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FUNCTIONAL TOPOLOGY

AND

ABSTRACT VARIATIONAL THEORY

By Marston MORSE,

The Institute for Advanced Study, Princeton, New Jersey.

INTRODUCTION

Abstract basis of the theory. — We are concerned with the exis-
tence of equilibria in the large, stable or unstable. The elements
may be points, curves, or general configurations. These elements
are regarded as poinls of an abstract metric space M on which there
is given a real function F such that o SF <1. The theory is based on
two hypotheses, termed respectively the F-accessibility of M and the
upper-reducibility of F. The critical points of F are topologically
defined and our two hypotheses lead Lo the existence of critical points
in a way similar to that in which the compactness of M and lower
semi-conlinuity of F lead to the absolute minimum of F. In the
minimum theory compactness and lower semi-continuity imply that
any o-dimensional homology class contains a cycle at a minimum
level ; this is a way of saying that F assumes an absolute minimum on
each connected subset of M. Let H be a A-dimensional homology
class. The F-accessibility of M implies that the numbers b such that
the subset F<b of M contains a k-cycle of H have a minimum s
(termed a cycle limit). The upper-reducibility of F then implies that
this cycle limit s is assumed by F at some topological critical point.
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‘We note however a vital difference between the minimum theory and
the critical point theory.

In the minimum theory it is sufficient to show that the great-
est lower bound of F is assumed at some point by F while in the
general theory one must show that the cycle limit is not only
assumed by F at some point but is assumed at some critical point

of F.

The compactness of M and the lower semi-continuity of F imply
the F-accessibility of M but are by no means implied by F-accessibil-
ity. The cycles used are Vietoris cycles, otherwise the F-accessibil-
ity of M would not be implied by compactness and lower semi-
continuity. Upper-reducibility and lower semi-continuity are
independent properlies. A continuous function possesses both of
them; but functions exist which are lower semi-continuous without
being upper-reducible, and conversely. The functionals of an ordi-
nary positive definite variational problem are upper-reducible. Lower
semi-continuily is quite inadequate for the general critical point
theory, and must be replaced by upper-reducibility or some related
property.

Abstract critical point theory can be applied to the theory of func-
tions of a finite number of variables, for example to harmonic
functions of two or three variables (') (Kiang [1, 2, 3]), to the study
of equilibria of floaling bodies, to countless geometric problems such
as determining normals from a point to a manifold (M [2], p, 403),
to problems in celestial mechanics (Birkhoff [1,2]). The most extend-
ed applications up to the present time have been in.the ‘calculus of
variations in the large (M5, 2]). In this memoir we apply our theory
to an abstractly formulated problem in the calculus of variations in
the large. We are concerned with « homotopic » extremals which
join two fixed points.

In this application we start with an abstract metric space 2 with a
symmeiric distance function. On 2 we suppose there is given a
secondary metric with a distance function in general not symmetric.
(Cf. Menger [4].) In terms of this secondary metric a length J is

(') References will be found at the end of the memoir. References to Morse will
be indicated by the letter M.
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defined. Restricting ourselves to curves n which join two fixed points
a and b we set

J(m)
F(n)= i)

when J(n) is finite. Otherwise we set F(n) =1. Two curves joining
a to b are assigned the usual Fréchet distance. The space M here
becomes the space of curves n joining @ to b, with two curves with a
null distance regarded as the same point of M.

There are two principal hypotheses on this function F and space M.
The first is that the sct of points on 2 at a bounded secondary distance
from any fixed point of 2 is compact. This is called finite J-com-
pactness of . The second is that X is locally J-convex in the sense
that points of 2 which are sufficiently near together can be joined by
a unique minimizing arc (more precisely defined in § 14). These two
hypotheses insure that the space M is F-accessible and that F is
upper-reducible. The general theory is thus applicable to the varia-
tional problem.

The theory of critical points of functions goes back at least to
Kronecker [1]. Poincaré [1] recognized the relation of such a theory
to problems in differential equations in the large. The work of
Hilbert and Tonelli[1] on the absolute minimum and the concepts of
Fréchet[1] and Menger [1, 2, 3, 4] furnish a partial background for
the abstract theory. Lusternik [1] and Schnirelmann added interest-
ing ideas. The contributions and applications of Birkhoff [1, 2]
have been most significant.

Our bibliography is not meant 1o be complete but merely to list
recent papers used by the author or papers which may be of parti-
cular historical intcrest to the reader. In § 4 and 5 we shall have
occasion to refer to hitherto unpublished proofs of an important
theorem and a lemma by R. Baet and E. Cech respectively. A more

extended bibliography (') is given in the author’s Colloquium
Lectures on « The calculus of variations in the large » (M [5]).

(*) The following book will appear shortly: Seifert und Threlfall, Variations-
rechnung im Grossen (Theorie von Marston Morse. Teubner, Berlin). This book
is highly recommended. The authors begin with two axioms similar to ouracces
sibility hypothesis, but referring to singular cycles. These axioms are satisfied
when the critical values cluster at most at infinity and when the critical points
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PART 1.

CRITICAL LIMITS.

