U’ hyperbo-
doide osculateur relatif & chaque génératrice a un
sommet sur cetle génératrice.

Il suffit d’écrire que la droite Mw est perpendicu-
faire au plan tangent en M. Or, si 'on remarque que,

. —2¢
pour le point M, on a P=o0, Q=o, R:m,

-on voit de suite que deux plans passant par Mw sont
{es suivants :

P =o, 2Q —R(a+B)—28=0.

Ecrivons qu’ils sont perpendiculaires au plan tan-
gent (32); nous avons, en conservant les notations du
a° 6, et remarquant que

Saa"= pp" + p't— a2,

2p
o2+ = =
B o 4

Gpp'—2(x =+ B) (pp"+ p2—3?)
— (2 +£)o2+ (a - B)2es’ = o.

La premiére équation nous montre que le sommet en
question doit étre aw point central, ce qui est d’ail-
feurs évident géométriquement, car (S) et (H) ont
méme point central. La seconde devient, en tenant
compte de la premiére,

p'p"= oo’
ou

p'? — g2 = const.
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Donc les surfaces cherchées sont celles dont le
parametre de distribution est constant.

En particulier, si I'hyperboloide osculateur est
constamment de révolution, on se trouve nécessai-
rement dans le cas précédent. Mais il y a une condition
supplémentaire qui est

a’+ b4 "= "2,

On peut le voir aisément en formant'équation en S de
I’hyperboloide; mais nous laisserons au lecteur le soin
de le faire et nous ne nous étendrons pas davanlage
sur ce sujet.

14. Revenons au quadrilatére (Q) pour signaler
d’autres cas particaliers.

Exigeons par exemple que deuz cétés soient paral-
léles. Ce seront nécessairement deux cotés consécutifs
qu'on peut toujours supposer étre (D) et (d).
Alors (d) sera la tangente asymptotique au point a
Uinfini de (D). Elle est obtenue en faisant m=o
dans (33). On a ensuite

(67) tn =— 2.

(68) n'=l+;rt+%n2.

Pour que (d) soit tangente hyperasymptotique, il
faut et suffit que X soit nul. Pour que (D) se confonde
avec (D) et (d,) avec (d), les droites (d) et (D)
demeurant toujours paralléles, il faut et suffit quon ait
A =p =o0. Ceci nous donne évidemment la solution
du probléme suivant : Trouver deux surfaces réglées
(8) et (s) dont les génératrices sotent deux a deux
paralléles et telles que U’hyperboloide osculateur
a (S) le long d’une géneratrice quelconque soit
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osculateur a (s) le long de la génératrice paralléle.
Les droites (D) et (d) étant toujours supposées
paralléles, cherchons la condition pour que les deu.r
autres cités (D) et (d,) le soient également. En se
servant des équations (56) et (65), on trouve l'unique
condition

t2n
> +t=0

n (t'— 2Y = LA =

qui devient, en tenant compte de (67),

: ’
\ Vi
n'=1+4 —n-+ —n.

PA A
En comparant avec (68), on voit que la condition
nécessaire ot suffisante cherchée est 1'=y. Si elle
est remplie, toutes les quadriques touchant leur enve-
loppe suivant (D) et une droite paralléle ne peavent la
toucher suivant deux autres droites sans que celles-ci
soienl également paralléles.

[Bic] .
SUR UN DETERMINANT CIRCULAIRE;

Par M. G. STOYANOYV.

Catalan a étudié (') un déterminant circulaire de
degré n, composé de deux éléments, — 1 et 1, le
premier pris p fois. Comme valeur de ce déterminant.
il trouve 'expression

1
(=0T st (e —apy (2,

('Y Recherches sur les determinants (Bulletin de ' Academie de
Belgique, t. XIII. 17 Partie, 1846, p. 534-555).
(*) Cette formule est imprimée avec une errcur dans Die Deter-
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.« . n
sous la condition p < = Nous verrons que cette con-

. dition supposée par 'auteur comme nécessaire ne 'est
pas, et qu'une autre condition essentielle, sans
laquelle la résolution du probléme n’est pas compleéte,
a échappé a Catalan.

Nous nous proposons de généraliser le déterminant
en question, en considérant le déterminant circulaire

suivant :
p. m.
o — e — ——ea——_
aaa. aabd. .bbb
aaa. abbd .bba
aaa bbb .. baa
aab...bbbb ....aaca
abbd .bbbd aaa
A=10bb...bbba....aaa|,
bbb .bbaa ... .aabd
bbb...aaaa....bbbd
bba...aaaa....bbbd
baa...aaab....bbbd

oit @ et b sont des nombres réels ou imaginaires, et
p+m=n.
Nous trouverons la valeur de A;’,‘ de deux maniéres :

l. Par les propriétés générales des déter-

nin-3)

1
minanten von E. Pascal. Il y a (—1)? 2~1(n — 2p) au lieu de

L on_
(—1)3" " Vant(n — 2 p).
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minants. — Aux éléments de la premiére colonne,
nous additionnons les éléments de toutes les autres
colonnes, et mettons devant le déterminant le facteur
commun pa + mb des éléments de la premiére
colonne. Apres cela, nous soustrayons les éléments de
chaque ligne horizontale des éléments respectifs de la
ligne située immédiatement au-dessous, en commencant
par P'avant-derniére ligne. De cette manitre, nous
réduisons le déterminant A’ en un autre, celui du
degré p -+ m—1. Dans chaque ligne horizontale,
nous prenons le facteur @ — b et enfin, en permutant
circulairement les colonnes, nous recevons

1
-(n—1){n-~

.3 2) .
Al == (—1)? (@ — byr—t(pa + mb) DY,
ou
m—1u. ) — 2.
I
e — e e o —— et —
! oo . .. 0 00 —I oO. . .0 0 0
0 I o . O 00 o —1 . o [4) 0
0 o1 . - [} 00 0 o . . 0 0
' ‘
Q‘ . . . . . . . . .
O 00 | 00 (o) o . . 0o —I [0
O 0 0 o . O 10 0 o . 0 0o —I
D == E 0O 00 . .. 0o o1 o o .. o o0 o
—f 00 ... O 00 1 0. o o o
/ 0 —1 P 0O 00 0 l1...0 O O
Iy . I . . e e .
] o 00... 0 00 0O...1 o0 o
00 ... —i 00 O oO. . "1 o
0O 00... O0—IO0 O O0... o 1

Le déterminant D} joue un -rile important dans

p—2.

m —1I.
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I’évaluation du déterminant A%'; ¢’est pourquoi nous le
nommerons le déterminant caractéristique de A},

La structure du déterminant caractéristique D7 est
bien évidente; nous remarquerons cependant que c’est
uniquement la p*"° ligne horizontale, qui ne contient
pas I'élément —1; ensuite, c’est dansla (p+1) ligne
que cet élément réapparait et cette fois-ci sous la dia-
gonale principale.

On trouve la-valeur de D)’ par réduction de son
degré. Nous supposerons d’abord que les nombres p
et m ne sont pas égaux entre eux.

1° p <m. Nous ajoutons la premiére ligne hori-
zontale 4 la (p + 1), la seconde a la (p + 2)®me et
ainsi de suite p fois. Par ce procédé, les p premiéres
colonnes de D’} ne contiennent qu’une fois I'élément 1,
tandis que tous les autres éléments sont o; I'élément 1
se trouve dans la diagonale principale. Il s’ensuit que
le déterminant est réduit au degré m — 1; par sa con-
struction, ce déterminant n’est autre chose que le déter-
minant caractéristique du déterminant circulaire AP,

2* p > m. En suivant le méme procédé que plus
haut, mais avec les m — 1 premiéres et m —1 derniéres

lignes horizontales, nous obtenons le déterminant
m

caractéristique du déterminant circulaire A7 .

On voit que, dans les deux cas, le degré du déter-
minant se réduit du plus petit des deux nombres p
et m.

Si les nombres p et m sont premiers entre eux, une
premiére réduction du degré du déterminant D} par p
ou m donne un déterminant de la méme forme,
ot pSm — p ou bien p — mZm. Nous continuons la
méme réduction avec le déterminant obtenu, et, comme
p et m sont des nombres entiers qui n’ont aucun
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diviseur commun, nous arrivons au cas ou l'un des
nombres p ou m est 1. Mais ici nous avons le déter-
minant D} ou D, dont la valeur est 1.

Si, au contraire, p et m ont un diviseur commun, par
la réduction successive de degré du déterminant pro-
posé, nous arrivons au cas ou le déterminant ne
contient qu’une seule des lettres « ou &, et dont la
valeur est nulle. Par conséquent, si p et m ont un
diviseur commun différent de 1, la valeur du déter-
minant A7’ est nulle.

De ce que nous venons d’exposer il résulte que la
valeur du déterminant en question est

%(n—l)(n—»i) ,
(—1) (a— b))y pa—+ mb) ou zéro,

suivant que p et m sont des nombres premiers
entre eux ou non.

2. Par les propriétés des déterminants circu-
laires. — Profitons maintenant de la formule exprimant
la valeur du déterminant circulaire, formé de n éléments
différents a,, ai,...,a,. Comme on sait ('), cette
formule est

%uz-—l){n-—‘z\
(=1 o(ay) p(a2)...9(%n),
ot
¢(2) =ay+ aya +az2?+. ..+ apa!

et lesasontlesracinesde I'équation binome 2" — 1= o.
Dans notre cas

Q=ay=...=q,=aQ, (ll)+(=ap+2=.--=an=by

(') STERN, Einige Bemerkungen iiber eine Determinante (Journ.
S. Math., Bd. 73, 1891, p. 374-380). — E. PascaL, Die Determi-
nanten, 19oo, p. 73).
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de sorte que

9(a)= a (14 a-+2a2-+...+ aP1)
+baP(1+ a4+ a2+, .4 al-1),

11 en résulte

i=n

m . %(n—l)(n—zj »
A= (—1) II[ a (14 a;j+...+ab"1)
i=1
+bal (14 a;+...4+a1)]
l( | i=n—1
s —1)(n—2) - P -1
= (—1)? (pa—;—mb)ll[ a (1+u...apth)
i=1
+bap(1+ 2+ .42 ]
Et, comme

Vo 2P = — P (a2,
nous recevons
1
;(n—l)(n—?)
Al =(—1)* (pa+ mb)
i=n—1

> (@ —b)n—t I I (14242l o 4 al ),

=1

Des factears sous le signe II, nous concluons que si
les nombres p et m, et par équivalence si p et n ont
un diviseur commun, le produit devient nul. Donc
A" =o.

Au contraire, siles nombres p et m n’ont pas de
diviseur commun, le déterminant a la valeur

Lin—1(n—2

(—1)? )(pa~:~ mb)(a — bH)-1,

En effet, si nous faisons les multiplications sous le
signe I, ayant en vue les propriétés des fonctions
symétriques desracines de I'équation binome 2 —1=o,
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nous trouvons

i=n—1

[I (x+a,-+—a .ol ) =1,
i=1

Cas particuliers. — Pour a =1, b =o, la valeur du
déterminant A7 est

o —p P
suivant que p et m ont respectivement un diviseur
commun ou bien que p + m = n est un nombre de la
forme 4k — 1 ou 4 k, ou bien encore qu'il a la forme
4k + 1ou 4k + 2.

Pour @ =— 1, b > 1, nous avons le déterminant de
Catalan. Nous arrivons donc au résultat que la condi-
tion p < ~» posée par Catalan, loin d’étre necessalre,
est tout & falt inutile. Au contraire, il estmdlspensable
de considérer si les nombres p et n, on ce qui est la
méme chose, p et m ont ou n’ont pas de diviseur
commun, car, dans le premier cas, le déterminant de
Catalan ala valeur nulle, ce que Pauteur n’a pas prévu,

Poura=—1,b=1, p=1, nous avons le déter-
minant circulaire, étudié par Catalan et M. Fouret (*).

[05k]

SUR LES RESEAUX CONJUGUES ORTHOGONAUX
EN PROJECTION SUR UN PLAN;

Par M. EmiLe TURRIERE,
Professeur au Lycée de Poitiers.

1. Dans les Vouvelles Annales de 1869 (p. 363 et

(') Remarque sur certains déterminants numériques (Bull. Scc.
math. de France, t. XV, 1887).
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sous le n° 975), Ribaucour proposa la question sui-
vante : Etant donnée une surface du second ordre
et un plan quelconque, trouver, sur cette surface,
un réseau conjugué se projetant, sur le plan donné,

suivant un réseau orthogonal.
Une solution de cette question fut publiée dans les
Nouvelles Annales de 1872 (p. 177 el suiv.). Le

/4
plan donné étant pris pour plan horizontal Ozy, soit

z=f(2,¥)

I'équation, par rapport a des axes rectangulaires Ozy z
(Oz étant vertical), de la surface donnée (S) ; soient p,
q,rys, t les dérivées partielles des deux premiers
ordres de la cote z, par rapporta z et 4 y; le réseau
demandé (C) a pour équation

dr _ dy
dp ~ dg’

il se projette, par suite, horizontalement, suivant les
courbes inlégrales de 1'équation différentielle du
premier ordre

(L) et ime

Pour une quadrique a centre, cette équation diffé-
rentielle n’est autre que celle des coniques homofocales;
de méme, pour un paraboloide, 'équation est celle des
paraboles homofocales; pour le cone, on obtient des
cercles concentriques et les rayons émanant de leur
centre commun. L’Auteur de la solution publiée est
amené & envisager le cas d’indétermination de I'équa-
tion différentielle: les deux équations aux dérivées
partielles du second ordre

s = o0, r—=t¢=o,
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sont alors simultanément vérifiées; leur intégrale com-
mune est un paraboloide de révolution d’axe vertical.

Tout ceci est parfaitement exact. Mais il n’en est pas
de méme de Vaffirmation suivante concernant le cas du
paraboloide de révolution précédent : « le systéme
conjugué demandé se compose des paralléles et des
méridiens (ou des lignes de courbure) et se projette
sur le plan donné suivantun systéme de cercles concen-
triques et de droites passant par le centre commun »
(p- 180). Le réseau conjugué, formé par les lignes de
courbure, est bien un réseau répondant & la question,
puisque le paraholoide de révolution est une surface
moulure trés particuliére; mais il n’est pas le seul :
tout réseau conjugué du paraboloide de révolution
se projette suivant un réseau orthogonal sur un plan
perpendiculaire a Uazxe de révolution, ainsi que je
vais I’établir.

