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FUNCTIONAL TOPOLOGY 

AND 

ABSTRACT VARIATIONAL THEORY 

B y Marston MORSE, 

The Institute for Advanced Study, Princeton, New Jersey. 

INTRODUCTION 

Abstract basis of the theory. — We are concernée! with the exis
tence of equilibria in the large, stable or unstable. The éléments 
may be points, curves, or gênerai configurations. Thèse éléments 
are regarded as points of an abstract metric space M on which there 
is given a real function F such that o ^ F < i . The theory is based on 
two hypothèses, termed respectively the F-accessibility ofMand the 
uppev-reducibility of F . The critical points of F are topologically 
defined and our two hypothèses lead lo the existence of critical points 
in a way similar to that in which the compaetness of M and lower 
semi-continuity of F lead to the absolute minimum of F . In the 
minimum theory compaetness and lower semi-continuity imply that 
any o-dimensional homology class contains a cycle at a minimum 
level; this is a way of saying that F assumes an absolute minimum on 
each connected subset of M. Let H be a Xr-dimensional homology 
class. The F-accessibility of M implies that the numbers b such that 
the subset F < 6 of M contains a A-cycle of H hâve a minimum s 
(termed a cycle limit). The upper-reducibility of F then implies that 
this cycle limita is assumed by F at some topological critical point. 
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W e note however a vital différence between the minimum theory and 
the critical point theory. 

In the minimum theory it is sufficient to show that the great-
est lower bound of F is assumed at some point by F while in the 
gênerai theory one must show that the cycle limit is not only 
assumed by F at some point but is assumed at some critical point 
o/F. 

The compaetness of M and the lower semi-continuity of F imply 
the F-accessibility of M but are by no means implied by F-accessibil
ity. The cycles used are Vietoris cycles, otherwise the F-accessibil
ity of M would not be implied by compaetness and lower semi-
continuity. Upper-reducibilil) and lower semi-continuity are 
independent properties. A continuous function possesses both of 
them; but functions exisl which are lower semi-continuous without 
being upper-reducible, and conversely. The functionals of an ordi-
nary positive definite variational problemare upper-reducible. Lower 
semi-continuity is quite inadéquate for the gênerai critical point 
theory, and must be replaced by upper-reducibility or some related 
property. 

Abstract critical point theory can be applied to the theory of func
tions of a fînite number of variables, for example to harmonie 
functions of two or three variables (') (Rijang [1, 2, 3]), to the study 
of equilibria of floating bodies, to countless géométrie problems such 
as determining normals from a point to a manifold (M [2] , p, 4°3), 
to problems in celestial mechanics (Birkhoff [1, 2]). The most extend-
ed applications up to the présent time hâve been in.the calculus of 
variations in the large (M [5, 2]). In this memoir we apply our theory 
to an abstractly formulated problem in the calculus of variations in 
the large. W e are concerned with « homotopic » extremals which 
join two fixed points. 

In this application we start with an abstract metric space 2 with a 
symmetric distance function. On 2 we suppose there is given a 
secondary metric with a distance function in gênerai not symmetric. 
(Cf. Menger [4].) In terms of this secondary metric a length J is 

(1) Références will be found at the end of the memoir. Références to Morse will 
be indicated by the letter M. 
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defined. Restricting ourselves to curves r\ which join two fïxed points 
a and b we set 

J ( î l ) 
F(7J) = 

• J ( T , ) ' 

when J(rj) is finile. Otherwise we set F (Y?) = i. Two curves joining 
a to b are assigned the usual Fréchet distance. The space M hère 
becomes the space of curves r\ joining a to 6, with two curves with a 
null distance regarded as the same point of M. 

There are two principal hypothèses on this function F and space M. 
The first is that the set of points on 2 at a bounded secondary distance 
from any fixed point of 2 is compact. This is called finite i-com-
pactness of 2 . The second is that 2 is locally J-convex in the sensé 
that points of 2 which are sufficiently near together can be joined by 
a unique minimizing arc (moreprecisely defined in § 14). Th^se two 
hypothèses insure that the space M is F-accessible and that F is 
upper-reducible. The gênerai theory is thus applicable to the varia-
tional problem. 

The theory of critical points of functions goes back at least to 
Kronecker [1 ] . Poincaré [1] recognized the relation of such a theory 
to problems in differential équations in the large. The work of 
Hilbert and Tonelli [1] on the absolute minimum and the concepts of 
Fréchet [1] and Menger [1, 2, 3, 4] furnish a partial background for 
the abstract theory. Luslernik [1] and Schnirelmann added interest-
ing ideas. The contributions and applications of Birkhoff [1, 2] 
hâve been most significant. 

Our bibliography is not meant to be complète but merely to list 
récent papers used by the author or papers which may be of parti-
cular historical intcrest to the reader. In § 4 and 5 we shall hâve 
occasion to refer to hitherto unpubHshed proofs of an important 
theorem and a lemma by R. Baer and E. Cech respectively. A more 
extended bibliography (1) is given in the author's Colloquium 
Lectures on « The calculus of variations in the large » (M [5]) . 

(1) The following book will appear shortly: Seifert und Threlfall, Variations-
rechnung im Grossen (Théorie von Marston Morse. Teubner, Berlin). This book 
is highly recommended. The authors begin with two axioms similar to our accès 
sibility hypothesis, but referring to singular cycles. Thèse axioms are satisfied 
when the critical values cluster at most at infinity and when the critical points 
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PART 1. 

CRITICAL L1MITS. 

1. The space M and its topology. — Let M be a space of éléments 
p, q, r, . . . in which a number pq is assigned to each ordered pair 
of points such that 

I. pp = o, II. pq ^ o if p y£ q, III. pr^pq -+- rq. 

Upon setting r =• p in III we see that pq>o and upon setting/? —<y 
that qr=rq. The space M is termed a metric space. The distance 
qr is termed symmetric since qr = rq. The éléments y?, q, r, . . . 
are termed « points » and pq the « distance » from p to q. Neighbor-
hoods, limit points, sets relativelj open or closed can now be defined 
in the usualway (HausdorfT [1]). In particular if e is a positive num
ber the e-neighborhood Ac of a point set A shall consist of ail points 
p with a distance from A less than e. A set B ( ^ M (rend B on M) 
will be said to be compact if every infinité séquence in B contains a 
subsequence which converges to a point in B. 

We shall use Vietoris cycles (Vietoris [1]) . Singular cycles 
(Lefschelz [I]) taken in the classical sensé are inadéquate in a number 
of ways. This deficiency may be illustrated as follows. Let "V be a 
compact subset of M and X e the e neighborhood of V. Let u be an 
arbitrary singular k-cyc\e not on V. Gorresponding to each positive 
e suppose that u is homologous to a cycle on \ e . It is not always 
true that u is homologous to a cycle on V as examples would show. 
The corresponding theorem for \ ieloris cycles howover is true as we 
shall see. 

W e proceed with a systematic outline of the Vietoris theory gene-
ralized and modified to meet our needs. 

are isolated. In this way the most important cases are treated in the simplestway. 
To obtain greater generality Vietoris cycles seem to be useful. In fact the présent 
author has shown in Morse, Sur le calcul des variations {Bulletin de la Société 
mathématique de France, 1939), that the accessibility hypothesis is not in gênerai 
satisfied when ordinary cycles are used, even when F is of class O on a regular 
analytic manifold and when the critical values are finite in number. 
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Let A be a set of A + i points of M. W e term A a vertex k-cell of 
M, as distinguished from an algebraic A-cell now to be defined. For 
k> o the orderings of A will be divided into two classes, any order-
ing of one class» being obtained from any olher of the same class by 
an even permutation. The vertex A-cell A taken with one of thèse 
classes of orderings will be termed a positively oriented A-cell and 
taken with the other class a negatively oriented A-cell. An oriented 
A-cell oca may be represented by a succession 

( l . i ) T I \ O . . . A I 

of its vertices preceded by yj, where yj = i or — i according an the 
ordering A0 . . . A* belongs to a* or not. W e shall say that each 
oriented (A" — i)-cell YJ(— i ) 'A 0 . . . A,_i A,+, . . . A* is positively 
related to a*. W e shall say that a* admits the norm e if the 
distances between the vertices of a* are less than e. 

The cell a* will be regarded as null if at least two of its vertices 
are coincident. Let ô be an élément in an arbitrary field A (\an der 
Waerden [ 1]). By a A-chain of norm e is meant a symbolic sum u of 
the form 5,«,, / = i, . . . , /n, in which â, is in A and aL is an oriented 
k- cell of norm e (We understand that a repeated subscript or super
script is to be summed). The chain u will be termed reduced if 
none of the cells ai are null, if each is positively oriented and no two 
cells at are identical. 

An arbitrary chain will be reduced as follows. Let a be an arbi
trary positively oriented A-cell and b the corresponding negatively 
oriented A-cell. Any term of the form àb in the chain u will be 
replaced by —Sa. Ail terms involving a will then be summed. 
Finally ail terms involving null cells or coefficients will be dropped. 
The resulting reduced chain v will be regarded as formally equal to 
the original chain u. In parlicular if v is null we regard u as null. 

By the sum of two chains dtat and S' a is meant the chain 
Stat-irOjdj. The expression ôfS/a^] shall mean the chain (<fài)xt. 
W e understand that a chain u equals a chain v if u — v reduces to 
the null chain. It is readily seen that A"-chains of norm e form an 
additive abelian operator group (van der Waerden [1], p. i3a). 

W e shall now7 define the boundary operator (3. If a is an oriented 
A-cell with A > o and e is the unit élément in A, ea will be a A-chain 
and fiea shall be the (A — i ) -chain ltebi where bt is an arbitrary 
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(A—i) - ce l l positively related to a. More generally we set 
( 3 3 ^ = d, (3ea/. 

If A = o we understand that (3 ea = o. If u is an arbitrary A-chain 
one sees that (3{3u = o. Cf. Seifert, Threlfall [1 ] , p. 6o. W e 
term fiu the boundary chain of u. One finds that fiàu = èfiu while 
for two A-chains u and p, (3(M + P) = (3 M -h (3 c 

The preceding A-chains and A-cells are termed algebraic A-chains 
to distinguish them from Vietoris chains to be defined later. The 
term algebraic will be omitted when it is clear from the context that the 
chain is algebraic. In particular this will be the case whenever the 
norm e of the chain is mentioned. 

Let B and C be compact subsets of M such that B d C. An alge
braic A-chain u on G will be termed a cycle modB on C if (3 u is 
on B. W e term u e-homologous to o modB on C and writc u nueo 
modB on C if there exists a (A -f- i ) -chain z of norm e on C such 
that (3 s J= u H- v where v is a A-chain on B. If B = o, then p = o, 
and the phrase mod B is omitted. 

Let u = (un) be a séquence of algebraic A-cycles un, ra = o, 
i, . . . mod B on C with norms en respectively. If the numbers en 

tend to zéro as n becomes infinité, and if for each integer n there 
exist « Connecting » homologies of the form 

( 1 . 2 ) u,,~e„Un+] (modB on G), 

u is termed a (Vietoris) A-cycle mod B on C and C a carrier of u. 
W e write u<^>o modB on C if corresponding to each positive 
number e there exists an integer N so large that unnueo modB on C 
whenever n > N. The set C is termed a carrier of the homology 
u nu o modB on C. Vietoris A-cycles u and v are termed homologous, 
unuv modB on G, if u — v nu o modB on G. If (un) is a A-cycle 
modB on G, any infinité subsequence (vn) of (un) defines a A-cycle 
v nu u modB on C. 

The algebraic A-cycles un will be termed the components of 
u = (un)- If u and v are Vietoris A"-cycles modB on G, the algebraic 
A-cycles un -H vn are the components of a Vietoris A-cycle modB on G 
which we dénote by u + v. Similarly the algebraic A-cycles èun are 
the components of a Vietoris A-cycle which we dénote by au. 

In the remainder of this memoir the term A-cycle modB on G 
shall mean a Vietoris A-cycle modB on C unless otherwise stated. 
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W e shall hâve occasion to refer to a A-cycle v modB' on G' where B' 
and C' are not necessarily compact. W e shall understand thereby 
that v is a A-cycle modB on G where B and G are compact subsejts 
of B' and C' respectively and B C C Homologies modB' on G are 
similarly defined. 

The set of A-cycles homologous to a given A-cycle M is termed the 
homology class defined by M. If M is not homologous to zéro, M is 
termed non-bounding. The set of ail A-cycles form s a group G* of 
which the bounding A-cycles form a subgroup H*. The group G/, 
modH* is composed of homology classes and is termed the homology 
group. Thèse groups are operator groups ; that is if M is an élément of 
one of thèse groups and S CI A, thcn 5M is likewise an élément of the 
group. When è ^é o, è possesses an inverse with respect to division, 
and the présence of ou in an operator group implies the présence of M 
in the group. Moreover when à ̂  o, the relations eu = o and u = o 
are équivalent, as well as the homologies du nu o and M nu o. 

A séquence of algebraic A-chains wn on a compact subset x of M, 
with norms en tending to zéro will be termed a formai k-chain w. 
W e term x a carrier of w. The sum u -h r of two formai A-chains M 
and v shall be the formai A-chain whose components are un-\- vn 

while ÔM shall be the formai A-chain whose components are àun. 
Formai A-chains make up an additive abelian operator group. If w is 
formai A-chain with components wn, the sel of algebraic (A — i)-
cycles (3wn defines a formai chain which we dénote by (3w. The 
formai chain (3iv will not in gênerai be a Vietoris (A — i)-cycle 
because it will lack the necessary « Connecting homologies ». 

In the spécial case where w is a A-cycle modB on C, $w is a 
cycle on C. For the homologies « Connecting » the components wn 

of w imply the existence of an algebraic (A + i)-chain zn on C 
and a A-chain vn on B such that fizn=wn+i— ^,, + ^,, where the 
norms involved tend to zéro as n becomes infinité. 

Applying the operator (3 to both sides of this relation we find that 
o = (3 wn+\ — [3 wn -f- (3 vn, implying homologies Connecting the 
components of (3ÏV. 

Déformation chains and operators. — Corresponding to any 
map or déformation of a set A CI M onto a set B, and corresponding 
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to any algebraic A-chain on A we shall now define an algebraic 
(A + i)-chain D u termed a déformation chain of M. 

Let Z be an (n -\- i)-dimensional euclidean prism whose bases are 
closed ra-simplices A and A*. Let a be A or any simplexonthc boun-
dary of A and let ~ka be the latéral face of Z with base a, or if a = A 
the prism Z. Corresponding to a let Pa be an arbitrary inner point 
of la- One can subdivide the prisms la in the order of their dimen
sions into the simplices determined by P„ and the simplices on the 
boundary of la (supposing that the latéral faces of la hâve already 
been subdivided). 

Corresponding to each A-simplex w there exist two oppositely 
oriented algebraic A-cells whose vertices are the vertices of w. W e 
say that thèse algebraic A-cells are associated with w. Let M be an 
algebraic A-cell associated with one of the A-simplices a of A and let 
fu be the algebraic A-cell obtained by replacing the vertices of M by 
corresponding vertices of A*. It is possible to associate algebraic 
(A + i)-cells with the respective simplices of the subdivided latéral 
face la in such a manner that the sum DM of thèse algebraic (A -f-i)-
cells is a (A + i)-chain whose boundary (3DM consists of algebraic 
A-cells associated with simplices on the boundary of Art. If we impose 
the condition that the chain (3 DM contain the term M, DM is uniquely 
determined. If we sel Do = o, we find that (3 DM = M —fu — D(3M. 
(Cf. Seifert, Threlfall [1], § 29). 

More generally let the verlices of an algebraic n-cell x on M be 
mapped onto a set of points on M. Suppose each vertex p on x is 
thereby replaced by a point / /? , and x is replaced by an algebraic 
7i-cell fx. Let the vertices of the preceding /i-simplex A be mapped 
in a one-to-one way onto the vertices of x. Let the vertices of A* be 
mapped onto those of fx so that the verlices of A and A* on the same 
latéral edgeofZ are mapped onto vertices p and//? oix and /#respec-
tively. Under the map of the vertices of A onto vertices of x each 
A-simplex a of A détermines a vertex A-cell a. (a) of x. Correspon-
to a let Qa(fl) be an arbitrary vertex of a.vWe map P,4 onto Qa^j* 

Wilh the vertices of A and A* so mapped onto the vertices of x and 
fx respectively and with the points P„ mapped onto the points Qa,a) 
each vertex of the subdivision of Z has a unique image on M. Lel u 
be an algebraic A-cell of vertices of A and let v be the corresponding 
algebraic A-cell of x. The vertices of DM (for each M) will now be 
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replaced by their images on M determining thereby an algebraic 
(A + i)-chain which we dénote by Dt\ In particulary D(3p will 
thereby be defined. It folows that 

(1.3) (3DP = P - / P - D [ ^ , 

where fv dénotes the image of v in the mapping oix onto fx. W e term 
Dr a déformation chain belonging to the map of x onto fx and the 
points Q a . 

Let T be a mapping of a point set S onto a s e t / S in which an alge
braic y-cell x on S is replaced by an algebraic /-cell fx o n / S . Cor
responding to each vertex/-cell a on S let a point Q a of a be uniquely 
determined. Corresponding to the mapping T, the points Q a , and 
any algebraic A-cell v on S, let DP* be a déformation chain defined as 
in the preceding paragraph. With Dv so defined (for each v and 
each A) (1.3) will hold. Let ui be a finite set of algebraic A-cells on 
S and set M = &gut. W e define DM by ihe relation DM = Ô\DM;. 
It folows that 

pD8 la l=p8 lDw l=8 lpDa l . 

Upon using (1.3) we see that 

(1.4) PD?* = M,—8, / M — ^Vfiu^u—fu — Dpu. 

W e term D a déformation operator belonging toT. D is uniquely 
determined by T and S and by the choice of the preceding points Q a 

corresponding to the respective vertex A-cells a on S. If the points Q a 

were not uniquely chosen the relations (1.4 ) would not hold in gênerai. 
The choice of Q a must certainly be independent of ihe (A + i)-cells 
ou whose boundaries en lies. 

W e shall need the fact that the operators [3 a n d / are commutative. 
That is whenever M is an algebraic A-chain on S, 

(1.5) $fu=f$u. 

It is clear that (1.5) is true when M is a cell. It follows that (1.5) 
holds as stated. 

Let 6 be a continuous déformation on M of a set of points A with t 
the time in the déformation and o ^ t^ i. Let t0 < t,.. . < tn be a set 
of values of t such that ^0 = o and tn = \% Under B an arbitrary 
point p0 of A will be replaced at the times £ , , . . . , tn by points p{..., 



10 MARST0N MORSE. 

pn respectively. Lel T t dénote the mapping of the points pL on their 
correspondents pi^. Let D t be a déformation operator « belonging » 
to the mapping T t . Let z be an arbitrary algebraic A-chain on A 
and z, its image under B at the time t,. Then for i not summed, 

(1.6) [iDtZ^Zt — f^—D^Zi (/ = o, i, . . . , / Ï - I ) , 

where fizt dénotes the image of zt under T4-. 
We define A z as the sum D, z-t ( i = o, i , . . . , /* — i ) understanding 

that this définition holds for each dimension. Observing that 
zl=fi_K Zi_l[ (i not summed) and making use of (1.5) we find that 
(for i not summed), 

(1-7) P**= P//-l3f-i=/i-lP*i-i (*>o). 