1. The space M and its topology. — Let M be a space of elements
P+ @, 'y ... in which a number pg is assigned to each ordered pair
of points such that

I. pp =o, II. pg #o if p#gq, 1. pripg +rq.

Upon setting 7 = p in III we see thal pg>o and upon setting p=g¢q
that gr =rg. The space M is termed a meltric space. The distance
gr is termed symmetric since gr = rq. The elements p, g, r, ...
are termed « points » and pq the « distance » from p to ¢. Neighbor-
hoods, limit points, sets relatively open or closed can now bhe defined
in the usual way (Hausdorfl [1]). In particular if e is a positive num-
ber the e-neighborhood A, of a point set A shall consist of all points
p with a distance from A less than e. A set BC_M (rend B on M)
will be said to be compact if every infinite sequence in B conlains a
subsequence which converges to a point in B.

We shall use Vietoris cycles (Vietoris [1]). Singular cycles
(Lefschetz [1]) taken in the classical sense are inadequate in a number
of ways. This deficiency may be illustrated as follows. Let V be a
compact subset of M and V. the e neighborhood of V. Let u be an
arbitrary singular k-cycle not on V. Corresponding to each positive
e suppose that u is homologous to a cycle on V.. Itis not always
true that u is homologous to a cycle on V as examples would show.
The corresponding theorem for Vietoris cycles howover is true as we
shall see.

We proceed with a systematic outline of the Vietoris theory gene-
ralized and modified to meet our needs.

-
are isolated. In this way the most important cases are treated 1n the simplest way.
To obtain greater generality Vietoris cycles seem to be useful. In fact the present
author has shown in Morse, Sur le calcul des variations (Bulletin de la Société
mathématique de France, 1939), that the accessibility hypothesis is not in general
satisfied when ordinary cycles are used, even when F is of class C» on a regular
analytic manifold and when the critical values are finite in number.
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Let A be a set of £ + 1 points of M. We term A a vertez k-cell of
M, as distinguished from an algebraic k-cell now to be defined. For
k > o the orderings of A will be divided into two classes, any order-
ing of one class being obtained from any other of the same class by
an even permutation. The vertex k-cell A taken with one of these
classes of orderings will be termed a positively oriented k-cell and
taken with the other class a negatively oriented k-cell. An oriented
k-cell oz may be represented by a succession

(l.1) N Yo... Az

of its vertices preceded by n, where n=1 or — 1 according an the
ordering A, ... A; belongs to a; or not. We shall say that each
oriented (k —r1)-cell n(—1)Ay... Ay A, ... Az is positively
related to o;. We shall say that «; admits the norm e if the
distances between the vertices of a; are less than e.

The cell a; will be regarded as null if at least two of its vertices
are coincident. Let 6 be an element in an arbitrary field A (van der
Waerden [1]). By a k-chain of norm e is meant a symbolic sum u of
the form d,a,, i =1, .... m, in which ¢, is in A and «, is an oriented
k- cell of norm ¢ (We understand that a repeated subscript or super-
script is to be summed). The chain u will be termed reduced if
none of the cells a; are null, if each is positively oriented and no two
cells a, are identical.

An arbitrary chain will be reduced as follows. Let @ be an arbi-
trary positively oriented k-cell and & the corresponding negatively
oriented k-cell. Any term of the form 6b in the chain u will be
replaced by — da. All terms involving a will then be summed.
Finally all terms involving null cells or coefficients will be dropped.
The resulting reduced chain ¢ will be regarded as formally equal to
the original chain u. In particular if ¢ is null we regard u as null.

By the sum of two chains d,a, and 6} a'l is meant the chain
d,a,+ 3, a,. The expression d[d;x,] shall mean the chain (3d;),.
We understand that a chain u cquals a chain v if w — ¢ reduces to
the null chain. It is readily seen that A-chains of norm e form an
additive abelian operator group (van der Waerden | 1], p. 132).

We shall now define the boundary operator 8. If a is an oriented
k-cell with £ > o and e is the unit element in A, e« will be a A-chain
and Bea shall be the (k —1)-chain 2,eb, where b, is an arbitrary



6 MARSTON MORSE.

(k—1)-cell positively related to a. More generally we set
ﬁa,a, = 6, ﬁea,-.

If k = o we understand that B ea = o. If u is an arbitrary k-chain
one sees that BBu=o. Cf. Seifert, Threlfall [1], p. 60. We
term Bu the boundary chain of u. One finds that Bdu = éBu while
for two k-chains u and ¢, B(u + ¢) =Bu + fe.

The preceding k-chains and k-cells are termed algebraic k-chains
to distinguish them from Vietoris chains to be defined later. The
term algebraic willbe omitted when it is clear from the context that the
chain is algebraic. In particular this will be the case whenever the
norm e of the chain is mentioned.

Let B and C be compact subsets of M such that B C. An alge-
braic k-chain u on C will be termed a cycle modB on Cif fuis
on B. We term u e-homologous to 0 modB on C and write u ~.0
modB on C if there exists a (k + 1)-chain z of norm e on C such
that fz = u + ¢ where ¢ is a k-chain on B. If B=o0, then ¢v=o,
and the phrase mod B is omitted.