2. Dans un article intitulé Etude des réseauzx con-
jugués orthogonaux en projection sur un plan,
inséré dans le Bulletin de la Société mathématique,
jai fait une étude générale de ces réseaux, sur une
surface quelconque; je me suis principalement placé
au point de vue de la théorie de certaines équations
linéaires, aux dérivées partielles du second ordre,
dont la propriété carvactéristique est d’adinettre trois
solutions telles que la troisieme soit la somme des
carrés des deux premiéres ; je me proposais surtout de
metire en évidence l'analogie avec la théorie des
lignes de courbure et de déterminer toutes les surfaces
gui sont ainsi associées 4 un réseau orthogonal, donné
dans le plan horizontal Ozy. Je vais maintenant déve-
lopper des considérations d’un ovdre plus élémentaire
et plus géométrique.
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Il s’agit donc de résoudre, pour une surface quel-
conque (S), le probleme que Ribaucour proposa pour
les quadriques; je désignerai par (C) les courbes du
réseau demandé.

Les deux courbes (G), projetées horizontalement,
qui se croisent en un point m du plan Oz)y ont néces-
sairement pour tangentes les axes de symétrie de la
conique qui est la projection horizontale de l'indi-
catrice de la surface (S) au point M dont m est la projec-
tion. En d’autres termes, les courbes (C) projetées
bissectent les lignes asymptotiques projetées. Ces
propriétés sont analogues & celles des lignes de
courbure. Elles permettent de former de nouveau
I'équation différentielle des courbes (C) projetées:
l'indicatrice, en projection horizontale, ayant pour
équation

riX—xe2+os(X—2)(Y—p)+t(Y—y)2=1,
I'équation quadratique de ses axes de symétrie est
sS(Y—y2—s(X=—zp2+(r—t)(X—z)(Y—y)=o0;

de cette équation, découle immédiatement I'équation
différentielle précédemment indiquée des projections
des courbes (C).

Considérons une quadrique générale; soit (I') la
conique qui est le contour apparent de cette quadrique
sur le plan horizontal Ozy ; les projections des asymp-
totiques sont alors les deux tangentes menées de m a
la conique (T') : les courbes (C) sont, par conséquent,
les coniques homofocales a la conique (T').

Ceci a lieu lorsque le contour apparent est une
véritable conique; celle-ci peut dégénérer tangen-
tiellement en deux points autres que les points cycli-
ques du plan Ozy; elle peut méme dégénérer en un
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point double : c’est alors le cas du cone du second
degré et, plus généralement d’ailleurs, d’un cone
quelconque ; pour un cone, le réseau projeté se compose
de cercles concentriques et de droites émanant de leur
centre commun.

Mais, dans le cas singulier ot le contour apparent se
compose des deux points cycliques, il y a évidemment
indétermination; la quadrique est alors un paraboloide
de révolution d’axe vertical. Toute section plane se
projette suivant un cercle; l'indicatrice se projette
donc suivant un cercle et tout réseau conjugué de ce
paraboloide se projette suivant un réseau orthogonal.

3. Jai écrit plus haut que, dans le cas ol la
surface (S)est une surface moulure, attachée & un
cylindre vertical, le réseau (C), conjugué sur elle et
(ui se projette horizontalement suivant un réseaun
orthogonal, est celui des lignes de courbure de la
surface moulure.

La propriété réciproque est presque évidente : pour
que le réseau (C) soit précisément le réseau des lignes
de courbure de la surface (S), il faut que celle-ci soit
une moulure quelconque associée a un cylindre
vertical.

De méme, pour que le réseau conjugué () contienne,
soit les lignes de niveau, soit les lignes de plus grande
pente de (S), il faut et il suffit qu'on se trouve dans
le cas, qui précede, d'une surface moulure.

Ces considérations s’appliquent au cas particulier ou
la surface moulure est une surface de révolution
autour d'un axe vertical; le cas du paraboloide de
révolution étant excepté, le réseau conjugué (C) est
alors formé par les pavalléles et les méridiens de la
surface de révolution. '
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La notion de paralleles et de méridiens d’une
surface de révolution fut généralisée par Minding et
étendue a une surface quelconque : les paralléles sont
les courbes le long desquelles les normales & la surface
font un angle constant avec la direction Oz; les méri-
diens sont de méme lés lignes le long desquelles les
normales a la surface se projettent sur Ozy suivant les
droites paralléles. En d’autres termes, les paralléles de-
la surface se projettent suivant les courbes d'équa--
tions

p*-+ g*=const.,

et les méridiens, saivant les courbes d’équations

L — const.
q9

Sil'on impose aux paralleles et aux méridiens la
condition d’étre conjugués, la surface (S) est néces--
sairement une moulure. Montrons qu’il en est éga—
lement ainsi lorsqu’on impose la condition, que le
réseau (C) contienne soit les paralleles de la surface (S),
soit les méridiens de cette méme surface.

Dans le premier cas, on déduit des deux équations

pdp—+qdg =o,
dp dq
== dy
la condition
pdr+qdy =ds=o;

celle-ci exprime que les paralléles sont confondus avee
les lignes de niveau de la surface (S). Dans le second
cas, de méme, on déduit de 'équation différentielle des.
méridiens

) pdqg—qdp=o,
la relation

pdy —qdzr=o,
Ann. de Mathémat., 4 série, t. XII. (Aout 1gr2.) 24
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¢qui exprime l'identité de ces méridiens et des lignes de

plus grande pente de la surface. Dans 'un ou l'autre
cas, la surface est donc une surface moulure.

4. Dans le cas d’une surface (S) intégrale de I'équa-
tion de Laplace

0tz 0%z

ey -+ W =r-+t=o,
les lignes asymptotiques de cette surface (S) se pro-
jettent sur le plan horizontal Ozy suivant un réseau
orthogonal. lL.a détermination des lignes conjuguées (C)
d’une telle surface est donc identique a la révolution
d’un probleme de trajectoires obliques, sous I'angle de
45, dans le plan Ozy. En se reportant alors a la
page 92 des Nouvelles Annales de février 19og, on
voit que, I’équation des asymptotiques pouvant étre
ramenée a la forme

/mdutfmdc):const.,

celle des courbes (C) est alors

f/ﬁdutifg/iﬁdv:const.;

les quadratures a eflectuer sont les mémes dans les
deux cas.

Plus particuliérement, dans le cas des surfaces
d’é¢quations

Z = rcosw, Yy =rsinw, s =rEsinK(w — wy),

considérées aux pages 95 et 396 du Tome cité, les
projections des courbes (C) sont des spirales sinu-
soides.
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5. Le cas particulier ou la surface -intégrale de
I'équation de Laplace est de ‘révolution, c’est-a-dire
celui de la surface engendrée par la courbe loga-

rithmique
z = Logr,

est asignaler : les asymptotiques sontalors, en projec-
tion, les spirales logarithmiques

rdw ==+dr,

trajectoires, sous l'angle de 43°, des droites qui
¢manent de I'origine O ou des cercles de centre O; les
courbes (C) sont ces droites et ces cercles puisque
la surface est de révolution.

Considérons de méme le cas ou la surface est un
hélicoide gauche a plan directeur horizontal ; soit

z =arc tang‘i’-
I’équation de cet hélicoide (S); c’est une surface
intégrale de ’équation de Laplace; ses asymptotiques
se projettent sur Ozy suivant les droites émanant de O
et suivant les cercles de centre O. Les courbes (C)
projetées horizontalement sont nécessairement les
spirales logarithmiques

rdw ==dr.

Il y a donc un certain rapprochement 4 faire entre
la surface de révolution précédente et I'hélicoide
gauche & plan directeur. Plus généralement, il y a lien
d’associer deux a deux les surfaces intégrales de I'équa-
tion de Laplace. Pour la surface (S,) d’équation

z2=U—V,

u-+v
2

v—u

T = N y=i > ;
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les asymptotiques et les courbes (C) ont, en projection
horizontale, pour équations différentielles respectives,

U dut— V" dv2 = o,
U" du?+ V' dv? = o;

si 'on associe donc a (S;) la surface (S;) d’équa-
tion
- z=0U -{—-V,

les projections des asymptotiques de lune des
surfaces (S,) et (S,) sont les projections des
courbes (C) de l’autre surface, et inversement.

6. Au paragraphe 3, j’ai été amené a considérer le
réseau formé par les cercles concentriques et leurs
rayons, et le réseau formé par les spirales loga-

rithmiques
rdvw ==dr.

Dans mon article inséré dans le Bulletin de la
Société mathématique, j'ai déterminé et défini
géométriquement, comme surface diamétrale d’un cone
et d’une surface de révolution, la surface la plus
générale qui peut étre associée au premier de ces
réseaux (§ VII de Particle cité). Je vais consacrer la
in du présentarticle i la détermination de la surface (S
fin du p tarticle a la dét tiondel face (S
la plus générale, dont le réseau projeté (C) est celui
des spirales logarithmiques

rdw==dr.

En coordonnées ordinaires, cette surface (S) est
I'intégrale d’une équation aux dérivées partielles du
second ordre qu’on obtient en posant

ay _z+y

dx x-—-)f’
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dans I'équation différentielle des courbes (C) projetées;
‘cette équation prend la forme

r—t 4xy
s z— y?

= 0.

Il faut donc intégrer ou transformer cette équation.
I est préférable de procéder de la facon suivante :
Partons des équations

re~w = e,

rew — e,

des deux familles de spirales logarithmiques; ce réseau
orthogonal et isothermique donne & I’élément linéaire
duplan la forme

ds? = 2(3!(“‘*“’)(du2+ d(,z);

I'équation linéaire qu’il convient de Jui associer est

donc
020 a0 a9
du dv Ju ay

c’est une équation i 1invariants égaux, puisque le
réseau de spirales est isothermique; on a

h=k=1 H
I'équation est donc réductible a la forme canonique

02
01 =0,.
du dv

On reconnait 'une des formes qu’il est possible de
donner & !’équation des télégraphistes. Ainsi donc
la détermination des surfaces telles que le réseau(C)
projeté soit celui de 'hélicoide gauche a plan direc-
teur est réductible a Uintégration de U'équation des
télégraphistes.
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En cherchant une solution particuliére de la forme
6=U+YV,

on obtient I’hélicoide lui-méme. En cherchant une

solution particuliére de la forme

b=0UxV,
on trouve
() — eAu+Bv const.;

A et B sont deux constantes liées par la relation

[ l_ .
K—PE——I,

on posera donc

(i élant une constante arbitraire.

Les surfaces (S), qui correspondent a la solution
particuliére ainsi déterminée, ont pour équation géné-
rale

1— (2

Logz =Logr + Cuw;

elles rentrent dans la famille des surfaces spirales qui
ont été signalées par M. A. Buhl dans son Mémoire
Sur les surfaces dont les lignes asymptotiques se
déterminent par quadratures (Nouvelles Annales,
octobre 1908, §7); en appliquant les formules de
M. Buhl, on trouve pour projections des asymptotiques
deux familles de spirales logarithmiques

—(-1,—4;+2de%+(1(»’=0

(en écartant le cas singulier CGC=1¢, pour lequel la
surface dégénérerait en un plan imaginaire).
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[D5c]
PRINCIPE DE DIRICHLET. LA FORMULE DE POISSON;
Par M. R. p’ADHEMAR.

Lorsque se produit une puissante synthése, comme
celle de MM. Fredholm, Hilbert, etc., pour les pro-
blemes de la Physique mathématique (& caractéris-
tiques imaginaires), il est intéressant de retrouver,
par la méthode nouvelle, les solutions anciennes rela-
tives aux cas les plus simples.

Nous allons voir que, par la théorie des potentiels,
et sans faire usage des transcendantes de M. Fredholm,
on retrouve facilement la formule de Poisson.

Il s’agit, on le sait, de trouver la solution de I'équa-
tion de Laplace :

02un o%u

Proiaa = o,
la fonction « étant donnée sur une circonférence.
C’est le probleme de Dirichlet.

Nous rappelons (') que I'on résout le probléme de
Dirichlet in¢érieur, dans le plan, par un potentiel de
double couche. Soit W, ce potentiel, au point p; on
aura

L
cos®
(1) \V,,:f v * ds,
0

)

L. étant la longueur du contour donné; r, la distance

(') Lecons sur les Principes de UAnalyse, par lauteur
(Gauthier-Villars), t. I, Chap. VIII et Chap. IX. Voir aussi :
0. D. KEeLLoc, Theorie der Integralgleichungen und der
Dirichlet'schen Princips, Gbttingen, 1902.
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du point p au point s sur le contour; © étant 'angle de

fa droite r, avec la normale au contour au point s;
v étant la densité; ds étant ’élément d’arc du contour.

/{

?

La densité v est donnée par ’équation de Fredholm
F q

L 7
’(2) ‘Ii\-+‘— [ COS(?VG'dG=E=q‘.\'v
0

7T * i

W; est la fonction donnée sur la frontiére et , est la
distance du point fixe Q, sur le contour, au point
mobile s, sur ce méme contour.

Si le contour est un cercle de rayon R, on a

coso R
—F* = — = const.

r 3

Dans ce cas, on a immédiatement v;= §;+ A.
A est une constante, que nous déterminons par iden-
tification, ce qui donne

R 27T R
(3) A+ — f (Yo-+A)ds = o;

<0

A est donc connu, donc v, est connu, et nous avons i
calculer W, par la formule (1).
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Le triangle O ps donne, en posant O p = /, longueur
donnée, puisque le point p est donné

— o2 .
= R*+rj—2Rrpcoso,

cos ¢ I < Rﬂ_li>
—_ 1 = — {1+ .
rp 2R r

On aura donc
27TCR
R2— {2\ ds
., . R:— 12\ ds
6 W= [ n) (= S50 5

Tenons compte de la relation (3); d’ou

27TR
(%) [ ) B = Th

“0

Maintenant, pour une densité constante et égale a A,
nous aurions un potentiel double constant, dans le
domaine intérieur ('), ce qui donne

Appliquant la formule (4), cela donnera

R2— [2\ ds
(6) 2~rA——/ A(I—;— 7 )21{

quel que soit le point intérieur p.
De la résulte, en posant W; =1, fonction donnée (*):

27R R2 —
W, =L f L, as.

