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VORTICITY

AND THE

THERMODYNAMIC STATE
IN A GAS FLOW

By C. TRUESDELL

Applied Mathematics Branch, Mechanics Division,
U. S. Naval Research Laboratory
and Department of Mathematics, University of Maryland.*

1. Introduction (). — The vorticity
1.1) w=curlv

in a gas flow whose velocity is vis closely conneeted with the thermo-
dynamic variables — the entropy v, the pressure p and the stagna-
tion pressure p,, the temperature 6 and the stagnation tempera-
ture 9y, the enthalpy h and the stagnation enthalpy or total
head h,, the density p and the stagnation density p,, and finally
the ultimate speed v,. Apparently the discipline of gas dynamics
is the only realm of mathematical physics where thermodynamics
and mechanics truly cooperate : while the large and fairly rapid
deformations experienced by a streaming gas require a genuinely
dynamical treatment, forcing complete abandonment of the fictitious
and paradoxical ‘¢ quasi-static process”’ of classical thermodynamics,
yet locally the material is sufficiently near to thermodynamic equili-

(*) Now Professor at the Graduate Institute for Applied Mathematics, Indiana
University, Bloomington, Ind., U. S. A.

(') This work was commenced 1n collaboration with Dr Prim under the Office
of Naval Research Contract 53 47; [1947, 3] is a preliminary report. I am obliged
to Dr Neményi for criticism, and to Miss Charlotte Brudno for preparation of
the MS.



2 C. TRUESDELL.

brium that thermodynamical methods based upon the existence of
an equation of state for the local state variables remain applicable.
Of this fascinaling border domain there exists no complete and sys-
tematic survey,-and in the literature the various quantitative relations
are often stated loosely or subject to unnecessary restrictions, and
are sometimes deduced by intuitive arguments which serve at best
to suggest the plausibility, but fail to establish the truth of the propo-
sitions.

In this memoir our interest centers about the vorticity. Our gene-
ral objective is two-fold : to characterize irrotational gas flows in
thermodynamical terms, and in rotational gas flows to search out
the relations which bind the vorticity to the thermodynamic
variables. We attempt to give clear, full, and correct statements,
substantiated by simple formal proofs, of some known theorems or
generalizations of them, to deduce some new theorems, and in parti-
cular to present a fundamental simplification of all problems concern-
ing certain types of gases in steady flow which may be thought of
as originating in a reservoir at uniform pressure (th. 20). Perhaps
more important than any individual theorem, however, is the orderly
line of march, in which each new question is naturally suggested by
the preceding result.

On the whole, our sequence of presentation is from the general to
the particular as far as the physical properties of the fluid are concer-
ned, adding new assumptions one by one as necessary to draw
increasingly specific conclusions.

2. Some definitions and preliminary lemmas of vector analysis
and kinematics. — A vector field b such that

(2.1) b= —grady, or equivalently, curlb=o,

is a laminar field. More generally, any field locally endowed with
normal surfaces y = const., i.e.
(2.2) b=—vgrady,

is a complez-laminar field, a laminar field constituting a special case.
In introducing these terms Kelvin (2) proved

(2) {1851, § 75]. Kelvin’s term is ¢ complex-lamellar ”; the term ‘“ doubly-laminar”
is found 1n the literature.
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Lemma 1. — A continuously differentiable field b is complex-
laminar if and only if

(2.3) b.curlb =o.
A field b such that
(2.4) b x curlb =0, curlbzo,

may be called a Beltrami field, since Beltrami () first exhibited
hydrodynamical flows whose velocity vector is of this type. To
Neményi we owe the realization of the importance of these fields in
gas dynamics, as well as some of the results concerning them which
will be developed in this memoir. Notice that as defined here Bel-
trami fields do not contain laminar fields as a special case (). The
expression of a Beltrami field in terms of scalar functions, analogous
to (2.2), is elaborate, and not required in this memoir. On the
other hand, the relation between b and curlb deserves a nearer
analysis. Equivalent to (2.4) is curlb=2b, 2 5£0. Now let o be
a scalar function such that (3) diveb=o0. Then

(2.5) o=diveb= div({-curlb) = grad ] .curlb = Ab.grad ],
G | curlb |
I b

hence we obtain a theorem of Beltrami, as reformulated by Neményi

and Prim (¢) :

so that = is constant upon each vector line, but 1 = ) and

Lemma 2. — For a twice continuously differentiable Beltrami
Sield b, let o be a scalar function such that
(2.6) diveb = o;
then
jcurlb’
(2.9) —5p = comst.

along each vector-line of b.

(%) [1883]. Such fields occurred earlier in the lLiterature, but only in passing
references. Correction added in proof : most of Beltrami’s results had heen
obtained previously by Gromeka [1881, gl. 2, § g'.

(%) This distinction is adopted for later convenience in the statement of theorems.

() For any continuously differentiable field b, an infinite number of such scalar
functions exist, as was noted by Appell [18g7, § 5].

() [1949, 4, th. 1].
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Let v be the velocity field of a motion. Then the continuity of
motion is expressed in part by Euler’s equation.
(2.8) ;? -+ divpv = o,
where p is the density and ¢ is the time. More specifically, in this
memoir the term continuous flow is to be understood as denoling a
flow in a region where v is single valued and lwice continuously
differentiable with respect to time and the space variables. Some of
our theorems actually hold under less stringent requirements, which
we shall not trouble to state except in the few cases when they may
be relaxed sufficiently to admit regions of flow in which there arc
shock waves.

A motion is steady if

The vorticity w is given by
(2.9) w = curlv;

it is a measure of the local and instantaneous rate of rotation of the
medium (7).
A motion whose velocity field v is laminar, so that

(2.10) W =0,

is an irrotational motion. An irrotational motion is characterized
by the existence of a velocity-potential @ :

(2.11) v =—grad®.

A motion in which w 3£ o is rotational.

A motion whose velocity field is complex-laminar is a complez-
laminar motion. By lemma 1 it follows that in continuous complex-
laminar rotational motions, and only in such motions, the vorticity
and velocity are perpendicular :

(2.12) W.V =0, W # o.

All plane and rotationally-symmetric motions are complex-laminar;

(") The several kinematical interpretations of w are developed in detail in 1952, 11.
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since many properties of plane and rotationally-symmetric motions
are shared by complex-laminar motions in general, in this memoir
we shall rest content in most instances to note the specially simple
forms our theorems assume for complex-laminar motions, without
further specialization.

A motion whose velocity field is a Beltrami field is a Beltram:
motion. In Beltrami motions, and only in such motions, the
vorticity and velocity are parallel :

(2.13) W X V=0, W # o,

and the particles rotate about their paths. Complex-laminar motions
and Beltrami motions as here defined are mutually exclusive catego-
ries, irrotational motions being included in the former but not in the
latter. From Euler’s continuity equation (2.8) and lemma 2 follows
immediately a result of Beltrami (*) :

Lemma 3. — In any steady continuous Beltrami motion, upon
each stream-line the vorticity is proportional to the momentum pv :

’ W —_—
(2.13) P—v—-const.
Let a be the acceleration. Then it is easy to derive the accelera-
tion formula of Lagrange (°),

oJv 1
(2.15) a=m+w><v+gradgv°,

which is the real starting point of our investigation of vorticily.
By forming the circulation ﬁv. dr about an arbitrary closed cir-

cuit € and by calculating its material derivative we obtain Beltrami’s
formula ('0)

D
(2.16) mfv.dr=fa.dr.
(<4 (<4

Hence follows

(%) [x889}.

(®) [1783, § 14].

(™) [1871,§ 12]. The materfal derivative 1sgiven by 2:-5?-) = 1(‘)—”) +v. gradf(’) ).
. b )
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Lemmr 4. — A continuous motion is circulation-preserving if
and only if

(2.17) curla =o,

or, equivalently, if and only if there exist an acceleration-
potential A :

(2.18) =— gradA.

The distribution of vorlicity, and indeed the whole dynamics of a
circulation-preserving motion, is completely determined by the clas-
sical Helmholtz theorems.

By putting (2.11) into Lagrange’s formula (2.15) we conclude
a result of Vessiot (!) :

Levva B. — In any continuous irrotational motion 'there exists
an acceleration-potential A :

a
(2.19) A= [—d%)—-%(grad@)"]-

Beltrami motions, as we shall see, are not circulation-preserving
except in the special case when the vorticity is steady :

(2.20) —(E— = 0.
We require first a result of Masotti ('2) :
Levuma 6. — The vorticity of a continuous motion is steady if

and only if the velocity be the sum of a laminar field and a
steady field :

(2.21) v(r, t) = grad [f U(r, t)dt] +u(r).

In particular, in an irrotational motion the vorticity is zero and hence
steady a fortiori; comparison of (2.11) and (2.21) yields

(") {1911, § 4]. This evident result may be proved 1n many other ways.
() 11927, § 2]-
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Lemma 7. — A continuous irrotational motion satisfies (2.31)
with
(2.22) U =——§+F(t), u=o,

and the formula (2.19) becomes
(2.23) A=——(U+%v’)+F(t}.
Now from (2.21) follows

(2.24) 3—}=grad[U—F(t)],

and hence if we put Masotti’s result and (2.13) into Lagrange’s for-

mula (2.15), by lemma 4 we obtain a generalization of a theorem of
Beltrami ('¢) :

Lemma 8. — A continuous Beltrami motion is circulation-

preserving if and only if it be a motion with steady vorticity;
the acceleration-potential is then

(2.25) A=—-(U+§v“)+F(t).

In particular, any steady continuous Beltrami motion is circula-
tion-preserving.

The combined result of lemmas 7 and 8 is the spatial Bernoulli
theorem :

Lemma 9. — In a continuous irrotational motion, or in a conti-
nuous Beltrami motion with steady vorticity, we have

(2.26) U+§o=+A=F(t);

In a steady motion,

(2.27) éV’—f—A:C.