Let u = (un) be a sequence of algebraic A-cycles u., n=o,
1, ... mod B on C with norms e, respectively. If the numbers e,
tend to zero as n becomes infinite, and if for each integer n there
exist « connecting » homologies of the form

(1.2) Up e, Uni (modB on C),

u is termed a (Vietoris) k-cycle mod B on C and C a carrier of u.
We write u~o0 modB on C if corresponding to each positive
number e there exists an integer N so large that v, ~.0 modB on C
whenever n > N. The set C is termed a carrier of the homology
u ~ o0 modB on C. Vietoris k-cycles u and ¢ are termed homologous,
u~v modBon G, if u —¢v~ o0 modB on C. If (u,) is a k-cycle
modB on C, any infinite subsequence (v,) of (un) defines a k-cycle
¢ ~ u modB on C.

The algebraic k-cycles u, will be termed the components of
@ = (ur). If u and ¢ are Vietoris k-cycles modB on C, the algebraic
k-cycles un + vn are the components of a Vietoris k-cycle modB on G
which we denote by u + ¢. Similarly the algebraic k-cycles du, are
the components of a Vietoris k-cycle which we denote by du.

In the remainder of this memoir the term A-cycle modB on C
shall mcan a Vietoris k-cycle modB on C unless otherwise stated.
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We shall have occasion to refer to a k-cycle v modB’ on G’ where B’
and C' are not necessarily compact. We shall understand thereby
that ¢ is a k-cycle modB on C where B and C are compact subsels
of B' and C' respectively and B < C. Homologies modB’ on C' are
similarly defined.

The set of k-cycles homologous to a given k-cycle u is termed the
homology class defined by u. If u is not homologous to zevo, u is
termed non-bounding. The set of all A-cycles forms a group G; of
which the bounding A-cycles form a subgroup H;. The group Gy
mod H; is composed of homology classes and is termed the homology
group. These groups are operator groups: that is if w is an element of
one of these groups and 6 CC A, then du is likewise an element of the
group. When 6 3£ 0, d possesses an inverse with respect to division,
and the presence of du in an operator group implies the presence of u
in the group. Moreover when & £ o, the relations du —=o0 and u =o
are equivalent, as well as the homologies du ~ 0 and u ~ o.

A sequence of algebraic k-chains w, on a compact subsel x of M,
with norms e, tending to zero will be termed a formal k-chain w.
We term x a carrier of w. The sum u + ¢ of two formal A-chains u
and ¢ shall be the formal A-chain whose components are u,+ ¢,
while du shall be the formal A-chain whose components are du,.
Formal A-chains make up an additive abelian operator group. If w is
formal k-chain with components ¢, the set of algebraic (A —1)-
cycles Be, defines a formal chain which we denote by Bw. The
formal chain Bw will not in general be a Vietoris (A —1)-cycle
because it will lack the necessary « connecting homologies ».

In the special case where w is a A-cycle modB on C, Bw is a
cycle on C. For the homologies « connecting » the components w,
of w imply the existence of an algebraic (A + 1)-chain 2z, on C
and a k-chain ¢, on B such that B3, = w, 4 — w, + ¢,, where the
norms involved tend to zero as n becomes infinite.

Applying the operator 3 to both sides of this relation we find that

0=Lwuy— BwWn+ Ben, implying homologies connecting the
components of B w.

Deformation chains and operators. — Corresponding to any
map or deformation of a set A M onto a set B, and corresponding
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to any algebraic k-chain on A we shall now define an algebraic
(k +1)-chain D u termed a deformation chain of u.

Let Z be an (n + 1)-dimensional euclidean prism whose bases are
closed n-simplices A and A*. Let a be A or any simplex on the boun-
dary of A and let A, be the lateral face of Z with base a, orifa=A
the prism Z. Corresponding to a let P, be an arbitrary inner point
of 4. One can subdivide the prisms }, in the order of their dimen-
sions into the simplices determined by P, and the simplices on the
boundary of A, (supposing that the lateral faces of A, have already
been subdivided).

Corresponding to each k-simplex w there exist two oppositely
oriented algebraic k-cells whose vertices are the vertices of w. We
say that thesc algebraic k-cells are associated with w. Let u be an
algebraic k-cell associated with one of the k-simplices a of A and let
Ju be the algebraic £-cell obtained by replacing the vertices of u by
corresponding vertices of A*. It is possible to associate algebraic
(k +r1)-cells with the respective simplices of the subdivided lateral
face A, in such a manner that the suin Du of these algebraic (k + 1)-
cells is a (k + 1)-chain whose boundary BDu consists of algebraic
k-cells associated wilh simplices on the boundary of 2,. If we impose
the condition that the chain 3 Du contain the term u, Du is uniquely
determined. If we sel Do =0, we find that Du =u — fu — DBu.
(Cf. Seifert, Threlfall [1], § 29).

More generally let the verlices of an algebraic n-cell z on M be
mapped onto a set of poinls on M. Suppose each vertex p on z is
thereby replaced by a point fp, and z is replaced by an algebraic
n-cell fx. Let the vertices of the preceding n-simplex A be mapped
in a one-to-one way onto the vertices of x. Let the vertices of A* be
mapped onto those of fz so that the vertices of A and A* on the same
lateral edge of Z are mapped onto vertices p and fp of z and fz respec-
tively. Under the map of the vertices of A onto vertices of z each
k-simplex a of A determines a vertex k-cell a (a) of 2. Correspon-
to a let Qg 4y be an arbitrary vertex of «. We map P, onto Qg ).