It follows from (1.6) and (1.7) that 

(1.8) pAz = s — fz — Ap*, 

where fz is the final image of z under B. W e term A a déformation 
operator belonging to B and z. 

Let z be an algebraic A-chain on A whose images under B for o < t < 1 
admit the norm e. The operator A can be so chosen that Â£ has the 
norm e. For z also admits a norm ô <C e provided S diflers sufficiently 
little from e. Lel ri = e — S. Upon subdividing the time interval (0,1) 
sufficiently finely by the times t, the preceding mappings will displace 
the vertices involved a distance less that rj/a so that the cells of Hz 
will hâve norms à -f- rç/2 + Y3/2 = e. 

2. F-accessibility. — Let F(p) be a real single-valued function of 
the point p on M. We suppose that the values of F lie between o and 
1 inclusive. The functionals of the calculus of variations can be 
reduced to the form F(p) by a simple transformation as we shall see. 
By the sel F < 6 will be meanl the subset of points of M at which 

F ( / , ) - 6 , 

Let U be an homology class with éléments which are non-bounding 
k-cjcles u. If M is on F <| &, b will be called a cycle bound of M and 
of U. The gréa test lower bound of the cycle bounds of U will be called 
the cycle limit s(u) of U and of the éléments M of U. If U is the class 
of bounding A-cycles, S (M) will not be defined. 

As pointed out in the introduction we shall make two principal 
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assumptions, namely the assumption of F-accessibility of M and 
upper-reducibility of F . 

Under the hypothesis of F-accessibility any non-bounding 
k-cycle which is homologous to zéro mod F < c + e for each posi
tive e is homologous to a k-cycle onF^c. 

If c is a cycle limit of the homology class U, F-accessibility implies 
that there exists a A-cycle v of U on F ^ c . A non-bounding A-cycle v 
which lies on the set F ^s(v) will be termed canonical. Under the 
hypothesis of F accessibility there is at least one canonical A-cycle in 
each non-null homology class. In § 5 we shall see that F-accessibility 
is implied if each set F ^ c for which c < i is compact. Thèse condi
tions for F-accessibility while sufficient are by no means necessary. 
W e shall see thaï F-accessibilitj implies that each cycle limit is a 
cap limit (§ 3) while the hypothesis of upper reducibility will 
imply (§ 8) that each cap limit is assumed by F at some critical point. 

The rôle of a Vietoris cycle in relation to accessibility is shown by 
the lollowing example. Let the space M consist of the closure in the 
rcj-plane of the set of points x = sin I / J where o < y < i . Let F =y 
on M. Let p be a point on M at which F >> o. The point p can be 
regarded as the components of a Vietoris o-cycle M. One sees that 
s(u) — o and that there is a canonical o-cycle in the homology class 
of M, for example a Vietoris o-cycle whose components are identical 
with the origin. If however one regards p as a singular cycle there is 
no singular cycle on F = o homologous to p and the hypothesis 
of F-accessibility fails. 

3. The rank conditions. — Bounding A-cycles M possess no cycle 
limits s(u). Let G be the group of ail A-cycles. With some but not 
ail of the éléments M of G we hâve thus associated a number s( M). W e 
term s( u) the rank of M. The ranks of A-cycles satisfy the following 
three conditions : 

I. / / M has a rank and ô ^ o , s(u) = s(Su). IL / / M, P, and 
u-\-v hâve ranks, s(u + v)^mdoL[s(u), s(v)]. III. If u and v hâve 
unequal ranks, s(u + v) exists. 
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To verify I we observe that the homologies u nu ç and du nu $ç are 
équivalent if ô ^ o. I follows directly. To verify II lel<r = max[s( M), 
s(v)] and let e be an arbitrary positive constant. There are cycles u' 
and vr respectively in the homology classes of M and v and o n F < a + e. 
But uf+vr is in the homology class of M 4- v and on F<<j-{-e. 
Rank condition II follows. To establish III one has merely to show 
that M 4- v is non-bounding. If M 4- v were bounding, M and — v 
would be in the same homolog> class so that s(u) =zs(— v) = s(v)y 

contrary to hypothesis. 

k-caps. W e shall now define a new set of ranks termed cap limits. 
Gap limits also satisfy the rank conditions. 

W e begin with several définitions. A point set A will be said to be 
definitely below a (written d-below a) if A lies on F < a — e for some 
positive e. The phrase rf-modF<a shall be understood to mean 
mod some compact set d-belowa. If M is a A-cycle on F<a d-mod 
F < a, an homologj 

(3.i) w ~ o (onF^flrf-modF<fl) 

will be called an a-homology. A A-cycle M o n F ^ a d-mod F < a not 
a-homologous to zéro will be called a A-cap with cap limit a. W e 
write a~a(u). W e note thaï a(u) is uniquely determined by the 
formai A-chain w whose components are the components of M. In fact 
« ( M ) is the greatest lower bound c of numbers b such that w is on 
F<^b. For the case a(u) > c is impossible since M would then satisfy 
an a(M)-homology. The case a(u)<c is equally impossible since it 
would imply that w is on F < a ( M ) < c. 

The A"-cap limits a(u) satisfy the three rank conditions provided 
s(u) is replaced by a(u) and the group G of A-cycles is replaced by 
the group of formai A-chains. That I is satisfied follows as for the 
ranks a (M) . That II is satisfied follows from the fact lhat a(u) is the 
greatest lower bound of numbers b such lhat the components of M 
are on F < 6 . Turning to III suppose that a(u)<a(v). Then M is 
a(e)-homologous to zéro. Hence M 4- v is not a(v) homologous 
to zéro. Since u-\-v is on F^a(v), a(v) is a cap limit of M 4- v 
and Il l isproved. The A-cap limits also satisfy a fourth rank condi
tion as follows. 

IV. If u\.. . . , um and, vK ..., vn hâve ranks at most a0 while the 
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sums u = ItuL and v = 1VJ hâve no rank and u 4- v has a rank, 
then a(u 4- v) <ia0. 

The cycle limits s(u) satisfy IV vacuously with s(u) replacing 
a(u). 

Recall that a non-bounding A-cycle u is lermed canonical if M is 
on F<s(u) where s(u) is the cycle limit of M. With this understood 
a first connection between cap limits and cycle limits is as follows. 

THEOREM 3 . I . — Under the hypothesis of F-accessibility (') a 
canonical non-bounding k-cycle u with cycle limit s(u) is a k-cap 
with cap limit s(u). 

If M were not a A-cap with cap limit s(u), there would exist some 
constant b less than s(u) such that M would be homologous to zéro 
mod F ^ 6 . Under the hypothesis of F-accessibilily M would then be 
homologous lo a A-c>cle on F <^6, contrary to the définition of the 
cjcle limit s( u). The proof of the theorem is complète. 

4. The rank theory. — Abstracting the relations of § 3 we suppose 
that we hâve an additive abelian operator group G with coefficients 
in the field A. With certain of the éléments M of G we associate a 
rank P(M) in a simply ordered set [p]. The rank p(o) shall not be 
defined. In referring to the rank conditions I lo IV of § 3 we shall 
understand that s(u) and a(u) are replaced by P ( M ) . 

The éléments of G with rank (with o added) in gênerai will not 
form a group. W e shall nevertheless be able to establish various 
theorerns which hâve immédiate bearing on the existence and enume-
ration of critical points and limits. We shall be concerned with sub-
groups of G. We suppose throughout that thèse subgroups g are 
operator subgroups, lhat is if M is in g and o is in A, ou is in g. Our 
isomorphisms shall be operator isomorphisms, that is. if u corres
ponds to v, d M corresponds to ôe. We shall be concerned with various 
properlies of subsets of éléments of G, for example the propert) of 
having rank. A propert) \ will be termed an operator property if 
whenever M has the property A and à ̂  o, au has the property A. B} 

( l) This is the only place in § 3 and § 4 where the hypothesis of F-accessibility 
is us éd. 

MÉMORIAL DES SC. MATH. — N° 9 2 . 2 
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a subgroup g of G with operator property A is meant an operator 
subgroup of G every élément of which with the possible exception of 
o has the properly A. The group g will be termed maximal if it is a 
propcr subgroup of no subgroup of G with property A. The following 
example shows that there may be several maximal groups with a 
givcn property A. 

Let G be a group generated by three éléments a, 6, c with coeffi
cients in the field of integers mod 2. Suppose lhal a,b.a-\-b,c are 
the only éléments of G with the property A. Then a and b logelher 
generate a maximal group with property A, as does c. 

LEMMA k.\. — If g is a maximal subgroup of G with operator 
property A and v is an élément of G with property A. there exists 
an élément z in g and an élément w which is null or f ails to hâve 
the property A, such that v = z 4- w. 

By virtue of the définition of ^ a s a maximal subgroup of G with 
property A there exists a 5 ^ o and an élément P, in g together with 
an élément *>.-> of G which is null or fails to hâve the property A, such 
that èv = vs 4-^2- But there exists a J ' ^ o , such that ô' ô = 1. Upon 
setting ti!vA = z and §rv2= w, we hâve v = z{ 4- w. Since vK has the 
property A and A is an operator property, 8fvA has the property A. 
Similarly ô'r2 fails to hâve the property A or is null, and ihe proof of 
the lemma is complète. 

The dimension of the group G is the cardinal number p of a 
maximal linearl} independenl subset of éléments of G with coefficients 
in A. Two such groups with the same dimension are operator iso-
morphic, This fact is easil} proved in case /UL is finite, and we shall 
use the fact in no othcr case. 

In the author's earlier work critical points were counted in terms 
of « t}pe numbers ». Thèse type numbers were dimensions of groups 
composed of cycles (« type groups », § 9) associated wilh the respec
tive critical sets. When thèse dimensions are finite the earlier theory 
is relatively adéquate. But in the gênerai case it is necessary to inves-
tigate the « t \pe groups » more closely. The method will be that of 
comparison of groups b> means of isomorphisms. The isomorphisms 
admitted will be restricted in nature by F . Otherwise the only inva
riants would be the dimensions. 

W e begin with a well-known lemma in group theory. 
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LEMMA 4 .2 . — If H is an operator subgroup of G and R = G 
mod H while m is a maximal group of éléments of G not in H, 
then R and m are isomorphic in such a manner that an élément 
of m corresponds to the coset of R to which it belongs. 

It is clear lhat each élément of m is in at least one coset of R and 
that différent éléments M and v are in différent cosets. Moreover there 
is an élément of m in each coset of R. Otherwise let z be a coset 
which contains no élément of m and let M be an élément of z. If r is an 
élément of m, M — v is not in H since M is not in H. Hence au— Sv 
is nol in H unless ô — o. Thus M and m generate a group of éléments 
not in H, with m as a proper subgroup, contrary to the nature of m. 
W e conclude that there is an élément of m in each coset z of R. The 
lemma follows readily. 

Proceeding with the rank theor} we shall say that two éléments M 
and v of G are in the same o-class or rank class if u and v hâve the 
same rank while u — v has no rank oralesser rank. In case ranks are 
identified with CACIC limits, homologous non-bounding A-cjcles are 
in the same rank class, but A-C} clés in the same ranL class are not 
necessarih homologous. In case ranks are identified with cap limits 
two A caps with cap limit a are in the same rank class if and onl} 
if their différence is a-homologous to zéro. An isomorphism between 
two subgroups of G of éléments with rank will be termed a rank 
isomorphism if corresponding non-null éléments are in the same 
rank class. With this understood we shall prove the foliowing 
theorem. 

THEOREM 4 . i. — When the rank conditions I to IV are satisfied, 
any two maximal groups mn of éléments of G with the same fixed 
rank a are rank isomorphic. 

Let gG be the group gênerated by the set of éléments of G which 
possess ranks at mosta. LetH^bethe subset of éléments of^a without 
rank or with rank less than o\ W e continue by proving the following 
statement. 

a. The éléments ofïlGform a group. 

Let M and v be arbitrary cléments of Hff. Writing E for « exists » 
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and nu E for « does not exist », we hâve four cases : 

(O P(") E, p(p) E, 

(2 ) o(u) E, O ( P ) ~ E , 

(3 ) p ( " ) ~ E , P (P) E, 

(4) p ( " ) ~ E , P ( P ) ~ E . 

W e shall show that M 4- P is in H^. If p(u-\-v) does not exist, 
M 4- r is in H^. W e assume therefore that p(u-\-v) exists and seek to 
prove that p ( « + v ) < a. This will follow from rank conditions II, 
III, III, IV respeclively in cases ( i ) , (2) , (3) , (4) . In case (1), P(M) 
and p(v) are less than a since M and v are in H^. It follows from II 
lhat p(M 4- v) < o*. In case (2) , P (M) < «7 and p(u-h v) must be less 
than cr, for otherwise p(v) would exist. Case (3) is similar. The 
resuit in case (4) follows from IV, and the proof of a is complète. 

To establish the< theorem observe that ma is a maximal subgroup 
of éléments of ga not in H^. By virtue of Lemma 4.2 mG and the 
group T\.(J=ga modHff are isomorphic, wilh éléments of ma corres 
ponding to cosets of Ra which contain them. If ma is a second maximal 
group of éléments of G with rank Œ we can use R^ lo establish an iso
morphism between ma and m^ in which corresponding éléments are 
in the same coset of R^ and so in the same rank class or null. 

The following theorem is a conséquence of a. 

THEOREM 4 .2 . — When the rank conditions 1 to IV are satisfied, 
the property of éléments with rank being in the same rank class 
is transitive. 

Suppose M, v, and w hâve a common rank 1 while M and v as well 
as M and w are in the same rank class. Then M — v and M — w are 
in H^. It follows from a that v — w belongs to H^ so that v and w 
are in the same rank class, and Theorem 4.2 is true. 

LEMME 4 . 3 . — If M|, . . ., Um are éléments of G with ranks 
satisfying I, II, and III and such that 

(-4.1) P ( M i ) > ? ( M i ) (« = 2, . . . , m ) , 

then P(M, 4 - . . . 4 - um) exists and equals P(M<). 

Suppose first that m = 2. By virtue of rank condition III P ( M I 4 - M 2 ) 



FUNCTIONAL TOPOLOGY AND ABSTRACT VARIATIONAL THEORY. 17 

exists. FromI wesee thatp(— M2) = p( M 2 ) . Since M, •= (u{ 4 - M 2 ) — M 2 

we can infer from II and (4. i) that 

p ( w i ) ^ m a x [ p ( ? £ i - i - u«), p(ii2)]^p(u1-h ut), 

p(iii-¥- M 2 ) S m a x [ o ( f / i ) , p ( ^ 0 ] = p ( M i ) » 

so that p(M|) = P ( M , 4 - M2). The proof of the lemma can be comple-
ted by induction with respect to m. 

LEMMA 4.4- — If h is an operator subgroup of G with finite 
dimension r, and with ranks which satisfy I, II, III, the éléments 
of h hâve at most r différent ranks. 

Suppose that the lemma is false and that there are éléments 
U\, . . . , ½ in A with m>r and with ranks increasing with their 
subscripts. If S y^ o, Sut has the rank of M/. It follows from Lemma 
4 .3 that any proper sum àtui has the rank of the non-null term of 
highest index i, and hence in particular is not o since p(o) does not 
exist. The éléments u{ are accordingly independent, contrary lo the 
hypothesis that the dimension of A is r. 

Lel there be given an operator subgroup g of G and a set of sub
groups h(<x) of g, OL being an enumerating index in a simply ordered 
set. The group g is said to be a direct sum 

(4.2) g=y%ÀH*) 
a 

of the groups h (ce) if each élément M of g is a finite sum of éléments 
from the groups h(a), and if there exists no relation of the form 
u<xl~+-- • -4- uam-= o in which the a] s are distinct and u0Li is a non-
null élément from the group /*(a t). 

THEOREM 4.3. — Let g be an operator subgroup of G whose 
dimension is at most alef-null. If each élément of g save the null 
élément has a rank, and if thèse ranks satisfy conditions I, U, III, 
then g is a direct sum of suitably chosen maximal subgroups g(p) 
of éléments of g with the respective ranks p. 

W e shall prove the theorem in the case where the dimension rof^* 
is alef-null. The case where r is finite admits a similar proof. The 
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proof hère given is due in essence to R. Baer, and was communicated 
by Baer to the writer. 

Since r is alef-null there exists a maximal linearly independent set 
of éléments aK, a2, . . . of g. Thèse éléments form a base for g. 
With Baer we form a new base (b) = bt, 62, . . . as follows. W e set 
b\ -= aK. For each n > i we set 

( 4 . 3 ) 6„ = <?„-+-8,<s, ( / = i , . . . , / i — i), 

choosing the éléments S, so as to make the rank of the right member 
of (4.3) the least possible. Such a choice is possible, for the right 
member of (4 .3) can take onat most n différent ranks in accordance 
with Lemma 4.4- By virtue of this choice of the éléments bn we can 
affirm the foliowing : 

i ° The ranks of éléments of g of the form 

( 4 . 4 ) bn^relbl (« = i, . . . , n — i; etC A) 

are at least the rank of bn. 

For the éléments ( 4 .4 ) are of the form an+$, en where i= i, . . . , 
n — i, and so hâve ranks at least thatof bn- Let p,, p2, . . . be the set 
of distinct ranks of the éléments of (b). Let gk dénote the subgroup 
of g gênerated by the subset of éléments of (b) with the rank pfx. It 
is clear that g is the direct sum 

(4.5) *=2 * * -

k 

W e continue by establishing statements 2° and 3° as follows. 

2° Each non-null élément of gk has the rank p*. 

3° The group gk is a maximal subgroup of g with the rank p*. 

To establish 2° let x be an arbitrary non-null élément of gk. In 
ihe linear représentation of x in terms of the generators b, of gk there 
is a terni with greatest subscript y, say n, among terms with non-null 
coefficients. Let è be the reciprocal of the coefficient of bn. Then 
p(x) = p(dx). In terms of the b' s, àx is of the form (4.4) and so has 
a rank at least p*. Hence p(#)^p*. But as an élément in gk the rank 
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of x is at most p/ by virtue of rank condition IL Hence p(x) = p/,, 
and the proof of 2° is complète. 

To establish 3° let M be any élément of g with rank p/,. The élé
ment M is a sum M = M, 4 - . . . 4 - um of non-null éléments from 
différent groups gk, Without loss of generality we can suppose that 
the ranks of the éléments uh increase with their subscripts. It follows 
from Lemma 4 .3 lhat p(M) = p(Mm) so that p(Mm) = p*. It follows 
from 2° that um is in gk. W e set us 4 - . . . 4- M^_, = w. If m = i, 
then w = o. Otherwise p(w) =• p(um-^) ^ pix, so that w is not in g-/,. 
Thus B = M „ , + IV, where um is in gk and w is nol in gk or null. 
Statement 3° follows. and the proof of the theorem is complète. 

Il is bj virtue of the theorems of this section that we shall be able 
to give précise conditions under which « there are at least as many 
critical points of tjpe A as there are independent non-bounding 
A-cycles of dimensions A » . Understanding lhat the kl h connectivity 
of M is the dimension of the kth homology group, the following 
corollary of Theorem 4 .3 is a statement of this type. 

COROLLARY 4 . 3 . — The sum of the dimensions of maximal 
groups g (s) of non-bounding k-cycles with the respective cycle 
limits s is at least the smaller of the two numbers alef-null and 
the kth connectivity R* ofM. 