(%) [188g].
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More generally, by putting (2.21) and (2.15) into (2.18) we obtain
(2.28) v><w=grad(U+§vz+A),
and hence follows Lamb’s super ficial Bernoulli theorem (1+) :

Lemma 10. — In a continuous circulation-preserving motion
with steady vorticity there exist surfaces 8 which are simulta-
neously stream-surfaces and vortex-surfaces, and

(2.29) U+§01+A=F(:S,t);

In a steady motion,

(2.30) év2+A=F(:S).

Conversely, if in a continuous circulation-preserving motion there
exist a scalar function U such that (2.28) holds (and thus a for-
tiori there exist surfaces 8 which are simultancously stream-
surfaces and vortez-surfaces), then the motion is a motion with
steady vorticity, and if further U= const., then the motion
is steady.

The sarfaces S are called Bernoullian surfaces.

By forming the curl of Lagrange’s equation (2.15) we obtain the
kinematical vorticity equation of Lagrange and Beltrami (**) :

D/w t w

2.31 —(——) = —curla + — .gradv.
(2.31) AN o o B

In application to motions of fluids the term flow may replace
motion in the foregoing definitions and lemmas.

3. — Inviscid fluids. Kelvin’s criterion. — In this memoir we
shall deal only with perfect or inviscid fluids, which may be defined

(%) The theorem actually stated by Lamb [1878] concerns steady motion only, and
is phrased in dynamical terms.

(%) The special case when curla = o is given in [1762, chap. XLII]; the still
more special case when also div v=o0 is often called “Helmholtz’s equation ”.
The general formula is given in [1871, § 6].
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as continuous media salisfying FEuler's dynamical equation :

(3.1) a=—;—gradp+f,

where p is the pressure and f is the extraneous force per unit mass.
‘When the extraneous force is laminar,

(3.2) f=— grady,

iL is said to be conservative (1¢).
For a fluid subject to conservative extraneous force we have then

(3.3) curla = gradp < grad g—&

By lemma 4 of § 2 we now conclude that in order for a continuous
motion to be circulation-preserving it is necessary and sufficient that
there be a relation of the form

(3-4) S(pypy t) =05

that is, either

(3.5) p=p(t),

in which case the flow is instantaneously isobaric, or
(3.6) p=r(2),

in which case the flow is instantaneously isostatic, or else
3.7 p=ppt), e=elp ),

i.e. at each instant the surfaces p = const. coincide with the surfaces
p = const., in which case the flow is instantaneously barotropic.
Flows not satisfying any of the three conditions (3.5), (3.6), (3.7)
are baroclinic.

(*) In mass point dynamics it is customary to require that a force system be
steady as well as laminar before thq term ‘¢ conservative” is applied to it. The
weaker requirement (3.2) is sufficient for the validity of the curvilinear energy

. a . .
theorems of gas dynamics, although—é‘-:o is necessary for the conservation of

total energy in barotropic or isochoric motions
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If (3.5) reduce to
(3.8) p = const.,

the flow is Zsobaric; if (3.6) reduce to

(3.9) p = const.,

the flow is ésostatic (17); and if (3.7) reduce to
(3.10) p=p) e=e(p)

the flow is barotropic ('®). Expressing our conclusion (3.4) in the
terminology just introduced, we have Kelvin’s criterion (1°) : a
continuous flow of an inviscid fluid subject to conservative extran-
eous force is circulation-preserving if and only if it be locally
instantaneously isostatic, isobaric, or barotropic flow.

By applying lemmas 5 and 8 of § 2, from Kelvin’s criterion we
conclude that for an inviscid fluid subject to eonservative extraneous
force a continuous irrotational flow or a Beltrami flow with steady
vorticity must be locally instantaneously isochoric, isostatic, or
barotropic. From (3.1), (3.2) and (2.18) follows

»
(3.11) A=f ‘—?—D—}—o,
0

and this expression may be put into lemma 9. These results are
summarized in (2°)

Tueorem 1. — (Basic theorem on irrotational and Beltrami flows. )
— If a continuous flow of an inviscid fluid subject to conservative

(*") Instantaneously isostatic flows are to be distinguished from isochoric flows,
. . . . D . .
in which p = const. for each particle, i.e. D—; =o0. An isostatic flow is also iso-
choric, but the converse is false. A flow of an inhomogeneous incompressible fluid
is always isochoric, but generally not isostatic nor instantaneously isostatic. A
spherically symmetrical oscillation of a gas may be instantaneously isostatic but
not isochoric.

(') [1933, p. 84 86].

(*°) The actual statement of Kelvin [186g, § 59 (d)] is confined to the sufficiency
of (3.9) or (3.10).

() The portion of this theorem concerning irrotational flows is common
knowledge. A special case of the portion concerning Beltrami flows is given by
Neményi and Prim [1949, 4, § 4].
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extraneous force be an irrotational flow or a Beltrami flow with
steady vorticily, then it is locally and instantaneously isobaric,
isostalic, or barotropic flow, and the spatial Bernouilli theorem

P
(3.12) U+£v’+f ip—{-—u:F(t)
2 o P

is valid, where (3.4) is to be used in carrying out the quadrature.
All the theorems of this memoir are merely local, and we make no
attempt to characterize flows in the large : in the present instance,
for example, the flow may well be isobaric in one portion, isostatic
in anether, and barotropic in a third.

The case of steady motion subject to no extraneous force deserves
special attention. Bernoulli’s theorem (3.12) now becomes

P
(3.13) lvz-a-f P _c.
2 o [4

For an isobaric flow dp=o and (3.13) shows that the speed ¢ is
constant throughout the isobaric region. Neményiand Prim (*!) have
shown that a laminar or Beltrami field of constant magnitude is
necessarily a field whose vector-lines are straight. Suppose next
that the motion be isostatic or barotropic, and in the case of baro-

. . . dp
tropic motion assume that the function p = p (p) be such that dp >~ o,

a natural requirement suggested by the physics of the situation.
Then (3.13) demonstrates the existence of a mazimum possible
speed or ultimate speed ¢, and a definite stagnation pressure p,
attained (if at all) at a slagnation point (v =0). Both these quanti-
ties are constants of the motion ; they are related by

1 rd I Podp
3.1 el -—=—v’=f .
(3.14) > e Tav A

Suminarizing these results, we have
Treonem 2. — In a steady continuous irrotational or Beltrami

flow of an inviscid fluid subject to no extraneous force, one of the
Jollowing two conditions prevails locally :

(*) [1949, 4, th. 2].
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a. The flow is isobaric, the stream-lines are siraight, and the
speed is uniform.

b. The flow is isostatic or barotropic, and is possessed of a de fin-
ite ultimate speed ¢, and stagnation pressure p,, these quantities
being related by Bernoulli’s theorem (3.14).

Flows not satisfying the conditions of theorem 2 are not generally
possessed of an ultimate speed and a stagnation pressure in this sense.
Later (§7) we shall see that in an important special case such quan-
tities do indeed exist for a class of rotational flows, but are no longer
constants of the flow, being liable to different values upon the differ-
ent stream-lines.

In any case, we may put (3.3) into the Lagrange-Beltrami equa-
tion (2.31), obtaining the dynamical vorticity equation of Silber-
stein (2?) :
(3.15) %(%):gradpxgrad%-&—%.gradv,
whence a portion of theorem 1 is again apparent.

The results of this section are purely dynamical, and are the only
such results in this memoir. Without the aid of thermodynamics
we can make no further progress in our subject.

4. Thermodynamical assumptions. Classification of fluids. — The
basic postulate of Gibbs’s (?*) theory of equilibrium is the existence of
an equation of state

(4.1) QE =f(1i|, ﬁ; Cl, C25 ooy Ck);

where @ is the total internal energy, 1 is the volume, 4 is the
entropy, and C; is the concentration of the substance i. This
postulate is intended to describe only systems in which at each in-
stant all conditions are the same at every point. Gas dynamics is
characterized by introducing local thermodynamic variables — the
specific internal energy ¢, the specific entropy u, and the specific

() T1896].
(%) [1875, p. 63].
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concentration c; of the substance i, which are assumed to be connect-
ed by a local equation of state

(4.2) e=f(p, M, €1, €2y -oey C1);

whose form is unaffected by whatever motion may take place.
The local variables are related to the system variables by

¢=f‘vpsd1‘.‘, izj=j‘;pnd‘ﬂ,

bat in general no system equation of state (4. 1) exists. Underlying
the first basic assumption of our subject is then the premise that in
principle the specific internal energy at a point can be determi-
ned by accumulating a certain amount of statical information,
regardless of the state of motion or deformation; in particular,
that the internal energy is completely determined by the relative
amount of each substance present and one new parameter n, called
the specific entropy. The substances i are simply any components
of the fluid which it seems desirable to distinguish in a particular
problem they may be different. phases of the same chemical com-
pound, ions in solution, atoms excited at different energy levels, etc.
If but one substance be present, so that

(4.3) e=/(p )

the fluid is homogeneous. 1t

(%-4) . ge=f(n), p=const.,

the fluid is homogeneous and incompressible (2*). If
p=rp(e, €y ..., ct),

the fluid is simply incompressible. . Fluids which are not incom-
pressible are compressible.

For the basic postulate (4.2) there is no direct experimental
evidence. Like most of the ‘“ laws” of mathematical physics it is a

(#*) An incompressible fluid must not be confused with an isochoric or isostatic
flow'(§3) An incompressible fluid is insusceptible of a change in density, and
thus every possible flow is isochoric; if it be homogeneous as well, every possible
flow is isostatic. A highly compressible fluid, however, may happen to experience
an isochoric flow, as in a simple vortex or Couette or Poiseuille flow.

MEMORIAL DES SC. MATH. — N° 119, a
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pure hypothesis of a mathematical nature, very difficult, nay in the
nature of things near to impossible of direct and independent experi-
mental test, but clear enough for the imagination and sufficient
(along with other assumptions) to predict with fair accuracy a large
class of physical phenomena. The strongest realistic statement to
be made in favor of (4.2) is that an assumption equivalent to a
special case of it is always made in gas dymamics, and that from
this discipline has never yet been derived a result in contradiction
with physical experience in a situation to which it could reasonably
be applied.