With the vertices of A and A* so mapped onto the vertices of 2 and
Jz respectively and with the points P, mapped onto the points Q.4
each vertex of the subdivision of Z has a unique image on M. Lel u
be an algebraic k-cell of vertices of A and let ¢ be the corresponding
algebraic A-cell of x. The vertices of Du (for each u) will now be
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replaced by their images on M determining thereby an algebraic
(k 4 1)-chain which we denote by D¢. In particulary DB¢ will
thereby be defined. It folows that

(1.3) Dy =v— fo — DBy,

where fv denotes the image of ¢ in the mapping of z onto fz. We term
Do a deformation chain belonging to the map of z onto fz and the
points Q.

Let T be a mapping of a point set S ontoa set £S in which an alge-
braic j-cell z on S is replaced by an algebraic j-cell fx on fS. Cor-
responding to each vertex j-cell @ on S let a point Q, of « be uniquely
determined. Corresponding to the mapping T, the points Q,, and
any algebraic k-cell v on S, let D¢ be a deformation chain defined as
in the preceding paragraph. With D¢ so defined (for each ¢ and
each k) (1.3) will hold. Let u; be a finite set of algebraic k-cells on

S and set u = 8, u,. We define Du by the relation Du = ¢, Du;.
It folows that
BD8u,= B8, Du,= 3, Du,.

Upon using (1.3) we see that
(1.4) BDu = 3, u,— 8, fu — 8,DBu, = u — fu — DBu.

We term D a deformation operator belonging to T. D is uniquely
determined by T and S and by the choice of the preceding points Q,
corresponding to the respective vertex k-cells « on S. If the points Q,
were not uniquely chosen the relations (1.4) would not hold in general.
The choice of Q, must certainly be independent of the (k + 1)-cells
ou whose boundaries « lies.

We shall need the fact that the operators 8 and f are commutative.
That is whenever u is an algebraic £-chain on S,

(1.5) Lfu=fBu.
It is clear that (1.5) is true when u is a cell. It follows that (1.5)
holds as stated.

Let 6 be a continuous deformation on M of a set of points A with ¢
the time in the deformation and o St<r. Let ¢ <{y...<<t, be a set

of values of ¢t such that t,—=o0 and ¢, =1. Under 6 an arbitrary
point p, of A will be replaced at the times ¢,,. .., t, by points p, ...,
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pn respectively. Lel T, denote the mapping of the points p; on their
correspondents pi.. Let D, be a deformation operator « belonging »
to the mapping T,. Let z be an arbitrary algebraic k-chain on A
and z, its image under 6 at the time ¢,. Then for ¢ not summed,

(1.6) Dz, =z,— fiz,— D, B3, (i=o0,1,...,n—1),

where f;z, denotes the image of 5, under T;.

We define Az as the sum D, z; (i =o0,1,...,n—1) understanding
that this definition holds for each dimension. Observing that
3, =fi_1 5i_1 ({ not summed) and making use of (1.5) we find that
(for ¢ not summed),

(1.7) fz.=Bfim1zia=fiu Bz (> o).
It follows from (1.6) and (1.7) that
(1.8) BAz = 5 — fz — ABz,

where fz is the final image of 5 under 6. We term A a deformation
operator belonging to § and z.

Let 5 be an algebraic A-chain on A whose images under 6 foro <t <1
admit the norm e. The operator A can be so chosen that Az has the
norm e. For s also admits a norm ¢ < e provided ¢ differs sufficiently
little from e. Lel n = e — d. Upon subdividing the time interval (o,1)
sufficiently finely by the times ¢, the preceding mappings will displace
the vertices involved a distance less that n/2 so that the cells of Az
will have norms 8 4+ n/2 +n/2 —e.

2. F-accessibility. — Let F(p) be a real single-valued function of
the point p on M. We suppose that the values of F lie between o and
1 inclusive. The functionals of the calculus of variations can be
reduced to the form F(p) by a simple transformation as we shall see.
By the set F<b will be meant the subset of points of M at which
F(p)<h.

Let U be an homology class with elements which are non-bounding
k-cycles u. If w is on F< b, b will be called a cycle bound of u and
of U. The greatest lower bound of the cycle bounds of U will be called
the cycle limit s(u) of U and of the elements u of U. If U is the class
of bounding A-cycles, s(u) will not be defined.

As pointed out in the introduction we shall make two principal
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assumptions, namely the assumption of F-accessibility of M and
upper-reducibility of F.

Under the hypothesis of F-accessibility any non-bounding
k-cycle which is homologous to zero mod F < ¢ + e for each posi-
tive e is homologous to a k-cycle on F< c.

If cis a cycle limit of the homology class U, F-accessibility implies
that there exists a k-cycle ¢ of U on F <c. A non-bounding A-cycle ¢
which lies on the set F<s(v) will be termed canonical. Under the
hypothesis of F accessibility there is at least one canonical k-cycle in
each non-null homology class. In § 5 we shall see that F-accessibility
is implied if each set F <¢ for which ¢ <1 is compact. These condi-
tions for F-accessibility while sufficient are by no means necessary.
We shall see that F-accessibility implies that each eycle limit is a
cap limit (§3) while the hypothesis of upper reducibility will
imply (§ 8) that each cap limit is assumed by F at some critical point.