P

(') Lecons sur les Principes de U'Analyse, par l'auteur, .1,
p. 218 (w est l'augle solide).
(2) Il suffit d’écrire :

(¢+A><1+L> (*«P+A)+4; 17+A< W;P)_A

et d'utiliser les formules (5) et (6).
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C’est la formule de Poisson. On pourra poser
ds =R db,
f étant Parc de cercle, et
ry= R4+ 12—aRlcos(§ —2)

{ et o étant les coordonnées polaires du point p.

SOLUTIONS DE QUESTIONS PROPOSEES.

2172.

(1911, p. gi.)

Dans le plan ABC on méne les droites AD, BE, CF, qui
se coupent en un point P. Soit Q la conique circonscrite
a ABGC et tangente en A, B, C auzx paralléles a EF, FD, DE.

I. Les paralléles a PA, PB, PC, menées par un point O
de Q, coupent BC, CA, AB en A, p, v, et lon a la droite
A(h, 1y V). .

II. En permutant les points O et P, on a une seconde
droite A'(N, ', v').

IlI. Les droites A et A' se coupent au milieu w de OP.
Cas ot P est Uorthocentre de ABC. P. So~par.

SOLUTION
Par M. PARROD.

Le cas ou P est I'orthocentre de ABC a été proposé par
M. Sondat et résolu dans les Nouvelles Annales, 1907,
p. 332; dans ce cas Ia conique Q est le cercle circonscrit.

Le cas général s’en déduit par projection oblique sur un
plan.

On peut aussi considérer le cylindre droit qui a pour base
la figure donnée. Une section circulaire du cylindre ayant
pour base la conique Q donne la figure particuliére précédente,
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car le triangle D;E;F dont la projection est DEF a ses cotés
antiparalléles & ceux du triangle A B, Cy; dauns ce triangle, les
droites Ay Dy, B,E, et C;F; sont les hauteurs.

Autre solution par M. R. Bouvarsr.

2474.

(1911, p. 95.)

Si un point O décrit le cercle ABC, on sait que les
paraliéles @ OA, OB, OC, menées par l’orthocentre P du
triangle ABC, coupent BC, CA, AB en trois points en ligne
droite.

Démontrer que cette droite A enveloppe la conique Q
inscrite a ABC et concentrique au cercle d’Euler.

Si Ay est la droite correspondant au point Oy diamétra-
lement opposé a O, le point O'(AA;) décrit la direc-
trice A'(), ', v') de Q, relative & son foyer P, et qu'on
obtient en menant les paralléles PN, Pp/, Py, aux tan-
gentes en A, B, C.

La corde 11 des contacts tourne autour de P en restant
perpendiculaire ¢ PO'. P. SonpAT.

SOLUTION
Par M. PARRoD.

Soit v la droite A. L'angle uPv est constant, donc cette
droite enveloppe une conique inscrite dans le triangle ABC:
I'un de ses foyers est P, Vautre foyer est le point inverse de P,
c’est-a-dirve le centre du cercle ABC; son cercle principal est
le cercle pédal commun a ces deux points, c’est le cercle
d'Euler; les symétriques du point P par rapport aux trois
cotés du triangle ABC étant sur le cercle circonscrit, le cercle
directeur du foyer P est le cercle ABC.

Soit A;pyv; la droite A. L’angle 2 P); est constant, donc
la corde des contacts Il; des tangentes A, A passe par P et le
point O’ (AA,) est sur la directrice du foyer P et de plus cette
corde est perpendiculaire sur PO’.

La droite P}’ est perpendiculaire sur le diamétre du point A
et le point de contact de Q avec BC est un point D tel que
PD est paralléle a ce diamétre; la droite PA' étant perpendi-
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culaire sur PD, le point A’ appartient a cette directrice. On
démontrerait de méme que (' et v’ sont situés sur elle.

Autres solutions par MM. BouvarsTt et GISOLF.

2475.

(1911, p. 95,

Soient A'; B', C' trois points pris sur les cotés d’un
sriangle ABC de telles maniéres que les droites AA', BB',CC’
solent concourantes; sotent a, 8, ¢ trois points pris sur les
cotés du triangle A'B'C tels que les droites A'a, B'8, C'y
soient concourantes. Démontrer que les droites Ax, B3, Cy
sont concourantes. ' GIRAUDON.

SOLUTION

Par M. R. BouvaisT.

Projetons 'axe d’homologie des triangles ABC, A’B' (! sui-
vant la droite de l'infini, nous obtenons deux triangles A; B, C,
et A'B’C' ayant leurs cotés paralléles; si oy, 8), v; sont les
projections de «, , ¥, nous avons

% Gy BB 1A =
u By B} 1 G ’

les droites A1y, By 3y, Cyy rencontrent B,Cy, A C), A;B; en
al, By, vy etlona
ayq C', a'l C| .

ay B} ay By’

de cette relation ct des deux autres analogues on déduit la
suivante

2y Cy BBy ¥y Ay

ay By ByAy v1 Gy

]

qui montre que les droites A;x;, By 8;, Cyvy; sont concou-
rantes.

Autres solutions par MM. ABRrAMEScU, GISOLF, KLuG, LEMAIRE et
PARROD.
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2176.

(1911, p. 95.)

On considére une parabole P et une droite D perpend:-
culaire & l’axe de P. Soient A, B, C les pieds des normales
a P abaissées d’un point quelconque M de C; Ay, By, Cy les
poinlts de lv"régi‘er et Ay, B,, C; les centres de courbure
relatifs a A, B, C. On a entre les aires des trois triangles
ABC, A\ B,C, et A3B,Cy les relations ABC = A,;B,C, et

ABC

— . = const. E.-N. BARISIEN.
AyByC,

SOLUTION

Par M. R. Bouvaisr.

Si A’ est le symétrique du point A par rapport a I'axe de la
parabole, le point de Frégiec A, relatif a A est sur le dia-
métre A'A, et la longueur A'A; =2p (p étant le paramétre
de la parabolc donnée). Le lieu du point A, est, par suite, la
parabole coaxiale et égale a la parabole donnée obtenue en
faisant subir & cette derniére une translation, telle que la
distance des deux sommets soit égale a 2p. Ceci posé, il est
évident que les triangles A’, B, C’ sont équivalents, et comme
A'B' = ABC, A;B,;C;= ABC et cette relation a lieu quels

que soient les points A, B, C pris sur la parabole.
2

. L7
Si la parabole donnée est y2 —apxr =o, si z = ;51;, r==u
(£=1,2,3) sont les coordonnées des points ABC, l'aire du
(=) (La—t3) (Ls— ty)
2

y les coordonnées

d ints AuB, Gy sont z=p+ 34, y=— B Paire
es points A, By Ly so xr=p 2[” Yy = p”

triangle ABC est

Ay B, C, est égale a

3(8y—13) (ta—t3) (t3 —

t
D b0ty tats+ tits),

2p?
AngCg _ 3(tyty+ taty+ tltz).
ABC Pt

L’équation aux ¢ des points d’intersection de I'hyperbole
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d’Apolionius d'un point x, y, avec la parabole étant

3
— +U(p—x)—pyo=o,

2p
, Ay By C, .
on voit que ———— = const. si xg est constant.
ABC
Remarque. — Etant donnée une conique quelconque, les

points de Frégier de ces différents points sont sur une co-
nique homothétique et concentrique a cette conique, le rap-
port des aires des triangles ABC, A;B,C; est donc constant.

Autres solutions par MM. KLuG et LEMAIRE.

2177.

(1941, p. 96

On donne deux cercles concentriques G et C' et un
point A, Une droite quelconque passant par A rencontre C'
en P et Q. Le liew des sommets du quadrilatére formé par
les quatre tangentes & G issues de P et Q se compose d’une
conique et de deux droites. E.-N. BARISIEN.

SOLUTION
Par M. PARROD.

Les tangentes PB', QD' du méme c6té que le centre O de
la droite PQ se rencontrent en E’) les deux autres se ren-

cantrent en E; désignons par F et F' les deux autres points
d’intersection.
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“4.a droite EE’ est un diamétre perpendiculaire sur PQ en H
et les droites DB', BD' passant par H; les bissectrices des
angles de ces deux cordes sont les diagonales EE’, PQ et leur
angle BHB' est constant, car I’arc BB’ est constant. Le point H
décrit la circonférence de diamétre AO, en désignant par O
le centre du cercle C, donc les cordes DB’ et BD' rencontrent
le cercle OA en deux points fixes K et K'. Les points F, F'
décrivent les polaires, dans le cercle C, des points K', K.

La corde B'D’ est paralléle a PO, abaissons K'I' perpendi-
culaire sur B' D', cette droite est aussi perpendiculaire sur DB
en I; les angles K'B'I’', K'DI sont égaux et constants, [ et I'
décrivent un cercle déduit du cercle G par une homothétie et
une rotation amenaat le point O au milieu de KK', les cordes
DB, D'B’ enveloppent une conique de foyers K, K' et les
points E, E' décrivent sa polaire réciproque dans le cercle C.

Autre solution par M. KLug.

2178.

(1911, p. 96.)

On donne une ellipse E et un point P sur le grand axe,
et l'on considére une corde variable PAB. Le lieu des
centres de similitude des cercles décrits sur PA et PB
comme diamétres se compose du grand axe et d’une droite
perpendiculaire au grand axe. E.-N. BARISIEN.

SOLUTION

Par M. PARROD.

Plus généralement, supposons le point P quelconque. Le
deuxiéme centre de similitude étant S, on a

SP2= SA SB.

S étant le milieu du segment PP’, le point P’ décrit la polaire
du point P, d’oir le lieu du point S.
(Le diamétre du point P ne fait pas partie du lieu.)

Autre solution par MM. ABRAMESCU ct Bouvaist.
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QUESTIONS.

2196. Une sécante quelconque d’une ellipse donnée ren-
contre ellipse de Frégier en deux points de Frégier p et p’
et lellipse donnée en & et c¢. Le cercle de diamétre bc ren-
contre Uellipse donnée en deux points a et @’ qui corres-
pondent aux points 1 et w'. (D" W. GAEDECKE.)

2197. Trouver la relation qui doit exister entre les coeffi-
cients de I'équation

z5+ azd+ bzt + ¢+ dat+ ez +f=o0

pour que le produit de trois des racines soit égal au produit
des trois autres. (D" W. GAEDECKE.)

2198. On considére le quadrilatére ABCD inscriptible dans
un cercle.

Le triangle ABC est équilatéral, le coté CD est le coté du
carré inscrit, et le coté AD est celui du dodécagone régulier
inscrit.

Montrer que 'aire du triangle formé par les trois diagonales
de ce quadrilatére est les 3% du carré qui a pour coté la
distance des milieux des deux diagonales intérieures.

(E.-N. BARISIEN.)

2199. On considére un point M du plan d’une parabole P,
tel que 1'une des trois normales abaissée de M sur P soit
bissectrice extérieure de I'angle des deux autres (*). Montrer
que le lieu des sommets du triangle formé par les tangentes
aux pieds des normales se compose d’une parabole et d’une
quartique. (E.-N. BARISIEN.)
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[C1a]
SUR LA NOTION DE DIFFERENTIELLE TOTALE;

Par M. Mauvrice FRECHET,

Professcur a la Faculté des Sciences de Poitiers.

INTRODUCTION.

1. En cherchant & préciser dans le Calcul fonction-
nel la notion de différentielle, j’ai été amené & exami-
ner de pres la définition de la différentielle totale d’'une
fonction de plusieurs variables. Je me suis alors apergu
que non seulement la définition ordinairement adop-
tée (') n’est pas propre a la généralisation que j’avais
en vue, mais encore qu'elle n’est pas en soi satisfai-
sante.

On dit généralement (2) qu'une fonction de plu-
sieurs variables indépendantes f(z, y, ..., u) posséde

-
(') Dans la suite, je renverrai par des chiffres romains aux

ouvrages suivants:

I. BAIRE, Legons sur les theories generales de U Analyse, L. 1,
Paris, 1907.
II. GoursaTt, Cours d’Analyse, t. 1, Paris, 1910, 2° éditioa.

III. HuwmBERT, Cours d’Analyse, t. I, Paris, 1903.
IV. Dk LA VALLEE PoussiN, Cours d’Analyse, 2° édition, Paris,
190g.
V. J. PiervoNt, Theory of functions of real variables, t. 1,
Boston, 19ob.
VI.  Storz, Grundsiige der Differential und Integral-Rechnung,
t. I, Leipzig, 1893.
VII. W.-H. Youne, The fondamental theorems of Differential
Calculus, Cambridge, 1910.
VIII. TANNERY, Introduction a la theéorie des fonctions d’une
variable, 2* édition, Paris, 1904.
() I. p. 715 IV, p. 117,
Ann. de Mathémat. 4 série, t. XII. (Septembre 1912.) 25
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une différentielle totale au point zy, 39, ..., U, si

cette fonction admet

9

(’uo

ey sy

9y,

of

¥

des dérivées partielles
dl‘o

, par rapport a chacune de ses variables;

et alors cette différentielle est par définition

o
df = EA'T+

I
9y

of

A ceo=—A
\y —+ +0u0 u,

ot Az, Ay, ..., Au sont des accroissements arbi-
traires des variables z, y, ..., w.

2. Si maintenant on examine les théorémes ou inter-

vient I'existence de la

différentielle, on observe que

les énoncés généralement adoplés pour le cas de plu-
sieurs variables contiennent des hypothéses restrictives
qui ne figurent pas dans les énoncés relatifs aux cas

d’une variable. Donnons les exemples suivants :

Une fonction f () qui
est différentiable pour
x = x,, est nécessairement
continue pour r = .

Si une fonction u(z)
admet une différenticlle
pour x ==, et si une
fonction f (u) admet une
différentielle en u« pour
u=u(zy), la fonction
Slu(x)] admet une diffé-
renlielle en & pour x ==

Si une fonction f(z, )') est déri-
vable par rapport a x et a y au
peint x,, ¥y eteen son voisinage
et si de plus ses dérivées partielles
sont bornées dans ce voisinage, la
fonction f (x, y) cst nécessaire-
ment continue au point xy, %o
(et en son voisinage) par rapport a
Uensemble des variables (z, y)
(I, p. 69; VIHI, p. 365).

Sides fonctions u (z, y), v(z, y),
w(z, y) sont différentiables au
point (xo, ¥¢) et si une fonction
S (u, v, w) est différentiable au
pointu(zy, ¥o),v (e, ¥0), % (Zy, ¥o),
enu, v, w; st en outre les dérivées
partielles par rapport a u, v et w
existent au voisinage de ce méme



et cette différentielle s’ob-
tieut en remplagant, dans
la différentielle de f(z),
Paccroissement de u par
sa différentielle.