Sincez ¢i = 1, one of the concentrations, say cx, may be elimi-
nated, and (4.2) represents a k + 1 - dimensional energy surface
in the k + 2 - dimensional space of the variables ¢, p, =, ¢4,
Cay - - ., Ck_1- The basic postulate (4.2) may thus be expressed in
geometrical form : the path of any ‘‘ particle” P in the mean
motion of a given fluid in the physical space is mapped by the
equations

=¢e(P,t), n=n(P,t) ci=ci(P,2)
onto some curve on the energy surface for that fluid.

The temperature 9, the thermodynamic pressure m, and the
potential p; of the substance i are defined by

_oe _ de __oe
(4.5) 9=aﬁa :T=—d—<—l—), 1J.1=5—0i.
P

In the case of an incompressible substance, the energy surface dege-
nerates by at least one dimension and the above definition of =
becomes meaningless. Now the static pressure p has appeared
already in Euler’s equation (3.1). Characteristic of the discipline
of gas dynamics is the further postulate that the thermodynamic
pressure is equal to the static pressure (%).

(4.6) x=p.

(%) That (4.6) is indeed an indepzndent postulate (thougli rarely mentioned)
follows from the difference of the two concepts which p and w represent. The
former quantity is a scalar field such that for any imagined closed boundary sur-
face s within the fluid, whatever thé state of motion, the surface integrals

ﬁdsp and ‘¢. ds <X rp.
s 5
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In virtue of this postulate the separate symbol 7 need not be retained
and p alone is employed henceforth.

Now in general from (4.5), for a compressible fluid we obtain.

(£.7) p=p(p,m, ¢y, € ..., C&).
. . .1 0p de
The special case in which on =0 I # 0, so that

(4.8) P =p(p; c1, €2, ..., Ck),

is called a piezotropic fluid (*¢). By Kelvin’s criterion (§ 3), all
continuous flows of homogeneous inviscid incompressible or piezo-
tropic fluids subject to conservative extraneous force are circulation-
preserving. Since such flows form the subject of classical hydrody-
namics, in this memoir we have no interest in them per se, and thus
in general we shall not draw attention to the usually trivial conse-
quences of our theorems which result for fluids all of whose possible-
flows are circulation-preserving. Rather, we shall be interested in
characterizing thermodynamically those circulation-preserving flows,
especially irrotational flows, which can occurin fluids whose motions
in general are not circulation-preserving, as well as in investigating
the distribution of vorticity in gas flows in general. We tarry only
to notice that for a piezotropic fluid

2
(4.9) A e
7 ()
and hence
€ =&q(My €1, €2y ... Ck)+E(p, €1y €3y ..oy Ch),
- %%, g%
(4.10) p= ’ o’

(%)

are mechanically equivalent respectively to the resultant force and resultant moment
exerted upon the fluid inside s by all the fluid outside . The latter quantity is
the slope of the curve of intersection of the emergy surface of the fluid with a
— p~! = const. plane, taken at a point on the energy surface where p, n, and the c,
have appropriate values. This matter is discussed from a more general standpoint
in [1952, 2, § 30, § 61, § 61 A].

(%) [1933, p. 84-86]. A piezotropic fluid is not to be confused with a barotropic
Jlow (§ 3). Piezotropy is a physical property of a substance, while barotropy is a
geometrical property of a particular motion. While indeed every flow of a homo-
geneous piezotropic fluid is barotropic, the converse statement is false, and also
nsually a flow of a heterogeneous piezotropic fluid fails to be barotropic, and in
general the two concepts are unrelated.
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that is, the energy ¢ may be decomposed into two portions, a thermal
energy ¢, depending only upon the entropy and the concentrations,
and a volumetric energy ¢, depending only upon the density and the
concentrations.

If except possibly al certain singular points or curves on the energy
surface we have

ap Jdp Il a0
(4.11) 51-1#0’ d;;éo, (—’;l;éo, d—p;ﬁo,
we shall call the fluid tri-variate (27). Tn accordance with the
remarks of the preceding paragraph, this memoir treats almost exclu-
sively of tri-variate fluids. For a homogeneous tri-variate fluid we
have non-degenerate equations of stale connecting any three (**) of

the thermodynamic variables v, 6, p, p :
(4.12) p=p(p; ) 1 =mn(p, 8), 0=108(p, n),

as well as many others.
For any compressible fluid, by differentiating (4.2) along any
curve on the energy surface we obtain

(4.13) de=0dn——pd(1?>+zw'dc,-;

in particular, if this curve be the image of the actual motion of some
particle P in the physical space, we have

1
De _,Dn o(3)

De¢;
- p—r7 [ Rl 2
(4.14) D:=°De P Dr TE g
If throughout a particular motion
(4.15) %fti=o (i=1,2, ..., k),

(27) Only three of these conditions are independent, in view of the reciprocity

relation %P __ Lﬂ_’ which follows from (4.5).

"6

(*®) Some of our theorems ontri-variate fluids requireonly p = p(p,n) with %ﬁ # o,

but we adopt the stronger restrictions (4.11) because theylead to somewhat more
definite results in some cases and are satisfied by all equations of state proposed -
for gases.
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then the fluid behaves in that motion as an irert mizture, the
concentrations at each material point remaining constant as that point
is carried through the motion. Molecular diffusion, chemical
changes, phase changes, etc., do not take place. Mixtures.ot sea
water and fresh water or of air and water vapor in many oceanograph-
ical and meteorological investigations are regarded as inert in this
sense. A number of theorems of this memoir concern heterogeneous
fluids in motion as inert mixtures, but there is no attempt to treat
more general types of heterogeneity.

For a homogeneous fluid we have

(4.16) de = _pd(.;.>

for any path on the energy surface; hence, in particular,

(4.17) grade:ﬂgradn—pgrad—:-

For a heterogeneous fluid in motion as an inert mixture, neither (4.16).
nor (4.17) is generally valid, but nevertheless by (4.14) and (4.15)
we have

1
D<-
De Dn )
(4.18) Dt = l—)—_p—ﬁ's—

The enthalpy h is defined by (2°)

(4.19) h=s+}—;~

Then it is a consequence of (4.17) that for homogeneous fluids
have

(4.20) 6 gradn = grad 2 — -:;gradp.

5. Homogeneous tri-variatefluids. The Crocco-Vazsonyirelation.
By eliminaling gradp between (4.20) and Euler’s dynamical equa-
tion (3. 1) we obtain

(8.1) 0 gradn =grad/i +a —f;

(**) For incompressible fluids the thermodynamic pressure is not defined, as we
have noted already. The enthalpy 4 is still to be defined by (4.19), however, with p
to be taken as the static pressure which appears in Euler’s dynamical equation (3.1).
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hence, f being supposed conservative,

(3.2) curla = gradb >< grad ».

By Beltrami’s criterion (2. 17) we now conclude that in order for the
motion to be circulation-preserving it is necessary and sufficient that
there be a relation of the form

(8.3) S, n, t)=o0,

as indeed follows equally well from Kelvin’s criterion (§3) and the
various equations of state. The special case

(3-4) b =16(¢)

is instantaneously isothermal flow, while the special case
(8.5) n=7(?)

is instantaneously isentropic flow. If (5.4) reduce to

(5.6) 0 = const.
the flow is isothermal, while if (3.5) reduce to

(5.7) n = const.

the flow is isentropic (**). For a homogeneous fluid any flow in
which (8.3) holds is necessarily an isobaric, isostalic, or barotropic
flow, and hence is circulation-preserving, and conversely, and thus
we have a complementary result concerning the entropy and temper-
ature which is analogous to theorem 1.

Now for a homogeneous incompressible or piezotropic fluid this
last result and that of theorem 1 are mere Lrivialities. For a tri-
variate fluid, however, most motions are baroclinic, and the analysis
yields a thermodynamical characterization ofirrotational and Beltrami
flows. Recalling that we have equations of state of all the types

() Current usage of this term varies. In this memoir it is applied only to
flows of uniform entropy, for which the value of m is constant throughout a three-
dimensional region, not merely upon a curve or surface. The term adiabatic
should not be given a local sigmificance, but should be retained in its original sense
as applicable to a process taking place within boundaries through which there is no
flux of energy.
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(4. 12) at our disposal, we may consider in turn each possible combi-
nation of types of relations

Spy e t)y=o0 and &(8, m, ¢)=o0.

1° Suppose p = p(¢); then by (4.12) if 6 =10(¢) it follows that
n=n(¢), and conversely ;

2° If p=p(t), it is possible that 6 — 8(n, ) #0(¢). Then by
(4.12) we obtain p=p(n, t) £ p(¢);

3° If any one of p, 0, 1 be a function of time only, while the other
two be not functions of time only, a parallel argument yields a func-
tional relation connecting the other two and further functional rela-
tions connecting either of these with p;

4° Finally, the motion can be barotropic, and simultaneously

B = 0(n, £) 5 0(2).

Summarizing these results, we obtain

Treorem 3. — If a continuous flow of a homogeneous inviscid
tri-variate fluid subject to conservative extraneous Jorce be an
irrotational fiow or a Beltrami flow with steady vorticity, then
locally the four state variables p, p, 0, n are connected in one of
the following ways :

a. All four are functions of time only, or;

b. One is a function of time only, and the surfaces upon which
the other three are constant coincide at each instant, or ;

c. At each instant the surfaces of constant density coincide with
the surfaces of constant pressure (instantaneously barotropic flow),
and the surfaces of constant temperature coincide with the surfaces
of constant entropy.

Returning to the consideration of rotational flows in general, we
may put (5.2) into (2.31), obtaining the worticity equation of
Vazsonyi (*') ;

D/w 1 w

. —( — )= -gradbf><gradq+ — . gradv

(5.8) Dt<p> o BT gradq+ -~ . gradv,

whence a portion of theorem 3 is again immediately apparent.