The réle of a Vietoris cycle in relation to accessibility is shown by
the tollowing example. Let the space M consist of the closure in the
zy-plane of the set of points 2 = sin1/y where o <<y <1. Let F =y
on M. Let p be a point on M at which F > o. The point p can be
regarded as the components of a Vietoris o-cycle u. One sees that
s(u) = o and that there is a canonical o-cycle in the homology class
of u, for example a Vietoris o-cycle whose components are identical
with the origin. If however one regards p as a singular cycle there is
no singular cycle on F =0 homologous to p and the hypothesis
of F-accessibility fails.

3. The rank conditions. — Bounding k-cycles u possess no cycle
limits s(u). Let G be the group of all k-cycles. With some but not
all of the elements u of G we have thus associated a number s(u). We
term s(u) the rank of u. The ranks of k-cycles satisfy the following
three conditions :

L. If u has a rank and 8% o, s(u)=s(du). IL. If u, ¢, and
u + v have ranks, s(u + v) Smax[s(u), s(¢)]. Ill. If u and ¢ have
unequal ranks, s(u + ) exists.
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To verify I we observe that the homologies u ~ ¢ and Su ~ 3¢ are
equivalent if 6 < o. I follows directly. To verify II lets = max[s(u),
s(¢)] and let ¢ be an arbitrary positive constant. There are cycles u’
and ¢' respectively in the homology classes of w and pand on F <o+ e.
But %'+ ¢ is in the homology class of u—+ ¢ and on F<o+e.
Rank condition II follows. To establish III one has merely to show
that u + ¢ is non-bounding. If u + ¢ were bounding, v and — ¢
would be in the same homology class so that s(u) = s(— ¢) =s(v),
contrary to hypothesis.

k-caps. We shall now define a new set of ranks termed cap limits.
Cap limits also satisfy the rank conditions.

We begin with several definitions. A point set A will be said to be
definitely below a (written d-below a) if A lies on F < a — e for some
positive e. The phrase d-modF <<« shall be understood to mean
mod some compact set d-belowa. If u is a k-cycle on F<a d-mod
F < a, an homolog)

(3.1) u~o (on FSad-mod F < a)

will be called an a-komolog)y-. A k-cycle u on F<a d-mod F < a not
a-homologous to zero will be called a k-cap with cap limit a. We
write @ =a(u). We note thal a(u) is uniquely determined by the
formal k-chain w whose components are the components of . In fact
a(u) is the greatest lower bound ¢ of numbers & such that w is on
F<b. For the case @(u) > ¢ is impossible since z would then satisfy
an a(u)-homology. The case a(u) << c is equally impossible since it
would imply that «wis on F<a(u) <.

The k-cap limits a(u) satisfy the three rank conditions provided
s(u) is replaced by a(u) and the group G of k-cycles is replaced by
the group of formal A-chains. That I is satisfied follows as for the
ranks a(u). That I is satisfied follows from the fact that a(u) is the
greatest lower bound of numbers & such that the components of u
are on F<b. Turning to 111 suppose that «(u) <<a(¢). Then u is
a(v)-homologous to zero. Hence u - ¢ is not a(v) homologous
to zero. Since w +¢ is on F<a(v), a(e) is a cap limit of u + ¢
and IIlis proved. The k-cap limits also satisfy a fourth rank condi-
tion as follows.

IV. If uy...., un and, ¢, ..., v, have ranks at most ao while the
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sums u=2u, and v=2¢; have no rank and u + v has a rank,
then a(u + v) < a,.

The cycle limits s(u) satisfy IV vacuously with s(u) replacing
a(u).

Recall that a non-bounding k-cycle u is termed canonical if u is
on F<s(u) where s(u) is the cycle limit of w. With this understood
a first connection between cap limits and cycle limits is as follows.

Turorem 3.1. — Under the hypothesis of F-accessibility (') a
canonical non-bounding h-cycleu with cycle limit s(u)is a k-cap
with cap limit s(u).

If u were not a k-cap with cap limit s(u), there would exist some
constant b less than s(u) such that u would be homologous to zero
mod F < 4. Under the hypothesis of F-accessibility z would then be
homologous lo a k-cycle on F<b, contrary to the definition of the
cycle limit s(u). The proof of the theorem is complete.

4. The rank theory. — Abstracting the relations of § 3 we suppose
that we have an additive abelian operator group G with coefficients
in the field A. With certain of the elements u of G we associate a
rank p(u) in a simply ordered set [p]. The rank p(0) shall not be
defined. In referring to the rank conditions I to IV of § 3 we shall
understand that s(u) and a(u) are replaced by p(u).

The elements of G with rank (with o added) in general will not
form a group. We shall nevertheless be able to establish various
theorems which have immediate bearing on the existence and enume-
ration of critical points and limits. We shall be concerned with sub-
groups of G. We suppose throughout that these subgroups g are
operator subgroups, thatis if u is in g and §is in A, du is in g. Our
isomorphisms shall be operator isomorphisms, that is. if « corres-
ponds to ¢, du corresponds to d¢. We shall be concerned with various
properties of subsets of elements ot G, for example the property of
having rank. A property A will be termed an operator property if
whenever u has the property A and & 3£ o, du has the property A. By

(') This 1s the only place in § 3 and § 4 where the hypothesis of F-accessibility
is used.