Si une fonction f(z)
admet une différentielle au
pointagla courbe y = f ()
a en ce point une tangente
non parallélea oy dontle
coefficient angulaire est le
coefficient de Az dans la
différentielle de /.

3. Or on ne peut se

I

tielle sans avoir a
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point et sont continues en ce point,
la fonction

Sflu(z, y)v(, 3), w(z,y))
est différentiable par rapport a et
a y au point zy, ¥, et sa différen-
tielle s’obtient en remplacant dans
la différentielle de f(u, 0, w), les
accroissements de u, ¢, w par leurs
différentielles (VIII, p. 369).

Si une fonction f(z, y) est
conlinue et admet une différen-
tielle continue au point z,, y,
et en son voisinage, la surface
s=f(x, y)admet au point [z, y,],
[f(2o, ¥o)] un plan tangent non
paralléle a 0z, dontles coefficients
angulaires sont les coefficients de
Az, Ay, dans la différentielle de s
au point (&, ¥o)-

servir de la notion de différen-

utiliser 'une des propriétés précé-

dentes. De sorte que pratiquement lu définition que
l’on emploie véritablement, ce n’est pas la définition
théorique précédemment rappelée, mais celle-ci :

une fonction f(x,y, ..

au point (Zg, Yo, - . .»

admet des dérivées partielles

;
(Loy Yoy «« lto) et au

., &) admet une différentielle
u,) si elle est continue, si elle

o S

ox dy ou
voisinage de ce point, et si ces

ceay

au point

dérivées partielles sont continues au point Zy, ..., Uy;
et alors cette différentielle est

df = 3= f

Ax+—

9 of

dAu

dA_y+ S

Ainsi la simplicité de la définition théorique rappe-
lée plus haut n’est qu'un trompe-1'eil. Mieux vaudrait
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adopter franchement la définition pratique que nous
venons de formuler ('); moyennant une telle définition,
on rétablirait 'analogie entre les énoncés relatifs au
cas d'une variable et ceux qui concernent le cas de
plusieurs variables.

Mais aprés avoir reconnu que la définition théorique
est trop large, nous devons observer que la définition
pratique, telle qu’elle résulte des Ouvrages classiques,
est trop étroite et inutilement compliquée comme nous
le montrerons dans la suite.

On est done amené a chercher une définition de la
différentielle qui se place pourainsi dire entreles deux
précédentes. Jétais ainsi arrivé a formuler une défini-
tion que je croyais nouvelle (2). Mais je me suis apercu
qu’'on trouve déja cette définition dans Storz, Grund-
stige der Differential und Integral-Rechnung,t. 1,
p. 133, et James Piervont, The theory of functions
of real variables, t. 1, p. 268. Mus c'est W.-H.
Young qui en a véritablement montré le premier tous
les avantages dans son petit Livre : The fundamental
theorems of Differential Calculus et dans quelques
Mémoires. Apres lui, le travail actuel pourrait paraitre
superflu. Jai cru cependant utile de le publier parce
que la simplification apportée dans les principes fonda-
mentlaux du Caleul différentiel me parait assez grande
pour qu'on puisse désirer au point de vue pédagogique
(ue les conséquences de la nouvelle définition fussent
exposées en frangais. J'al donné en outre a la définition
de Stolz une forme analytique équivalente i la sienne
et d’ailleurs a peine différente, mais qui a I'avantage

(') En fait, c’est peul-étre ce qui convient le mieux i une expo-
sition ¢lémentaire; voir IV, p. 28, II1, p. 36.

(*) Comptes rendus de U’ Acadeémie des Sciences, t. CLIL, 1911,
p- 843, 1050.
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d’étre plus rapprochée de la définition historique par
les infiniment petits et de se préter en outre immédia-
tement a l'extension au Calcul fonctionnel qui était
mon but principal. De plus, j’ai indiqué une propo-
sition sur les relations entre la différentielle seconde
et la différence seconde qui n’avait pas été, je crois,
obtenue jusqu’ici rigoureusement.

Jajoute, et ce sera avec le précédent le seul point
véritablement nouveau de ce travail, qu’on serait con-
duit & la méme définition de la différentielle premiére
que celle de Stolz, si 'on partait d’une définition des-
criptive basée sur l'interprétation géométrique de la
différentielle. Ce n’est pas celle que je prendrai comme
point de départ. Néanmoins, il me semble que si 'ex-
posé de W.-H. Young a déja fait ressortir la commo-
dité de la définition de Stolz, la définition géométrique
a laquelle je fais allusion lui confére en outre en
quelque sorte un caractére de nécessité. Cest la sui-
vante.

Définition. — Une fonction f(x, y) admet une dif-
férentielle & mon sens au point (24, y,) sila sur-
face z=/f(x, y) admel au point (z,, ¥,) un plan
tangent non parallele 8 Oz

3 —zo=p(x—20) + q()y — o)
La différenticlle de f(z, ) en (z,, yo) est alors
d f(x, y) = pAr+ q Ay,

ou Az, Ay sont des accroissements arbitraires de z, y.

NOUVELLE DEFINITION ANALYTIQUE DE LA DIFFERENTIELLE.

4. On a abandonné depuis longtemps la définition
de la différentielle au moyen des infiniment petits, telle
qu’elle parait résulter naturellement de ce théoréme :
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La différentielle d’une fonction f(x) au point z,
est la partie principale de Uaccroissement de f(x)
a partir du point x,. Cette définition est évidem-
ment insuffisante (on sait par exemple que st f, = o
et si 125 o, la partie principale de Uaccroissement
de fest la différentielle seconde).

Il y alieu de le regretter, parce que c’est la défini-
tion qui s’est trouvée historiquement et pratiquement
la plus intuitive et la plus utile.

Or on pent, en vestant rigoureux, retrouver une
partie des avantages de la définition précédente en la
modifiant ainsi :

Une fonction f(z) est différentiable au point xy, sil
existe une fonction lindaire A Ax de 'accroissement de
la variable qui ne differe de I'accroissement de la fone-
tion f a partir de x, que d’une quantité infiniment
petite par rapport a l'accroissement Az de la variable.
Et AAx est appelée la différentielle de f(x) en z,.

La condition imposée 4 A A.r signifie que la quantité

[f(zo+ Ax) — f(xy)]| — A Ax
Az

tend vers zéro en méme temps que Az. EL]'on voit ainsi
que cette définition est exactement équivalente a la
définition rigoureuse ordinaire.

Il pourrait y avoir des avantages pédagogiques a
adopter cette forme de définition qui met bien en évi-
dence le fait que la différentielle est une fonction linéaire
approchée de Paccroissement de la fonction. Mais
c’est pour le cas de plusieurs variables qu’elle posséde
une supériorité marquée sur la définition ordinaire a
laquelle elle ne reste plus équivalente.

5. Définition. — Une fonction de plusieurs
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variables f(z, y, ..., u) admet une différentielle a
mon sens au point (Xg, Yo, ..., u,) s'il existe une
fonction linéaire des accroissements des variables, soit

df =AAzx +BAy +...+~LAu

qui ne differe de P'accroissement de la fonction f a
partic du point (&g, 1oy ..., ) que d’une quantité
infiniment petite par rapport a 'ensemble des accrois-
sement Az, ..., Aw des variables. Et I'expression
AAz +...+ LAu est appelée la différentielle de
Sf(x, ..., u)au point considéré.

Jai laissé, dans ce Lexte, 'expression un peu vague
infiniment petite par rapport & l'ensemble des
accroissements, parce quon peut la préciser de plu-
sieurs fagons équivalentes. Dansle cas de trois variables,
par exemple, on aurait pu dire (nfiniment petite par
rapport au vecteur (Ax,A),Az), c’est-a-dire par
rapport a

‘/Ax‘l—t—Ay‘Lﬁ— Az,

D’une fagon générale, la condition imposée & df signifie
que

[f(zo+Ax,¥o—+ Ay, ...y Up+ Aw)y—f (@0, Yoy .oy ho)] — (A Az + BAy +...+ LAu)
A

tend vers zéro avec A, A désignant 1'écart des
points (2y—+ Az, ¥ o+ Ay, ..., 20+ A3) eL(Zo, Yo, -+, Uo)-
On peut prendre pour A 'une des expressions

VAZE+ Ayta. .+ Au?,

ou |Az|+|Ay|+...+]Au|; ou encore, on peut
prendre pour A la plus grande, 8, des quantités [Azx],
[Ay|, ..., [Au|. Ces trois choix sont équivalents a
notre point de vue actuel, comme on le voit immédia-
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tement d’aprés les inégalités

82y Ax? . .+ Auw?</n3,

8 |Az|+...+|AulS njd,

qui montrent que les trois expressions considérées sont
des infiniment petits du méme ordre.

Dans une exposition simplifice il y aurait lieu de se
borner a prendre A = |Ax|+...+[Au|, comme
nous le ferons dans la suite; mais j'ai indiqué cet arbi-
traire parce qu'il correspond a des définitions diffé-
rentes dans le Calcul fonctionnel.

Il est important de remarquer que si tous les accrois-
sements sont nuls sauf, par exemple, Az, les trois
expressions se réduisent 4 | Az |.

On peut faire maintenant une remarque essentielle :

Si une fonction f(x,y, ..., u) admet une diffé-
rentielle @ mon sens, elle a aussi une différentielle
au sens ordinaire (et c’est la méme).

En effet, si I'on applique la définition en faisant
Ay=...=Au=o,
on voit que la quantité

[flzo+ Az, yo, ...y o) — f(To, Yoy ..y Uo)] —A
Axr

, 9 . . N
tend vers zéro avec Az. Donc 5;f— existe etest égal 4 A;
0

de méme pour %— qui sera égal a B, etc. Mais la réci-
0

proque n’est pas vraie.

Par exemple, la [onction f(,y) = /| zy | est partout conti-
nue et elle est dérivable en x et en y a 'origine ou ses déri-

vées sont nulles [ puisque f(z, 0) = f(o, y) =o]. Sielle avait
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une différentielle & mon sens a I'origine, on aurait donc

,;mMﬂ
[az |+ | Ay | '

quand [Az |+ [Ay]| tend vers zéro, ce quin’a pas lieu comme

on le voit en prenant, par exemple, Ay = Az,

6. On voit maintenant que la définition précédem-
ment indiquéé peut s’énoncer ainsi :

Une fonction f(z,y, ..., u) est différentiable au
point (Zay Yoy «++, Uy) st elle admet en ce point des

o . .o of of .
dérivées partielles finies 0wy 3y’ auy et si ces
dérivées partielles sont telles que ’on ait
(1) flao—+ Az, yo—+ Ay, ..., U+ Aly)

. of A N
—f(waJO) ceey lto)—!—A‘Z'&To' +A}"d‘},—0 + ...+ 'L,—I;;Auo

+e)| Az |+ Ay | .. Az ],
ol ¢ est une quantité qui tend vers zéro quand
[Az |+ Ay +...+|Au]

tend vers zéro.

C’est la définition méme de Stols, Pierpont et
Young,
nier terme par

a cela pres que ces auteurs remplacent le der-

€ AT + € ZY + ...+ g, AU

(ottey, €4, ..., 24 lendent vers zéro quand Az, Ay, ..., Au
tendent simultanément vers zéro) ce qui revienl au
méme. Je dirai donc, a partir de maintenant, di fféren-
tielle au sens de Stols au lieu de différentielle a
mon sens.

On observera que la définition de Stolz ajoute ala
définition ordinaire 'hypothése que la formule (1) est
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vérifiée. Un cas trés général ol il en est ainsi est le
suivant :

Si une fonction f(z, y) est dérivable par rapport a z
et par rapport a ¥ au point (z,, ) et par rapport a
I'une des variables en son voisinage et si la fonction et
cette dérivée sont continues au point (Zg, ¥o) par rap-
porta I'ensemble des deux variables, la fonction f(z, »)
admet une différentielle au sens de Stolz au point (24, o)
(VI, 134). Mais la réciproque n’est pas vraie. Non seu-
lement pour qu’une fonction ait une différentielle
au sens de Stolz au point (x,, y,), il n’est pas
nécessaire que ses dérivées partielles soient conti-
nues en ce point, mais il n’est méme pas nécessaire
gu'elles existent au voisinage de ce point.

Si Pon considére d’abord la fonction

Sf(z, ) = (22+ y?)sin pour 2+ yrSo

Var+ y?
avec f(0, 0) = o0; on voit que cette fonction est par-
tout dérivable.

Mais on a, par exemple,

S(z,0) = a2sin |;'" s f(o,0)=0.

De sorte que

.1 1
Sr(0,0) =0 et f;(7,0)=2m51n;~cos;

pour x > o0; et par suite

lim fi(z,0) =— 1% f1(0,0)

I ay * , .
quand on prend x = —— et que n croit indéfiniment.
2N T

Ainsi les dérivées existent, mais ne sont pas conti-
nues. Pourtant on a
. 1
(AZ2+ Ay?) sin —————
VAZ? -+ Ay?

lim —
[az ]+ [ay] &
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quand |Az|4|Ay| tend vers zéro, c’est-a-dire que
cetle fonction admet a 'origine une différentielle aun
sens de Stolz (cette différentielle étant d’ailleurs
nulle).

Soit ensuite () la fonction de Weierstrass qui est
partout continue et qui n’est nulle part dérivable.
Envisageons la fonction

f(@y)=vVar+yile(Vary?) —o(0)).

Elle est dérivable par rapport a4 z et a y, a l'origine
(etses dérivées y sont nulles). Au contraire, il est facile
de voir qu’en un point quelconque non situé sur les
axes, la fonction n’est dérivable ni par rapport a z ni
par rapport a y. En sorte qu’il est impossible de déter-
miner autour de l'origine, une région si petite qu’elle
soit, dans laquelle f(z, y) soit partout dérivable.

Cependant la fonction admet une différentielle au
sens de Stolz a 'origine. On a évidemment

lim Vaz: + Ay'l[q:(‘/Ax2+A_y2) —9(0)] —0
[az |+ | Ay | '

quand |Az |+ |Ay | tend vers zéro.

Si une fonction est différentiable au sens de Stolz en
tout point d’'un domaine D, elle a nécessairement des
dérivées partielles en tout point de ce domaine. Mais
ces dérivées ne sont pas nécessairement continues en
tout point intérieur a D.