(**) [1945, 1, eq. (5.2)]
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We now introduce the total enthalpy h,

(3.9) h,sh+§v2=s+§+ipz’

N

a variable of particular significance in gas dynamics. From the
acceleration formula (2.15) of Lagrange we may then put the dynam-
ical equation (5.1) into the form

(3.10) Z—: + W x v ==0gradq — gradA,+ f.
Hence follows
Turorem 4. — In any steady continuous flow of a homogeneous

inviscid fluid subject to no extraneous force, the vorticity and the
thermodynamicvariablesareconnected by the Crocco-Vazsonyi (*2)
relation

(B.11) w < v="0gradn — gradA,.

Theorem 4 shows that in general an isentropic flow fails to be a
Beltrami flow or an irrotational flow. We have, however,

Tueorem 5. — 4 steady continuous flow of a homogeneous
tnviscid fluid subject to no extraneous force which is both isentropic
and of constant total enthalpy is necessarily either a Beltrami flow or
an irrolational flow. In particular, a complex-laminar flow sati-
sfying these conditionsisalways an irrolational flow. Conversely,
in a steady continuous irrotalional or Beltrami flow of a homo-
geneous inviscid fluid subject to no extraneous force

(5.12) 6 gradm = grad /,.

In particular, a steady continuous. irrotational or Beltrami Slow of
a homogeneous inviscid fluid subject to no extraneous force which
s isentropic is also a flow of constant total enthalpy, and conversely.

(3?) Crocco [1936, eq. (1)] gave the special case 4,= const for perfect gases. A
shorter proof was given by Tollmien [1942] and the restriction to perfect gases was
removed by Oswatitsch [1943]. The general result is due to Vazsonyi [1945, 1, eq:
(6.1)], who notes also a generalization to arbitrary homogeneous fluids [eq. (M")].



VORTICITY AND THE THERMODYNAMIC STATE. 21

6. The energy equation of C. Neumann, and its consequences for
flows of perfect fluids devoid of heat flux. — For any homogeneous
continuous medium, or for a helerogencous medium in motion as an
inert mixture, the conservation of energy (#%) is expressed by the
equation of C. Neumann (**).

De .
(6.1) °b: =T:A—divq,
where T is the symmetric stress dyadic, A is the rate of deformation
(2A=gradv +(gradv).), and q is the keat Sluz vector. From
(4.17) it follows that

D'r) _ . ..
(6.2) poﬁt-—W.A——dn q,

where W is the stress in excess of the pressure :

W =pI+T.

Euler’s dynamical equation (3.1) is equivalent to the statement that
W — o for inviscid fluids, and thus the appropriate energy equation
is’

(6.3) pﬁ%—?:——-divq.

In this memoir we shall not have occasion to specialize the form
of q, noting simply that if the heat flux arise solely from thermal
conduction then Fourier’s law gives  =—xgrad06. In most pro-

(33) For the simple media in equilibrium which are considered in classical ther-
modynamics, this equalion reduces to a form equivalent to (4.r). In & medium
suffering deformation, however, (4.1) is not valid and the two equations (6.1) and
(4.13) express different and independent assumptions : the former, that mecha-
nical and thermal energy are inlerconvertible; the latter, the existence of an
energy surface characterizing the fluid. The misleading terminology (‘‘First law”,
« gecond law ” etc.) of thermodynamics is avoided in this memoir.

() (1834, § 41. For the special case of an inviscid ineompressible fluid the
energy equation was given by Fourier [1833, eq. (3)]; for small motions of a
viscous ideal gas, by Kirchhoff [1868, § 1]. Several authors have proposed exten-
sions of the energy equation to heterogeneous media, but their results are not in
agreement; it seems evident, however, that for an inert mixture the energy equa-
tion should not be different in form than for a homogeneous fluid, cf. [194o,

eq. (19)]-
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blems of gas dynamics it is assumed that q=o, so that (6.3)
reduces to

Dy
(6'4) '-m = 0,

and hence we have

Tueorem 6. (Basic energy theorem). — If an inviscid Sluid be
in continuous motion as an inert mizture devoid of heat flux, then
the entropy of each particle remains constant. In particular, if
the motion be steady, then the entropy is constant along each stream-
line.

The condition (6.4) is to be contrasted with (5.6) : in general,
these motions are no¢ isentropic. The isentropie possibility is
expressed in the evident

Tarorem 7. — In an inviscid fluid in condtinuous motion as an
inert mizture devoid of heat flux, if there exist a certain isentropic
surface (') which is touched by every parlicle at some time, then
the flow is isentropic. In particular, if in a steady flow under
these hypotheses there exist one isentropic surface which is touched
by every stream-line, then the flow is isentropic.

The principal condition of the theorem is typically illustrated by a
flow which may be regarded as originating in a « reservoir » at infin-
ity in which the entropy is uniform. Notice also the requirement
of continuity : if a surface of constant entropy of the type specified
may be found, it follows (subject, of course, to the remaining condi-
tions of the theorem) that the flow is isentropic up to the first shock
front encountered by the particles, after which it may well fail of the
isentropic property.

In the special case of irrotational or Beltrami flows we may obtain
further information about the thermodynamic state, as expressed in

Tueorem 8. (Characterization of irrotational and Beltrami flow)
— If an inviscid tri-variate fluid be in continuous irrotational Slow
or Beltrami flow with sleady vorticity, and if the Slow be that of

(%) This isentropic surface v, = 7, need not be a steady surface, but 7, must not
vary with time.
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an inert mizture devoid of heat flux, then locally either the flow
enjoys one or both of the following properties :

a. All slate variables are constant for each particle :
D Dp Dp D6
(6.5) D= D =% D =" b =% ooy
b. The entropy at any point is a funclion of the concentrations
alone : ‘

(6.6) n=mn(cy, €3y -, Ck),

or else

c. The flow is instantancously isobaric, instantaneously isostatic,
or instanlaneously barotropic, but not isobaric, isostatic, nor baro-

tropic (i. e., a relation of type (3.4) with :—j{ # o holds).

Proof. — By theorem 1, we havea rclation of the form f(p.p, ) =o.

It %;ﬁo, case ¢ of the present theorem follows. Suppose hence-

J . <. . .
forth that d?f # 0, so that the flow is isobaric, isostalic, or barotropic.

For a tri-variate fluid we have
(6'7) P=P(97 M, C1y Ca2, ...,Ck),

and 3——2’ #o, %E # o except possibly for certain isolated values of the

variables. When the motion is that of an inert mixture (§ 4), we

have 2% —=o0, and when there is no heat flux we obtain Dn o by

D¢ D¢
theorem 6. Differentiating (6.7) yields then

Dp _dp Dp  dp Dn dp De; _ dp Dp

(6.8) Di = 9; Dt " on Dt dc; DI — o Dt
i

"For an isobaric flow, (6.7) yields % = o, and hence by the tri-

variate character of the fluid case a of the theorem we are proving
then follows; similarly, an isostatic motion also yields case a. Ifthe
motion be barotropic, we have p = p(p) = const., and hence if
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g—i =o case a follows again. Finally, suppose g_f #o. From the

tri-variate character of the fluid we have
(6.9) N ="1(pP, ps €15 C2; .., Ck)

as an equation of state, and hence in the present motion

(6.10) = 7)[[’(9)) By Ciy €25 « ..y Ck]y
whence
(6.10 bis) n=f(p. c1, €3, ..., k).
Hence

Dn _ df Dp
(6.11) Dt =9, D¢’

By theorem 6, the left side of this equation is zero, and by hypo-
thesis g—i # 0; hence

" I _
(6.12) o =o0,

and thus (6. 10 bés) reduces to
(6.13) n=g(eiycay ...y Ck),
which is case b of the theorem to be proved. Q.E.D. Notice that

in steady flow case ¢ is impossible.
Writing (6.11) in terms of the equation of state (6. 10) we obtain

) ondp on _
(6'14> @ d_9+5§_0’
dp . . .
where -£ is to be calculated from the barotropic relation p= p(p)

which holds in the particular motion. Hence

dn
dp % (dp)
6. 2= —- = — —— = - .
( 15) ¢ a’p d_") dp /1, ¢y, cs, (X3} e’
ap

that is, the « speed of sound » ¢ for the inert mixture in irrotational
flow devoid of heat flux is given by the ordinary formula valid for a
homogeneous fluid in the same circumstances.
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The special case of theorem 8 resulting when the fluid is homo-
geneous is important enough to be written out as

Taeorem 9 (Characterization of irrotational and Beltrami flow of
homogencous fluids). — If a homogeneous énviscid tri-variate fluid
be in continuous irrotational flow or Beltrami flow with steady vor-
ticity, and if the flow be devoid of heat flux, then locally either the
Slow enjoys one or both of the following properties :

a. All state variables are constant for each particle, or

b. The flow is isentropic,
or else

c. The flow is instantaneously isobaric, instantaneously isostatic,
or instantaneously barotropic, but not isobaric, isostatic, or baro-
tropic.

The conclusions of theorems 8 and 9 no longer hold in flows when
there is thermal flux, and then indeed it becomes difficult to charac-
terize even irrotational flows in thermodynamic terms. In particular,
the relation (6.13) is no longer satisfied, as is revealed by the follo-
wing generalization of an analysis of Hicks (*¢). 1In a barotropic
flow let ¢* be given by (6.15)s, so that ¢ is the local speed of propa-
gation of discontinuities in the velocity gradient, irrespective of the
thermodynamical properties of the medium (37). Let ¢} be defined
by

. J,
(6.16) C}'E(f)'q, €y, C2y ...y Ck
Then for barotropic flow as an inert mixture the energy equation (6.3)
yields

an\ dp dn Dp .
(017) 2(5), % =(3), 5 =—ava
or
dy 21 Dp .
(6.18) e0 (;}—))p[c‘l—cq]m =—divq.