MEMORIAL DES SC. MATH. — N° 92. 2
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a subgroup g of G with operator property A is meant an operator
subgroup of G every element of which with the possible exception of
o has the property A. The group g will be termed mazimal if it is a
proper subgroup of no subgroup of G with property A. The following
example shows that there may be several maximal groups with a
given property A.

Let G be a group generated by three elements a, b, ¢ with coeffi-
cients in the field of integers mod 2. Suppose that @, b. a + b, care
the only elements of G with the property A. Then @ and & together
generate a maximal group with property A, as does c.

Lemma 4.1. — If g is a mazimal subgroup of G with operator
property A and v is an element of G with property A. there exists
an element 3 in g and an element w which is null or fails to have
the property A, such that v = z + .

By virtue of the definition of g as a maximal subgroup of G with
property A there exists a d % 0 and an element ¢, in g together with
an element ¢, of G which is null or fails to have the property A, such
that 60 = ¢, + ¢,. Bul there exists a ' £ o, such that ¢'é = 1. Upon
setting ¢'v, = 3 and &'vo—= w, we have v = 5, + w. Since ¢, has the
property A and A is an operator property, d'v, has the property A.
Similarly &'¢, fails to have the property A or is null, and the proof of
the lemma is complete.

The dimension of the group G is the cardinal number p of a
maximal linearly independent subset of elements of G with coefficients
in A. Two such groups with the same dimension are operator iso-
morphic, This fact is easily proved in case p. is finite, and we shall
use the fact in no other case.

In the author’s earlier work critical points were counted in terms
of « type numbers ». These type numbers were dimensions of groups
composed of cycles (« type groups », § 9) associated with the respec-
tive critical sets. When these dimensions are finite the earlier theory
is relatively adequate. But in the general case il is necessary to inves-
tigate the « type groups » more closely. The method will be that of
comparison of groups by means of isomorphisms. The isomorphisms
admitted will be restricted in nature by F. Otherwise the only inva- .
riants would be the dimensions.

We begin with a well-known lemma in group theory.
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Lemuma 4.2. — If H is an operator subgroup of G and R=G
mod H while m is « maximal group of elements of G not in H,
then R and m are isomorphic in such a manner that an element
of m corresponds to the coset of R to which it belongs.

It is clear that each element of m is in at least one coset of R and
that different elements z and ¢ are in different cosets. Moreover there
is an element of m in each coset of R. Otherwise let z be a coset
which contains no element of m and let u be an element of 5. If vis an
element of m, u—v is not in H since u is not in H. Hence du — 8¢
is not in H unless 8 = 0. Thus u and m generate a group of elements
not in H, with m as a proper subgroup, contrary to the nature of m.
We conclude that there is an element of m in each coset z of R. The
lemma follows readily.

Proceeding with the rank theory we shall say that two elements u
and ¢ of G are in the same p-class or rank class if u and ¢ have the
same rank while © — ¢ has no rank oralesser rank. In caseranks are
identified with cycle limits, homologous non-bounding A-cycles are
in the same rank class, but k-cycles in the same rank class are not
necessarily homologous. In case ranks are identified with cap limits
two A caps with cap limit @ are in the same rank class if and only
if their difference is a-homologous to zero. An isomorphism between
two subgroups of G of elements with rank will be termed a rank
isomorphism if corresponding non-null elements are in the same
rank class. With this understood we shall prove the following
theorem.

Tueorem 4. 1. — When the rank conditions 1 to 1V are satisfied,

any two mazimal groups m; of elementsof Gwith the same fized
rank ¢ are rank isomorphic.

Let g5 be the group generated by the set of elements of G which
possess ranks at most o. Let H; be the subset of elements of g, without
rank or with rank less than ¢. We continue by proving the following
statement.

a. The elements of H; form a group.

Let u and ¢ be arbitrary eleménts of H,. Writing E for « exists »
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and ~ E for « does not exist », we have four cases :

(1) e(u) E, p(v) E,
(2) e(u) E, o(¢e)~E,
3) p(u)~E, p(¢) E,
(4) p(u)~E, p(v)~E.

We shall show that u + ¢ is in H;. If p(% +¢) does not exist,
u+ ¢ is in H;. We assume therefore that p(u + ¢) exists and seek to
prove that p(u +v) <. This will follow from rank conditions II,
III, I, TV respectively in cases (1), (2), (3), (4). In case (1), p(u)
and p(v) are less than ¢ since u and ¢ are in H;. Tt follows from Il
that p(u +¢) <o. In case (2), p(u) <o and p(u + ¢) must he less
than o, for otherwise p(¢) would exist. Case (3) is similar. The
result in case (4) follows from IV, and the proof of & is complete.

To establish the theorem observe that m, is a maximal subgroup
of elements of g, not in H;. By virtue of Lemma 4.2 m, and the
group Ry= g modH; are isomorphic, with elements of m, corres
ponding to cosets of R which contain them. If m; is a second maximal
group of elements of G with rank ¢ we can use R, Lo establish an iso-
morphism between m; and mj; in which corresponding elements are
in the same coset of R, and so in the same rank class or null.

The following theorem is a consequence of a.

Tueorem 4.2. — IVhen the rank conditions 1 to 1V are satisfied,

the property of elements with rank being in the same rank class
is transitive.