Tel est le cas de la fonction citée précédemment

(24 y?)sin —

iy
En résumé, on voit bien que la définition de la diffé-
rentielle au sens de Stolz se place entre la définition
théorique et la définition pratique mentionnées plus
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haut. Elle est moins large que la premiére, moins
restrictive que la seconde.

THEOREMES FONDAMENTAUX DU CALCUL DIFFERENTIEL.

7. Nous allons montrer maintenant qu’au moyen de
cette nouvelle définition, on peut simplifier les énoncés
classiques donnés plus haut de facon a les modeler
exactement sur ceux qu'on obtient dans le cas d’une
variable. Nous nous bornerons généralement au cas de
deux variables.

Tutorivre. — Si une fonction f(x,y) admet une
différentielle au sens de Stolz au point (z,, y,), elle
est en ce point continue par rapport & lUensemble
des deux variables x, y.

En effet, d’apres 'hy pothese on a en appelant Af
Paccroissement de f

Af=AAz +BAy +:c|Azx | + | Ay |,
¢ tendant vers zéro avec [Az |+ |Ay|.

Ce théoréme n’est pas vrai si Uon définit la différentielle au
sens ordinaire, sans ajouter une hypothése supplémentaire. Il
suffit pour le voir de prendre par exemple (1) pour f(2, ¥)la

. ) A X, N
fonction égale a L A quand z?+ y22-o et 4 zéro quand
Tty ‘

z2+ y? = o. Elle a une différentielle, évidemment nulle a
- 1

Iorigine, et pourtant sa valeur — pour ¥ =z $o ne tend pas
2

vers f(o, o) quand 22+ y? tend vers zéro. Ce seul fait suffit
a prouver que si une fonction a une différentielle au sens
ordinaire, elle n’en a pas nécessairement au sens de Stolz.

8. Tukorkme. — Si des fonctions u(z, y), v (z, ),

() 1, p. 69.



(397)

w(x, y) admettent une différentielle au sens de Stols
au point x,, o, et st une fonction f(u, v, w) admet
une différentielle au sens de Stols au point
Uy = U(Zo, ¥o), vo=0(Zy, Yo), Wo=w(Zo, ), la
SJonction F(z, y) = flu(x, y), v(z, y), w(z, y)]
admet une différentielle au sens de Stolz au point
(o, ¥o) et sa différentielle s'obtient en remplacant
dans la différentielle de f(u, v, w) les accroissements
de u, v, w par leurs différentielles (VI, p. 138).

Il s’agit de prouver que /F existe et est égal a
ﬂ‘o(u»lro Az + u./"u A}’) '+'f"’o ( vf"o Az -+ vao A)’)
A fovo (W, AT 4 W) AY),
c’est-a-dire que

dF = fu, du + fr, dv + fo,, dw.

Pour cela, il faut montrer que la quantité

p— F@o+82, yo+87)—F(@0, o) — (fuydtt + fo, dv -+ fuv, dw)

- A
tend vers zéro avec A = |[Axz |+ |Ay|.

Or par hypothése 'aceroissement de F peul s’écrire
AF = Af = f, Au—+ fi, A0 + fi, Aw + €| Au| + €| Av | 4| Aw |,
ou ¢ tend vers zéro avec (JAu |+ |A¢|+|Aw]). Donc

, /A — du , [ Av — dp , [Aw — dy

() () %)

| Aw |+ |Av|+ ] Aw|
+e X .

Les coefficients de f,,, 1., f., tendent vers zéro par
hypothése. Il suffit de montrer que le coefficient de ¢
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reste borné. Cela résulte de P'inégahité.

’ Auwf _ [Au — t{u { ‘u.’.»n Az + uy, Ay

|az ]|+ | Ay |

<

—-du

A +|uj"ul+lu;'n|'

Le théoréme actuel n’est plus exact si 'on emploie la défi-
nition ordinaire de la différentielle sans ajouter d’hypothéses
supplémentaires comme au n° 2. Prenons, par exemple, la fonc-
tion f(u,v)=1y|u,v| L(u?+92) pour u?+92Zo0, et
f(o,0) =o0. Elle a des dérivées partielles en u, v méme &
I'origine ol elles sont nulles, En appliquant le théoréme pré-
cédent a la fonction F(z) = f(x, x#), on aurait F) (o) =o.
Or F(z)=ax L 22* pour x > o0, F(0) = o et alors F/, n'existe
pas pour z = o.

On remarquera en outre combien la démonstration
du théoréme est plus naturelle que la démonstration
classique (') qui utilise un artifice de calcul.

9. Le théoréme actuel met en évidence un autre
avantage de la nouvelle définition par rapporta la défi-
nition ordinaire. C'est que ’existence de la différen-
tielle au sens de Stolz de la fonction f(x,y, z) est
indépendante des axes choisis pour Oz, Oy, Oz,
tandis qi’elle ne U’est pas pour la définition ordi-
naire. Si I'on opére en effet une subtitution linéaire
sur z, ¥, 5, et si la fonction avait primitivement une
différentielle par rapport a z, y, 5 en un point &y, ¥o,
59, la fonction obtenue aura une différentielle par rap-
port aux nouvelles variables au point correspondant.

Cela n’a pas lieu pour la définition classique. Si, par exemple,
LA A
Var+ y?

on envisage la fonction f(z, y) = pour 2+ y2< 0

(') Voir par exemple 1, p. 6g9-70.
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avec f(o, 0) = o, cette fonction est partout continue et déri-
vable ; elle a donc partout la différentielle classique. Prenons

’, ’
. . . . x't— y'2
pour axes les bissectrices, elle devient f(z',y') = il
: 2/ &'+ y'?

et elle n’est plus dérivable a 'origine.

10. Tutoreme. — St une fonction f(z, y) est uni-
Jformément continue dans le rectangle limité par
les abscisses a, a + h et les ordonnées b, b + k et si
elle admet une différentielle au sens de Stolz en
tout point intérieur au sens strict a ce rectangle, il
existe aw moins un nombre 8§ tel que lon ait

(2) fla+h, b+k)—f(a,b)
=hfi(a+0hb+0k)+kfi(a+0h, b+0k)

avec
oLl <.

La démonstration classique s’applique ici grice au
théoréme précédent.

Mais si, en utilisant la définition ordinaire de la différentielle,
onn’ajoutepasd’hypothésesupplémentaireal’énoncé précédent,
onn’a plus, comme nous 'avons vu au n®9, le droitd’appliquer
le théoréme précédent. Nous donnerons aussi un exemple prou-
vant que non seulement la démonstration, mais aussi I'énoncé

ry
oy
pour x2+ y220 avec f(0, o) = o. Elle est partout continue et
dérivable en et y. Cependant sion luiappliquait la formule(2)

ne seraient plus exacts. Soit la fonction f(z, )=

avec, par exemple, a =b = —1, h = k=3 on obtiendrait :
a+hb+h)—flab)=—=— =",
S ) )—J ) iR
D’autre part a +0h=—1+30=06+0k. Si Pon avait

0= :—;, c'est-a-dire @+ O0h = b+ 0k = o, les deux dérivées

. . .o . 1
seraient nulles, on obtiendrait 7 =o. Si 8% 3’ alors les
2
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deux dérivées seraient égales & ——, on obtiendrait

2/2
)
Voo /a
11. Tueorkme. — Soit (xo, Yo, 30) un systéme de
solutions de U'équation F(x,y, z)=o0. S¢ la fonc-
tion ¥ (z, y, 3) est continue par rapport a Uensemble
des variables x,y, 3 au point (x,, ), 50) €t en son
volsinage et si elle admet aw point x, yo, 59 une
derivée partielle par rapport a sz différente de
séro, il existe une fonction sz = f(x,y) bien déter-
minée dans le voisinage de x,,y, qui prend la
valeur s, au point x,, y,, qui est continue en ce
point et qui constitue dans le voisinage de ce point
une solution de ’équation implicite ¥ (z, y. 5) = o.
De plus,si¥ (z, v, 3) admet une différentielle totale
au sens de Stols au point xy, ¥, 5o la solution pré-
cédente admet elle-méme une différentielle totale
au sens de Stols au point x,, ¥, cette difjérentieile
étant donnée par la formule.

df:—- F.Ir,.(xo.}’o, z")A(I,‘ _ F;‘.,(-Tov_}’o- 3) A
' %, (%0, Yo, 30) FL, (24, Y0, 30)

Nous suivrons, pour la premiére partie de la démons-
stration, le raisonnement de Young (1, p. 38).

Par hypothése F. < o. Supposons, par exemple,
', > o. Puisque F(z,, y0o, 39) =0, F(xy, o, 3) sera
positif pour 5> 3, et négatif pour 5 << 3, si |3 — 3, |
est inférieur a un nombre 70 assez petit. Comme
F(x,y, ) est continue au voisinage de &y, ¥, 5, DOUS
pouvons choisir ce nombre » de sorte que F(z, y, 3)
soit en outre continue daas tout le domaine D défini par

|z — 2|+ |y —yol +]3— 32| S
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Mais soient Zy, ¥, 31, €t &,, ¥,, 32 deux points de
ce domaine. En supposant z,> 5, 5,<C 35, on aura
F(xo, y0, 31)>0, F(xe, y0, 2:)<<0 el I'on pourra
trouver un cylindre C ayant pour axe la droite x = z,,
¥y =1y, telle que F(x, y, 5) soit d’un signe constant
sur les sections de ce cylindre par les plans 5 =z, et
z = z,. On voit alors que, sur toute paralléle 8 Oz con-
tenue dans le cylindre C, F(z, y, 3) est une fonction
continue de z qui est positive pour z = z,, négative
pour z = 3,, donc qui s’annule au moins une fois
entre 3, et 35. Pour chaque point , 5 de la base s de

ce cylindre dans le plan des z, y, il y a donc au peiat .-

une racine de 'équation F(xz, y, 5)= o entre 5, et 3,;
désignons-la par f(z, y). Pour z = =z, y = y,,
F(z, y, ) ne s’annule entre z, et z, que pour z = z,.
Donc f(zo, ¥0)= 3o. De plus s1 le point z, y tend vers
le point xy, ¥, f(z, y) restant compris entre 3, et z,
a une limite supérieure z, et une limite inférieure sz,
comprises entre ces limites; et, puisque F(z, y, 5) est
continue dans le cylindre C, on doit avoir

F('Tm }’o,z(,)= F(x(n }’o,zﬁ)’: o,

ce qui n’est possible que si 5, = 3;= 5,. Nous avons
donc bien une fonction 5 = f(x, ) vérifiant I'équation

F(z, y.3)=0

dans le cylindre précédent, telle que zo= f(z,, y,) et
continue pour £ = o, ¥ =Y.

Supposons en outre que F(z, y, z) ait une différen-
tielle totale au sens de Stolz au point z¢, ¥¢, 3. On
aura

F(z, y,z)=F (20, yo, 30)
(@ — @) Py (¥ — yo)Fyy+ (2 — 39 FL,
+ellz— @] + |y —yol+ 15—zl
Ann. de Mathémat., §° série, t. XII. ( Septembre 1912.) 26



( 403 )
ou ¢ tend vers zéro quand le point z, ¥, 5 tend vers z,,
Yo, %o-

On pourra choisir le nombre nde facon que |z | soit plus
petit qu'un nombre fixe w inférieur a |F_ (2o, 30, %0)],
quand z, ¥, 3 reste dans le domaine D défini plus haut.
Alors on aura, pour z = f(x, ),

o= (2 —x0)Fi,+ (y —y0) Fy,+ [ f(x, y) — 20]F3,
+ejlz — 20|+ |y —yol +1f(z, ¥)— 20| |5

d’ott
» (z—a0) (Fi,=e) + (¥ —ro)(Fy,E¢)
(4) |flx,y)—a|= ‘ l«";oi‘: .
; [ Fo ]+ Fro 4o
EHZ""-Z\»"*‘I}’“'.}’OH[%‘HT)(;—J
el
Fl F;
Sz, y)— 20+ F—‘,—“(r—xo)+ F‘f—"(y—yo)‘
(5) L S¢
x — ol + ]y =yl
\ [.ﬂ""v.}’)'—‘zn’ )

R R Py e oy v

D’apres (4), le second membre de la derniére égalité
est au plus égal a

[Faol | Fyy[+w
[Fs| —o )

el 1+

Quand |x — x|+ |y — y,| tend vers zéro, nous
avons vu que |f(x,))— 3| tend aussi vers zéro,
donc = tend vers zéro et par suite le premier membre
de (5) tend vers zéro. C'est dire précisément que f(z, y)
admet au point z,, y, une différentielle au sens de
Stolz, et que cette différentielle est hien celle que nous
avions annoncée.

12. Remarque. — Si F(z, y, z) est différentiable
au sens de Stolz, non seulement au point z,, ¥, 3o,
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mais dans le voisinage de ce point, la solution précé-
dente sera unique dans le voisinage de z,, ¥,, 5, et
elle y sera continue et différentiable au sens de Stolz.

I1 suffit évidemment de montrer que la solution est
unique. Or on pourra choisir v assez petit pour que,
dans tout le domaine D, F, existe et soit d’un signe
constant. Alors F(x, y, 5) ne pourrait s’annuler dans
le domaine D pour les mémes valeurs de z, y, mais
pour deux valeurs distinctes de 3, sans quoi F, s’annu-
lerait dans D.

La démonstration classique (I, p. 9g9; II, p. 81-85; IV, p. 141;
VIIL, p. 371) suppose l'existence des dérivées de F au voi-
sinage du point zy, yo, 3o et la continuité de l'une d’elles
dans ce méme voisinage. Elle est donc moins générale que la
précédente.

(A4 suivre.)

[M*1a] '
COURBES GAUCHES. SUR LES FORMULES DE CAYLEY
ANALOGUES AUX FORMULES DE PLUGKER;

Par M. G. FONTENE.