(%) [1948, 3, § 4]

(*") The proof of this fact given by Hugoniot [1885], [1888] is valid in any motion
of an inviscid fluid such that p = F(p), where the functional form of F may vary
from one particle to another. Cf. [1951, 2].



26 C. TYRUESDELL.

Let s be the field of unit tangents to the stream-lines : s = :)-7- Then
in a steady flow (6.18) becomes

(6.19) [e°—ci]s. gradlogp = Q,

where

—divq

dy

200 ( —
e (dp)p

Now for steady flow Euler’s continuity equation (2.8) may be put
into the form

(6.20) Q

Il

(6.21) — divs = s.(grad log¢ + grad logp).

For steady irrotational or Beltrami flow Euler’s dynamical equation
(3.1).becomes

(6.22) grad%u?:—c‘2 grad loge + £,
whence from (6.21) follows

(6.23) —divs:s.[(l-—g) grad logp —+ -p—fg-]

We may now eliminate s.grad logp betwen (6.19) and (6.23),
obtaining a result which when expressed in terms of the local Mach
number (**) M,

(6.24) M= 6‘% =_1’_50_. ,
[
\/(55) Ty C1y Cay ony Ck
becomes
e Q(1— M)
6.26) c=en [I+ Mze} divs—o—s.f—Q]-

(%®) Only for the case @ = o is this Mach number ;“f the ratio of the flow speed
n
to the speed of sound, which in a barotropic motion is given rather by : The

advantage of this definition of Mach number lies in the fact that ¢, exists in any

motion, and :— can be shown to be a similarity parameter, while a definite speed

i
of propagation for waves bearing discontinuities in the velocity gradient exists only
for barotropic motions. Cf. [1951, 2].
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This relation holds for an inviscid fluid in any steady cortinuous
irrotational or Beltrami flow as an inert mizxture. As observed by
Hicks (??) in his analysis of a special case, it shows that whatever
form the heat flux g may take (so long as Q be finite), at M =1 we
shall have ¢ =¢,, and hence by (6.24) v =c,=¢, so that M=1 is
truly sonic speed even under these rather general circumstances.

7. Consequences of the energy equation in steady flow of fluids
devoids of heat flux. — From (5.7) and (6.2) it s easy to derive
Vazsonyi’s form of the energy equation (%°):

- Dh . . 9,
(7.1) pﬁ‘=W:A—dxvq+v.(f+de)+d—]:-

For inviscid fluids W = o; when there is no heat flux, divq —=o0;

thus if also v.f =0 and % = o the right side vanishes, and we obtain

Tueorem 10. — In an inviscid fluid in continuous motion as an
inert mizture devoid of heat flux, if the extraneous force be zero or
nrormal to the velocity, and if the pressure field be steady, then
both the entropy and total enthalpy of each particle remain constant.
In particular, for steady flow under these conditions, both entropy
and total enthalpy are constant along each stream-line.

In general the value of the total entahalpy 4, differs fromone stream-
line to another. The possibility of uniform total enthalpy is expressed
by the evidenl

Tueorev L. — In an inviscid fluid in continuous motion as an
inert mizture devoid of heat flux, {f the extraneous force be zero or
normal to the velocity, if the pressure field be steady, and if
moreover there exist a certain (possibly moving, possibly steady)
surface of constant total enthalpy which is touched by every particle
at some time, then the flow is a flow of uniform total enthalpy. /In
particular, if in a steady flow under these circumstances there
ezist one surface of constant total enthalpy which is touched by every
stream-line, then the flow is a flow of uniform total cnthalpy.

(¥) Loc. cit.
() [1945, eq. (M")].
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In any case, for steady flow we have k, = const. on each stream-
line; that is,

(1.2) h¢=§v2+h=C,

where the constant C generally has a different value for each stream-
line. This statement is the curcilinear Bernoulli theorem (*!)
(cf. the spatial and superficial Bernoulli theorems in section 2).
For homogeneous fluids it has two important consequences.

First, there exists a definite stagnation enthalpy h, for each
stream-line, a unique value which % necessarily assumes al, any stag-
nation point upon that steam-line. Since p =p (&, n) and 7 is con-
stant along each stream-line, there is a definite value p, of p given by
po= p (ho, 1), the stagnation density, for each stream-line. Simi-
larly there exists a stagnation pressure (**) po=p(po, n) and a
stagndtion temperature 8,=0 (p,, n) for cach stream-line.

Now hA=¢ + IP—D- It is a tacit requirement of thermodynamics that

all substances are assumed to have energy surfaces such that e,
de

;)

e
transformation of the energy surface (**) we may then choose o
measure ¢, p, and 0 in such a way thate > 0, p>0,0>0. From
the hypothesis of continuity of motion it follows that p > o. Hence
h>o0. From (7.2) then follows as a second consequence that there

exists a finite least upper bound v, for the speed, attained (ifat all)
when A —=o0. Thus the Bernoulli equation (7.2) becomes

» and OE%have finite lower bounds; by an affine

(7.3) h+%v"=ho= vi,

N=

(*') From (7.1) it is plain that if f=—pgrad v then in a steady motion
h,~+ v = const. upon each stream line. This more general Bernoulli equation does
not appeur to lend itself to further developments in gas dynamics.

(%) For asteady barotropic flow subject to no extraneous force the existence of
a definite stagnation pressure for each Bernoullian surface is immediate, irrespective
of the presence or absence of heat flux (cf. § 2).

(%) Only affine invariants of the energy surface can have physical (i. e. dimen
sionless) interpretations.
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(7.4) Bk

This ultimate speed is analogue to that which exists in a steady irro-
tational or Beltrami motion (§2), except that now it generally has
different values upon the different stream-lines. In theorems10and
11 the words ultimate speed may be substituted for stagnation
enthalpy in each portion referring to steady flow, and it is in this
form that we shall use these results hence forth.

Now by definition 2 = 4 (n, p). I bothn and o be constant upon
each stream-line, so also is %, and thus by (7.3) so also is the speed ¢.
Thus for a steady irrotational flow satisfying the conditions of
theorem 9 and subject to no extraneous force, each region in
which the flow is not isentropic is a region in which the speed is
constant on each stream-line. Now it was shown by Caldonazzo (%+)
that in any steady continuous circulation-preserving complex-
laminar flow (§2) such that the speed is constant upon each
stream-line, the normal surfaces are minimal surfaces. By
lemma 5 of section 2 follows a fortior: that the equipotential
surfaces are minimal surfaces in any non-isentropic region of a
steady irrolational flow subject to the present assumptions. Hamel
(**) has proved that consequently any steady irrotational motion in
which the speed is constant on each stream-line is locally either a
uniform parallel flow, a simple vortex, or a helicoidal flow ob-
tained by superposing upon an irrotational vortex a uniform parallel
flow in a direction pependicular to its plane. This class of flows we
may call Hamel flows. Combining the results of this analysis with
theorems 9, 10, and 5 we obtain

Tueorem 12 (Characterization of steady irrotational flows). —
In a steady continuous irrotational flow of a homogeneous inviscid
tri-variate fluid devoid of heat flux and subject to no extraneous
force, one or both of the following conditions holds locally :

(%) [1924, § 6. Cf. [1947, 4]. A shorter proof may be feund in [1948, 2, § 3],
(1949, 5, chap. V, sect. B.

() L1937]

MEMORIAL DES SG. MATH. — Ne 119. 3
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a. The flow is a Hamel flow, upon each stream-line of which
all the state variables and the speed are constant.

b. The flow is isentropic and all the stagnation quantities ¢, A,
Pos pos 99 are uniform.

That a Hamel flow need not be isentropic is illustrated by the evi-
dent case of the irrotational vortex, in which the entropy may be
arbitrarily distributed from one circular stream-line to another, and
some one stagnation quantity such as A, may also be assigned arbi-
trarily.

Gilbarg (#¢) has taken up the difficult question of characterizing
irrotational flows in the large, and has succeded in proving that sub-

ject to certain specified exceptions a steady plane or rotationally-
symmetric flow of a perfect gas under the conditions of theorem 12if
not an isentropic flow in the large is a simple vortex or a parallel flow
in the large.

Contrasting theorem 12 and theorem 4, we may say broadly that
under the circumstances considered an irrotational flow is isentropic
(the Hamel flows constituling a rather degenerate exception), but an
isentropic flow will not generally be an irrotational or Beltrami flow
unless it be also a flow of uniform total enthalpy. In fact we have a
partial converse to theorem 12 in

Taeorem 13. — Let a steady continuous flow of a homogeneous
inviscid tri-variate fluid devoid of heat flux and subject to no extra-
neous force satisfy the following conditions :

a. Every stream-line touches a certain surface of constant entropy,
and

b. Every stream-line touches a certain suface of constant ultimate
speed,
then the flow is anisentropic flow in which all stagnation quantities
are uniform, and further it is either an irrotational or a Beltrami
flow. In particular, any complex-laminar flow satisfying the
conditions of this theorem is irrotational.

Proof. — By hypothesfs a and theorem 7 follows the isentropic
property. By hypothesis b and theorem 11 follows the uniformity

(%) (1949, 21
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of h,. By the tri-variate character of the fluid, all stagnation quan-
tities then are uniform. From theorem 4 follows W < v =o.

In particular, the foregoing theorem shows that a steady flow satis-
fying the requirements of the theorem and of such a nature that it
may be considered as originating in a reservoir of uniform entropy
and stagnation enthalpy is always an irrotational or Beltrami flow (47)
at least up the the first shock front.

8. The Crocco vector, and generalized Beltrami flows. -— In the
foregoing section a definite ultimate speed v¢,, constant upon each
stream-line, was shown to exist in certain types of flow of inviscid
fluids. 1In this section we consider independently the consequences
of the existence of this quantity, developing certain preliminary
results which will be put to important applications in section 10.