If Rk is at most alef-null the corollary follows from the theorem. 
If Rk exceeds alef-null, there exists a subgroup g of non-bounding 
k-cjcles of 'dimension alef-null. Appljing the theorem to g with 
p = s, the corollarv results again as stated ('). 

As a conséquence of Theorem 4 . i the dimension of g(s) in the 
above corollary dépends only on s and not on the particular maximal 
group choscn. A much more gênerai application of rank theory lo 
cycles and caps on M is to be found in M [7] . In particular the latter 
paper contains a group theoretic formulation of the relations between 
maximal groups of caps of the différent dimensions. When the 
dimensions of the groups are finite, thèse gênerai group relations 

( l) We point out that ranks of ordinary singular cycles also satisfy the rank 
conditions, and that Corollary 4.3 is accordingly true for such cycles. Vietoris cycles 
enter essentially when questions of F-accessibility enter. 
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imply the author's first relations between the type numbers and the 
connectivities of M. See M [1 ] . 

5. Sufficient conditions for accessibility. — W e shall showr that 
the hypothesis of F-accessibility is satisfied provided the subsels 
F < c are compact for each c <C i. W e shall need various lemmas and 
theorem s in topology. 

LEMMA 5 . I . — If the vertices of an algebraic k-cycle u of 

norm ^ are displaced a distance at most 5 to de fine an algebraic 

k-cycle fu, then u nue fu. 

The lemma is an immédiate conséquence of the existence of a 
déformation chain DM belonging to M and to the given mapping (dis
placement) of the vertices of u. Such a chain satisfies (1.4) , and the 
lemma follows directly. 

LEMMA 5.2. — Let e be a positive constant and V a compact 
metric space. The dimension of a maximal group h of algebraic 

k-cycles of norm - on V independent with respect to e-homologies 

on V is finite. 

Since \ is compact there exists a finite set B of points of V such 

that each point of V has a distance from B less than r« Let g dénote 

the group of algebraic A-cycles on B. It is clear that the dimension 

of g is finite. Let z be an algebraic A-cycle of norm - on V. Let the 

vertices of z be mapped onto a subset of the points of B, each vertex 

of z corresponding to a vertex of B-at a distance not exceeding ^« 

Suppose z is thereby replaced by a cycle fz. It follows from the pre
ceding lemma that z nuefz on V. But fz is in the groupe and accor-
dingly admils a représentation/3 =: ô,^,, where ihe éléments zl form 
a base for g. Hence z nueSl zL. It follows that the dimension of A is at 
most ihe dimension of g, and hence finite. 

Réduction sets W . — Let V be a compact subset of M. Corres
ponding to each positive à let W ( ô ) be a group of algebraic A-cycles 
on V of norm à, such that W (n) is a subgroup of W(<5) when-
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ever YJ<Ô. Such a set of groups W ( ô ) will be called a réduction set 
W. Goncerning thèse réduction sets we hâve the following lemma. 

LEMMA 5.3. — Corresponding to an arbitrary positive constant e, 
there exists a positive constant o < e such that to each cycle w($) 
in W ( ô ) and each positive constant ri < 3 there corresponds at 
least one cycle w(ri) in W ( Y Î ) , e-homologous to w(o) on V. 

The basic idea in the proof of this lemma was communicated to 
the writer by Professor E. Cech. 

For each integer n let en = e3~'1. Let w dénote the subgroup of 
cycles of W ( e , ) e-homologous to zéro on V. Let h\ dénote the group 
W ( ^ i ) mod o. It follows from Lemma 5.2 that the dimension of h\ 
is finite. Recall lhat hK is a group of classes of A-cycles. For each 
integer n >> i let htl be the subgroup of those classes of hK which 
conlain al least one cycle of W (en). W e see that 

(5.i) A O * 0 * 0 - -

There must accordingly exist a finite integer r such that 

d\mhr= dimhr+i = .... 

But two abelian operator groups with coefficients in a field and 
with equal finite dimensions will be identical if one group is a 
subgroup of the other. Hence h, = Ar+i = . . . . 

The constant e was arbitrary and er= eS~r. Let S be any positive 
constant less than e,. The cycle w(à) of the lemma is in W ( e , ) , and 
hence in some class of hr. Corresponding to the constant n < à of the 
lemma let p be an integer so large that ep<.ri. Then e, ,< à < er so 
that p> r and hp= h,. The cycle w(o) is in a class of h, = hp, and 
by virtue of its définition ihis class of hp contains at least one 
A-cycle w(ep) of W(ep). Since ep<ir\, the cycle w(ep) is a 
cycle w(r\). The cycles w(à) and w(ri) are in the same class of 
hp and hence of /^ . That w(è) nuew(r)) follows from the définition 
of A^ and the proof of the lemma is complète. 

Lel tt=(«H)be a A-cycle wilh carrier C. Lel Ç be an algebraic 
k-cycle on C of norm e, such that Un^e K for ftU inlegers ziexceeding 
some integer N. W e then write. 

(5.2) u~el (on G). 
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If v is any A-cycle such lhat u nu v on C, (5 .2 ) implies that 

(5.3) o~eÇ (on G). 

Suppose in particular that 

(5.4) u ~ o (mod V on G), 

where Visa compact subset ofC. I say thaï (5.4) implies the existence 
of an algebraic A-cycle z(à) on V of arbitrary norm à such lhat 

(5.5) u~%z(o) (on G). 

Without loss of generality we can suppose that the norm en of the 
homology Connecting un with un+\ on C tends monotonically to zéro 
as n becomes infinité and that corresponding to en, there exists in 
accordance with (5.4)? a relation of the form fiwn=un—zn, 
where wn is an algebraic (A4- i)-chain of norm en on G tmdzn is an 
algebraic A-cycle of norm en on V. If e/t<<3 and m>n, it follows 
that u,nnu%zn (on G), and selting zn=z(à), (5 .5 ) holds. 

We hâve obtained (5 .5) as a conséquence of (5 .4)- The following 
theorem gives a deeper conséquence of (5 .4 ) . 

THEOREM 5 . I . — If u is a k-cycle with cancer C, homologous to 
zéro modY onG where Y is a compact subset ofC, then u nu von G, 
where v is a k-cycle on Y. 

We introduce a réduction set W as follows. Let W ( ô ) be the 
group of algebraic A-cycles w(è) of norm d on V such that 

w>(8) ~g o (on G). 

To prove the theorem we shall first give an induclive définition 
of a séquence of positive numbers en tending to zéro as n becomes 
infinité. We take e0 as an arbitrary positive number. Lemma 5.3 
applies to the réduction set W . In particular we can set e = en-\ in 
Lemma 5 .3 , supposinge / t_ i already defined. Lemma 5.3 then affirms 
the existence of a constant à < e. W e take en < â. W e also suppose 
that en tends to zéro as n becomes infinité. 

By virtue of (5 .5) there exists an algebraic A-cycle zn on V of 
norm en such that 

(5.6) u~enzn (on G). 
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We shall give an induclive définition of a Vietoris A-cycle v = (vn) 
on V. W e begin b j setting r< = zK. Suppose that the components vi, 
where i = i, . . . , m, hâve been defined in such a way that 

(5.7) u ~e Pj (on C; i = 1, . . . , m), 

( 5 . 8 ) ^ / + 1 ^ , . , ^ 1 (on V; i = i, . , . , / n — 1 ) . 

W e shall define vm+< and show that the relations (5 .7) and (5 .8 ) 
hold for ail integers i. 

It follows from (5 .6 ) and (5 .7) that £ , , ^ - vm is i n W ( e m ) . W e 
shall apply Lemma 5.3 with e = em_l. By virtue of our choice 
of em < à where ô is the à in the lemma we can apply the lemma with 

( 5 . 9 ) Zm+l— Vm= W(8). 

Setling n = em+i Lemma 5.3 affirms the existence of a cycle w(ri) 
in W(em+\) such that 

( 5 . i o ) ">(*)~em-M*\) (onV). 

Proceeding inductively we define vm+l by the relation 

(5. u) vm+1=zm-hl— W(T\). 

Since w(ri) nu^o on C with YJ = em + 1 , 

(5 .12) Vm+l~em+tU (on G) 

by virtue of (5 .6) and (5.11), thusestablishing(5.7) for i = m-\-i. 
Upon adding (5 .9 ) , (5 .10) and (5.11) we find that 

(5 .13 ) Vm*+~em-iVm (onV), 

establishing (5 .8) for i = m. The algebraic A-cycles vi thus 
satisfy (5 .7 ) and (5 .8 ) for ail positive integers m. By virtue of 
(5 .8 ) the components Vj admit Connecting homologies on V, and by 
virtue of (5.7) M nu v on C as stated. 

The principal theorem of this section is as follows. 

THEOREM 5 .2 . — / / the subsets F^c are compact for c < 1, the 
hypothesis of F-accessibility is satisfied. 

We begin by proving the following statements. 

( a ) . Under the hypothesis ofthe theorem the distances of points 
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07i F<c 4 - e , è > o , from F ^ c tend to zéro uniformly as e tends 

to zéro. 

If (a) were fais e there would exist an infinité séquence of positive 
constants en decreasing to zéro and corresponding to en a point pn 

o n F^c-hen such that the distance of pn from F ^ c is bounded 
from zéro for ail zz. This is impossible if c = i . Suppose then that 
c < i. For n sufficiently large, c 4- en< i and the points pn lie on 
the compact subse tF^c 4- en. Le.tgr be a limit point of the points pn. 
We hâve F(q)<c ~\-en. But e„ is arbitrarily s mail so that F(q)^c. 
On the other hand/? must be at a positive distance from the set F <J c, 
since the distance of pn from the set F <c is bounded from zéro. 
From this contradiction we infer the truth of (oc). 

((3). If c is the cycle limit of a non-bounding k-cycle u, 

then u nu o mod F ^ c. 

Statement (|3) is trivial if c = i . W e suppose then that c < i. Let e 
be an arbitrary positive constant. W e seek to prove that there exists 
a positive integer N such that the components un of M for which 
n > N satisfy the homology 

(5.i4) un~eo (modF^c). 

Let S be so small a positive constant that each point on F ^ c 4- à is 

at a distance less than e- from F = c. It follows from the définition of 

a cycle limit that there exists a A-cycle v in the homology class of u 

o n F < c 4- ô, and hence with vertices atçlistances atmost ^ from F ^ c . 

Let the integer N be chosen so large that 

( 5 . l 5 ) Vn~elzUn (rt>N). 

Let vn be mapped onto a chain fvn on F < c by replacing each vertex 
of vn by a nearest point on F ^ c . It follows from Lemma 5. i that 
vnnuefçn. Combining this homology withv(5. i5) , ( 5 . i4) is obtained 
as required. 

Te prove the theorem we must show7 that there is a A-cycle v 
on F < c in the homology class of M. If c = i, we can take v as M. 
If c < i, we infer from ((3) that u nu o mod F ^ c, and conclude from 
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Theorem 5 . i that there exists a A-cycle v on F ^ c homologous to M. 
The proof of the theorem is complète. 

6. Homology groups of dimension at most alef-null. — Theorem 4.3 
concerns the décomposition of a group of dimension at most alef-null. 
The most important application of Theorem 4 .3 is to a maximal 
group H/t of non-bounding A-cycles on F < i. In this section we shall 
give conditions under which the dimension of H/, is at most alef-null. 
Thèse conditions are that the sets F ^ c < i be compact and locally 
F-connected in a sensé which we now7 define. Cf. Lefschetz [2] . 
Thèse conditions will be shown lo be fulfilled in the « locally convex » 
varialional problem. 

Let E„, / i > o , be an /z-simplex, En its closure. Let E„ be continu-
ously mapped onto M. The resulting image of the boundary of En 

will be termed a singular (n — i)-sphere and the image of E„ a sin
gular n-cell. We shall say that the singular (n — i)-sphere bounds 
the singular 7i-cell. The images of the vertices of E„ form a vertex 
ft-cell on M spanned, as we shall sa}, by the singular ra-cell, and 
superficially spanned by the singular (n — i)-sphere. 

Let / ; be a point of M at which F(p) == c. The set M will be said to 
be locally F-connected of order m > o a t j o if corresponding to each 
positive constant e there exists a positive constant 5 such that each 
singular (n — i)-sphere on the ô-neighborhood of p and on F < c 4 - â 
bounds an ra-cell of norm e on F ^ c + e. The constant ô dépends 
upon c, m, e, and/>. In this section we shall assume that M is locally 
F-connected of ail orders m > o a t each point of the subset F < i. If 
the subset F < c < i is compact it is clear lhat for c. m, and e fixed 
the preceding constant 5 may be choson so as lo be independent of p 
on F < c . 

W e shall say that a set Z of algebraic cells can be e-spanned on a 
subset B of M if the vertex j'-cells of cells of Z can be successively 
spanned in the order of their dimensions by singular i-cells of norm 
e on B with the following properties. The singular (A—i)-cells 
spanning the vertex (A — i)-cells of a vertex A-cell x combine (with 
proper closure) to form a singular (A — i)-sphere superficially 
spanning x while this (A — i)-sphere bounds the singular A-cell 
spanning x. 

Let z be an algebraic jx-chain. A process by virtue of which each 



26 MARSTON MORSE. 

verlexA-cell(A = o , fx)ise-spanned will be termed an e-spanning 
of z. Corresponding to an e-spanning of z there exists a new7 chain z*, 
termed the first subdivision of z, and constructed as follows. W e 
first replace each algebraic o-cell of z b> itself. Let u be an arbitrary 
algebraic A-cell of z with A > o, and let S (M) be the singular A-cell 
spanning M. Let PM be an arbitrary point of S ( M ) . Proceeding induc-
tively we suppose thaï the algebraic (k — i)-cells of [3M hâve been 
replaced by a set of algebraic (A — i)-cells forming an algebraic 
(A — i)-cycle v. Let 

(6.1) 8 \ i . . .W ( 8 0 ) 

represent an arbitrary term in the « reduced » form of v. W e replace 
M by a sum 

(6.2) S ^ A , . . ^ 

of terms obtained by adding P„ as in (6 .2) to each term (6 . 1) in the 
reduced form of v. It is clear that the boundary of the chain (6 .2) 
is v. Moreover the inductive hypothesis that (3 M is replaced by an 
algebraic (A —i)-cycle v is readily verified when A is replaced by 
A4-1 . Cf. proof of Lemma 6 . 1 . The inductive définition of z* is 
complète. 

Upon referring to the A-simplices of which the above singular 
A*-cells M are images, it appears that the point Pa can serve as a new 
vertex of a subdivision of the singular A-cell S ( M ) into a set of newT 

singular A-cells determined as the join (relative to straightness on the 
defining A-simplex) of PM and the singular (A — i)-cells on the pre-
viously subdivided boundary of S (u) . Thèse new singular A-celK will 
span the new algebraic ^-cycle z*, and may serve to define a subdi
vision of z*, or as we shall say, a « second subdivision » of z. An 
algebraic A-cjcle z which can be e-spanned thus admils an infinité 
séquence of corresponding subdivisions zx, s2, . . . . If ihe new 
vertices PM of thèse subdivions are properly chosen the norm of zn 

will tend to zéro as n becomes infinité. W e admit only such infinité 
séquences of subdivisions. 

LEMMA 6 . 1 . — The boundary of a subdivision of an algebraic 
k-chain z is the corresponding subdivision of the boundary of z. 

We shall designate the first subdivision of a chain by prefixing the 
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letter cp. Il is understood that we are concerned with a unique span
ning of ail algebraic cells involved and with the corresponding first 
subdivision. Let uL be an arbitrary algebraic A-cell for which cpM, 
exists. As seen in connexion with (6 .2) 

(6.3) p? 1/,= 9 ^ . 

Moreover for any finite sum ôjM,. yàlul = ôjcpM,. 
Upon using thèse relations we find that 

(598^/ = 3 8 / 0 « ! = &/(JOM< = 8 / 9 8 « / = ofiBtUH 

and the proof of the lemma is complète. 

LEMMA 6 .2 . — If z* is a subdivision arising from an e-spanning 
on B of an algebraic p-cycle z, then 

(6.4) z*~eZ (onB). 

Lemma 6.2 follows from the theory of déformation chains and in 
particular from (1.4)- For the vertices of z* can be mapped onto the 
vertices of z as follows. Each vertex of z* not a newr vertex Pu shall 
be mapped onto itself, while P« shall be mapped onto an arbitrary 
vertex of M. The algebraic A"-c>cle thereby replacing z* « reduces » 
to z. The déformation chain D * of (1 .4) n a s l ' i e norm e so that 
z*nuez, as staled. 

(ce). Let Z\, z2,. .. be an infinité séquence of subdivisions of an 
algebraic jji-cjcle z e-spanned on B. Let R be the sum of the closures 
of the singular fji-cells spanning the respective vertev p-cells of z. The 
set R is compact. Upon applying the preceding lemma with R repla
cing B we see that the successive subdivisions zn admit Connecting 
homologies on R with norms which tend to zéro as n becomes infinité. 
Hence the séquence zn defines a Vietoris p-cycle with carrier R d B. 
W e dénote such a cycle by V(~) , and term Y (z) R Vietoris p-cycle 
derived from z. 

LEMMA 6 .3 . — Let u and v be algebraic m-cycles which bound 
an algebraic (m 4- \)-chain w admitting a spanning on B by vir
tue of which M is ri-spanned on B and a Vietoris cycle (vn) is 
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« dérive d » from v. Then 

( 6 . 5 ) u nj^ vr (on B) 

for ail sufficiently large integers r. 

Corresponding to the given spanning of w let (wn) and (un)be 
infinité séquences of subdivisions of w and M respectively. If r is so 
large that the norm of wr is less than ri, then ur nu ^vr on B in accor-
dance with Lemma 6. i. By virtue of Lemma 6.2 , M nu rur on B for 
ail integers r. Combining thèse homologies, (6 .5 ) follows as stated. 

((3). Under the hypothèses that the sets F < c < 1 are compact and 
that M is locally F-connected of ail orders at points of F < i , the 
following statements are readil} seen to be true. Corresponding to 
a positive constant e, a constant c << 1 and a positive integer m there 
exists a positive constant a and a positive function B(ri) defined for 
o<C*2^0-7 tending to zéro with ri and possessing the following pro
perty. The set of ail algebraic cells on F < c of dimensions at most 
m 4-1 and norms a admits an e-spanning on F ^ c + e in which a 
singular A-cell spanning a vertex A-cell of norm ri has a norm B(n). 
The function B(n) dépends on c, e and m. 

The group Tm(c). Under the h^pothesesof ((3) and corresponding 

to the constants c, m and cr of ((3) let ( a i , . . . , aq) = (a) be a maxi

mal linear set of algebraic ra-cycles of norm r o n F < c , independent 

with respect to a-homologies on F < c . That the number of cycles in 
such a linear set is finite follows from Lemma 5.2. Let the set of ail 
vertex A-cells of norm u o n F ^ c for which o <C A < m 4- 1 be e-spanned 
in accordance w7ith the conditions of paragraph (j3). So spanned let 
V (at) be a Vietoris /n-cjcle derived from aL in accordance with (a). 
Corresponding to each algebraic m-cjcle u = ètat we set 

V(iO = 8|V(a|). 

When u^éo, Y(u) is a Vietoris m-cjcle « derived » from M. The 
Vietoris m-cycles V ( M ) form a group Tnl(c) with the finite base 
V ( a , ) , . . . , V ( a „ ) . 