1. Soient D le genre d’une courbe plane, m son ordre
et n sa classe; on peut exprimer en fonction de ces
trois nombres les nombres de Plicker (Revue de Mathé-
matiques spéciales, aolit 1898), et I'on a en particulier

n +»x=2(m-+D—1),

m-+=2(n +D—1)

On peut de méme introduire le genre dans les
formules de Cayley pour les courbes gauches.
Soit r le rang d’une courbe gauche, c’est-a-dire le
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nombre de tangentes quirencontrent une droite donnée
(nombre de plans tangents a la courbe qui passent par
la droite); soit m Pordre de la courbe ; soit n sa classe,
c'est-a-dire le nombre de plans osculateurs passant par
un point donné ('). Les singularités essentielles de
la courbe, celles qui existent généralement sur la
courbe ou sur sa polaire réciproque, comprennent les
singularités tangentielles qui existent lorsqu’on part
d’une équation ponctuelle générale, a savoir des plans
surosculateurs (ou stationnaires) en nomhre «, et les
singularités . ponctuelles corrélatives de celles-1a, a
savoir des points cuspidaux (ou stationnaires) en
nombre 3. On a les formules

(1) n+m=22r +D—1),
(2) r+a =92(n +D—1),
(3) r+pg =2(m-+D—1)

On obtient les formules (1) et (2) en considérant
I'enveloppe des traces des plans osculateurs sar un
plan  quelconque, et en appliquant les formules
rappelées ci-dessus; D désigne le genre de la courbe
plane. Si Pon considére le cone dont le sommet est un
point quelconque et qui s’appuie sur la courbe, la
seconde des formules rappelées ci-dessus donne la
formule (1), D désignant alors le genre du cone qui
est par suite égal a celui de la courbe plane, et la
premiére de ces formules donne la formule (3). On dit
que D est le genre de la courbe gauche.

Sil'on prend comme données D, «, B, on auram, n, r

(') Lorsque la courbe est créée par des plans osculateurs, on
préfére ordinairement parler de la développable formée par les
tangentes; cette tacon de faire a U'inconvénient de masquer la cor-
rélation qui existe entre les points de la courbe el ses plans oscu-
lateurs (Cf. NVouvelles Annales, 1907, p. 436).
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par les formules

a-+3B=4m+12(D—1),
(F) B+3a=4n +12(D—1),
a+ B=2r + 8D —1);

ou encore

2+ 38 = 4(m—3)+12D,
(F) B+3a=4(n —3)+12D,
a+ B=2(r —4)+ 8D;

ces formules montrent que, 4 'exception de la cubique
gauche, toute courbe gauche algébrique, si elle n’a
pas d’autres singularités que celles considérées ici,
posséde des plans surosculateurs ou des points cuspi-
daux. On verra au n® 2 qu’il n’en est plus nécessaire-
ment ainsi lorsque la courbe a des tangentes d’inflexion.

Dans le cas d’une courbe unicursale, D =o, les
formules deviennent

) m—+n=o(r —u),
(2") r +a =2(n —u),
(3) r _\—ﬁ =a2(m—1);

‘ (D =o.)
\a+53=4\m_3)7

(F") B+3a=4(n —3),
a+ B=2(r —4§)

il est facile d’avoir directement les formules (2') et (3');
la premiére, par exemple, en représentant les plans
osculateurs par une équation de la forme

ath 4+ btr—1+. . .= o,

ou a, b, ... sont des fonctions linéaires des coordonnées
(Savwmon, t. II, p. 82, avec o. = o).
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Pour D=1, 0na

(") m+n=ar,

(2") r +a =an,

(3") r +8=2m;
(D=1.)

~a+3§=4m,

(F") i B+ 3a=4n,

a+ B=oar.

2. Sous une condition unique, la courbe peut avoir
une tangente d’inflexion, singularité qui est sa propre
corrélative. l.e nombre de ces tangentes étant o, il
faut remplacer m par m + ¢ dans la formuale (1) si on
Pobtient par la premiére méthode, ou n par n + o...;
on a ainsi

(1) m-+n—+o=2a2(r+D—1),
et les premiers membres des formules (F) deviennent
a+38+ 209, P+ 3a—+ 20, 2+ 8 +20.
Pour la quartique de Salmon, on a
D = o, m =4, r==6;:
les formules (1), (2) et (3) donnent
n==6—¢, a=4—2¢, B=o;

or on peut avoir 9 =o0, =1, =2, comme la
i [}
O
remarqué Cayley; par © = 2, on a donc

D=07 r==~6, m = §, n =4, a =0, 3:01

de sorte que la courbe n’aalors ni planssurosculatcurs,
ni point cuspidaux.

3. Une courbe gauche de genre o ou 1, qui a
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seulement des singularités essentielles, dépend de
parameétres en nombre 4m— 28, ou fn — 29, ou

encore
20 — 4(D —1).

@. Dans la représentation par points d’une courbe
unicursale qui est générale de son ordre, le nombre
des paramélres est

Alm +1)—1—3 ou sm,

at'+b
ct+d’
qui supprimne trois paramétres apparents. Si la courhe

en tenant compte de la substitution possible ¢ =

a des points cuspidaux en nombre 3, le nombre des
paramétres est 4m — 23, ou 2r + 4. Clest ainsi que
la question de Salmon dépend de 16 paramétres; la
biquadratique nodale dépend seulement de 135 para-
métres, a cause du point double.

b. Les coordonnées d'un point d’une courbe de
genre 1 sonlt les valeurs que prennent, pour une méme
valeur de 'argument, trois fonctions elliptiques aux
mémes périodes 2w, 2w,, ayant les mémes poles en
nombres m. (Voir Havvnen, Traité des fonctivns
elliptiques, v. 11, p. 449.) On peut écrire

x N4 _ I

Acg(u—ay)... T Bo(u—>b)... T slu—di)...

)

avec
YSa;=3Xb;=2Xc;= Xd;.

Les deux paramétres w, et w, sont purement fictifs;
la possibilité de remplacer u par mu -+ n permet en
effet de donner a4 w, et w, des valeurs déterminées.

e nombre des paramétres est donc 4m pour une
courbe d'ordre 1 qui est générale de son ordre, et
4m—28 ou 2r lorsque la courbe a des points
cuspidaux.
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St la courbe a o tangentes d’inflexion, le nombre
des paramétres est
/7
2r — o —4(D —1),
ou encore
m-+n—6(D—1).

[I5a]
ENTIERS IMAGINAIRES ;

Par M. Pauvr LAMBERT,
Eléve a I’Ecole Normale supérieure.

Gauss (') a eu 'ildée d’étendre aux imaginaires la
notion de nombre entier. Un nombre complexe a + b¢
sera entier si a el b sont tous deux entiers (positifs ou
négatifs). Dans cette théorie, le module joue un réle
beaucoup moins important que son carré a*- b* qui
est un entier réel et que Gauss appelle norme.

Dans la représentation géométrique classique, aux
entiers imaginaires correspondront les sommets d’un
quadrillage form¢ par les paralleles aux axes, dont les
abscisses (ou les ordonnées) sont des entiers.

La somme, le produit de deux entiers imaginaires
est aussi un entier. Il importe d’ailleurs de remarquer
qu’en général une puissance entiére complexe d’un
nombre entier ne sera pas entiére. Par exemple, si a est
un nombre réel, on a

ai = e'loga = cos(Loga) + ¢sin(Loga)

et cos (loga) et sin(log @) ne sont pas entiers en gé-
néral.

Pour obtenir les points correspondants aux mul-

(') Gauss, Theoria residuorum biquadraticorum.
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tiples { entiers et complexes) d’une imaginaire z, il suffit
évidemment de prendre 'homothétique du quadrillage
primitif par rapport a origine dans le rapport |z | puis
de le faire tourner autour de O d'un angle égal &
I’argument de z.

Le point (1,0) viendra au point 5. Les équations
cartésiennes des droites obtenues, en posant s = a + b,

seront
ar +by =k|z| et br—ay=K|z]|

k et k' étantdes entiers réels de signe quelconque.
On généralise de méme la théorie de la division. lei

Fig. 1.
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il faut définir un reste. Soil @ + b¢ a diviser par ¢ + di
et z + yi le quotient entier. On devra avoir
a -+ bi _ ac+bd+ bc—adl.
c+di c?+ d? c2+ d?
. ac + bd ) bc— ad .
:(x+yz)+<m—x) m —_y)l.

Posons

ae + bd _ et be — ad ey
caxda T crar LT
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Nous pouvons toujours déterminer les entiers

réels z et y tels que |« | E-;— et o] % Or le restede la

division est (@) (« + ¢/) puisque l'identité qui
exprime la division peut s’écrire

a+bi=(x+ yi)(c+di)+ (u~+vi)(c+di).

Le module du reste sera égal au module du divi-

seur ¢ +di multiplié par \/u?+ o2, quantité au plus
1 e oy
égale & Vs Donc le module du reste ainsi défini est

inférieur au module du diviseur. Cette condition peut
d’ailleurs étre réalisée pour deux ou méme quatre
valeursdu systéme (z,y ), au cas ou les inégalités qui
déterminent u et ¢ se transformeraient en égalités.
Géométriquement, si la division ne se fail pas exac-
tement, le point A(«, b) tombe a Pintérieur d'un
carré du grand quadrillage formé par les multiples
de ¢ + di. Notre condition revient a prendre pour
point représentatif du quotient le sommet de ce carré
le plus rapproché de A. Il y aura indétermination si le
point A est équidistant de deux ou méme quatre
sommets. Dans ce cas, il faudra faire une convention :
prendre, par exemple, parmiles sommets possibles le
plus rapproché de Dorigine. Cela se peut toujours :
deux sommets consécutifs ne peuvent étre équi-
distants de O sans (ue la perpendiculaire au milien du
coté qu’ils déterminent soit un axe oz’ ou 0y’, ce qui
est absurde; si deux sommets opposés sont équi-
distants de O, des deux sommets restants, 'un en est
évidemmenl plus rapproché, et c’est celui-la qu’on
prendra.

On peut achever comme pour les nombres réels la
théorie élémentaire des entiers imaginaires, théorie
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qu’esquisse M. Cahen dans une Note a la fin de son
Ouvrage sur la Théorie des Nombres; et c’est decette
théorie que je vais essayer de tirer quelques consé-
quences. Un fait important pour la divisibilité est que
nous devrons considérer quatre unités différentes : + 1,

— 1, + 1, — 1. A ce point de vue nous considérerons
comme identiques quatre nombres tels que a + bi,
a— bi, — b+ ai, b — ai. Nous pourrions démontrer

ainsi sur les entiers complexes tous les théorémes qu’on
démontre pour les entiers réels, en particulier le théo-
réme suivant, dont nous aurons a nous servir: un
entier complexe n’est décomposable que d’une seule
maniére en facteurs premiers.

RemarQues. — 1° Quand une imaginaire admet
certains diviseurs, sa conjuguée admet les diviseurs
conjugués. Si elle est premiére, sa conjuguée l'est
aussi.

2° Quand une imaginaire a -+ bi n’admet pas de
diviseur réel, a et b sont premiers entre eux, et réci-
proquement.

3° Un nombre premier réel peut ne pas étre premier
au sensimaginaire. Dans ce cas, il est la somme de deux
carrés, donc de la forme 4h + 1. Exemple :

13 = (2 +3i) (2 — 3i).

4° La divisibilité la plus fréquente est la divisibilité
par 1 -+ £. Si a + bi est divisible par 1 + 7, @ et b sont
de méme parité. En effet, soit ¢+ di le quotient
dea+bipar i1 +~1.0Onaa=c—detb=c+d,et
Pon voit que @ — 6 est un multiple de 2. Nous
pouvons comme (auss appeler de tels nombres semi-
pairs en réservant le nom de pairs pour ceux ou a
et b sont pairs séparément.
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Systéme de restes incongrus. — La congruence
étant définie comme pour les nombres réels, je reviens
au quadrillage dont les sommets représentent les
multiples d’un entier complexe a + b¢; j'en considére
un carré quelconque G que je déplace par une trans-
lation arbitraire. Parmi les points représentant tous les
entiers imaginaires, j’isole I'ensemble de ceux qui
tombent soit & l'intérieur de C soit sur un certain de
ses quatre sommets (je me suis (ixé arbitrairement I'un
des quatre), soit sur les deux cétés qui y aboutissent
(exirémités opposées non comprises). Je dis que ces
puints correspondent & un systéme de restes incon-
grus par rapport a @ + bi. En effet, deux des nombres
obtenus ne peuvent éLre congrus sans étre, soit deux
sommets du carré, et je n’en ai pris qu’un, soit sur
deux cOLés opposés, etje n’ai pris que deux sommets
consécutifs. D’autre part, a tout entier complexe 5 est
congru un nombre de ce systéme, car si je fais subir a
tout le quadrillage des multiples de a + bi la méme
translation qu’a C, le point correspondant & z tombe
dans un autre carré C’ et je n’aurai qu’a prendre dans
mon systéme le point semblablement placé dans C. En
particulier, dans ce systme de restes incongrus se
trouve un et un seul multiple de @ + b:.

Fig. 2.

Cela posé, je dis que ce systtme comprend a*—+ b2
nombres. En effet, a chacun de ces points j’adjoins le
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carré de coté 1 qui se trouve par exemple en haut et a
droite. (Ce sont les carrés couverts de hachures sur la
figure. Le sommet particulier de C que j'ai choisi est
celui du bas.) L’aire de I'’ensemble de ces petits carrés
est égale a I'aire du grand, car ce qu’il y a en trop au
bord en A, par exemple, manqueaubord opposéen A’:
il suffit pour le voir d’amener par translation l'un des
cdtés sur le coté opposé. L’aire du grand carré
étant a*—+ b* il y aura a®+ 0* petils carrés,
donc a® + b? restes incongrus.

RELATIONS ENTRE LES ENTIERS IMAGINAIRES ET LEURS NORMES.

Je dirai, pour abréger, qu'une norme est premiére
quand elle I'est en tant que nombre réel, comme 13, par
exemple. Comme une norme n’est jamais premiére en
tant qu’imaginaire, il ne saurait y avoir de confusion.

Tutoremr . — Quand un entier imaginaire
n’est pas premier, sa norme n’est pas premiére. Ce
fait est évident.

Tatoneme ll. — Quand un entier imaginaire est
premier, sa norme est premiére. Dans cette hypo-
these, en effet, I'égalité

a?+ b= (a + bi)(a — bi)

représente la décomposition de a*—+ 6* en facteurs
premiers. Cette décomposition n’étant possible que
d’'une seule maniére, @+ 4* n’admet pas d’autre
diviseur, en particulier pas de diviseur réel.

Cela suppose essentiellement @ et b tous deux dif-
férents de zéro.

De ces deux théorémes je peux conclure aux réci-
proques.
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Si les deux termes d’'un entier complexe sont dif-
férents de zéro:

1. Il est premier si sa norme est premiére;
II. Il n’est pas premier si sa norme ne l’est pas.

Quand 'un des deux termes est nul, I'imaginaire se
confond, a une de nos quatre unités prés, avec son
module, d’ou les trois cas suivants :

a. Le module n’est pas premier (en tant que

, I'imaginaire
nombre réel) g

’
n’est pas
etsommede deux P
. premiére.
b L dul . carrés
. m r er . . .
¢ module cst premie etn’estpassomme ) I'imaginaire

de deux carrés \est premiére.