In reality our results here are purely kinematical : v, need not

(47) For barotropic flows of inviscid fluids subject to conservative extraneous
force Lamb’s superficial Bernoulli theorem (lemma 9 of § 2) holds. Lecornu [1919]
attributed to Beltrami the remark that if

103+f@ -+ v = const.
2 P

over a three-dimensional region of steady barotropic flow, the motion is necessarily
an irrotational or Beltrami motion in that region. While theorem 13 is valid also
for barotropic flows, it is not really relevant, and should be replaced by the follow-
ing sharper statement : in a steady continuous barotropic flow of an inviscid fluid
subject to no extrameous force, if it be possible to find a curve along which both
density and speed are constant and which touches every Bernoullian surface at least
once, then the flow is an irrotational or a Beltrami flow. Thus in particular, as
noted by Lecorau, all flows of this class which originate in a quiet reservoir at uni-
form pressure are necessarily irrotational or Beltrami flows. Now the Lagrange-
Cauchy velocity-potential theorem states that under these same circumstances a
finite material portion of fluid once in irrotational flow remains ever in irrotational
flow. Consequently, a flow of this type starting from rest in a finite vessel remains
always irrotational. Not so, however, with a flow such that lim¢ =0, limw=o0

. w .
at' o, for by lemma 3 of section 2 we have o= const. on each stream-line, so
that for these flows it is quite possible that the particles may start from rest in a
flow irrotational at o yet acquire rotation, the.only condition being that lim -;% shall

exist and have a value other than zero. Thus a flow from a quiet infinite reservoir
at uniform pressure may well be a Beltrami flow rather than an irrotational flow.
This point was noted by Lecornu, though his discussion was not altogether
convincing.
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actually be an uliimate speed, but may be merely any quantity
satisfying the conditions

I. v.grad vy=o0;

(1.8)

I. fwXxv=o0 and — =0, then vy= const.

The former is a statement that ¢, is constant on each stream-line.
The latter is required for the proof of lemma 2 only; that indeed a
uniform ultimate speed ¢, existsin any steady irrotational or Beltrami
flow of an inviscid fluid subject to no extraneous force follows from
theorem 2. Our results here are put in terms of an ultimate speed
rather than simply an arbitrary furiction satisfying (8. 1) only in view"
of their applications in section 10.

It is convenient to introduce the Crocco (*#) vector v,

v

(8.2) Vo= o
The Crocco vector is thus a dimensionless veclor tangent Lo the
stream-line at the point in question and of magnitude never exceed-
ing 1. Let w¢ be the curl of the Crocco (#¢) vector :

(8.3) we== curl v,
Then
(8.4) w = curl v, ve = voW¢ + grad vo X ve.

From (8.2) and (8. 3) follows
(8.5) VC.We=9¢3}V.W,

and hence by lemma 1 of section 2 we obtain

Lewma 1. — The Crocco vectar of a continuous motion is complez-
laminar iof and only if the flow be complex-laminar.

Note. — The conditions (8.1) are not used in the proof of this
result, which holds for any continuously differentiable scalar o,.

(**) Crocco [1936] considered only the case when ¢, is uniform. Hicks 1949, 3]
analyses the properties of a general class of dimensionless vector variables of which
the Crocco vector is one. A still more general (and purely kinematical) scheme is
employed in [1g51, 1].
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The researches of Neményi and Prim (*?) have drawn attention to
flows such that

(8.6) Ve X We= o,

the possibility W¢= 0 not being excluded. These flows they call
generalized Beltrami flows; their dynamical significance will
appear in theorem 20 below. The remainder of this section
presents some of Neményi and Prim’s results in a somewhat broader
form (39),

We first establish some connections between generalized Beltrami
flows and irrotational or ordinary Beltrami flows. Now by Condi-
tion I of (8.1), for a steady irrotational or Beltrami flow the ultimate
speed ¢, is uniform grad ¢v,=o0. Hence for these flows (8.4) yields
W =0, W¢, so that if W=o0 then W;=o0, while if W20 but
VX W =0 then W¢#o0 but Vvix W;=0. These results are
expressed in

Leuma 2. — In a steady irrotational flow the Crocco vector is
laminar :
(8.7) Wc¢=o,

while a steady Beltrami flow is also a generalized Beltrami Slow
whose Crocco vector is not laminar :

(8.8) Ve X We=o, W o,

The converse of lemma 2 does not hold, however, for by (8.4),
(8.2), and (8.1) follows
(8.9) VX W = ¢} Ve X W¢+ v2grad log v,

and hence

Lemma 3. — In a flow possessed of a definite ultimate speed,
constant on each stream-line, a generalized Beltrami flow is a
Beltrami or irrotational flow if and only if the ultimate speed be
uniform. Similarly, a flow whose Crocco vector is laminar (5*)

(%) [1948, 1, § 5], [ro4g, 4], [1949, 5]

(%) [1949, 4, th. T and § 78].

(*') Hicks [1948, 3, § 5] discusses flow of this type for a perfect gas in which there
is thermal conduction according to Fourier's law.
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is always itself a complez-laminar flow, and is furthermore an
irrotational flow if and only if the ultimate speed be constant on
each of the normal surfaces.

The result of this lemma can be' generalized as follows. If
V¢ >X W¢=0, the two summands in (8.4), are perpendicular, so
that

(8.10) w2= v} wk-+ (gradlogvex v).
Simultaneously (8.9) becomes

(8.11) v X w = v2grad log vo;

hence grad log ¢, is perpendicular to V, so that (8.10) becomes

(8.12) w2= ¢3wl+ | gradlog v [2e2.

The angle y between the stream-line and the vortex-line at each point
is given by

ow v\oiwg+ | grad log vo|2e?

(8.13) O = W] = vt grad log ¢ |

Hence follows an elegant result of Neményi and Prim :

Lemma 4. — If a rotational flow possessed of a definite ultimate
speed, constant on each stream-line, be a generalized Beltrami
flow, then the angle y between the stream-line and the vortez-line
is given by

(8.14) tgy = :;%[;radlogvol.

In particular, at a stagnation point where w¢>< o the stream-line and
vortex-line are tangent.
From (8.11) follows immediately

Lemma B. — If a flow possessed of a definite ultimate speed,
constant on each stream-line, be a generalized Beltrami flow
which is neither an irrotational nor a Beltrami flow (i. e.,
WX Ve=0, W X V£ 0), then the surfaces of constant ultimate
speed are Bernoullian surfaces (cf. § 2).
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In a steady generalized Beltrami flow it follows from (8.21) and
Lagrange’s formula (2. 15) that the acceleration a is given by

a =—v2gradlogvo-+ grad % v,
(8.15)

= é vigrad v,
and hence follows

Lemva 6. — If a flow possessed of a definite ultimate speed,
constant on each stream-line, be a steady generalized Beltrami
Slow, then the acceleration is complex-laminar, its normal

surfaces being the surfaces of constant magnitude of the Crocco
vector.

This lemma casts a certain expectation of the dynamical simplicity
of a generalized Beltrami flow. The defining characteristic of the
theory of barotropic or isochoric flows of perfect fluids subject to
conservative extraneous force, whence arise Kelvin’s circulation
theorem (§ 3), the Helmholtz and Bernoulli theorems (lemma 9 of
§ 2), and all the main results of classical hydrodynamics, is that the
acceleration is laminar (lemma 4 of § 2). The case of complex-
laminar acceleration may be expected therefore to be next in order of
simplicity, and to be distinguished by special dynamical properties.
That such is indeed the fact for a certain type of gas will appear in
section 10.

We may complete the present kinematicel analysis of generalized
Beltrami flows by characterizing the special case when the circulation-
preserving property holds. From (8.15) we have

(8.16) curla = ggrad v} < grad v,
and hence by lemma 4 of section 2 follows

Levma 7. — If a flow possessed of a definite ultimate speed,
constant on each stream-line, be a steady generalized Beltrami
flow, then it is circulation-preserving if and only if one or more
of the following three conditions be satisfied locally :
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a. The ultimate speed is uniform (and hence by lemma 3 the
Slow is actually an irrotational or Beltram: Slow) ;

b. The magnitude of the Crocco vector is uniform; or

¢. Bernoullian surfaces exist and the acceleration is normal to
them.

The possibilities @ and b follow at once from (8. 16). The third
possibility is that the surfaces v, = const. coincide with the surfaces
v¢==const.; by lemma 6, the acceleration is normal to the former,
while by lemma 5 these are Bernoullian surfaces, so that the condi-
tion ¢ follows.

9. Prim gases (). — For steady flow of an inviscid fluid Euler’s
equations of continuity (2.8) and motion (3. 1) become

(9.1) divpv =o,

(9.2) v.gradv+§gradp=f.
By inspection of this system we conclude the invariance theorem :

Treorem 14. — Let p, p, Vv be the pressure, density, and velocity
Jields of a steady continuous flow of an enviscid fluid subject to
the extraneous force f. Then tf m be any non-vanishing diffe-
rentiable function which is constant upon each stream-line of this

flow (v.gradm=o), the velocity field % and the density field

m?p yield another flow having the same stream-lines and the same
f

m2’

pressure p, subject to the extraneous force field

In general the new flows so obtained will be flows of a different
fluid. Starting, for example, with a flow of a homogeneous incom-
pressible fluid of density po, the invariance theorem yields similar
flows of an inhomogeneous incompressible fluid of density m?2p,,
where m may be assigned arbitrarily on each stream-line; indeed, the
only usefulness of the invariance theorem for incompressible fluids is
to show conversely that given a flow of aninhomogeneous incompres-

(°*) The analysis in this and the succeeding section is a modification of that given
by Prim [1949, 1].
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sible fluid, there exists a flow of a homogeneous incompressible fluid
with the same stream-lines and the same pressure field.

In one important special case, however, the class of invariant flows
are possible flows for the same fluid. Plainly it is necessary to this
end that some state variable be constant on each stream-line. When
there is no heat flux, it follows from theorem 6 that the entropy = is
such a variable, and consequenlly we may seek to adjust the entropy
of the flow whose density is m?p in such a way that it too is an admis-
sible flow for the original fluid. That is, if an equation of state be

(9.3) o= f(p, ),
then we shall wish to find an %' such that
(9.4) m2p =f(p, n');
hence

o _S(p W)
(9.5) m? = 7o)

Now m?, being simply any function constant on the stream-lines, is
independent of p, and hence can be a function of v’ only, say & (').
From (9.5) it follows then that f(p, v') = f(p, n) &k (x').