THEOREM 6 . 1 . — If the subsets F <| c < 1 of M are compact and 
M is locally F-connected of ail orders at points of F < 1, then for 
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a fixed m > o and c < i any Vietoris m-cycle y = (yn) onF^c is 
homologous on F ^ c + e to a cycle V(u) of the group Tm(c). 

Without loss of generality we can assume that the norms of the 

components (yn) of y are at most ^ where <7 is the constant described 

in ((3). The algebraic m-cycleyn together with an algebraic m-cycle (1) 
of the form u = SLai bounds an algebraic ( m 4 - i )-chain wn on 
F<Jc, of norm a by virtue of the choice of the base (a). If wn is 
spanned with the aid of the singular cells described in (f3), M will be 
similarly spanned (') and détermine the Vietoris m-cycle V ( M ) . If en is 
the norm of yn, yn will thereby be spanned by singular cells of norm 
n = B(en). It follows from Lemma 6.3 that yn is yj-homologous on 
F ^ c 4- e to each component V r of V ( M ) for which r is sufficiently 
large. Recalling that B(en) tends to zéro with en we see that the 
Vietoris m-cycle s y and V ( M ) are homologous on F <c 4- e-

The principal theorem of this section is as follows. 

THEOREM 6 .2 . — / / each subset F ^ c < i of M is compact and M 
is locally F-connected of ail orders at points of F < i, the dimen
sion of the mth homology group ofF <C i is at most alef-null, 

Let S be a maximal linear set of Vietoris /n-cycles on F < i, non-
bounding on F < i. The number of cycles of S on the respective sets 

F < i — - j /i = i, 2 , . . . is finite by virtue of the preceding theorem. 

Hence the number of cycles in H is at most alef-null. 
It is clear that the proofs of the two preceding theorems make use 

of local F-connectedness merely of the orders i t o m + i . 

PART IL 

CRITICAL POINTS. 

7. F-deformations. — The fundamental theorem of Part II is that 
each cap limit is assumed by F at some homotopic critical point pro-
vided F is upper-reducible. W e shall presently define a homotopic 

(l) In dépendent of n and wn. 

MÉMORIAL DBS SC. MATH. — N» 92. 3 
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critical point. In the following section upper-reducibility will be 
defined and the theorem proved. W e do not assume lhat the sets 
F < c < i are compact. W e shall begin by defining F-deformations. 
They are abstract generalizations of déformations along the ortho
gonal trajectories of the manifolds F = constants when such mani-
folds and trajectories exist. 

Let E be a subset of M. W e shall admit déformations D of points 
initially on E which replace a point p on E at the time t = o by a 
point q = q(p,t) (p C E ; O ^ J ^ T ) on M at the time t, where avaries 
on the closed interval (o, T) . W e shall suppose that T is a positive 
constant and that q(p, t) is a contînuous point function of its argu
ments. Such déformations will be termed admissible. The curve 
q = q(p, t) obtained by holding/? fast and varying t will be termed 
the trajectory T defined by/?. If a point q précèdes a point r on the 
trajectory T, q will be termed an antécédent of r. 

W e shall say thaï the déformation D admits a displacement func
tion à(e) on E, if whenever q is an antécédent of /' such thaï 
qr > e > o, then 

(7.1) F ( g ) - F ( r ) > 8 ( a ) , 

where §(e) is a positive single-valued function of e. An admissible 
déformation of E which possesses a displacemcnt function on each 
compact subset of E will be termed an F-deformation of E. A défor
mation in which q(p, t) ==p is an F-deformation and will be termed 
a null déformation. 

If F i s continuous andE compact any admissible déformation such 
that F(q) > F(/ ' ) whenever q is an antécédent of r distinct from r, 
is an F-deformation. This follows from the uniform continuity of F 
on a compact set. If however F is merely lower semi-continuous the 
situation is not so simple as examples will show. See Example 9 . i, 
M [7]. 

A point p will be said to be homotopically or dinar y if some 
neighborhood of p relative to F<F(p) admits an F-deformation 
which displaces p. A point which is not homotopically ordinary will 
be termed homotopically critical. Simple examples of homotopic 
critical points are maximum and minimum points and saddle points 
of surfaces. 

To illustrate thèse ideas we shall consider the case of a function 
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•F(x^, . . . , xn) of class C2 in an open région R of the space (a?.) 
W e term (x) = (a) differentially critical if the first partial deriva-
tives of F vanish at (a). Otherwise we term (a) differentially ordi-
nary. W e shall show that a point which is differentially ordinary is 
homotopically ordinary. 

To that end let xl = xl(aK, . . . , an,t) = Xi(a, t) be a trajectory 
defined by the differential équations 

(7.2) j = - F , , ' (. = 1,.. . ,11) 

with the initial conditions xt(a, o) = at. A déformation which 
replaces (a) by the point [x(a, t)] is an F-deformation neighboring 
any ordinary point (a0) of R, provided t be restricted to a sufficiently 
small interval (o, T). For under such conditions it follows from (7.2) 

that 
dF 
— = — F ^ F ^ < const. < o. 

It is thereby seen that a point which is differentially ordinary is 
homotopically ordinary. Hence a homotopic critjcal point of F is a 
differential critical point. The converse is not true. For example x=o 
is a differential critical point of F = x*, but not a homotopic critical 
point. 

W e now develop certain properties of F-deformations. Let D be a 
déformation of a set A. The set of final images of points of A under D 
will hère be denoled by DA. Let RK, . . . , Rn be a set of F-deforma
tions, such that B, is applicable to A, B2 is applicable to B< A, or 
more generally B,-+1 is applicable to BIB/_1 . . . B i A. In such a case 
the déformations B, . . . Rn will be said to define the product défor
mation A = B n . . . B i of A. Under A a point p is deformed 
under BA into B< q, the point B4 q is then deformed under B2 into 
B2B4 q, and so on until B ^ . . . R{q is deformed under Bn into the 
final image of q under A. 

LEMMA 7. I . — The product A =• B„ . . . B< o / F-deformations B, 

with various domains of applicability is an F-deformation of any 
set À to which A is applicable. 

That A is a continuous déformation of A is clear at once. Let G be 
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a compact subset of A*.. W e continue by showing that A admits a dis
placement function à(e) belonging to C. 

Let â1 (e) be a displacement function for B4 applied to G. For i > i 
let à,(e) be a displacement function for B; applied to B l_1 . . . B4C. 
Let q be an antécédent of r under A on a trajectory A whose initial 
point is /><CC. If qr > e, at least one of the déformations B, must 
hâve displaced a successor of p on À between q and r a distance 

greater than - • Since the change of F as q moves along A from q to r 

is the sum of the changes in F under the différent déformations B/ 
we see that 

(7.3) F ( î ) - F ( i - ) > m i n 8 l ^ ) (i' = i, ..:, n). 

The right member of (7 .3) thus serves as a displacement function 
S(e) for C, and the proof of the lemma is complète. 

The following lemma concerns the extension of an F-deformation 
beyond its original domain of définition. 

LEMMA 7 .2 . — Let A and B be subsets of M such that A C B , 
and let Ae be an*e-neighborhood of A relative to B which admits 
an F-deformation D on M. There exists an F-deformation B of R 
which deforms points initially on Ae/3 as does D, and subjects 
the points ofR not on A2<?/3 to the null déformation. 

Suppose the time t in D varies on the interval (o, T) . Under B the 
time t shall likewise vary on (o, T) . Points of B initially on Ae/3 

shall be deformed under B as under D while points of B not on A2(?/3 

shall be held fast. For points q of B whose distance d(q) from A is 
such that 

(7.4) \<d{q)^~ 

we define B as follows. Let tq divide the interval (o, r ) in the ratio 
inverse to the ratio in wich d(q) divides the interval (7.4)- Under 
B points q of B which satisfy (7 .4 ) initially shall be deformed as 
under D until t reaches tq, and shall be held fast thereafler. It 
follows that B deforms points initially on B continuously. Further 
if C is any compact subset of B the closure K relative to C of 
G.A2<./3 is a compact set on Ae. One sees that B admits the same 
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displacement functions on C as does D on R. Thus B is an F-defor
mation of B, as slated. 

Let D be an F-deformation of a set A. An F-deformation B of the 
set A will be said to be related to D if the trajectory of each point p 
of A under B is a subarc of the trajectory of p under D and if 
there exist positive constants <r and r with the following property. 
Every point of A which is displaced under D a distance at most o-
lias the same trajectory under B as under D, while points of A 
which are at any time displaced a distance exceeding cr under D are 
at some lime displaced a distance exceeding T under B. We shall need 
the following lemma. 

LEMMA 7 .3 . — Corresponding to an F-deformation of a set A 

and a positive constant e, there exists a « related » F-deforma
tion B of A in which no point of A. is displaced a distance greater 
than e. 

It might seem that one could obtain B from D by merely shorten-
ing the time interval for D, but this is hardi} the case since there 
may exist points of A which are displaced early in D while other 
points are not displaced al ail during the first part of the time 
interval, but are displaced during the lalter part of the time interval. 
This difficulty will be met by making a change of parameter on the 
trajectories of D, passing from t to an intrinsic parameter /JL, with 
the property that the point q(p) on a given curve is displaced 
whenever /z is varied. This parametization in terms of /J. has other 
important properties of great use in our variational theory. We shall 
describe this parameterization and its properties. 

p-parameterizations. — For each t on an interval (o, a), 
with a>o, lel q(t) be a point on M which varies continuously with t. 
The set of points q(t) taken in the order of the corresponding values 
of t will be termed a parameterized curve (written p-curve). In 
gênerai/?-curves will be denoted bj Greek letters a, (3, y, etc. while 
points on M will be denoted by letters/?, q, r, etc. 

The Fréchet distance YJÇ between two /?-curves ri and Ç will now be 
defined. Suppose ri and Ç are represented in the forms 

(7.5') P=p(t) (o<t<:a), 

(7.5") q = q(u) (o^u^b), 
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respectively. Suppose first that a and b are positive and let o> repri
sent any sense-preservinghomeomorphism between the inlervals (o, a) 
and (o, b). Let d(u) be the maximum distance between points of TQ 
and Ç which correspond under to. The Fréchet distance rjÇ shall be 
the greatest lower bound of the numbers d(co) for ail admissible to. 
If a = o, ri reduces to a point and the distance YJÇ shall be the 
distance of this point from Ç* When b = o, TQÇ is similarly defined. 

W e understand that the/?-curves n and Ç are identical if and only 
i f a = 6 and p(t) = q(t). Il is readily seen that yjÇ may be zéro 
without ri and Ç being identical. However one notes that YJÇ = ÇYJ and 
if A is a third p-curve that 

(7.6) TiC^^XH-XÇ. 

The set of p-curves at a null Fréchet distance from a given p-curve 
will be called a curve class, or more briefly a curve. 

W e are seeking a parameterization q(p) in w7hich q is displaced 
when p is varied. Parameterizations in terms of arc length hâve this 
property when they exist. Such parameterizations however fail to 
exist for certain curves, and fail to hâve the important property that 
points on n and Ç bearing the same parameter s will be arbitrarily 
near for n fixed and YJÇ sufficiently s mail. It is however possible to 
single out from each curve class a a unique p-curve cp with the 
desired properties. The parameter of cp will be denoted by p and 
termed p.-length, and cp will be called a p-curve. The characlerislic 
properties of thèse jji-curves are as follows. 

a. If ri : p=z p( t) is an arbitrary p-curve of the curve class a, the 
corresponding jx-curve cp takes the form 

where t (p) is a continous non-decreasing function of p on the closed 
interval [o , ^ ( Y Î ) ] . 

b. The value of p at an arbilraryx point q on cp satisfies the 
condition 

(7.7) ^ H ^ > 

where d is the diameter of the set of points preceding q on <p. 
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c. The limit p(n) is a continous function of ri, for ri on the Fréchet 
space of/?-curves, and is independent of rj in the curve class a. 

d. For ri fixed q(n, p) is constant with respect to p on no 
subinterval of [o, p(ri)]. 

e. The function q(n, p) is continuous for ri on the Fréchet space 
and p on [o, p(ri)]. 

The proofs of thèse properties are to be found in M [ 6 ] . 
Cf. Whitney [1, 2] and Fréchet [2] . Whitney deals with curves 
wilhout multiple points. The intrinsic parameterizations of Fréchet 
do not hâve the property e. W e add the following définition. The 
distance between two curve classes A and Ç shall be the Fréchet 
distance between any two/?-curves in the classes A and Ç. It is thereby 
uniquely defined. 

Proof of Lemma 7 .3 . — Under D a point/? of A détermines a tra
jectory which we dénote by ri(p). Regarding ri(p) as a p-curve in 
the Fréchet space. recall that ri(p) varies continously wilh p. 
Let q = q(ri, p) be the « p-curve » in ihe curve class ofn(p). Recall 
that q(ri, p) is continuous in its arguments provided p varies on the 
interval [o, p(ri)]. Set 

(7.8) nh(/> )] = ?(/>) 

whenever the left member of (7 .8) is less t h a n - j where e is the 

constanteoî the lemma. Otherwise letp(p) = - • Set 

?U(/>), tiïip)] = r(j>, t) (pC A ; o ^ i ) . 

The point function r(p, t ) defines a déformation B of A satisfying the 
lemma as we shall see. 

It is clear that the point r(p, t) varies continuously on M for p on A 
and o ^ t <J i. Moreover B is an F-deformalion of A. For its trajectories 
are in the curve classes of subarcs of trajectories of D so that B 
admits the same displacement functions as does D. To show that 0 
is « related » to D we shall first show that the constant <r in the 

définition of the term « related » can be taken as -• For a point p 
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which is displaced at most- under D thereby defines a trajectory n 

on which p(ri)^ - by virtue of (7.7) so that/? has the same trajectory 

under 6 as under D. The remaining points p of A give rise 

to trajectories ri under D for which p(v) > 7 by virtue of (7 .7 ) . 

Such points will define trajectories T under B on which p will 

increase beyond -r The diamelers of ihese trajectories T will then bê 

at least - again by virtue of (7 .7 ) . Thus B is « related » to D. 

Finally no point p of A is displaced a distance greater than e 
under B. For p is deformed under B along a trajectory on which p 

never exceeds - so that the diameter of this trajectory is at most e, 

and the proof of Lemma 7.3 is complète. 

LEMMA 7.4. — / / an F-deformation A of a compact set A 
on F < c carries A into a set d-below c, any « related » F déforma
tion B of A will carry A into a set d-below c. 

The set A is the sum A' + A'7 of sets of the following nature. 
A' consists of points which are displaced at least a distance T under B, 

where T is a positive constant, while A' consists of points deformed 
under B as under A. The closure A/ of A' is compact. Its points are 
displaced under 6 al least the distance T and so are deformed under B 

onto F < c — Ô(T), where 4(e)is the displacement function of 0on A'. 

8. Upper-reducibility and the fundamental theorem. — The func
tion F will be said to be upper-reducible at p if corresponding to 
each constant c>F(p) some neighborhood of p relative to F < c 
admits an F-deformation onto a set d-below c. If F is upper-reducible 
at each point p of a set B, F will be said to be upper-reducible on B. 

A function F which is lower semi-conlinuous is not necessarily 
upper-reducible. For example let M be the semi-circle x2-{~y2=i 
with y>o. Let F(x, y) =y on M for x^o, and let F ( o , 1) = 0. 
The function F(x, y) is lower semi-continuous. It is not upper-
reducible at (0,1). A function which is upper-reducible is not 
necessarily lower semi-continuous. For example let M be the semi-
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circular dise ^ + ^ = 1 wilh j > o . Let F(x,y) = o on M for Xy£o, 
and let F ( o , y)=y, The function F is upper-reducible without 
exception. It is not lower semi-continuous on the positive y axis. 

A function which is continuous at p is upper-reducible at /?. 
For if c>F(p), any sufficiently small neighborhood of p will be 
d-below c, and will remain there under the null F-deformation. W e 
shall see that the functionals of ordinary varialional theory are 
upper-reducible, together with the more gênerai functionals of our 
abstract locally convex variational theory. 

LEMMA 8. I . — Let d be a compact subset of F < c which contains 
no homotopic critical points at which F = c. If F is upper-
reducible at points of Q, there exists an F-deformation A o / F < c 
in which C is carried into a set d-below c. 

Corresponding to each point p of G some spherical neighbor
hood Y(p) of p relative to F<c admits an F-deformation D(p) onto 
a set d-below c. This is true if F(p) = c since p is then homotopi-
callv ordinary, and it is true if F(p) <; c since F is upper-reducible 
at p. Let V'(/?) and Yn(p) be respectively spherical neighborhoods 
of p with radii one third and one sixth that ofY(p). 

Since C is compact there exists a finite set of the neighborhoods 
Y"(p), say V" (/?,), . . . , Yu(pn) which covers C. Upon setting A=pt 

in Lemma 7.2 we infer the existence of an F-deformation Bt of F < c 
which deforms V(/?,) as under *D(pt). Let e be the minimum of the 
radii of the neighborhoods Ylf(p). By virtue of Lemma 7.3 there exists 
an F-deformation Bj « related » to Rt under which no point of F < c is 

displaced a distance exceeding - • The product déformation A = Bn... B{ 

is an F-deformation of F ^ c by virtue of Lemma 7. i . I saj that A 
carries C into a set d-below c. 

Under A, Y"(pt) is deformed on Y1 (pi) since A displaces no point 
a distance greater lhan e. The déformation Bt being « related » to Bj 
deforms anj compact subset of Y'(pi) into a set d-below c in accor
dance with Lemma 7.4- Hence A deforms any compact subset of Y"(pi) 
into a set d-below c. But C is covered by the neighborhoods Yu(pl), 
and so is deformed by A into a set d-below c. The proof of the lemma 
is complète. 

The main theorem of Part II i s as follows : 
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THEOREM 8 . I . — If F is upper-reducible, each cap limit c is 
assumed by F in at least one homotopic critical point p. 

Let M be a /r-cap with cap limite. By définition u admits a compact 
carrier x o n F ^ c while (3M lies on F ^ 6 \ where b' is some constant 
less than c. Suppose the theorem false. According lo the preceding 
lemma there will then exist an F-deformation A of F< c in which k is 
carried into a set on F<6", where b"<Cc \futl is the n th component 
of M, there exists a déformation chain knun of norm en belonging 
to A and un such that 

( 8 . 1 ) $XiUn= Un—fun—tâunj 

where f un is the final image of un under A and where en tends to zéro 
with 7i. Let b be the larger of the constants b' and b". It follows 
from ( 8 . i ) that 

(8.2) un~eno (on F^c mod F <6). 

According to (8 .2) , M is c-homologous to zéro, contrary lo the 
hypothesis that ihe cap limit of M is c. W e infer the truth of the 
theorem. 

9. Critical sets and their type groups. — Tn this section we are 
concerned with the counting and classification of critical points. 
Consider for example a harmonie function u(x. y) which has a 
critical point at the origin at which ail of the partial derivatives up to 
but not including those of the n th order vanish. The function u(x, y) 
is the real part of an analytic function of the complex variable 
z — x -\- iy which has a zéro of the (n — i)st order at s = o. If one 
wishes to use the critical point theorj to dérive and extend the clas-
sical theorems on the number of zéros of an analytic function in a 
given région, il will be necessary to count the origin as if it were a 
non-de gène rate critical point of index one taken n — 1 times, 

A non-degenerate differential critical point of index k naturally 
counts as just one such point. In the gênerai case where a critical set 
is highly degenerate or is more than o-dimensional, it is possible to 
give a group theoretic local topological mode of counting and classi-
fying critical sets. Corresponding to each dimension k one associâtes 
with the given critical set <j a class of isomorphic groups of /r-caps 
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termed the k th type groups of a. The dimension of thèse groups is 
the k th type number of ci. For the case of the harmonie function in 
the preceding paragraph the ist type number will be n—i, the 
other type numbers zéro. The A* th type number of a non-degenerate 
differential critical point of index i is i, the other type numbers o. A 
critical set with A" th type number pk can be regarded as équivalent 
(with respect to certain properties) to pk non-degenerate critical 
points of index k. Our mode of counting critical sets will lead to a 
proof of the following important theorem. 