Cette correspondance réciproque entre les entiers
complexes et leurs normes peut servir, par exemple,
dans la recherche du plus grand commun diviseur ou
du plus petit commun multiple puisqu’on peut ramener
ceprobléme au probléme correspondant surdes nombres
réels.

APPLICATIONS DE LA THEORIE ELEMENTAIRE
DES ENTIERS IMAGINAIRES.

La théorie précédente permet de simplifier certaines
démonstrations d’Arithmétique concernant les nombres
-réels. On démontre facilement, par exemple, que le
produit de deux sommes de deux carrés est aussi une
somme de deux carrés; mais la réciproque offre plus

de difficulté.
M. Borel () a démontré que :

S¢ un nombre premier divise la somme de deux

(') BoreL et DRAcH, Introduction a la Théorie des Nombres et
a UAlgebre superieure, p. 105.
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carrés sans les diviser tous deuzx, il est lui-méme
la somme de deux carrés, ou, ce qui revient au méme,
st un nombre divise la somme de deux carrés
premiers entre eux, il est (ui-méme la somme de
deux carrés.

La méme démonstration s’applique d’ailleurs au cas
de quatre carrés. La voict en quelques mots :

p divise a*+ b*. Je suppose p > 2. Soient a' et b’
les résidus minima absolus de a et b par rapport a p,
P

c'est-a-dire deux nombres compris entre — -

et £ et
2

congrus respectivement a @ et 4  (mod p). Jai

2
(1) a't+ b2< (g) ou a't+ b= pp',

p' étant un entier inférieur a p. Si p'=1, le théoréme
est démontré. Sinon, soient a' —ap’ et b —Bp' les

!

résidus minima absolus de @’ et par rapport a p'.

JYaurai de la méme facon
(2) (a'—ap )2+ (b —pp'r=pp" avec p'<p' < p.
En multipliant (1) et (2) membre 4 membre, il vient
A2+ B2= pp'?p’,
A et B contenant p' en facteur, je pose A =p'a’,
B=p'd" donc

(3) al/Z+ br/g — pp”.

Si p"#1 je recommence. Les multiplicateurs suc-
cessifs de p sont des entiers qui décroissent constam-
ment. L’un d’eux finira par étre égal a 1 et I'égalité
correspondante exprimera p comme somme de deux
carrés.

On peut démontrer ce théoréme plus simplement



( 416)
par 'intermédiaire des entiers imaginaires. Je suppose
qu’un entier p divise a?+ 6%, et que p, a, b sont
premiers entre eux dans leur ensemble. Dans ces
conditions p estune somme de deux carrés. En effet, je
décompose a + bi en facteurs premiers imaginaires :

(1) a+bi=(c+di)...(e+fi).g...h.ki.. li,

gy h, k, L sont les diviseurs communs a a et a b.
[’égalité correspondante entre les normes est

(2) a+b=(c2+d?)...(e2+f2)g2... h2k2... I

et elle exprime la décomposition de a* + 62 en facteurs
premiers réels, d’aprés la correspondance établie plus
haut. Or comme p ne contient par hypothése aucun
des facteurs g...A4, A...[, il se réduit & un produit de
sommes du genre de (c? + d?), donc & une somme de
deux carrés.

L'égalité (2) montre en méme temps que les divi-
seurs premiers d’une somme de deux carrés sont soit
des sommes de deux carrés, soit des nombres quel-
conques, mais affectés alors d’un exposant pair.

Remarque, — Le produit de deux sommes de deux
carrés c* + @@ et e*+ f? étant unc somme de deux
carrés a® -+ b?, si ¢ et d sont premiers entre eux ainsi
que e et f, on peut affirmer que a et b sont aussi
premiers entre eux; car l'une des quatre égalités
suivantes

(3) a—+bi = (ctdi)(e=xfi)

est vraie et montre que si ¢ &= diet e == fi n’admetteut

pas de diviseur réel (ce qui équivaut & avoir ses termes

premiers entre eux), @ + b¢ ne peut en admettre.
Réciproquement, si @ et b sont premiers entre eux,
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les facteurs premiers que j'ai appelés g...h, k...l
n’existent pas; les imaginaires (¢ + dt)... (e + f7) d
I’égalité (1) n’admettent pas de diviseur réel; donc p,
qui est le produit de certaines de ces imaginaires, est,
d’apres la premiére partie de celte remarque, la somme
de deux carrés premiers entre eux.

Application & la détermination des systémes
d’entiers réels x, y, z tels qu’on ait

i+ y?= 32,

On peut loujours supposer x et y premiers entre
eux. Donc z qui divise 22+ y* est aussi une somme de
deux carrés premiers entre eux. Réciproquement, dans
ce cas, 3% est bien de la forme z*+ y*. Cela posé,
connaissant 3, on déterminera tous les systemes corres-
pondants de z et de y en se basant sur ’égalité

(x +yi)(x —yi)= 32

Or x + yi est un carré parfait, car si un facleur
premier « + v¢ y figurait avec un exposant impair m,
©*+ ¢* serait un facteur de 3%, premier en tant que
nombre réel, et y figurerait avec un exposant impair, ce
qui est impossible (£ — y¢ ne peut contenir de son
coté le facteur u + ¢f, sinon 2 + yi serait divisible par
u— i et admeltrait par suite un diviseur réel «*+ ¢2).
Donc

x4+ yi=(s+ ) et z=(s+t)(s— ).

On aura donc tous les systémes de nombres s et ¢en
décomposant z en ses 2n facteurs premiers imaginaires
conjugués deux a deux et en combinant de toutes les
facons possibles n de ces facteurs, en ayant soin que
les n facteurs restants soient bien les conjugués de ceux
qu’on aura pris.

Ann. de Mathémat., 4° série, t. X1I. ( Septembre 1912.) 27
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Exemples. — Cherchons a vetrouver quelques systémes
de nombres r, y, 5. Prenons d'abord z=5= 22+ 12 Ici
sS+t=2+4+1i x+yi=(s+ti)2=3+4i, dou le sys-
téeme 32+ 2= 52.

Soient encore @ 3z =13 =32 4+ 22; s+t = 3 + 2L}
zH+yi=3+2()2=5+ 12(:

132= 1922+ 52,

Continuons:

3=17=42+12; s+li=4+1i; x+yi=@{F+i2=15+8(:

172 = 152 + 82,

et ainsi de suite. Pour compléter, il faut multiplier tous ces
systémes par des carrés parfaits.

Les théoremes de Fermat, d’Euler et de Wilson
s’étendent aussi au cas des entiers complexes. On
trouve Pindicateur (c’est-a-dirve le nombre des restes
d’un systéme incongru qui sont premiers avec le
module) en employant le procédé dont je me suis servi
pour compter le nombre de restes incongrus. L’indi-
cateur d’un nombre a + 07 dont les diviseurs sont de
la forme p + ¢¢, sera

N :(aM—b’)[I <l—[12—':‘?)

Theorime vi Fenmar. — Sotent @ + bf et g+ re
deux entiers complexes, ¢ + ri élant premier et ne
divisant pas @ + 0¢. e nombre des restes d'un systéme
incongru par rapport & ¢ + 7, le muluple du module
mis & part, est g2+ r*—1. Le théoréme de Fermat
s'exprimera donc par la congruence

(a—+ b))+t —p=o0 (modg + ri).

Si ¢ — ri ne divise pas non plus @ + bi, le premier
membre de la congruence se trouve aussi divisible
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par ¢ — ri, donc par g2+ r2:

(a~+ b yrP+"—t—1=o0 (modg?+ r2).

Le théoréeme de Fermat est donc vrai, non pas
seulement d’un module p premier comme nombre
complexe, mais encore quand p n’est premier que
comme nombre réel (c’est-a-dire admet deux diviseurs

conjugués premiers).

Application — 1. Prenons
. - T . .o .
a+bL:/2(Ct)57+t+5|rl7> =141
\ 1 L]

et pour ¢ -+ r¢ un entier imaginaire premier ne divisant
pas 1 + ¢, donc tel qu'on n’ait pas & la fois ¢ ===,
r==1. On démontre dans la Théorie des nombres
que p = ¢*—+ r?, nombre réel impair, doit étre de la
forme 4A +1. Le théoréeme devient

22l (coshm + isinhw) —1=o0 (mod p)

ou
22/ = (__ l)hv

4 étant le quotient de la division de p par 4.

II. Prenons toujours a—+bi=1-+ i, et pour
module un nombre réel p premier en tant qu’ima-
ginaire. p n’est pas une somme de deux carrés : alors il
est de la forme 44 4+ 3. Le théoréme sera alors

(14 E)IR+2h+8 = ¢ (mod p).
Posons 16 A2 4 24h +8=8m :
2m(cos2mm + LSin2mm) = 24Mm =1 (mod p),

4m élant le quotient de la division de p? par 2.
Sipestdelaforme 44 + 1,0onpose 16 A2+ 8 h=8m,
le résultat est le méme.
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Nous aurons finalement ce théoréme pour les
nombres réels :

Soit p un nombre premier. S¢ p est une somme de
deux carrés et si J appelle h le quotient de la
division de p par §,2*% est congru & (— 1)*, (mod p).
Si p nlest pas une somme de deux carrés et si
J appelle k le quotient de la division de p* par 2, 2%
est congru ¢ 1 (modp).

Ezxemples. — 1. Prenons par exemple p = 42+ 12= 7.
fei A= 4; 2% ou 256 doit étre congru & 1+ (mod17). Or
255 = 17 X< 15,

Soit encore

P =524 2%= 9.

Ici A =7; 2% ou 16.384 doit étre congru a — 1 (mod 29).
Or
16385 = 249 X< 365.

II. Soit p=17;0na

k=24 et 2k = 22 =16777216.
On a bien
16777215 = 7 X< 2396745
Turorive ve Winson. — Il s’énonce ainsi : le

produit de tous les nombres d’un systéme incongru par
rapport & un module premier p (les multiples du
module mis a part) est congru & — 1 (mod p).

Application. — Je considére un entier réel positif p,
premier en lanl  qu'imaginaire, et je cherche le
systeme de restes incongrus contenus dans un carré de
coLés paralleles aux axes et dont l'origine et le point
représentatif de p occupent les milieux de deux cotés
opposés. Un tel systéme est formé :

1° Des p — 1 points situés sur ox;
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2° De tous les points situés a I'intérieur du carré et
sur oy, a part le pointo. Ces points sont deux a deux

Fig. 3.

symétriques par rapport a ox. Les produits des ima-
ginaires correspondantes sont des sommes de deux
carrés. D’ou le théoréme :

Soit p un nombre premier non somme de deux
carrés. Le produit par (p — 1)} de toutes les sommes
obtenues en ajoutant le carré d’un nombreinférieur
P

5 est congrit

ap au carré d’un nombre inférieur a
a—1 (modp).

Dans ce produit, il faut évidemment Jaisser de c6té
la somme 02+ o2.

[c2b]
SUR L'INTEGRATION DES DIFFERENTIELLES TOTALES;

Par M. Henmr DUBOIS.

Soit & trouver une fonction F(z, y) telle que V'on ait

dF =P dx + Q dy,
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P et Q étant deux fonctions données des denx varia-
bles z el y seulement.
Le probléme ne différe pas de celui-ci:
Trouver F (z, y) telle que
JoF
dz

(1)

Je rappelle d’abord que:

(2). Deux fonctions qui ont méme dérivée partielle
par rapport & une méme variable ne sauraient différer
que d’une fonction ne dépendant pas de cette variable.

En particulier, deux fonctions répondant a la ques-
tion ne différent nécessairement que d’une constante.

Pour que les conditions (1) soient remplies il faut
d’abord que

o
() -

Je dis que celte condition est suffisante d’une part
pour que F existe et, d’autre part, pour que sarecherche
se raméne & celle de deux quadratures.

En effet, supposons-la satisfaite. Soit F'y une fonction
telle que
(3) s

or

Une telle fonction s’obtiendra en prenant une primi-
tive quelconque de la fonction P od y sera regardé
comme une constante. Si F existe, d’aprés la pro-
priété (a), .

F=Fi+e¢(y)

Je dis qu’il est possible de déterminer ¢ (y) de fagon

que les deux conditions (1) soient remplies.
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Comme la premiére l'est, il suffit d’avoir

oF, dp

E A

(4)

Or la dérivation par rapport & y de (3) donne, eu
égard a (2),

0 OFy 9 far?
ox dy ~ oz ; _,,r"‘v >
he € R -
. ’ \ saaz o AT LY
Alors, toujours d’aprés la propriété («), T /{ﬁ.» i
0F1 : ot *
- W =4(y) it

et la condition (4), qui reste a satisfaire, s’écrit:

de y
Iy =4(x),
<p=f¢(y)dy

La démonstration s’étend aisément au cas d’un
nombre quelconque de variables.

Remanque. — Cette démonstration jouit, me semble-

t-1l, de deux avantages:

1° Elle n’introduit dans la vecherche de F que des
intégrales indéfinies, tandis que la méthode clas-
sique exige que l'on place, avec soin, les limites de
chaque intégration, et sur le signe f, et dans les

.

fonctions a intégrer;

2° Elle n’utilise nullement la dérivation sous le
signe f et, a cause de cela, pourrait entrer aisément
dans le programme de Mathématiques spéciales ou elle
mettrait de 'unité dans les méthodes d’intégration des
équations différentielles du premier ordre.
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CORRESPONDANCE.

M. M.-F. Egan. — M. Haag a donné récemment dans les
Nouvelles Annales la formule sommatoire suivante

S P(n)
2(71+n,)(n+a2),,.(n+al,)
n=1

,I
I 1
= — E Ai<l+—+...+—>y
P a; |

i—1

les a; étant des entiers positifs, tous différents, et P(n) un
polynome en n dont le degré ne dépasse pas p — 2. Les A;
sont les coefficients de décomposition en fractions partielles;
ainsi

P(x) A;

R(r)= (x+ay)...(x+ap) =z-i.1:+a,-'

La démonstration de M. Haag s’appuie sur le théoréme
d’Abel. Voici une démonstration plus élémentaire, qui donne
en méme temps la somme d’un nombre fini de termes de la

série. Rappelons que
E A[: 0.
i

Si I'on retranche du second membre dec I'identité

iR('l)=}:f\z<'—+ Lot >

a1 At Qi+m

n=1 i’

la quantité nulle
¥ 1
EA,-<|+ - —>,
. 2 m
{

(') Numéro d’avril 1gra.
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on trouve

m
1 1
ZR(n) = EAi(rzz+1 et +a,~>
n=1 i
—2A,~(|+£+...+#)-
- i

\

Voilala somme des m premiers termes de la série TR (n).
En faisant tendre m vers linfini, on trouve la formule de
M. Haag.