Conversely, for an equation of state of this form, viz.
(9.6) p=P(P)H(n), H(n)=o,

any similar flow yielded by the invariance theorem is a possible flow
of the same fluid. The fluids characterized by this type of invariance,
and hence satisfying (9.6), we may call Prim gases. Since a Prim
gas is a homogeneous tri-variate fluid, the majority of our previously
deduced theorems remain valid a fortiori for Prim gases. Note that
the requirement H'5£ o excludes homogeneous incompressible and
piezotropic fluids (**). Expressing the result of the foregoing analysis
we (**) obtain the substitution principle :

(%3) A number of the theorems in the sequel are deduced without using the requi-
rement H'3 o, and hence remain valid in classical hydrodynamics also, where,
however, much stronger theorems are available, so we shall not tarry to point out
these special cases. )

(%) That this theorem holds for perfect gases (sec below) is indicated by Munk
and Prim [1947, 1]
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Taxorsm 18. — Let p, p, v be the pressure, density, andvelocity
Jields of a steady continuous flow of a homogeneous irnviscid fluid
devoid of heat flux and subject to the extraneous force f. Then
if m be any non-vanishing differentiable function which is cons-
tant upon each stream-line of this flow (v.grad m = o), thevelo-

city ﬁeld—’% and the density field m?p yield another flow of this
same fluid having the same stream-lines and the same pressure

field p, subject to the extraneous force feld 5s if and only if the
Sluid be a Prim gas.

Now in general for any homogeneous fluid it is easy to show from

(4.17) and (4.9) that

-(2);

Hence from (9.6) follows (%)

(9.8) h= S+ F ),
where I (p) = prLEEE-)’ or
(9.9) P(P)= 705y

Thus the Bernoulli equation (7.3), valid when the extraneous force
vanishes, assumes the form

! n(p) __II(po)
(3-10) 27T H(m) H ()
or simply
(9'11) é"’-’— nl_'l——(p;])) =_0 = HT(p-.:))' = -;-v%,

where ho = ho+ F (1) is constant upon each stream-line. In'terms
of the Crocco vector (8.2) the Bernoulli equation becomes

o(p)

(9.!2) 1——.vé= [[(po).

(%) Notice that for homogeneous incompressible or piezotropic fluids the enthalpy
is of the form A = (p)+H(n), so that the Prim gas is their multiplicative
analogue.



VORTICITY AND THE THERMODYNAMIC STATE. 39

Comparison of this result with (7.4) reveals a characterizing property
of Prim gases : a tri-variate fluid is a Prim gas if and only if the
Crocco speed v; in any steady flow devoid of heat fluzx and subject
to no extraneous force be a function of pressure and of stagnation

pressure only. For the local Mach number (6.24) we have by
(9.6) and (9.11)

(9-13) M= = P (p) H(n) =2 P'(p) [ (pa) — H(p)].
(),

Thus for a Prim gas in these circumstances the Mach number is
a function only of the local pressure and of the stagnation pres-
sure for the stream-line, and consequently is not changed in any
substitution which leaves the pressure field invariant; hence we have

Tueorem 16. — Under the conditions of theorem 18 if there be
no extraneous force then all substitute flows have the same Mach
number field as the original flow.

As an immediate corollary of the substitution principle follows :

Taeorem 17. — Corresponding to any steady flow of a Prim gas
devoid of heat flux and subject to no extraneous force there exists
another flow of the same Prim gas having the same stream-lines, the
same pressure field, and the same Mach number field, but which is
furthermore a flow of uniform ultimate speed.

Notice that in view of the Rankine-Hugoniot conditions the ultimate .
speed is continuous across a shock front, so that the validity of
theorem 17 is unaffected by the presence of shocks. As a second
corollary of the substitution principle we have

Tueorem 18. — Corresponding to any steady continuous flow of
a Prim gas devoid of heat flux and subject to no extraneous force.
there exists another flow of the same Prim gas, having the same
stream-lines, the same pressure field, and the same Mach number
field, but which is furthermore an isentropic flow.

This theorem cannot be fully extended to flows with shocks, since
thgse commonly are the bearers of discontinuities in the entropy.
Although an isentropic flow with the same stream-lines and pressure
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field can always be found, this flow will generally fail to satisfy the
Rankine-Hugoniot conditions at the shock fronts; in other words, if
the similar flow is to satisfy the Rankine-Hugoniot conditions, while
indeed it can be made isentropic in any one region bounded by
shocks, in general it cannot be isentropic outside this region.

A Prim gas for which

Y Ti—"e

(9.14) ﬂ(p)=plT, H(n)=Ce % ,

where v, ¢,, G, and n, are constants, is called a perfect or ideal gas
with constant specific heats. The constant ¢, may be shown to be
the specific heal at constant pressure, while the specific heat at

constant density c, is given by c‘,:%"- For a perfect gas (9.6)

becomes
1 1 _ ="
(9.15) p= W_—[—)]ﬂe »,
and hence
M—n,)

E=h——'§- = C'pr—te ¢

so that by (4.5); we have e =¢,8. Putting R =c,—c., we then

obtaing = Rp, and hence

(9.16) h=cpb=—L_P,

(9.17) %v?+cp0=cpeo= T Po_ L,

10. Vorticity and the thermodynamic state in the steady flow of
a Prim gas devoid of heat flux and subject to no extraneous force. —
The substitution principle (theorem 15) suggests that the introduction
of a modified velocity vector which is invariant under the group of

substitutions v <> %’ p=<>p, p<>m?2p, where m is.any differentiable

function constant upon each stream-line, may serve to eliminate the
density and entropy from the equations governing the dynamics of -
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Prim gases. The most convenient choice for this purpose is the
Crocco wvector Vg given by (8.2). Now for a Prim gas
pVv=P(p)H(n)v, V.. Since there is no heat flux, by theorem 9 we

have v.grad» = o and v.grad ¢, = o; hence the continuity equa-
tion (9.1) becomes

(10.1) div[P (p)vc] =6,

Similarly, by using (9:12) we may put the dynamical equation (9.2)
into the form

(10.2) ve.gradve+ - (1—o})grad log 1 (p) = o.

These basic equations, which for the case of a perfect gas were first
given by Hicks, Guenther, and Wasserman (%), present in a partic-
ularly lucid form the whole dynamics of the steady motion of Prim
gases when there is neither extraneous force nor heat flux. They
conslitute a determinate system for the pressure and the Crocco
vector, whence theorem 17 is again apparent. By putting (9.11)
into (10.2) and using the identity

b.gradb =curlb xb + gra'dé b?

we obtain the central theorem of Hicks, Guenther, and
Wasserman (°7) :

Tueorem 19. — In a steady continuous flow of a Prim gas devoid
of heat flux and subject to no extrancous force we have

(10.3) Ve X We= %(x——vé)gradlog[l(po).

This theorem shows that a knowledge of the Crocco vector at once
yields the distribution of the stagnalion pressure p, upon the stream-
lines and hence by the Bernoulli theorem (9.12) the local pressure
may be calculated. By formulating a condition of integrability
for (10.3) we see that a vector Sield v may serve as the Crocco

(%) [947, 2, €q. (4.4), (4.2)). For a perfect gas of uniform stagnation enthalpy
(10.1) had been given earlier by Crocco [1936, eq. (6)].
(*") The case of this theorém valid for a perfect gas is given in 11947, 2, eq. (4.2)].
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vector of a steady flow of a Prim gas devoid of heat flux and
subiect to no extraneous force if and only if

(10.4) curl(m.f):_m

1— v

in particular, any Beltrami field yields an infinite number of
dynamically possible flows.

By comparing (10.3) with (8.6) we obtain :

Tueorem 20. — A steady continuous flow of a Prim gas devoid of
heat flux and subject to no extraneous force is a flow of uniform
stagnation pressure if and only if it be a generalized Beltrami flow.

Any flow which may be regarded as originating from a container
at uniform pressure must therefore be a generalized Beltrami flow.
The  seven kinematical lemmas of section 8 on generalized
Beltrami flows now assume a definite physical interest.

By applying theorem 20 to a complex-laminar flow and employing
lemma 1 of section 8 we obtain.

Taeorem 2. — A steady continuous complex-laminar flow of
a Prim gas devoid of heat flux and subject to no extraneous force s
a flow of uniform stagnation pressure if and only if its Crocco
vector be laminar (W¢=o0).

From theorem 20, (10.1), and lemma 2 of section 2 follows at
once the elegant pressure theorem of Neményi and Prim (%3%) :

Taeorem 22. — In a steady continuous flow of a Prim gas devoid
of heat flux and subject to no extraneous force, {f the slagnation
pressure be uniform then

wc _
(10.5) Flpve = const.

upon each stream-line; equivalently

== const.

wc
(10.6) P(p) yI(po)—0(p)

(%8) A special case is given in [1949, 4, th. 6].
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The formula (10.6) giving the Crocco vorl.icity magnitude as an
explicit function of pressure has a counterpart in the case of a com-
plex-laminar flow, as the following analysis demonstrates. By vec-
torial transformations it is easy to shows that

(10 7) curl [M] =vC.grad
oe — g
we . .
— I_v,,.g'radvc-i— leVc—Vc dxvl—_-a%.

Hence by (10.1) and (10.4) follows

1 D w¢ Wc
(10.8) " lﬁ[P(p)(l—vf-)]= P(P)(l_vé).gradvc

ve W¢
P(p)dw = .

Let the dot product of this equation byW;)v(vl;—)
the case of a complez-laminar flow it follows by application of
lemma 1 of section 8 that the resulting expression becomes

1 D wc 2 we we
10.9) % E[P(p)(x—vé)] = P — 0 BV B ey

be formed; in

Let z,, be a co-ordinate along the vortex-line, and let z, and z, be
any other co-ordinates such that a triply orthogonal system is
obtained :

(10.10) dst= h?dzl,+ h} dz} <+ h3 dx}.