THEOREM 9. I . — If M is F-accessible and F is upper-reducible 
on F <; i, the sum of the kth type numbers of the respective cri
tical sets on F <C i is at least the smaller of the two cardinal num
bers, alef-null and the kth connectivity 0/' F <C i. 

W e begin with several définitions. By the complète critical set co 
at the level c is meant the set of ail homotopic critical points at which 
F = c. It follows from the définition of a critical point thatto is closed 
relative to the set F = c. By a critical set cr at the level c will be 
meant any subset of to which is closed in to and at a positive distance 
from to — a. A neighborhood of o- which is at a positive distance from 
co — (r will be termed separate. 

Let R be a subset of M. If we regard R as a space M, a /:-cap rela
tive to R has a new meaning dépendent on R. The type groups which 
we shall associale presently with each critical set <j should be defin-
able in terms of the values of F on arbitrarily small neighborhoods 
of <J. To this end the following theorem is fundamental. 

THEOREM 9 .2 . —Let V be a separate neighborhood of a critical 
set a at the level c and suppose that F is upper-reducible on 
F<,c. 

a. If u is a k-cap relative to U with cap limit c, u is a 
k-cap relative to M. 

b. If u is a k-cap relative to U with cap limit c, u is c-homo-
logous onXJ to a k-cap on an arbitrarily small neighborhood ofer. 

In proving this theorem the closure of the e-neighborhood of a 
subset g of M will be denoted by g*. 
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Proof of (a). — I f ( a ) were false there would exist a formai 
(k + i)-chain w o n F < c together with a formai k-cudiiuy d-below 
c such that 

(9. i) $w = u —y . 

W e shall show that there then exists a formai (k-\- i)-chain w1' on 
U and a formai / r -cha iny on U and d-below c such that 

(9.i )' Zw"=u—y% 

thereby contradicting the hypothesis that M is a /r-cap relative to U 
with cap limit c. 

Let w be the complète critical set at the level c and let T = co — a. 
Let x be a carrier of M on U and on F^c. Let e be a positive constant 
so small lhat cr'ie and x3e are on U while r'ie and U are disjunct. 
Without loss of generality we can suppose lhat w and M admit the 
norm e/3. 

Let B be a carrier of w onF<c wilh B ~) x. The sets B and x are 
compact. Let C be the closure of B — Bwff. The set C is compact and 
contains no points of to. According to Lemmas 8 . i , 7.3 and 7.4 
there exists an F-deformation B of F < c which carries C into a set 
d-below c but displaces points of F < c distances less than e/'d. The 
images of M and w under B then admit the norm e. We see that B—G 
is on to* and is deformed on to4>e under B. Indicating final images 
under B b j prefixing/we see that 

(9.2) / B = / ( B - G ) + / G C ^ + /G 

where / G is a compact set d-below c. 
Let the n th components of the formai chains w, u, etc., be denoted 

by wn, un, etc. Corresponding to B let Dfl be a deformalion operator 
belonging to un with norm en tending to zéro as n becomes infinité. 
W e hâve the relation 

(9.3) $Dniin= un — fun—Dn$un (AI not summed). 

From the commutativity of (3 and / , and from (9. i) we see that 

(9.4) ?f">n=fbWn = fUn-fyn. 

Upon adding the extrême members of (9.3) and (9.4) we find that 

(*5) ?<=un-yn 
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where 
y'n =fyn+ D„Pwn , W'n= T>nUn-*-fWn. 

W e set y' = (y'n') a n c l w ' = (w'n)' The formai chain y' is d-below c 
since y and [3 M are d-below7 c. Moreover Dnun is onxe since M is onx, 
while fw is o n / B since w is on B. Hence w' admits a carrier x' such 
that 

(9.6) x 'C* c-+-/BC> e H- w9e-h/C. 

Thus cells of w' intersect x e + co2e or are o n / G . 
Let w" be the formai /:-chain oblained by dropping ail cells from 

the components of wr save those which meet x e + <j2e. The cells of w' 
admit the norm e so that w" has the intersection of x' with x2e? - j - <r3<f 

for a carrier. This carrier is on U. With w" so defined j " " in (9. i) ' is 
d-below c. For 

(9.7) (W = P«/H- £(<*>"— W'\ 

or upon using \9 .5 ) , 

(9.8) p«/=M — / - h p(w*— w'). 

To show that j3(w"—w') in (9.8) is d-below c, note that cells of 
w"— wf are on x' [see (9.6)] but do not meet x* -f- v2e, and accordingly 
intersect T°* or are o n / G . Referring to (9.7) recall that cells of fiw" 
do not intersect T-e nor do cells of $w' [see (9.5)] excepting at most 
cells of y1. Relation (9.7) then implies that fi(w"—w') has a carrier 
d-below c. Returning to (9.8) we conclude lhat y" in (9 . i ) ' is 
d-below c. Statement (a) follows as indicaled. 

Proof of (b). — With B = x (9.3) holds without the assumplion 
that (a) is false. Hence u and fu are c-homologous 'on U. But fu is 
on / B . Upon referring to (9.2) we see that cells of fu either 
intersect c0* or are on / G . Upon dropping ail cells offu which do 
not intersect v-e one obtains a /r-cap v on en**, c-homologous lo fu on 
U. Since <j2e is on an arbitrarily small neighborhood of <r for e suffi
ciently small, we conclude that M is c-homologous on U to a /r-cap v 
on an arbitrarily small neighborhood of <J. The proof of (b) is com
plète. 

Let (r be a critical set at the level c. A /r-cap M with cap limit c 
will be said to be associated with <j if M is c-homologous to a /:-cap 
on an arbitrarily small neighborhood of o*. Two isomorphic groups of 
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/:-caps with cap limit c will be said to be cap-isomorphic if corres
ponding éléments are c-homologous. A maximal group of /r-caps 
associated with a critical set a will be called a k th type group of <7. 
It follows at once from the définitions that any two k th type groups 
of «r are cap-isomorphic. The dimension of a k th type group of <J 
will be called the k th type number of a. That thèse type numbers 
and type groups (with cap-isomorphic groups regarded as équivalent) 
dépend only upon F in arbitrarily small neighborhoods of o- is shown 
by the following theorem. 

THEOREM 9 . 3 . — A maximal group g of k-caps with cap limit c 
relative to any separate neighborhood of a critical set a at the 
level c is a kth type group ofa. 

It follows from Theorem 9.2 that each /r-cap of g is associated 
with a. That ^ is a maximal group of /r-caps associated with o-
on M is seen as follows. Any /r-cap associated with <J is* c-homologous 
on M to a /r-cap v on U. Since v is a /r-cap relative to M it is a /r-cap 
relative to U. Since g is maximal among /r-caps relative to U with cap 
limit c, for some /r-cap w in g, v — w is c-homologous to zéro, and 
hence not associated with a on M. Hence g is a k th type group of <r. 

THEOREM 9.4- — Let the complète critical set w at the level c be 
represented as a sum of disjunct critical sets a1, i = i, . . ., n, 
and let g1 be a k th type group of a'. Then the groups g1 admit a 
direct sum g, which is a kth type group of <o. 

Without loss of generality we can suppose that the /r-caps of g1 lie 
on neighborhoods U* of the respective sets a1 at positive distances from 
each other. For Theorem 9 .3 affirms that there exists a kth type 
group on U', cap-isomorphic with g1. W e suppose then that the 
/r-caps of g1 are on U'. Let M1, . . . , ur be /r-caps belonging to dis
tinct groups g1. Let U be the sum of the neighborhoods U1. That 
M1 -f-. . . -f- M7 = M is a /r-cap with cap limit c relative to U may be 
seen as follows. The neighborhoods U1 arevat a positive distance from 
each other so that if M were c-homologous to zéro ou U, then uJ 
would be c-homologous to zéro on U^ for each uJ, contrary to the 
nalure of uK Hence u is a /r-cap with cap limit c relative to U. It 
follows from Theorem 9.2 (a) that u is a/r-cap with cap limit c rela-
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tive to M. Thus the groups g1 sum to a group g of /r-caps with cap 
limit c. By virtue of Theorem 9 . 2 ( 6 ) each /r-cap of g is associated 
with co. 

That g is a maximal group of /r-caps associated with <r may be seen 
as follows. Each /r-cap v with cap limit c is c-homologous to a /r-cap 
on the above neighborhood U of to by virtue of Theorem 9.2 (b). Since 
the groups g1 are maximal on their respective neighborhoods U% v is 
then c-homologous to a sum of /r-caps of the respective groups g1. 
Thus g is maximal as stated. The proof of the theorem is complète. 

COROLLARY 9.4- — The kth type number of a complète critical 
set to is the sum of the kth type numbers of any finite set of dis-
junct critical sets summing to to. 

Proof of theorem 9. i . — W e base the proof of this theorem on 
Corollary 4 .3 and the following statement. 

( a ) . Under the hypothèses of the theorem the kth type number 
of a complète critical set at the level c < i is at least the dimen
sion of a maximal group g of non-bounding k-cycles with cycle 
limit c. 

Each A"-cycle of g is homologous to a /r-cycle on F < c . Without 
loss of generality we can suppose that g consists of cycles on F ^ c . 
The cycles of g are then canonical ( § 2 ) . They are also /r-caps with cap 
limit c by virtue of Theorem 3 . i. There accordingly exists a /r th 
type group of to with g as a subgroup. Statement (a) is accordingly 
true. Theorem 9. i now follows from Corollary 4 . 3 . 

10. Non-degenerate critical points. — We shall apply the prece
ding theory to the case where M is a regular n-manifoldofcl&ssG*, 
that is to the case where M is a compact Hausdorll topological space 
with the following properlies. Some neighborhood of each point/? of 
M can be mapped homeomorphically onto a région U of a euclidean 
7i-space of rectangular coordinates (x) such that whenever points (x) 
and (z) belong to two such neighborhoods and define the same points 
on M, the relation between the coordinates (x) and (z) is given by a 
non-singular transformation z*=zl(x) of class C3 . Neighboring any 
point q of U we admit any System of coordinates (z) obtainable from 
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the coordinates (x) by a non-singular transformation zl=zl(x) of 
class C3. W e suppose moreover that the function F on M reduces to 
a function 9(x) of class C3 in terms of each admissible set of coordi
nates (x). 

A differential critical point (a) of y(x) will be termed a diffe
rential critical point of F . The point (a) will be termed degenerate 
if the hessian of 9 vanishes at (a). W e assume that the differential 
critical points of F are non-degenerate. In such a case F is termed 
non-degenerate. As in the introduction the index of a differential 
critical point (a) shall be defined as the index of the quadratic form 
whose coefficients are the éléments of the hessian of cp at (a). From 
the non-degeneracy of F it follows that the critical points of F are 
isolated. 

Since M is compact the critical points of F are finite in number. 
W e shall show7 that a non-degenerate differential critical point cr is a 
homotopic critical point, and shall evaluate the j th type number 
ofor. W e begin with the following lemma. 

LEMMA 1 0 . 1 . — If (?(x) has a non-degenerate critical point of 
index k at the point (x) = (o), there exists a non singular trans
formation y l=yl(x) of class G1 under which 

(lO.i) ^x)-9(o)=-y*-...-yl+yl+i+... + yn 

neighboring (x) = (o). 

EmployingTaylor's formula with the intégral form of theremainder 
(JORHAN, Cours d1 Analyse, vol. I, p. 249) we find that 

(10 .2 ) 9(3?) — 0 ( 0 ) = alj{x)xixj (i,j = i, . . . , n), 

( 1 0 . 3 ) ctij(x) = / (1 — u)oXiXj(uxu . . . , uxn)du. 

It follows from (10.3) that ajj(x) is of class C1 neighboring (x) = (o) 

and that a i y (o )= ^<p.r, *,(<>). 

In particular the déterminant | aij(o) | ^ o. 
If the coefficients ctij(x) were constants, the Lagrange mode of 

réduction would carrj cp into the form (10.1). Proceeding formally 
as if the coefficients ajj(x) were constants we can still effect this 



FUNCTIONAL TOPOLOGY AND ABSTRACT VARIATIONAL THEORY. 45 

réduction. In particular if a n (o) ^£ o, the substitution 

(10 .4) * 1 = l 7 S *2=#2, . - . , Zn=Xn 
«11 

reduces 9 to the form 

(10.5) ?(a?) —9(o) = a n * ï •+- blj(x)ziz1 (i,j = 2, . . . ,71). 

If at least one of the coefficients a r r ( o ) ^ o , a substitution of the 
form(10.4) is applicable after interchanging the \ariables X\ and xr. 
If each of the coefficients a r r(o) = o, at least one of the coefficients 
a]r (o)^é o. After a change of variables of the form xK = x\ — x'r, 
xr-= x\ -\- xr, a substitution of the form (10.4) willagainbe possible. 
Thus in any case one is led to a quadratic remainder of the form 
bij(x)ztZj (i, j•= 2, . . . , n) to which the same method of réduction 
is applicable. Transformations such as thèse clearly are non-singular 
and of class C1 neighboring the origin in the respective spaces (x), 
(z), etc., and lead to a représentation of y(x) of ihe form 

z(x) — ?(o) = ct(z)zf [ci(o) ?É o], 

where the coefficients ct(z) are of class G'. A further réduction to 
the form (10.1) is immédiate, and the proof of the lemma is com
plète. 

THEOREM 10. I . — A non-degenerate differential critical point 
a of index k is a homotopic critical point whose jth type number 
equals the Kronecker à[. 

W e suppose that F(o-) — o and that cr is represented by the point 
(y) — (o) in a coordinate System (y) in which F takes the form 

(10.6) F = - j ? - . . . - 7 2 + 7 / 2 + i + . > . + 7 ? n 

as described in Lemma 1 0 . 1 . Let r be so small a positive constant 
that the transformation of ihe lemma holds whenever yty^ r2. Let A 
dénote the set of points (y) for which 

(10.7) F^o, ytyt<r* 

and let A' dénote the subspace of A on which F < o. The set Aforms 
a neighborhood of o- relative lo F < o free from differential critical 
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points other than cr, and hence free from homotopic critical points 
with the possible exception of a. W e shall détermine the dimension 
PJ of a maximal group of/-caps relative to A. 

If the index k of the critical point <r is zéro, A consists of the point 
<r alone, and the theorem is immédiate. We suppose therefore that 
k > o. W e note that A can be radially deformed on itself onto the 
origin. W e continue with a proof of the following stalements. 

(a). The homology groups of Ar are isomorphic with those of 
the (k — i) sphère; (b). If uisa j-cap relative to A, (3 M ̂  o on Af. 
(c). If M is a j-cap relative to A, j = k. (d). A maximal group of 
k-caps relative to A has the dimension p = i . 

The reader will find it helpful to maLe a diagram of the sets A and 
A' in the case where F =y* — y] in the yK Ko-plane. 

Proof of (a). — The space A' can be radially deformed on itself 
onto the subspace 

(10.8) F < o , o<yiyi<:Ç 

holding this subspace fast. The set (10.8) can then be deformed onto 
the subset 

' r9 

(10.9) o < 7 ? +----+-7/^ 7» yk+i = ... = yn=o, 

h o l d i n g ^ , . . . . yk fast and le tting each \yj\ for which j =. k -f- i , . . . , 
n decrease a unit of time at a rate equal to ihe initial value of \yj |. 
The set (10.9) can be radially deformed on itself onto its spherical 
boundary 

r2 

(10.IO) ^ + . . . - 1 - ^ = —, , ^ + 1 = . . . = ^ = 0 . 

The preceding déformations leave the (k — i)-sphere (10.10) fixed. 
Statement (a) follows from the following readily established prin-

ciple : (i). When a space 2 can be continuously deformed on itself 
onto a subspace S holding S fast, the /r thv homology groups of 2 and S 
are isomorphic for each /r. 

Proof of (b). — We shall assume (b) false and seek a contradic
tion. Let x then be a carrier of the homology (3 M ^ o on A'. The set x 
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is d-below o. Let un be the nth component of M. There exists an 
algebraic y-chain wn on x bounded by (3 un with norm en tending to 
zéro as n becomes infinité. We hâve in un — wn an algebraic y-cycle 
on A. Let B be a radial déformation of A into the origin, and let / b e 
prefixed to dénote final images under B. Let D„ be a déformation 
operator belonging to B and to un and wn. Upon referring to (1.4) 
we see that(3D„(Mn — wn) = un— wn (n not summed) since f(un— wn) 
coincides with the origin and is null. Since wn is on x we conclude 
that ur^j o on A modx, contrary to the assumption that M is a /-cap 
relative to A. We infer the truth of ( b). 

Proof of (c). —If Mis a y-cap relative to A, (3 M ^ o on A'in accor
dance with (b). It follows from (a) that y = i or /r. If (c) is false, 
y = i and / r > i . For k > i, the space A' admits the connected 
deform (10. io) so that ( 3 M ^ O on A'. From this contradiction we 
infer that (c) is true. 

Proof of (d). — W e begin by showing that p > i . The set A' 
contains a non-bounding (k — i)-cycle v on ihe (k — i)-sphere x 
defined by (10. io). Let vn be a component of v of norm en, and let 

(10.u) 8 A L . . \ * ( « O ) 

represent an arbitrary term in the reduced form of vn. Let P dénote 
the origin in the space A. The sum 

(10 .12) 2 8 P A i . . . A * 

of terms derived from the terms (10.11) of vn b j adding the vertex P 
will be an algebraic /r-chain zn such that fizn= vn. Corresponding to 
each algebraic cell a of zn there is a straight cell (possibly degenerate) 
on A whose verlices are the vertices of a. It is accordingly possible to 
subdivide zn by introducing the barycenters of cells of zn as new ver
tices, so that after a finite number of subdivisions zn is replaced by 
an algebraic chain un of norm en. We shall perform this subdivision 
without introducing any new vertices corresponding to cells of vn so 
that we shall still hâve fiun=vn. 

I say that (un) is a Vietoris Zr-cycle mod x. For the homologies 
Connecting the components of vn are defined by relations of the form 
fiwn=vn-hi — vn, where wn is an algebraic /r-chain on x. One can 
insert the vertex P in each term of wn as in (10.12) obtaining thereby 
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a (k-\- i)-chain w'n such lhnlfiwn= — zn^-{-Zn-i-wn. One can then 
subdivide w'n as we hâve subdivided zn including the new vertices 
of cells of zn+\ and zn in the process, obtaining thereby a new 
(Zr+i)-chain w"n with fiw"n = — un+i + un~h wn. Hence (un) is a 
Vietoris /r-cycle mod x, as stated. 

W e conclude by showing that p=i. Let M and v be two /r-caps 
relative to A. The boundaries (3 M and (3p are (k — i)-cycles on A'. It 
follows from (a) that there exists aproperhomologj 

( 1 0 . i 3 ) Bi$u-hh*$f>~o ( o n A ' ) . 