CERTIFICAT DE CALCUL DIFFERENTIEL ET INTEGRAL.

Montpellier.

FLPREUVE THEORIQUE. — Les axes de coordonnées étant rec-
tangulaires, on considére les surfaces dé finies par [’équa-
tion aux dérivées partielles

dz_z
5 = %

03
() (Z+7)50 +(y—2)

1° Démontrer que parmi les surfaces intégrales il y a
une infinité de surfaces, dépendant d’une constante arbi-
traire, qui sont de révolution autour de Oz

2* Intégrer l'équation. Déterminer une surface intégrale
par la condition qu’elle contienne la parabole qui a pour
équations

* Y=o, z=2x2.

3° Par un point M de coordonnées x, y, 3, autre que
l’origine, passe une courbe caractéristique G de l’équa-
tion (1) et une seule. Déterminer, en fonction de z, y, z,
les cosinus directeurs de la tangente a cette courbe au
point M, l’équation du plan osculateur en M a la méme
courbe et le rayon de courbure de la courbe au point M;

4> Démontrer que les caractéristiqués sont des hélices.
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EpREUVE PRATIQUE. — Intégrer ’équation différentielle
dzy dy 2
2 —_— — pacC AN e
(= l)dzi +2(= ’)dx 2r=

sachant que l'équation sans second membre admet wune
solution particuliére de la forme Ax + B, ot A et B sont
des constantes qu’'on déterminera. (Juillet 1g10.)

Epriuve THEORIQUE. — Qu'appelle-t-on intégrale compléte
d’une équation aur dérivées partielles du premier ordre
non linéaire

f(‘Tv}'V 2, p,q)=no.

Montrer comment on peut déterminer une pareille inté-
grale.

Comment obtient-on lintégrale générale de l'équation
lorsqu’on connait une intégrale compléte?

2° Application : Intégrer l’équation

k(p?+q?) — zt=o,

o k désigne une constante donnée.

3" Les axes de coordonnées étant supposés rectangulaires,
démontrer que parmi les surfaces intégrales de cette
derniére équation il y a une infinité de surfaces de révo-
lution autour de O z, et déterminer ces surfaces.

EvREUVE pRATIQUE. — Intégrer le systeme d’équations
diflérentielles
d*x
i =B+ Py,
dr
E‘EZ =—Bxr+ («+ B)z,

ou a et § désignent deux constantes données.
(Novembre 1gv0.)

EPREUVE THEORIQUE. — Résoudre U’équation aur différen-
tielles totales
(r'—az%)ds + (322 ys2— 2233 — _y’)d;z*

— (232 + yrz —oxy)dy =0,



(427)
On cherchera une solution particuliére de la forme
z=9q(y)xm,

o ¢ est une fonction de y seulement.

EpREUVE PRATIQUE. — Calculer lintégrale
cotmz
——dz,
C (1)
«

le contour C du plan des 3 = x + yi étant formé :

, I .
1° De la droite y =1, x2 ~ parcourue depuis r = +
y=naz-p P

. . 1
Jjusqu’a x = >

2° Du segment de droite AB, A (%, |> et B (-}, —|>;

. . s
3° De la droite y =—1, 2~ parcourue de B a x = .
2

(Juillet 19r11.)

Nancy.

I. Etablir Uexistence des deux périodes de lintégrale

dzr .
V(iz —a)(x —b)(x—c)

II. On considére la fonction de x

f cosaxr __cosax
)’ (] -+ 12)/14—1

1° Démontrer que l’on a

sinax

3‘]:2(”—'—])/0‘ (l—+;2—)m1d1.

2° En déduire que y(z) satisfait & une équation diffé-
rentielle linéaire du second ordre indépendante de » et
Sormer cette équation;

3° Dans l’hypothése n = 2, montrer que l’équation admet
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deux intégrales particulié¢res de la forme Pev, P et p étant
des polynémes en x. Former lintégrale générale et
calculer la valeur de l’intégrale définie

f” cosa;z' da.
(1 a2)

4" Extension des résultats obtenus au cas ot n est un
entier positif quelconque. (Juin 1gr10.)

I. On considére l’équation différentielle

B

2
Y s @
(1) ey =6y2—0.

1° Former U’intégrale générale de cette équation;

2° Montrer qu’il existe deux familles d’intégrales par-
ticuliéres qui s’expriment au moyen de fonctions trigono-
métriques. Ecrire explicitement ces intégrales;

3° Appelant xy une valeur quelconque de z, on déve-
loppera en série de Laurent les intégrales de l’équation (1)
qui admettent x, comme pile et l’'on montrera que le
développement contient un coefficient arbitraire; on appel-
lera k ce coefficient;

4° Laissant x, fize, on fera varier . A toute valeur de )
correspond une intégrale de 'équation (1) dont les pé-
riodes w et w' se trouvent étre par conséquent fonctions
de \; quelles sont les valeurs de L pour lesquelles les
fonctions w(}) ou w'(\) deviennent infinies?

1l. Equation des lignes asymptotiques et des lignes de
courbure en coordonnées curvilignes.

(Octobre 1910.)

Poitiers.
EPREGVE THEORIQUE. — On considére l’équation diffé-
rentielle
m d’u__tdu_mu
e~ dr T

1° Donner une expression de l’intégrale générale de
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cette équation. Montrer que pour m = 2 lintégration se
raméne a une quadrature.

2° Quelle relation peut-on établir entre les intégrales
de deur équations (1) ou m prend deux valeurs différentes
ayant pour somme 27

3° Appelons (I') une courbe dont les coordonnées carté-
siennes, exprimées en fonction de t, x = f(1). y = g(¢),
sont deur intégrales de (1), réelles et positives pour t réel
et positif. Quelle est U’aire balayéce par le rayon vecteur
(issu de Uorigine) entre deuxr quelconques de ses positions ?

§° Construire et discuter les courbes réelles (I') pour m = 2.
Quel est le genre des fonctions u(t) correspondantes? (On
déterminera d’abord le genre de leurs dérivées logarith-
miques.)

Eeneuve eratiQue. — Soit y = p (x) la fonction elliptique
de périodes w =1, w =i qui est infinic a l'origine.
Soient, d’autre part,

e ax 2]
u(.z):f %Z‘—’dx. v(z‘):/ L L$)dz

deux fonctions de x infinies a l’origine.

1° Pour z réel et supérieur a 100, calculer a 1o présles
différences u(x +1)— u(x), v(z +1)—v(z).

2° Appelant w un nombre quelconque de module 1,
montrer que la différence u(wx)— u(x) reste [finie
lorsque = augmente indéfiniment par valeurs réelles
positives. (Juin 1911.)

Rennes.

ErREUVE THEORIQUE. — . Etant donnée une fonctionP(z,y),
déterminer une fonction A (x, y) qui satisfasse aux
deur équations aux dérivées partielles

oA o(AP)
Sy Z= o’
oA I(AP)
() 5_}7_—_— oz
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5 ) . ) .
1> Montrer que le probléme n'est possible que si
Uexpression

JaP P
1+ P?

est différentielle exacte et que, si cetle condition est satis-
Saite, on peut obtenir logk par des quadratures;

z
2" Effectuer les calculs en supposant P = —;

3° Montrer que st A\y(x, y) vérifie les équations (1) et (2),
Uexpression

M(dy + P)dz

est la différenticlle totale d’une fonction U(x,y) qui est
une solution de l'équation

U 92U
l)—.z"+W = 0.

I1. Soient (C) uue courbe, (Cy) la développée de (C),
(Cy) la développée de (C,), et ainsi de suite, (C,) désignant
la développée de (C,_y). Soient M un point quelconque
de (C) et My, M,, . o M, les points correspondants sur les
courbes (Cy), (Ca), ..., (G,).

1° (C) étant définie comme enveloppe des droites (en
coordonnées rectangulaires xQy)

zsin® — ycosh = f(0),

trouver en fonction de O les coordonnées des points M,
My, ..., My;

2" Déterminer la fonction f(O) desorteque l'angle MOM,
sott drott.

Vérifier qu’alors le rapport reste constant. En

oM
oM,
déduire que (C) et (Cy) sont semblables.

Vérifier que les courbes dont les indices ont la méme

parité sont homothétiques par rapport a l'origine.

EPREUVE PRATIQUE. — 1° Intégrer U’équation aux dérivées
partielles .
93 2
(n =y -— =123

Yoz = ay
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2° Vérifier que l'on a une intégrale particuliére de
Uéquation (1) en considérant la surface (S) qui, rapportée
a des axes rectangulaires, est représentée par l'équation

/ L2

.’t‘~h‘/§ > z
(S) _ +—E=-

b
a?

ot a, b, ¢, h désignent des constantes;
3 Soit (T) le solide hcmogéne limité par la surface(S)
et par les plans z = o0 et z = c.
Calculer, pour le solide (T) :
1 L'aire de U’ellipse, section par un plan z = const.;
2° Le volume; ‘
3° Le moment d’inertie par rapport a Oz,
en se limitant, pour ce moment d’inertie, au cas parti-
culier ou U'on a a la fois

(Juin 1910.)

EpRRUVE THEORIQUE. — I 2, ¥, 3 désignant les coordonnées
d'un point M rapporté a trois axes rectangulaires,
et k déstgnant une constante, on pose :

u =x(x+y+23z),
v =y(x+y+3)
w=3(x+y+23)

1° Le systéme d'équations différentielles

dz
kg =
dy
kg =%
dz
kag =w

définit la position au temps t du point M(x, y, 3) qui
pour t = o avait comme coordonnées a, b, c.

Ezprimer z, y, 3 en fonction de a, b, ¢, t, et inverse-
ment a, b, c en fonction de z, y, 3, t.

Vérifier que les points qui a l’instant t = o se trouvent
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dans un plan

(Po) a+ b+ c=const.
se trouvent, a l’instant t, dans un plan
(P) T+ y + 3 = const.

et que, a une ligne (L,) située dans le plan (P,) corres-
pond de cette facon une ligne (L) située dans le plan (P),
homothétique de la ligne (L,).

2° Intégrer ’équation linéaire aux dérivées partielles

< o ow
=)

Vérifier que les points qui,a Uinstant t = o, se trouvatent
sur une surface intégrale de cette équation sont, a l’ins-
tantt,sur uneautre surfaceintégrale de la méme équation.

Jw Ju’ du dy
<Iz‘- T 03, 7= Jy ox

II. 1° Déterminer une courbe satisfaisant a la condition
sutvante :

En un point quelconque M on méne la normale jusqu’a

y P
Q

sa rencontre en N avec Ox; la paralléle NP a Oy coupe
la tangente en M au point T; la longueur NT doit étre
égale a une longueur constante »R;

2" Pour intégrer léquation différentielle obtenue, on
pourra exprimer 'y du point M, c’est-a-dire NQ, au
moyen de l'angle w de la tangente MP avec Oy.

Vérifier que la courbe C est une cycloide engendrée par
un cercle de rayon R roulant sans glissement sur Ox.

(Novembre 1910.)
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SUR LA NOTION DE DIFFERENTIELLE TOTALE;

Par M. Mavrice FRECHET,
Professeur a la Facullé des Sciences de Poitiers.

(Suite et fin.)

13. DIFFERENTIATION DES INTEGRALES DEPENDANT DE
PLUSIEURS PARAMETRES. — Soit f(z, a, B) une fonc-
tion intégrable par rapport a x dans le domaine D

asxsh, < J<aLo, BB IP
St fx, %, 3) admet une différentielle au sens de
Stolz par rapport aoetBen tout point dudomaine D
et st cette différentielle reste bornée dans ce do-

maine (quand les accroissements Ao, AB restent
bornés), l'intégrale

. b
F (1, 8) =f f(x, 2, 8) da

a une différentielle au sens de Stols en tout point
du domaine S

d<aLa, BB LP,

et cette différentielle est donnée par
b b
dF = A'xf Sa(z, 2, P)dr —i—Aﬁf f{;(x, a, §)dx.

Nous ne ferons que généraliser I’énoncé donné par
par MM. Arzela (*) et Tonelli (2) pour le cas d’'un

(') Sulle serie di funzioni (Accademia di Bologna, 1900, p. 45).
(%) Su la continuita e la derivabilita d’un integrale (Rendz—
contidei Livia, 1910, p. 87).
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seul paramétre, cas ol les deux définitions de la diffé-
centielle coincident.
Nous supposons que les intégrales soient prises au
sens de M. Lebesgue (*). On a

Salz,a,B) =Aloi:20 [j’(z, 2+ Aafa)—'f(z, a, p)] ;

donc fy(z, @, B) est une fonction bornée limite de
fonctions mesurables. Elle est donc aussi intégrable (2).
Ainsi les intégrales

b b
A(a,ﬁ):/ fé(myavﬁ)dxy B(l,ﬁ)=‘f fé(‘r’“’p)dx

Y

existent. Il reste 4 montrer que la quantité

£(a, B, Ax, AR)
_F(a+Aq, B+ AB)—F(2, B)—Az2A(q B)— ABB(a, B)
= [Xal+ 58]

est infiniment petite avec |Ax|+ |AB|. Or on peut
P’écrire ’
b
e(2,8,80,08) = [ ¢(z,%,8, 8, 8B) da
a
avec
9 (z,a,B, Az, AB)

_ S, 282, B4-A8)—f(x,a,B) — A1 fu(2,4,B) —Aﬁff,(x,a,ﬁ).
- | Ax]+[aB]

Pour toute valeur déterminée de z, cette quantité
estinfiniment petite quand | Aa.| + ] AR | tend vers zéro.
S’1l n’en était pas de méme de ¢, on pourrait trouver
une suite de nombres Aa,, AB, tels que | Az, | 4| AR, |
tende vers zéro et que | <(a, 8, Axy, AB,,) | reste supérieur
a un nombre positif fixe.

- (') LeBEsavE, Legons sur Uintegration, Paris, 1904, p. 98.
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