Then (10.9) expressed in this system becomes

5(3‘1’>
1 D we =
(10.11) % Dt 8 P (1 —v8) ~ baw

L]

where ¢, is the component of vin the direction of the vortex-line,
and the symbol — denotes the physical component of the intrinsic

(covariant) denvatlve in the direction of the vortex-line. Thus

v
of
D we - I ( 00) ' oh [} oh
(10.12) = ;1o gP(p)(x—v“) k" Ome ' Rhhive Jm T Thyos 0z
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Sinee the flow is complex-laminar, ¢ =o0. Since

(10.13) n=h ]—)—ﬂ) ve = hqo %‘%ﬂ., O = thw

o]
D¢ ?

T

(10.12) assumes the form

D we
(10.14) m‘°g[m]=°

Hence the quantity in brackets is constant on each stream-line.

By (9.12) and (9.9) we thus oblain the generalized Crocco pres-
sure theorem (®°) :

Tueorem 23. — In a steady continuous complex-laminar flow of
a Prim gas devoid of heat flux and subject to no extraneous force.
let the stream-surfaces x, = const. and z, + dz, = const. normal
to the vortex-lines be distant hdz,, from one another, i.e. let h be
defined by the element of arc-length

(10.15) ds?= h*dz},+...,

where s is a co-ordinate along the vortex-line. Then

(10.16) v_‘;_:_; dlogll(p) = const.

dp

upon each stream-line.

Note that =1 in a plane flow, 2 =r in a rotationally-symetric

flow, and @-%p) ol p~! for a perfect gas (°°).

Returning to the analysis of rotational Prim gas flows in general, by
combining theorem 4 and theorem 19 with (8.9) we obtain

(%) This result is derived as a special case of a general thedrem of pure kine-
matics in [1951, 1].

(*°) These special cases were first given in [1949, 5, eq. (65), (194)] (for a Prim gas)
and in (1948, 4] (for a perfect gas). The original theorems of Crocco [1936] are
deduced subject to the restrittive assumption ¢,= const., whose necessity for
Crocco’s formulation was noticed later by Emmons [1944, App. I] and Vazsonyi

[1945, § 8, 10]. Derivations of the original Crocco theorems are given by Tollmien
[1942] and Oswatitsch [1943].
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Tueorem 24. — In a steady continuous flow of a Prim gas devoid
of heat flux and subject to no extraneous force, we have
(10.17)  ho(1— v}) [grad logh— grad logI( po)] = 0 gradn.

Finally, we eliminate v¢ > W, between (10.3) and (8.9),
obtaining

Tarorem 25. — In a steady continuous flow of a Prim gas devoid
of heat flux and subject to no extraneous force, we have

(10.18) vxw= ; ¢§[(1— o2) grad logIl( po) + v grad loge} ];
hence

A. the relation

(10.19) VX W= év’ grad logv}

holds if and only if the stagnation pressure be uniform, while

B. the relation

(10.20) v><w=§v§(1—v§)gradlogl](po)

holds if and only if the ullimate speed be uniform. Thus in a
Slow of uniform slagnation pressure which is neither an irrota-
tional nor a Beltrami flow, Bernoullian surfaces exist and are
surfaces of constant ultimate speed; while in a flow of uniform ulti-
mate speed which is neither an irrotational nor a Beltram: flow,
Bernoullian surfaces exist and are surfaces of conslant stagnation
. pressure. Finally, in order that the flow be either an irrotational

or a Beltrami flow it is necessary and sufficient that
(10.21) (1— v¢) grad logN( po) =— vZ grad log 3.

In the special case of a perfect gas, by (9.17) we may put (10.19)
into the form

(10.22) v X W = ¢, (00— 0) grad log X,
= (1— ei) grad A,
[

a result given by Vazsonyi (¢4).

(¢1) (1943, eq. (1.5), (1.5")}

MEMORIAL DES SC. MATH. — Ne 119.
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Suppose now tfie stagnation pressure be uniform and all the other
conditions of theorem 28 be satisfied, so that part A of that theorem
follows. By theorem 18 we may always find a substitute flow in
which ¢, is constant. This substitute flow has the same pressure
field, and thus a fortiori will again be a flow of uniform stagnation
pressure, so that again (10.19) holds, now yielding Vv ><X W =o.
Thus we have

Tueorem 26. — Given a steady continuous flow of a Prim gas
devoid of heat flux and subject to no extraneous force, if the stagna-
tion pressure be uniform, then there exists another possible flow of
the same Prim gas satisfying the above conditions, having the same
stream-lines, the same pressure field, and the same local Mach
number field, but which is moreover either a Beltrami flow or an
irrotational flow. [In particular, if the original flow be complex-
laminar, the substitute flow is always irrotational.

Notice that if there be shocks in'the flow then in general only one
region bounded by shocks can be a region of uniform stagnation
presure, since the stagnation pressure is not continuous across a
shock, and hence the conditions of the foregoing theorem in general
will be satisfied only in this one region.
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INDEX OF DEFINITIONS.

(References are to equation numbers, section numbers, or footnote numbers).

Acceleration-potential A, (2.18),

Adiabatic, (39). i

Baroclinic, 3.

Barotropic, (3.10).

Barotropic, instantaneously, (3.7).

Bevtrami field, (2.4).

BerTraMI flow, generalized, (8.6).

BerTraMI motion, (2.13).

BernoutrLi theorem, curvilinear, (7.2).

BernNourr: theorem, spatial, (2.26),
(8.12).

BernouLLI theorem, superficial, (2.29).

BernNourLian surfaces, 2.

Circulation-preserving, 2.

Complex-laminar field, (2.2).

Complex-laminar motion, (2.12).

Compressible fluid, 4.

Concentration ¢;, 4.

Conservative force, (3.2).

Continuous flow, 2.

Crocco vector V¢, (8.2).

Density, stagnation gg, 7.

Energy, specific internal ¢, 4.

Energy surface, 4.

Enthalpy &, (&.19).

Enthalpy, stagnation hgy, 7.

Enthalpy, total k¢, (5.9).

Entropy, 4.

Entropy, specific 1, 4.

Equation of state, (&.1), (4.2).

Extraneous force f, 3.

Fluid, inviscid, (3.1).

Fluid, perfect, (3.1).

Force, conservative, (3.2).

Force, extraneous f, 3.

Gas, ideal, (9.14).

Gas, perfect, (9.14).

Gas, Prim, (9.6).

Generalized BeLTram1 flow, (8.6).
Hamer flow, 7.

Heat flux q, (6.1).
Homogeneous fluid, (4.3).

Ideal gas, (9.14).
Incompressible fluid, (&.4).

Inert mixture, (4.15).
Instantaneously barotropic, (3.7).
Instantaneously isentropic, (5.5).
Instantaneously isobaric, (3.5).
Instantaneously isostatic, (5.6).
Instantaneously isothermal, (5.4).
Internal energy, 4.

Internal energy, specific €, 4.
Inviscid fluid, (3.1).
Irrotational, (2.10).

Isentropic, (5.7).

Isentropic, instantaneously (5.5).
Isobaric, (3.8).

Isobaric, instantaneously, (3.5).
Isochoric, (*).

Isestatic, (3.9).

Isostatic, instantaneously, (3.6).
Isothermal, (5.6).

Isothermal, instantaneously, (5.4).
Laminar field, (2.1).

MacH number M, (6.24).
Mixture, inert, (&.15).

Minimal surfaces, 7.

Perfect fluid, (3.1).

Perfect gas, (9.14).

Piezotropic fluid, (4.7).
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Potential, acceleration A, (2.18).
Potential, velocity @, (2.11).
Potential of the substance i , (&.5).
Pressure p, 7.

Pressure, stagnation Pos 3, 7.
Pressure, thermodynamic =, (&.5).
Prim gas, (9.6).

Sound, speed of ¢, (6.15).

Specific heats, 9.

Speed of sound ¢, (6.15).

Stagnation density p,, 7.

Stagnation enthalpy hy, 7.
Stagnation pressure p,, 3, 7.
Stagnation temperature 8,, 7.

State, equation of (4.1), (&.2).

Steady, 2.

Steady vorticity, (2.20).
Stress, (6.1).

Surfaces, minimal, 7.
Temperature 0, (&.5).

Temperature, stagnation 6, 7.

Time ¢, 2.

Total enthalpy h¢, (5.9).
Tri-variate fluid, 4.
Ultimate speed ¢, 3, 7.
Velocity v, 1.
Velocity-potential @, (2.11).
Vorticity w, (1.1), {2.9).
Vorticity, steady, (2.20).
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v¢,

Ww¢,
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INDEX OF SYMBOLS OCCURRING IN MORE THAN ONE SECTION.

(The number given unless otherwise noted is that of the equation
1 which the symbol first occurs).

acceleration, (2.15).

concentration of the substance ¢,
(&.2).

specific heat at constant pres-
sure, (9.14).

extraneous force, (3.1).

enthalpy, (4.19).

stagnation enthalpy, (7.3).

total enthalpy, (5.9).

pressure, (3.1).

stagnation pressure, (3.14), (§ 7).

heat flux vector, (6.1).

time, (2.15).

ultimate speed, (3.2).

velocity, (1.1).

Crocco vector, (8.2).

vorticity, (1.1), (2.9).

(8.3).

-

goEEYo>

acceleration-potential, (2.18).
material derivative, (2.16).

(9.6).
Macu number, (6.24).
(9.6).
(2.21).
stress
(6.2).
specific internal energy, (4.2).
specific entropy, (4.2).
temperature, (&.5).
stagnation temperature, § 7.
density, (2.8).
stagnation density, § 7.
(3.2).
velocity potential, (2.11).
rate of deformation, (6.1).
(9.8).

in excess of pressure,
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