Now ô< M -f- d2v is a /r-cycle z mod A'. But fiz ~ o on A' in accor
dance with (10.13) so lhat it follows from (b) that z cannot be a 
/r-cap relalive to A. Hence p = i, and the proof of (d) is complète. 

W e return lo the proof of the theorem. W e hâve seen that there 
is at least one £-cap relative to A with cap limit o. It follows from 
Theorem 3 . i that there must be at least one homotopic critical point 
at the level o. This point must be a. That the yth type number of o-
is (¾ now follows from (d) , and the proof of Theorem 10. i is com
plète. 

There is at most a finite number of critical points of a non-
degenerate function F , so lhat the sum of the k th type numbers of 
the critical points of F is finile. The preceding theorem and Theorem 
9. 1 accordingly hâve the following corollary. 

COROLLARY 10. I . — The number Mk of critical points of index k 
of a non-degenerate function F is at least the kth connecti
vity of M. 

Suppose that the preceding manifold M lies in an (n + i)-dimen-
sional euclidean space E. Let Q be a point in E, not on M. We shall 
apply the preceding theory to détermine the minimum number of 
normals to M which pass through Q. The function F(p) shall be ihe 
distance from Q to an arbitrary point on M and will be of class C3 

in terms of the local coordinates of M. Ojie sees that a necessary and 
sufficient condition that a point q on M be a critical point of F is that q 
be the foot of a normal from Q to q. Recall that there are n focal 
points (centers of principal normal curvature) of M and q on the 
normal to M at q. Some of thèse focal points may however be at the 
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« point at infinity » on the normal. One can easily prove the following 
(M[2] , p. 4o3) : The index of a critical point q of F equals the num
ber of focal points of M and q which lie on the normal Qq between Q 
and q exclusive. The point q is a degenerate critical point if and 
only if Q is a focal point of M and q. We can accordingly state the 
following theorem. 

THEOREM 10.2. — Suppose Q is not a focal point of M. Of the 
nor mais from Q to M cutting M orthogonally at points q onM the 
number on which there are k focal points of M and q between Q 
and q is at least the kth connectivity of M. 

Suppose that the preceding manifold M again lies on an ^ 4 - 1 ) -
dimensional euclidean space E, and that il is the homeomorph of an 
7i-sphere. We shall consider chords which eut M orthogonally at 
both ends and term such chords critical chords. Lel p and q be 
arbitrary points of M and let F(p, q) be the dislance between p 
and q. When/? ^é q a necessary and sufficient condilion that F hâve 
a critical point in terms of ihe local coordinates ofp and q is that the 
chord pq be critical. The space of the independent variables is the 
space of ihe pairs (p, q) wilh p and q on M, (p, q) identified with 
(q, p), and with cells on which p = q regarded as null. Ils connec
tivités in the field of integers mod 2 were first shown by the writer 
to be null (M[3]) except that Rn = Rn+\ ==... = R2« = 1 • For Vie-
loris cycles thèse connectivities are the same, as one can readily 
show. Hence we hâve the following theorem. 

THEOREM 10 .3 . — In case the chord length F(p, q) is non-
degenerate (p^q), andMis the homeomorph of an n-sphere, there 
exists a set of critical chords ofM which correspond respectively 
to critical points oj F(p, q) whose indices r un from n to in 
inclusive. 

Applications of the critical point theory to harmonie functions of 
two or three variables hâve been made by Kiang. 
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PART III. 

VARIATIONAL THEORY. 

11. The space Œ. — We shall apply the preceding theory to the 
problem of finding extremals joining two fixed points a and b. The 
underlying space shall be a connected metric space 2 with a symmetric 
distance function pq. The space of ail sensed curves (curve classes, 
§ 7) joining a to b on 2 will be denoted by Q(a, b). The metric of 
Q(a, b) will be that defined by the Fréchet distance between curves. 
The space Q(a, b) will replace the space M of the preceding theory. 
The function F will be defined for each élément A of £2 and will be a 
generalized « length ». The case of the space Q and corresponding 
function F is typical of a class of gênerai boundary value problems 
defined and discussed in Chapler VII of M [5] . The space of closed 
curves leads to difficullies of a différent character and will not be 
discussed hère. See Ghapter VIII of M [5] . 

Before introducing F it will be désirable to investigate the manner 
in which the /r th homology group HA(a, b) of Q(a, b) dépends on 
the points (a, b). Understanding that the symbol 0 is read « is iso
morphic with » we see that 

(11.i) H * ( a , 6 ) 0 H * ( è , a ) . 

W e shall extend this resuit by proving the following theorem. 

THEOREM 1 1 . I . — IfZis arcwise connected, 

(U.2) H*(a,6)0H*(c,aO, 

where (a, b) and (c, d) are arbitrary pairs of points on 2 . 

W e begin by showing that 

(11.3) H*(a ,6 )0H*(c ,6 ) . 

Let 0 be a curve joining c to a and A a curve joining a to b. Let 0X 
dénote the curve obtained by tracing0and A successively. The curve 
0X joins c to b and lies on Q(c, b). W e thus hâve a continuous map 
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of Q(a, b) onto &(c, b) in which A on Q(a, b) is replaced by 0A on 
il(c, b). A cycle z on£l(a, b) will thereby be replaced by a cycle on 
&(c, b) which we dénote by 0£ . Let 0 - ' be the curve obtained by 
reversing the sensé of 0 . Let M be a /r-cycle on &(c, b). Then 0- 1 M 
is a /r-cycle on £l(a, b) and 0 0 - ' M is a /r-cycle on Î2(c, b). W e shall 
prove the following : 

(i). The cycle u can be continuously deformed on û ( c , 6) 
into 00-» M. 

To that end let p=p(z) with o < r < i be a /?-curve in the curve 
class 0 and let 0£ dénote the curve class defined by p=p(t) when 
° = T = ^ ^ e t ^ ke t n e déformation of Œ(c, 6) in which each curve A 
on Q(c, b) is replaced at the lime t by the curve 0,0^-1 X, ( o < £ < i) . 
Under D, M is deformed into 00-* M. 

W e return to the proof of (11.3) and set up an isomorphism 
between the groups HA(a, b) and HA(c, b). To a cycle z ofQ(a, b) 
shall correspond the cycle Sz of û ( c , b). If .(3,5= M on il(a, b) it 
follows from the fact thaï (3 and 0 are commulalive that(3 Sz = 0(3 z = 0M 
on û ( c , 6). Thus bounding cycles go into bounding cycles, and each 
homology class of HA(<z, 6) détermines a unique homology class of 
HA(c, 6). That the above mapping is an operator homomorphism 
follows from the fact that 0 ( M + v) = 0 M + ®v, 0 ( Ô M ) = Ô ( 0 M ) 
for formai /r-chaîns M and r on Q(a, b). It remains to show lhat this 
homomorphism is an isomorphism. 

The mapping leads to each homology class y of HA(c, b). In par
ticular if M is a cycle of y, 0 - 1 M is on &(a, b). Its image 0 0 - ' M on 
&(c. b) is homologous to u, and so is in the given homolog} class y. 
To show that the homomorphism is one-to-one we hâve nierely to 
show that the null class of HA(c, b) is the map of the null class only 
in HA(a, b). Let M be a cjcle on Q(c,b) with M ^ o. Suppose that M 
is the image of v on Q(a, b). Then 0 ^ r v « on Q(c, b), and hence 
0 ^ ^ o . It follows thaï 0 - ' 0 p ^ o on Q(a, b). But 0 - ' 0 p ^ p on 
Q,(a, b) so that v ~ o. Thus the mapping 0 defines an isomorphism, 
and (11.3) is proved. 

To establish (11.2) we note that the opération of replacing a by c 
in HA(a, b) or of interchanging a and b leads to a group isomorphic 
with HA(a, b). We can thus successively replace (a, b) by (c, b), 
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(b, c), (d , c) and (c, d ) , oblaining finally a group HA(c, d) isomor
phic with HA(a, b). The proof of the theorem is complète. 

, 12. The secondary metric [pq]. — The function F will be defined 
in term of the secondary metric [pq]. The new distance [pq] shall be 
defined for each pair of points of 2 and hâve the following properties 

[pq] = o iîp = q, [pq]>o if p ^ q, [pr]ï[pq\ + lqr]. 

The ordinary distance will again be denoted by pq. 
W e do not assume that [pq] = [qp]- W e suppose that [pq] is 

continuous in p and q for p and q on 2 . Cf. Menger [4] , 
The function F(X) will be defined for each curve X of £l(a, b). 

Let Ç be anyy?-curve in the curve class X. Lct(/?) =zp0Jpl,. . ., pn be 
a set of successive points on Ç. The sel (/?) will be termed a partition 
of X of norm 5 if the maximum of the distances ptpt^\ is less than S. 
We term 

S = S [PiPi+ l ] (¢ = 0 , 1 , . . ,rc — i ) 

a sum approximating J(X), and define J(X) as ihe least upper 
bound of such sums S for ail partitions of X. W e term J(X) the 
J-length of X. The J-length may be finite or infinité. W e set 

F(X)= J W 
I H - J ( X ) 

when J(X) is finite, and set F(X) = i when J(X) is infinité. 
The proof of the following theorem can be readilj supplied by any 

reader familiar with the ordinarj iheor} of length. 

THEOREM 12. T . — The J-length J(X) is the limit of any séquence 
of sums Sn approximating J(X), provided the norm Sn of the cor-
responding partitions tends to zéro as n becomes infinité. 

The following theorem is of course w7ell-known. 

THEOREM 12.2. — The J-length J(X) is a lower semi-continuous 
function ofk in the space of the curves X. 

Corresponding to each curve r\ and constant a < J ( y } ) we shall 
show that there exists a positive constanl ô' such that J ( Ç ) > a 
whenever YJÇ < 8'. Let b be a constant between a and J(yj). By virtue 
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of the définition of J(YJ) there exists a partition p0,. . . , pn of TQ such 
that 

(12.1) 2[ptpM]>b ( ï = 0, . . . , 7 1 - 1 ) . 

For n fixed we choose d so lhat o <C 2nà < b — a. If rfc < S' there 
exists a homeomorphism T between /?-curves of the curve classes ri 
and Ç such lhat the correspondent qx of pt has a distance from pt at 
most 3'. For fixed points/?, we suppose ô' so small that the secondary 
dislances [/>/</(] are less than è. From the triangle axiom we infer that 

[qiqt+i]> [piPi+i] — 2Ô (i not summed), 
( l z . 2 ) 

[qiqi+i] > [piPi+i] — 2nà (i summed). 

It fol!ow7s from (12. i) and (12.2) , together with the relation 
2 7iô <C b — a, that 

Hï)Zb-(b-a) = a 

and ihe proof of the theorem is complète. 

LEMMA 12. I . On any compact subset A of 2 , pq is less than a 
prescribed positive constant e whenever [pq] is less than asuitably 
chosen positive constant S where o dépends upon e but not upon 
the choice of p and q on A. 

If the lemma were false there would exist an infinité séquence of pairs 
of points ptl, qn of A such thaï [ /7 ,^ ] tends lo zéro as n becomes infi
nité, while pnqn is bounded from zéro for ail n. The pairs pn, qn 

would then hâve at least one cluster pair/?0, q° since A is compact. 
W e see that [p°q°]=zo since [pq] is a continuous function of p 
and q. Hence p°=q° so that p°q°= o. The distance pnqn cannot 
then be bounded from zéro. From this contradiction we infer the 
truth of the lemma. 

13. Finite J-compactness of 2 . — If for each fixed point p of 2 
and finite constant c the subset [pq]^c of 2 is compact, 2 will be 
said to be finitely J-compact. If 2 is compact it is clear that it is 
finitely J-compact. If 2 is a euclidean 7i-space and [pq] is the ordi
nary distance, 2 is finitely J-compact. W e assume that 2 is finitely 
J-compact. 

In proving the next theorem we shall need several new terms. An 
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ordered set of n 4- i successive points on a curve X, including the end 
points ofX and dividing X into n successive arcs of equal J-length, 
will be termed an n-set of X. W e continue with the following lemma. 

LEMMA 13 . I . — The curves X of Q(a, b) on which J is at most a 
finite constant c are divided by n-sets into arcs whose diameters 
tend to zéro uniformly as n becomes infinité. 

By the J-diameter of a point set A is meant the least upper bound 
of distances [pq] between pairs of points of A. Observe that ihe 
J-diameter of a curve is al most ils J-length. If J (X)<c, the J-dia-
meters of the arcs hl into which X is divided by an 7i-sel are at most 
c\n and so tend to zéro uniformlj wilh n. But the points of 2 on 
curves issuing from a with J <c are points p of the set [«/>]^c» and 
this set is compact since 2 is finitely J-compact. Each of the above 
arcs hh is on this compact set. It follows from Lemma 12. i that the 
diameter of hh is less than a prescribed positive constant provided n 
is grealer than some integer N dépendent onlj on c. The proof of the 
lemma is complète. 

The following theorem is well-known when the primarj and secon
dary metrics are identical. Its proof hère dépends upon the finite 
J-compactness of 2-

THEOREM 13 . I . — The set of curves of Q(a, b) whose J-lengths 
are at most a finite constant c is compact relative to the metric 
o / Û ( a , 6 ) . 

Let X be an infinité séquence of curves of £2(a, b) with J at most c. 
Because of the finite J-compactness of 2 there will exist a subse-
quence (X)i of X such that the 2-sets on curves of (X) converge to a 
set of three points on 2 . Proceeding inductively we see that there 
will exist a set (X)1, (X)2 , . . . , of subsequences of X such that (X)m is 
a subsequence of (X)m_>, and the 2m-sets on the curves of (X)m 

converge to a set of points p°m,..., /?*" on 2 . W e shall define a//-
curve p = p(t) ou 2 with o < t< i. For each m > o w e set 

(«•o '(£)- Pn (r = 0, i , . . . , 2 » ) , 

observing that the définitions (13 . i) are consistent for successive 
values of m. 
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If t' and t" are any two values of t for which p(t) is defined we see 
that 

(13.2) [p(np(n]<>c\t"-t'\. 

Let t* be an arbitrary value of t on the interval (o, i) and let (tn) be 
an infinité séquence of values of t for which p(t) is defined and which 
tend to t* as n becomes infinité. It follows from (13.2) that the points 
p(tn) form a Cauchy séquence relative to the secondary metric. But 
thèse points lie on the compact subspace of 2 consisting of points/? 
such that [ap]^o. It follows from Lemma 12. i lhat the points p(tn) 
form a Cauchy séquence relative lo the metric/?^ and converge to a 
point q independent of the séquence (tn) converging to t*. W e set 
p(t*) = q and observe that (13.3) then holds for ail values of t' and 
tn on the interval (o, i) . 

Let Ç be the curve defined by p =p(t). Let (c*) be a séquence of 
positive constants tending to zéro as /r becomes infinité. Correspon
ding to <?/, Lemma 13. i implies the existence of an integer m = m* 
so large that each of the arcs into which a curve r\ of & for which 
J < c is divided by its 2™-set has a diaineter al most ek. W e suppose 
m also so large that the arcs ofp(t) for which 

(13.3) ^ 1 ^ ^ (r = i , . . . , 9 » ) 

have diameters at most c*. Wilh m so chosen let r\k be a curve of 
(X)m such that the points of ihe 2m-set of r\k are at distances at 
most ek from the corresponding points pr

m onÇ. If r}[ is the r th of the 
arcs into which a 2m-set divides YJ* and Ç' is the arc of Ç for which 
(13.3) holds we see that for m = m\ the distance of r\r

k from Çr is at 
most 3c*. It follows that the distance Y^Ç is at most 3c*. The séquence 
r\k thus converges to Ç. By virtue of the lower semi-continuity of J(X), 
J(Ç)^c- The set of curves of û ( a , b) for which J < c is accordingly 
compacl, and the proof of the theorem is complète. 

Finite J-compactness thus implies the compaetness of the subsets 
F ^ c < i. But we have seen in Theorem 5.2 that the compaetness of 
the subsets F ^ c implies F-accessibility, in this case F-accessibility 
of Q(a, b). Hence we have the following corollary of the theorem. 

COROLLARY 13 . I . — The fini te J-compactness of 2 implies the 
F-accessibility of£l(a, b). 
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14. Spaces 2 locally J-convex. — The principal hypothèses of the 
gênerai theory were the F-accessibility of the space and the upper-
reducibility of F . In our variational theory we have seen that the 
finite J-compactness of 2 implies the F-accessibility of il(a, b). Upon 
adding the assumption that 2 is locally J-convex the upper-reducibil-
ity of F will be implied as we shall see. 

A simple sensed curve X joining two points p and q will be termed a 
right arc if a point r lies on X when and only when 

(14.1) [Pq] = [pr] + [rq]. 

We assume that 2 is locally J-convex in the following sensé. With 
each point p of 2 there ^hall be associated a positive number p(/?) 
continuous in/? and such that when q^p and [pq]$p(p), p can be 
joined to q on 2 by a right arc E(/?, q), every subarc of which is a 
right arc. W e term E(/?, q) an elementary arc joining p to q, 
applying this term only in the case where [pq] ^p(p)-

The condition on an elementary arc lhat every subarc be a right 
arc is a conséquence of the other condilions on an elementary arc in 
the case where p(p) is a constant. That subarcs of a right arc are not 
necessarily right arcs is shown by an example due lo Dr. Busemann. 
Let ihe space M be a unit segment o ^ # < i of a straighl line. Let the 
secondary distance [xy] between two points x and y, x < j , on this 
segment be defined by the formula 

[xy] = \x—y\\ i-+-imin(#, i — y)l. 

When either point is an end point of the unit segment this distance 
reduces to \x—y\ so that the whole arc is a right arc. One sees 
however that subarcs for which x -+-y ^é i are not right arcs. If 2 is 
a regular manifold of class G3 géodésie arcs of suitably restricled 
lenglhs are elementary arcs, as we shall see in § 16. The following 
theorem is an immédiate conséquence of the définition of an elemen
tary arc. 

THEOREM 14. I . — There is at most one elementary arc joining 
a point p to a point q. 

THEOREM 14 .2 . — The J-length of an elementary arc E(/?, q) 
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equals \pq] and is a proper minimum relative to the J-lengths of 
ail curves which join p to q on 2 . 

Let pK, ..., pn be a set of points which appear in the order written 
on E(/?, q). Any segment of an elementary arc is a right arc. It then 
follows inductively for n = i, 2, . . ., that 

(14.2) [pq] = [pPl] •+- [pipt]+...+ [pnq]. 

Hence the J-length of E(/?, q) equals [pq]. 
Let X be any « curve «joining/? to q. It follows from the définition 

of J-length that J (X)^[ /?#] . It remains to show that J ( X ) > [ / ? # ] 
when a is not the elementary arc E(/?, q). The proof fails into two 
cases. 

Case I. The curve X contains a point s not on E(/?, q). Case IL 
Each point of X is on E(/?, q) but l^àF(p, q). In Case I, 

*KA) = [P5] "+" [S(j] > [PQ]) an(^ *-ne P r 0°f is complète. In Case II there 
must be distinct points r and s on X and on E(/?, q ) which appear in 
the order rs on E(/?, q) but in the order sr on X. Then 

J(X)^ [ps] -h [sr] -f- [rq] > [ps] -H [rq] > [ps] -+- [sq] = [pq], 

and the proof is complète. 