Suppose u, ¢, and w have a common rank ¢ while  and ¢ as well
as u and w are in the same rank class. Then v — ¢ and u — w are
in H;. Tt follows from o that ¢ — w belongs to H, so that ¢ and w
are in the same rank class, and Theorem 4. 2 is true.

Lewwme 4.3. — If u,, ..., un are elements of G with ranks
satisfying 1, 11, and 111 and such that

(£.1) p(ur) > o(u.) (i=2,...,m),
then p(uy—+. .. un) exists and equals p(u,).

Suppose first that m = 2. By virtie of rank condition ITI p (w; +u,)



FUNCTIONAL TOPOLOGY AND ABSTRACT VARIATIONAL THEORY. 17

exists. From I we see thatp(—- u,) = p(u.). Since u; = (uy + u2)—u,
we can infer from II and (4. 1) that

e(ur) Smanp(us—+ us), p(us)] S p(ur+ ua),

p(uy =+ wu2)Smax[o(uy), p(ur)]Sp (1),

so that p(u,)=p(u,+ us). The proof of the lemma can be comple-
ted by induction with respect to m.

Lemma 4.4. -— If h is an operator subgroup of G with finite
dimension r, and with ranks which satisfy I, 11, Ill, the elements
of h have at most r different ranks.

Suppose that the lemma is false and that there are elements
Uiy +-.yUm in h with m > r and with ranks increasing with their
subscripts. If § 72 o, du, has the rank of u;. It follows from Lemma
4.3 that any proper sum d,u; has the rank of the non-null term of
highest index ¢, and hence in particular is not o since p(0) does not
exist. The elements u, are accordingly independent, contrary to the
hypothesis that the dimension of A4 is 7.

Let there be given an operator subgroup g of G and a set of sub-
groups A(a) of g,  being an enumerating index in a simply ordered
set. The group g is said to be a direct sum

(4.2) £=, k(=)

of the groups % () if each element u of g is a finite sum of elements
from the groups A(«), and if there exists no relation of the form
Ug,~+ - . .+ Uy, =0 in which the ;s are distinct and u,, is a non-
null element from the group A(2,).

Tueorem 4.3. — Let g be an operator subgroup of G whose
dimension is at most alef-null. If each element of g save the null
element has a rank, and if these ranks satisfy conditions I, 11, 111,
then g is a direct sum of suitably chosen mazimal subgroups g(p)
of elements of g with the respective ranks p.

We shall prove the theorem in the case where the dimension r of g
is alef-null. The case where r is finite admits a similar proof. The
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proof here given is due in essence to R. Baer, and was communicated
by Baer to the writer.

Since r is alef-null there exists a maximal linearly independent set
of elements a,, a., ... of g. These elements form a base for g.
With Baer we forin a new base () = b,, b,, ... as follows. We set
by =a,. For each n > 1 we set

(4.3) bp=a,+ d,a, (i=1,...,n—1),

choosing the elements 8, so as to make the rank of the right member
of (4.3) the least possible. Such a choice is possible, for the right
member of (4.3) can take on at most » different ranks in accordance
with Lemma 4.4. By virtue of this choice of the elements b, we can
affirm the following :

1° The ranks of elements of g of the form
(4.4) b,+e,b, (i=1,...,n—1; ,CA)

are at least the rank of b,,.

For the elements (4.4) are of the form a,+ 9, a; where i =1, ...,
n —1, and so have ranks at least that of b,. Let py, ps, ... be the set
of distinct ranks of the elements of (5). Let g denote the subgroup
of g generated by the subset of elements of (&) with the rank p;. It
is clear that g is the direct sum

(4.5) g=, &
k

‘We continue by establishing statements 2° and 3° as follows.
2¢ Each non-null element of g; has the rank p;.
3° The group gi is a maximal subgroup of g with the rank p;.

To establish 2° let z be an arbitrary non-null element of g+ In
the linear representation of « in terms of the generators b, of gy there
is a term with greatest subscript j, say 7, among terms with non-null
coefficients. Let ¢ be the reciprocal of the coefficient of b,. Then
p(x) =p(dz). In terms of the b’ s, 3z is of the form (4.4)and so has
a rank at least p;. Hence p(2)2p:. Bul as an clement in g4 the rank
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of z is at most p; by virtue of rank condition II. Hence p(z) = ps,
and the proof of 2° is complete.

To establish 3° let u be any element of g with rank p;. The ele-
ment u is a sum % =—u,+...~+ U, of non-null elements from
different groups g4, Without loss of gencrality we can suppose that
the ranks of the elements u, increase with their subscripts. It follows
from Lemma 4.3 that p(u)=p(un) so that p(uy)=pz It follows
from 2° that u,, is in gz We set uy ... Um_y=w. If m=r,
then w =o0. Otherwise p(w) = p(Um—1) 7 pi, S0 that w is not in g.
Thus u =u,,+ w, where u, is in g4 and w is not in g4 or null.
Statement 3° follows, and the proof of the theorem is complete.

It is by virtue of the theorems of this section that we shall be able
to give precise conditions under which « there are at least as many
critical points of type k as there are independent non-bounding
k-cycles of dimensions & ». Understanding that the k ¢/ connectivity
of M is the dimension of the ktA homology group. the following
corollary of Theorem %.3 is a statement of this type.