THEOREM 14.3. — Corresponding to any one-to-one continuous 
représentation r = r(t) of an elementary are joining p to q, the 
distance [pr(t)\ is a continuous increasing function of t. 

The continuity of [/?/*(£)] ls a conséquence of the continuity of 
r(t), and of[/?r] as a function of/? and r. To show that [pr(t)]is an 
increasing function of t we note that 

(14.3) [ ^ ( 0 1 = ^ ( 0 1 + 1^(0^(0] 

when o ^t < tf, so that 
[P>'(t')]>[pr(t)l 

and the proof is complète. 
W e are able to prove a theorem which is much slronger than 

Theorem 14 .3 . To formulate this theorem let F(pq) be an elemen
tary arc with variable end points/? and q. Let t be a number between 
o and [pq] inclusive. Let the point r on E(/?, q) for which [pr] = t 
be denoted hjf(p, q, t).. Our theorem is as follows. 
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THEOREM 14.4. — The point function / ( /? , q, t) is continuous in 
its arguments for [pq]^p(p)and o<t<[pq] and for p and q on 
any compact subset A of 2 . 

We shall begin by proving the following slatement. 

(a) The points/(/?, q, t) of the theorem lie on a compact subset 
ofl. 

Since A is compact its J-diameter is a finite number d. If b is the 
maximum of p(/?) for/? on A, the points f(p, q, t) have secondary 
distances at most b from A, and accordingly at most d-\- b from any 
fixed point of A. Since 2 is finitely J-compact the points/(/?, q^ t) of 
the theorem lie on a compact subset of 2 , as stated in (oc) 

To establish the theorem let pn, qn, tn be a séquence of sets/?, q, t 
admitted in the theorem and possessing a limit set /?°, y0, t<>. Set 
rn=f(pn, qn, tn). By virtue of (a ) there is a subsequence of the 
points rn with a limit point r°. For simplicity we assume that the 
séquence rn converges to r°. We shall show that 

(14.4) r0 = f(po,qo,tol 

thereby establishing the theorem. Upon letting n become infinité in 
the relation [pnqn] = [Pnrn] + [rnqn], we infer that 

(14.5) [p°q°] = [p°r*] -h [r»qo]. 

W e also have the relation 

(14.6) [p°q°] = Ura[pnrn] = lim^ft= *o. 

From (14.5) and (14.6) we see thaï r° is the point on the elementary 
arc E(pQ, q») at which [p<>qo] = t«. Hence (14.4) holds, and the 
theorem is true. 

Under the hypothèses that 2 is connected, finitely J-compact, and 
locally J-oonvex we could prove that the space Q(a, b) is separable. 
W e shall not use this fact and accordingly omit the proof. The fol
lowing lemma will suggest the well-known Theorem of Osgood in the 
classical variation theory. It will be used in sludying certain basic 
déformations. 

LEMMA 1 4 . 1 . --Let H be a compact subset ofi. Corresponding 
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to H and a positive constant e there exists a positive constant à 
such that when £ and ri are respectively an arbitrary curve and 
an elementary arc with common and points, with first end point 
on H, and with ÇTQ >e, then 

(14.7) J ( O - J U ) ^ . 

TheJ-lengths of elementary arcs with end points on H are at most 
a positive constant p. To prove the lemma we accordingly need con-
sider only those curves Ç whose J-lengths are at most 2 p. The set B 
of such curves with end points on H is readily seen to be compact by 
an obvious extension of the proof of Theorem 13. i. Let A be the 
subset of curves of B whose end points can be joined by an elemen
tary arc -n such that ÇYJ >o . The set A is closed in B, and accordingly 
compact. For Ç, on A and r\ the corresponding elementary arc, J (ri) is a 
continuous function cp(Ç) of Ç. The différence A(£) = J(£) — cp(Ç) is 
lower semi-continuous. Hence A(Ç) assumes its minimum mon some 
curve of A. But we have seen that each elementary arc ri affords a 
proper minimum to J so that m > o. Thus (14.7) holds with ô = m. 

15. The upper-reducibility of F on &(a, b). — In ihis section we 
shall dérive a number of conséquences of the finite J-compactness 
and local J-convexity of 2 including the upper-reducibility of F 
on Q(a, b). W e first define a basic déformation. 

The déformation 0(r). — Let A be any compact set of curves 
of Q(a, b). The curves X of A can be represenled in the form 

/> = T([i,X) [ o ^ n ( > 0 L 

where j/ . is the intrinsic parameler defined in § 7. For X on A 
and o</Jt^|j.(X) the function <p(|jL, X) is uniformly continuous. The 
set of ail points on the curves of A is readily seen to be compact. 
There accordingly exists a constant 3 ;>o , such lhat on arcs of X 
for which Ap.^3 successive points p and q satisfy the condition 
[/?#]< p(/?). Let M be an upper bound of JJL(X) for X on A. Let 
(r1 ? . . . , rn) = (r) be a set of positive numbers such that 

(15.1) 7̂  + ...-+-7-,, = 1, M r ^ 8 (1 = 1 , . . . , 7 1 ) . 



60 MARSTON MORSE. 

Corresponding to the numbers (r) we shall define a déformation d (r) 
of A. W e shall refer lo the numbers (r) as the ratio set defining 0(r). 

Let each curve X of A be divided with respect to its |m-length into n 
curves for which the différences A/UL (measuring p from the initial 
point of X) are proportional to the respective numbers /\,, . . ., rn. 
Let X̂  be the k th of thèse curves and let /?* be the initial point of X*. 
For o<t<i let pt be a point on X* \yhich divides X/t with respect to 
jji-length in the ratio in which t divides the*interval (o, i) . At ihe time t 
let the arc p^pt of XA be replaced by the elementary arc E(/?A, /?*). 
The curve X will thereb} be deformed into the séquence of elemen
tary arcs determined bv the points /?A. W e dénote this déformation 
hj6(r). 

Let n be an arbitrary curve of Q(a, b). The déformation 0(r) can 
be defined for any sufficiently small neighborhood U of ri. For the 
constant ô can be chosen so that on arcs of n for which AJUL^Ô succes
sive points p and q satisfv the condition [/?</]< p(p)- Let U be a 
neighborhood of n so small that for X on U, arcs of X for which A}x ^ è 
at successive points /?, q, again salisfy the condition [pq]<Cp(p)-
Suppose U so sinall that for X on U, p(X) has a finite upper bound M. 
The ratio set (/*) will next be chosen so as to satisfy (10. i) laking n 
sufficienth large. The déformation 6(r) can then be defined as pre-
viously for curves X initially on U. 

LEMMA 15. I . — A déformation B(r) is an F-deformation of any 

subset A of £l(a, b) on which it is defined and on which J is at 
most a finite constant c. 

W e must show that 0(r) admits a displacement function 8(e) cor
responding to each compact subset B of A. Let ri and Ç be images of 
a curve of B with Ç an antécédent of ri under 0(r ) and Çyj > e > o. 
The curve ri is obtained from Ç by replacing certain subarcs Ç/, of Ç 
by elementary arcs Y^ where YÎA joins the end points of &. If ÇYJ > e, 
then for at least one of thèse subarcs m, & > e. The points of B are 
on a compact subset of 2 . It follows from Lemma 14. i that there 
exists a constant ô > o such that 

J(Ç*)-J(*U)^8. 
Hence 

J ( C ) - J 0 O ^ F ( Ç ) - F ( T O > * I , 

file:///yhich
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where ^ dépends only on e and c, and the proof of the lemma is com
plète. 

The function F can be shown to be upper-reducible on £2(a, b). 
The proof of this fact however would require the use of déformations 
more complicated than the déformations 0(r). Cf [7], p. 443. 
Fortunately our présent purposes will be served adequately by 
showing that F on the subspace F < i of SI (a, b) is upper-reducible. 
The following theorem justifies the omission ofthe gênerai proof of 
the upper-reducibilily of F . 

THEOREM 15. I . — There is no cap limit withc = i relative to 
the function F onSl(a,b). 

Suppose that the theorem is false and that u is a /t-cap with cap limit i . 
Let x be a carrier of u. Since x is compact the « ratio set » ( r ) can 
be so chosen that 0(r) is defined over x. On the trajectories of 6 
F never increases and x is deformed into a compact set Y! of curves 
each of which is a séquence of n elementary arcs. The points of x' 
form a compact set on 2 , so that the J-lenglhs ofthe above elemen
tary arcs are less than some finite constant. Thus the final image of u 
lies on a subset of Sl(a, b) on which J is at most a finite constant. 
Hence u is c-homologous to zéro with c = i. W e infer lhat c = i is 
not a cap limit. 

We state the following principal theorem. 

THEOREM 15.2. — The functionFon thesubspaceF<i of Sl(a, b) 
is upper-reducible. 

Let n be a curve of Sl(a, b) o n F < i and let d and c be constants 
such that F (ri) < d < c < i. To establish the theorem we shall show 
that a déformation 0(r) defined on a sufficiently small neighborhood U 
of n relative lo F < c F-deforms U onto F<d. Under 0(r), ri is 
F-deformed into a curve Ç composed of elementary arcs. Observe 
that F ( Ç ) ^ F ( Y J ) < d. LetU be so small a neighborhood of n relative 
to F < c that for X on U, 9(r) F-deforms X into a curve X< for which 
F(X,,) < d. This is possible since the vertices ofthe elementary arcs 
of X4 will lie arbitrarily near the corresponding vertices of Ç if U is 
sufficiently small. The theorem follows from the définition of upper-
reducibility. 

MÉMORIAL DBS SC. MATH. — N° 92. 5 
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A homotopic critical point (i.e curve) of F on Sl(a,b) will be 
called a homotopic extremal ofSi(a, b). On the other hand a curve*/} 
will be called a metric extremal provided every closed subarc of ri 
whose J-length is sufficiently small is an elementary arc. An elemen
tary arc is a melric extremal in accordance with Theorem 14.2 More 
generally we have the following theorem. 

THEOREM 15 .3 . — Each homotopic extremal of Sl(a, b) is a 
metric extremal. 

This theorem willbe proved merelj forextremalsof finite J-length. 
Il is vacuously true for exlremals of infinité J-length because it can 
be shown that (under our hypothèses) there are no homotopic 
extremals of infinité length. Cf M [7], Theorem 14 .3 . 

Let X be a curve of Sl(a.b) of finite J-lenglh c, not a metric 
extremal. We shall show that X is homotopically ordinary. Since X 
is not a metric extremal there exists a subarc pq of X which is not an 
elementary arc and whose J-diameter is less than p(p). A suitably 
chosen F-deformation Ô(r) of a neighborhood of X on J ^ c will 
replace the arc pq by the elementary arc E(p,q). This déforma
tion Q(r) displaces X so that X is homotopically ordinary. The 
theorem follows for extremals of finite J-length. 

By virtue of Theorem 15.3 a homotopic extremal will have the 
same degree of regularity and differentiability as have elementary 
arcs. Since elementary arcs are minimizing arcs this means that 
a homotopic extremal in a classical problem will satisfy the Euler 
équations and have the differentiability of ordinary exlremals. 

Recalling the définition of local F-connectedness of § 6 we continue 
with a proof of the following theorem. 

THEOREM 15.4 . — The space Sl(a,b) is locally F-connected of 
ail orders. 

Let c be a positive constant. Let the c-neighborhood relative 
to Sl(a, b) of a curve ri on SI (a, b) be denoted by rie. Let A(c) be the 
subset of Sl(a, b) on J ^ c . We shall prove Theorem 15-4 by proving 
the following statement. 

(a). Corresponding to the constants c and e and any curve n 
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of A(c) there exists a constant d > o such that YÎ§ A(C -4- ô) can be 
deformed on ne-A(c H- e) into a single curve of r\e. 

Let Q(r) be a déformation of a neighborhood of n of the type pre-
viously defined. In the set (r) we suppose that i\ = .. .= rn. 
Under 0(r) a curve X is deformed into a succession of n elementary 
arcs with vertices on X. If the number n is sufficiently large and if à is 
at most a sufficiently small positive conslanl 8{, #(/•) will deform n$ 
on rie. W e suppose n and à so chosen. 

Let X be an arbitrary curve of A(c 4- â) on YÎ§. Let rj< and li be 
final images of ri and X respectively under # ( r ) . Let pt and qt be 
corresponding vertices of Y}, and X1 respectively. The points pt being 
fixed by ri and the choice of n ihe distances [/?/<7i] will be arbitrarily 
small if ô is sufficiently small. If thèse distances [/?t<7i] are sufficiently 
small the curves X, can be deformed into Y), as follows. As t varies 
from o lo i inclusive, qt shall be replaced h\ a point qt(t) which 
divides E(/?M qt) in the same ratio with respect to J-lcnglh as that in 
which t divides the interval (0,1). We replace the ilh elementary arc 
of X, by the elementary arc 

(13 .2 ) E[qi(t),ql+1(t)] 

at the time t. and dénote the resulting déformation by A. 
If the distances [/?i<7i] are sufficiently small the elementary 

arcs (15.2) will exist and vary continuously with their end points. 
For their end points will be arbitrarily near the corresponding 
end points pl of ri and thèse end points satisfy the condi
tions [/^/9,+0 <p(/? i ) . 

Il the constant â is then sufficiently small and in particular <C ô1? 

ihe déformation A will be possible, and will deform the curves X1 

on rie-A(c + e). The déformation Ô(r) followedby V will satisfy (a), 
and the proof of the theorem is complète. 

THEOREM 15 .5 . — A maximal group of non-bounding k-cycles on 
the subset F < 1 of'SI(a, b) is a maximal group of non-bounding 
k-cycles on Sl(a, b). 

W e have seen in the proof of Theorem 15.1 that an} compact 
subset of Sl(a. b) admits a déformation of the type Q(r) into a set of 
points rf-below 1. The déformations 6(r) never increase F along a 
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trajectory so that sets on F < i are deformed on F < i. Theorem 15. i 
follows readily. 

It will be useful at this point to give a résume of the implications 
of the finite J-compactness and local J-convexity of 2 . (a). Fiuite 
J-compactness implies the following : ( i ) . The subsets F < c < i 
of Sl(a,b) are compact. (2) . The space Sl(a, b) is F-accessible. 
(b). Finite J-compactness and local J-convexity imply the following : 
(3) The function F is upper-reducible. (4) The space Sl(a,b) is 
locally F-connected. (5) The cycle limits are less than 1. 

The following theorem combines the preceding conditions with the 
gênerai theory of critical points of Part IL 

THEOREM 15.6. — / / 2 is finitely J-compact and locally J-convex, 
then corresponding to each cycle limit s of a non-bounding 
k-cycle on Sl(a, b) there is at least one homotopic extremal on 
which F = s. Moreover the sum of the kth type numbers of the 
critical sets of F on F < 1 is at least the kth connectivity 
ofSl(a,b). 

Under the hypothèses of the theorem properties (1) to (5) preced
ing the theorem hold. It follows from the upper-reducibility of F 
(cf. Theorem 8.1) that there is al least one homotopic extremal on 
which F equals the cycle limits. Properties (1) and (4) imply (cf. 
Theorem 6.2) thaï the connectivities of ihe subset F < 1 of Sl(a, b) 
are at most alef-null. According to Theorem 15.5 the connectivities 
of Sl(a, b) are then at most alef null. The concluding statement of 
the theorem follows from Theorem 9 .1 . 

16. The theory under classical hypothèses. — W e concern 
ourselves hère with a regular manifold 2 of class C5 defined as in§ 10 
in terms of overlapping coordinate syslems except that we do not 
assume 2 compact. In every local coordinate System (x) we suppose 
lhat there is defined a function F(x\ . . ., xm, r ', . . . , rm) — F(x, r) 
which is of class G4 in (x, r) for (x) in the local coordinate System 
and for any set of numbers ( 7 - ) ^ ( 0 ) . W e require that F be an 
invariant. More precisely if 

(16.1) zl = zi(x) (J = I, . . . ,m) 
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is an admissible transformation to a coordinate System (z) and 
Q(£ , o*) is the function replacing F(x, r) we suppose that the 
relation 

(16 .2 ) F ( * , r ) = Q(*,<j) 

shall be an identity in (x) and (r) when (z) is given by (16. i) and 
(or) is the contravariant tensor image of ( r ) . W e assume that F is 
positive and positive homogeneous of degree i in the variables ( r ) . As 
is well-known, 

(16 .3 ) ! ¥rir]{x, / ' ) | = o ( i , / = i, . . . , m). 

We assume however that the rank of the déterminant (16.3) is 
m—i and that ail of its characteristic roots save the null one are 
positive. As a conséquence (M [5] , Chapter V, § 7) of thèse hypo
thèses the classical Legendre and Weierslrass sufficient conditions 
are satisfied along any extremal of the intégral 

(16.4) J = fF(x,x)dt. 

A curve X whose closed subarcs are rectifiable in each coordinate 
System in which they lie will be lermed rectifiable. If X is rectifiable 
there will exist a/?-curve ri in the curve class of X such that the coor
dinates of a point of an} closed subarc ri* of ri which lies in a coordi
nate System (x) are absolu tely continuous functions ofthe parameter 
t. On ri* the intégral J will have a determinate value J(Y}*) as a 
Lebesgue intégral. To obtain J(X) one breaks ri up into a finite set of 
arcs such as ri* and sums the corresponding values J(r*). 

W e assume that 2 is arcwise connected, and for any two points p 
and q of 2 we let the distance [pq] be the greatest lower bound of J 
along ail rectifiable curves which join p to q on 2 . The distance [pq] 
is in gênerai not symmetric in p and q. One shows readily that 
[pq] = o if and only if/? = q and that [pq] ^ [/?/*] + [r<j]> If one sets 

pq = max{[pq],[qp] ) 

one obtains a new symmetric distance function. As before pq = o if 
and only if/? = q. The distance pq also satisfies the triangle axion. 
For if pq=[pq], pq^[pr] + [rq]^pr + rq, and if pq = [qp] a 
similar resuit holds. W e shall regard pq as defining the metric of 2 
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and [pq] as defining a secondary metric. From the fact that 
[pq]=Pq a n ( ^ t n a t [Pq] s a t i S H e s t n e triangle axiom it follows readily 
that [pq] is a continuous function of p and q (with respect to the 
primary metric). The distances pq and [pq] can accordingly be iden
tified with the corresponding distances of the gênerai theor). 

We assume that 2 is finitely J-compact in the sensé of § 13. 

Il follows that an extremal X on which the parameter t is the value 
of the intégral J can be continued for unrestricted positive values of 
t. For if c > o were a finite greatest lower bound of the values of t 
on X and tn were an increasing séquence of values of t tending to c, 
the corresponding points pfl on X would have at least one cluster 
point q. The classical existence theorems for extremals applied to a 
neighborhood of q would then show that X could be continued so 
that t exceeds c on X, and our statement follows. 

THEOREM 16. I . — The space 2 is locally J-convex. 

To establish the theorem one must establish the existence of a 
function p(jf?), positive and continuous in/? such that whenever 

(16.5) o<[pq]ï?(p) 

p can be joined to q by a « right arc » (§ 14), every subarc of which 
is a right arc. 

We begin with a statement of facts well-known in the classical 
theory. Cf. Gairns [1 ] . Let z be an arbitrary point of 2 . Correspon
ding to any sufficiently small neighborhood U of z there exists a 
positive constant a with ihe following property. Any point p on U 
can be joined to any point q such that o <z[pq]^<7 by a unique 
extremal X with the following minimizing property. If n is any subarc 
of X (including X), if r is any point not on ri, and Ç is a curve joining 
the end points of X and passing through r, then J(Ç) > J(ri) -+- e, 
where c is a positive constant dépending only on r and ri. 

This is the uniform minimizing property implied in the classical 
theory by Osgood's theorem and the usual field constructions in the 
small. It follows at once that X is a right arc. W e have }et to define 
the function p(/?) appearing in the définition of an elementary arc. 

To define p(/?) let -zbea fixed point of 2 and lel Sn be the set of 
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points of 2 whose secondary distances from z are between n and 
n -f- 1 inclusive, TI>O. Since S^ is compact it follows from the results 
of the preceding paragraph that there exists a positive constant <jn 

such that any point p of Sn can be joined to any point of 2 whose 
secondary distance from p is at most <jn by a unique right arc, every 
subarc of which is a right arc. W e admit the possibility of the sets 
Sn being vacuous for sufficiently large integers n. In any case we can 
suppose that the constants an do not increase with n. We now define 
a function cp(s). We set y(n) = (in and for olher positive values 
of s define y(s) by interpolaling linearly between the successive 
values crn. At a point/? whose distance from the fixed point z is s we 
sel p(p) = y(s). The function p(/?) is readily seen to be continuous 
for p on 2 . The extremal arc issuing from p and consisting of points q 
such that (16.5) holds is thus an elementary arc in the sensé of § 14, 
and the space 2 is locally J-convex. 

For the purposes of the next theorem the value of the intégral 
(16.4) taken along a curve ri will be called the intégral J-length 
J(ri), understanding that this J-lenglh is infinité if ri is not rectifiable. 
On the olher hand the J-lenglh of ri as defined in § 12 will be called 
the abstract J-length J*(YÎ). We shall prove the following theorem. 

THEOREM 16.2. — The intégral J-length and the abstract 
J-length of a curve ri are equal. 

W e shall rely on the classical theory only to ihe extent of using 
the lower semi-continuity of the intégral J-length. We first observe 
that if X is an elementary arc its intégral and its abstract J-lengths 
are equal. This is also true of a finite succession of elementary arcs. 
But corresponding to an arbitrary curve X there existe a séquence 
X,, X2, . . ., of curves each of which is a finite succession of elemen
tary arcs whose vertices define a partition of X, and which are such 
that the Fréchet distance X7lX tends to zéro as n becomes infinité, 
while J*(X„) tends to J*(X) as n becomes infinité. From the minimi
zing properties of elementary arcs we infer that J*(X„)<J(X), and 
hence that 

(16.6) J*(X)<J(X). 

But since the abstract and intégral J-lengths are equal on elementary 
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arcs and J (YJ) is lower semi-continuous we conclude that the equality 
only can hold in (16.6), and the proof is complète. 

Conjugate points and the index theorem. — A closed extremal 
segment will ordinarily be given in several overlapping coordinate 
Systems. The coordinates of such an extremal will be of clase C4 in 
terms of the J-length as a parameter. Lel us term a coordinate System 
which is obtained from admissible coordinate Systems by non-
singular transformations of class C , o < r < 5 , a coordinate System 
of class G'. Such coordinate Systems are not admissible in the earlier 
sensé unless r •==. 5, but nevertheless are useful. As shown in M [5] , 
p. 108 a simple régulai* curve X of class C' is wholly contained in at 
least one coordinate System of class C'*. If X is not simple it is possible 
lo map a suitably chosen région R of a euclidean m-space (x) onto 2 
by a transformation locally non-singular and of class Cr in such a 
fashion that X is the image of a simple regular arc of class C r in R. 
W e term R a spécial coordinate System of class Gr conlaining X. 

In case X is an extremal with initial end point A, the conjugate 
points of A on X are defined as follows. Let (p) be the unit contrava-
riant vector which gives the direction of Xat A in a spécial coordinate 
System (x) with 7* = 4- Suppose the J-lenglh of X is s. In the System 
(x) let the components r1 of the unit vectors neighboring (p) be 
regularly represented as functions rl(u) of class C" of n = m — i 
parameters (u). Suppose that (p) corresponds to (u) = (o). In the 
System R the extremal issuing from A with the direction r'(u) canbe 
represented in terms of (u) and its J-length t in the form xt= yl(t, u) 
where the functions cp' are of class C3 in terms of their arguments for 
t on the closed intenal (o, s) and (u) neighboring (o). The zéros of 
the jacobian 

on the interval o < t<a are isolated and define ihe conjugate points 
of A on X. The order of any one of thèse zéros is at most m — 1. and 
will be termed the order of the corresponding conjugale point of X. 
(M [5], p. 117). 

An extremal on which the final end point b is not conjugate to the 
initial end point a will be termed non-degenerate. W e shall show 
that a non-degenerate extremal X of Sl(a, b) is a homotopic extremal 
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of Sl(a, b) and détermine the type numbers of X. To that end the 
following construction and theorem are fundamental. 

Lel ri be a finite extremal arc. We refer ri to a spécial coordinate 
System (x) of class C4 as previously. Lel a, a, , . . . . ap, b be a set 
of successive points on ri such that ihe segments into which ri is 
thereby divided have J-lengths less than the minimum of p(p) on n. 
W e eut across ri al the respective points aq, q = \, .. ., p, by 
regular manifolds Mq of class G3, not tangent to ri at the points aq. 
W e suppose lhat M7 is regularly represented neighboring aq by a 
sel (uq) of n = m — i paramelers ug in such a manner thaï the set 
(uq) = (o) détermines a(J on n. The ensemble of the pn paramelers 
ul

q will be denoted by (z). The set (z) détermines a set of points 
Qn, .. ., Qp on the respective manifolds Mq. lf(z) is sufficiently near 
(o) successive points of the set a, Q4 , . . ., Q,,, b can be joined by 
extremals to form a broken extremal F(z) whose J-length will be a 
funclion l(z) of class C ] . Let t be the J-length along n measured 
from the initial point of ri. Our theorem is as follows. (M [8]) . 

THEOREM 16 .3 . - The point (z)— (o) is a critical point ofl(z). 
It is degenerate if and only if the initial point t — o of ri is 
conjugate to the final end point t = t0 of ri. The index of(z) — (o) 
equals the number k of conjugate points of t= o on the interval 
o < t < tQ counting thèse conjugate points with their orders. 

The set S(YJ) of broken extremals F(z) used to define J (^ ) is a 
subset of the curves of Sl(a,b) neighboring r\. We terni S(Y}) a 
canonical section of SI (a, b) neighboring n. The set S(YJ) can be 
taken arbitrarily near n. « Relative » to S (ri) the terms homotopic 
extremal and the / th type number of ri are well defined. With this 
understood we s ta te the following lemma. 

LEMMA 16. I . — Relative to any canonical section of Si (a, b) 
neighboring a non-degenerate extremal ri, r\ is an isolated homo
topic extremal. If there are k conjugate points of a on n, thejth 
type number of n relative to S(YJ) equals àJ

k. 

The broken extremal F(z) is determined by (z), and for (z) suffi
ciently near (o) the relation between (z) and F(z) is a one-to-one 
continuous mapping of a neighborhood N of (z) = (o) in the space 
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(z) upon a canonical section S(yj) of SI (a, b) neighboring n. Under 
this mapping 1(^) = J (E ) . The lemma follows from Theorems 16.3 
and 10. i . 

LEMMA 16.2. — Corresponding to any canonical section S (ri) 
of SI (a, b) neighboring the extremal ri any sufficiently small 
neighborhood V of ri relative to the subset J^J(ri) ofSl(a, b) can 
be F-deformed onto S(YJ) without displacing ri. 

We shall obtain the desired déformation as the product of two 
F-deformations of which the first shall be a déformation 0 ( r ) 
(cf. § 15) of a neighborhood of ri. The final images under S (r) are 
broken extremals with vertices (/?l5 . . ., pn) neighboring a particular 
set of n verlices on ri. 

The déformation Z. — For the purpose of defining Z we admit 
any set A of curves X of SI (a, b) neighboring ri such that X intersects 
the respective manifolds Mq in unique points/?7(X) which vary conti-
nuousl) with X on A and which divide X into successive arcs Xt with 
J-diameters less than the greatest lower bound ofp(p) on points of A. 
If the neighborhood V of the lemma is sufficiently small the final 
images under 0 ( r ) of curves of V will be admissible in the preceding 
sensé. To define Z we deform each arc X, into the elementary arc 
which joins its end points exactly as in defining 0 ( r ) . For V suffi
ciently small the product déformation Z0 is well defined, and satis-
fies the lemma. 

Recall lhat a non-degenerate extremal a of Sl(a, b) is isolated 
among extremals of Sl(a, b). For the hypothesis that b is not conju
gate to a on ri implies that the extremals issuing from a with direc
tions sufficiently near that of ri form a field near b, with n the only 
curve in their field lo pass through b. For the purposes of the 
following proof the reader should recall the définition of a /r-cap 
« associated » with a critical set a relative to a subset S of SI (a, b) 
containing <J. Let u be a /r-cap with cap limit equal to the value c of 
J on cr. If u is « associated » with <r relative to S, then corresponding 
to each of <J'S neighborhoods U relative to S, there shall exist a /V-cap 
v relative to U, c-homologous to u on S. Recall also that t h e / th type 
number of or is the dimension of a maximal group of/-caps associated 
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with a. With this understood the fundamental theorem ofthis section 
is as follows. 

THEOREM 16.4- — Each non-degenerate extremal ri ofSl(a, b) 
is an isolated homotopic extremal of SI (a, b). If there are k 
conjugate points of a on ri, the jth type number of ri is à[. 

That ri is isolated among extremals of Sl(a, b) follows from the 
fact that ils end points are not conjugate on ri as noted. To continue 
let S(ri) be a canonical section of Sl(a, b) neighboring ri. W e have 
seen in Lemma 16. 1 that n is a homotopic extremal relative to S (ri). 
We base the remainder of the proof on statemenls (i) and (ii). 

(i). Any j-cap u associated with ri relative to S(YJ) is a. j-cap 
associated with ri relative to SI (a, b). 

It will be convenient to write u c-hom v when « u is c-homologous 
to v ». Set J(ri) =z c. If u is associated with ri relative to S(YJ), then 
u c-hom v on S (ri) where v is a /-cap on an arbitrarily small neigh
borhood of YJ. In particular we suppose that v is on the neighborhood 
V affirmed to exist in Lemma 16.2. 

Suppose (i) false. Then u c-hom o on SI (a, b). Hence v c-hom o 
on SI (a , b), and it would follow from Theorem 9.2 (a) that v c-hom o 
on V, at least if V is a separate neighborhood of n as we suppose the 
case. But V can be F-deformed under Z0 onto S(TQ) as in Lemma 
I 6 . 2 . In this déformation let w be the final image of v. Since v 
c-hom o on V, w c-hom o on S(YJ). Let x be a carrier of v on S (ri) 
and v! the point set swept out by x under Z 0 . The curves of x' are 
broken extremals to which Z is applicable at least if V is suffi
ciently small as we suppose the case. But Z deforms x' onto S (ri) 
leaving v and w fixed. Hence v c-hom w on S(YÎ). In résumé w7e have 
u c-hom v c-hom w c-hom o on S(YJ). Thus w c-hom o on S(YÎ), 

contrary to the nature of u. W e infer the truth of (i). 

(ii). Any j-cap u associated with ri relative to SI (a, b) is 
c-homologous on SI (a, b) to a j-cap v associated with ri relative to 
an arbitrary canonical section S (ri) ofSl(a,b). 

The /r-cap u is c-homologous on SI (a, b) to a /r-cap on the 
neighborhood V of Lemma 16.2. Hence u can be F-deformed onto 
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S(Y?) SO that u is c-homologous lo a /-cap v on S (ri). Moreover v is 
a /-cap relative lo S(YJ), for otherwise it could not be a/-cap relative 
to Si (a, b). Finally v is associated with n relative to S(ri) in accor
dance with Theorem 9.2 (b), since ri is the only extremal among 
curves of S (ri). 

Proof of the theorem. — I say lhat n is not homotopically 
ordinary on Sl(a, b). Otherwise it would follow from the définition 
involved that some neighborhood N of ri relative to J ^ c on SI (a, b) 
would admit an F-deformation onto a set <f-below c. This is impos
sible since there is a /r-cap associated with ri relative to S(YJ), and 
hence associated with ri relative to SI (a, b), as stated in (i). It now 
follows from (i) and (ii) that a maxHHal group of/'-caps associated 
with n relative to S(YJ) is a maximal group of/'-caps associated with 
ri relative to Sl(a,b). W e can use Lemma 16. i to conclude that 
the dimension of such a group is ô'A. The proof of the theorem is 
complète. 

THEOREM 16 .5 . — If the manifold 2 of this section is the 
homeomorph of an m-sphere and if a and b are points of 2 which 
are conjugate on no extremal through a, then for every integer 
k = o mod m — i there is at least one extremal joining a to b on 
which there are k conjugate points of a. 

The connectivities R/4 of the space SI (a, b) are ail null except 
those for which / r = o mod m — i, and the latter equal unity. 
Cf. M [5] , Chapter VII, Theorem 15. i. Since a and b arenever con
jugate the critical sets of F on Sl(a, b) consist of isolated homotopic 
extremals. If R j t = i , there must be a homotopic extremal ri whose 
k th t} pe number is at least one by virtue of Theorem 15.6. In accor
dance wilh Theorem 16.4 ihc k th type number of YÎ is exactly one, 
and k is the number of conjugate points of a on ri. The proof of the 
theorem is complète 

The condition that a be conjugate to b on no extremal is not very 
restrictive. In fact the writer has shown that the set of points on 2 
which are conjugate to a given point A on extremals through A has 
an m-dimensional measure zéro on 2 (M [5] , Chapter VII, Theorem 
12. i ). If the point b is conjugate to a on some extremal, b is never-
theless the limit point of points never conjugate to a. Using this fact 
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one can prove the following. If y* is a non-bounding k-cycle on 
Sl(a,b), the cycle limit J{a,b) of y* is a continuous function of 
a and b on 2 , and there exists a homotopic extremal y, whose J-length 
is J (a, b) and on which there are at least k and at most k -f- m — i 
conjugate points of a (M [5] , Chapter VII, Theorem 13.3) . 
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GLOSSART. 

Arc : elementary, 56; right, 56. 

Boundary operator, 5. 

Canonical section, see Section. 

Cap : A-cap, 12; A-cap associated with a critical set, 4 i ; A-cap relative to 
space R, 39. 

Cap limit, 12; associated with a critical set, 41 . 

Cap-isomorphic groups, 42. 

Carrier : of a A-cycle, 6; of an homology, 6; of a formai A-chain, 7. 

Cell : algebraic A-cell, 5; null A-cell, 5; oriented A-cell, 5, (of no rme) 5; oriented 

(k — i)-cell, 5; singular 71-cell, 25: vertex A-cell, 5. 

Chain : A-chain of norm e, 5; algebraic A-chain, 6; boundary chain, 6; 
equality of chains, 5; formai A chains, 7, (sum of) 7 ; reduced chains, 5; 
sum of chains, 5. 

Conjugate point, 68. 
Connectivities, 19. 

Coordinate System : admissible, 43 ; of class C', 68; spécial, 68. 
Critical chords, 49-

Critical points, 3o. 

Curve, 34; JJ.-curve, 34; rectifiable curve, 65. 

Curve class, 34; partition of, 52. 

Cycle : algebraic cycle, 6; canonical A-cycle, u ; cycle mod B on C, 6; non-

bounding A-cycle, 7; rank of a A-cycle, u ; singular cycle, 3 ; Vietoris 

A-cycles mod B on C, 6, (homologous) 6, (derived from an algebraic A-cycle) 27. 
Cycle bound, 10. 
Cycle limit, 10. 

Definitely below (d-below) a, 12. 

Definitely-modulo (d-mod), 12. 

Déformation : admissible, 3o; D, 3o; A, 63 ; 6(r), 59; Z, 70. 

Déformation chain, 8, 9. 

Déformation operator, 8, 9, 10. 

Derived cycles, 27. 

Displacement function, see Function. 

Distance between curve classes, 35. 

Distance, Fréchet, 34. 
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Distance pq, 4-
Distance, secondary, [pq], 52. 

Elementary arc, see Arc. 
Extremals : homotopic, 62 ; metric, 62 ; non-degenerate 68. 

F-accessibility, 11 ; suflicient conditions for, 23. 
F-connectedness, local, 25. 
F-deformations, 3o; admissible, 3o; null, 3o; related, 33. 
Finite J-compactness, see J-compactness. 
Function, displacement, 3o. 
Function, F (p), 10. 

Group : dimension of, i 4 ; direct sum of groups, 17; maximal, i 4 ; see also Cap-
isomorphic group, Homology group, Operator group and Type group. 

Homology : a-homology, 12; Connecting homology, 6; e-homology mod B 
on C, 6; homology mod B on C, 6. 

Homology class, 7. 
Homology group, 7. 
Homotopic extremals, see Extremals. 
Homotopic critical points, see Points. 

Index of a differential critical point, 44« 
Isomorphism, see Operator isomorphism, Rank isomorphism, and Cap-isomorphic 

groups. 

J (X), 52. 
J-compactness, finite, 53. 
J-convexity, local, 56. 
J-diameter, 54-
J-length, 52 ; abstract, 67 ; intégral, 67. 

A-cap, A-cell, A-chain, A-cycle, see Cap, Cell, Chain, Cycle, respectively. 

Length : generalized, 5o; fi-length, 34; see also J-Length. 
Limit, cycle, see Cycle limit. 
Local F-connectedness, see F-connectedness. 
Local J-convexity, see J-convexity. 
[x-curve, [x-length, [i.-parameterizations, see Curve, Length, Parameterizations, 

respectively. 

Manifold, regular, 43. 
Metric extremal, see Extremal. 
Metric : pq of M, 4; pq of S, 5o; secondary [pq] of S, 52. 
Metric of Q, 5o. 

Neighborhood, 4-
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Neighborhood, separate, 39. 
Norm e, 5. 

Operator : j3, 5; D, 9; A, 10; f, 9; group, i3; isomorphism, i3; property, i3; 
subgroup, i3. 

Order of a conjugate point, 68. 

Parameterized curve Qo-curve), 33; identical p-curves, 34. 
Point set definitely below a, 12. 
Points : critical, 3o, (non-degenerate) 44; differentially critical, 3i, (degene-

rate) 44, (index of) differentially ordinary, 3i ; homotopic critical, 3o, 
homotopic ordinary, 3o. 

Rank class (o-class), 5. 
Rank conditions, 11. 
Rank isomorphism, i5. 
Rank of a A-cycle, see Cycle. 
Right arc, see Arc. 

Secondary metric [pq], see Metric. 
Section, canonical, 69. 
Separate neighborhoods, 39. 
Set : closed, 4; compact, 4; critical, 39, (complète) 39; n-set, 54; open, 4; 

ratio, 60; réduction, 21. 
Singular (n — 1) sphère, 25. 
Space : M, 4. 
Spanning, 25; e-spanning, 26. 
Subdivision : first, 26; second, 26; infinité séquence of subdivisions, 26. 
Superficial spanning, 25. 

Trajectory, 3o. 
Type number, 42 ; sum, 64. 
Type groups, 39. 

Upper-reducibility, 36. 

Vertex A-cell, see Cell. 
Vietoris A-cycle, see Cycle. 
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