Cororrany 4.3. — The sum of the dimensions of maximal
groups g(s) of non-bounding k-cycles with the respective cycle
limits s is at least the smaller of the two numbers alef-null and
the kth connectivity R; of M.

If R; is at most alef-null the corollary follows from the theorem.
If R; exceeds alef-null, there exists a subgroup g of non-bounding
k-cycles of 'dimension alef-null. Applying the theorem to g with
p =s, the corollary resulls again as stated (*).

As a consequence of Theorem 4.1 the dimension of g(s) in the
above corollary depends only on s and not on the particular maximal
group chosen. A much more general application of rank theory to
cycles and caps on M is to be found in M [7]. In particular the latter
paper contains a group theoretic formulation of the relations between
maximal groups of caps of the different dimensions. When the
dimensions of the groups are finite, these general group relalions

(') We point out that ranks of ordinary singular cycles also satisfy the rank
conditions, and that Corollary 4.3 is accordingly true for such cycles. Vietoris cycles
enter essentially when questions of F-accessibility enter.
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imply the author’s first relations between the type numbers and the
connectivities of M. See M [1].

5. Sufficient conditions for accessibility. — We shall show that
the hypothesis of F-accessibility is satisfied provided the subsels
F<c are compact for each ¢ <<1. We shall need various lemmas and
theorems in topology.

Leuma B.1. — If the vertices of an algebraic k-cycle u of
norm g are displaced a distance at most g to define an algebraic

k-cycle fu, then u ~. fu.

The lemma is an immediale consequence of the existence of a
deformation chain Du belonging to  and to the given mapping (dis-
placement) of the vertices of u. Such a chain satisfies (1.4), and the
lemma follows directly.

Lewva 8.2. — Let e be a positive constant and V a compact
metric space. The dimension of a maximal group h of algebraic
» €

k-cycles of norm 3

on 'V is finite.

on V independent with respect to e-homologies

Since V is compact there exists a finite set B of points of V such
that each point of V has a distance from B less than g- Let g denote
the group of algebraic A-cycles on B. Itis clear that the dimension

of g is finite. Let 5 be an algebraic A-cycle of norm gon V. Let the

vertices of 5 be mapped onto a subset of the points of B, each vertex

. . . e
of 5 corresponding to a vertex of B-at a distance not exceeding 3-

Suppose z is thereby replaced by a cycle fz. It follows from the pre-
ceding lemma that z ~, fz on V. But fz is in the group ¢ and accor-
dingly admits a representation fz = d,5,, where the elements z, form
a base for g. Hence 5 ~.9,5,. It follows that the dimension of A is at
most the dimension of g, and hence finite.

Reduction sets W. — Let V be a compact subset of M. Corres-
ponding to each positive 3 let W (3) be a group of algebraic k-cycles
on V of norm &, such that W(n) is a subgroup of W(d) when-
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ever n<<9d. Such a set of groups W (38) will be called a reduction set
W. Concerning these reduction sets we have the following lemma.

Lemwa 5.3. — Corresponding to an arbitrary positive constant e,
there exists a positive constant 6 << e such that to each cycle w(3)
in W(3) and each positive constant n <90 there corresponds at
least one cvcle w(n) in W (), e-homologous to w(d) on V.

The basic idea in the proof of this lemma was communicated to
the writer by Professor E. Cech.

For each integer n let e,—=e3~". Let w denote the subgroup of
cycles of W (e,) e-homologous to zero on V. Let 4, denote the group
W (e,) mod w. It follows from Lemma 3.2 that the dimension of 4,
is finite. Recall that A, is a group of classes of k-cycles. For each
integer n>1 let A, be the subgroup of those classes of £, which
conlain at least one cycle of W (e,). We see that

(5.1) M he DD ...
There must accordingly exist a finite integer r such that
dimhi,=dimhA,1=....

But two abelian operator groups with coefficients in a field and
with equal finite dimensions will be identical if one group is a
.subgroup of the other. Hence b, = A,y =. ...

The constant e was arbitrary and e, = ¢3~". Lel ¢ he any positive
constant less than e,. The cycle w(3) of the lemma is in W (e,), and
hence in some class of £,. Corresponding to the constant n << d of the
lemma let p be an integer so large thal e, <<7. Then e,<<d <e, so
that p > r and h,=h,. The cycle w(3) is in a class of i, = h,, and
by virtue of its definition this class of %, contains at least one
k-cycle w(e,) of W(e,). Since e,<<m, the cycle w(e,) is a
cycle w(n). The cycles w(d) and w(n) are in the same class of
1, and hence of h,. That w(d) ~.w(n) follows from the definition
of hy, and the proof of the lemma is complete.

Let u = (u.) be a k-cycle with carrier C. Lel ¢ be an algebraic
k-cycle on C of norm e, such that u,~. ¢ for all integers n exceeding
some integer N. We then write.

(8.2) ur~ef (onC).
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If v is any k-cycle such that u ~ ¢ on C, (5.2) implies that
(8.3) ve~el  (on G).

Suppose in particular that
(3.4) u~o (modV onC),

where Visa compact subset of C. I'say thal (3. 4) implies the existence
of an algebraic A-cycle z(8) on V of arbitrary norm d such that

(5.5) u~3zz(8) (on C).

Without loss of generality we can suppose that the norm e, of the
homology connecting u, with u,., on C tends monotonically to zero
as n becomes infinite and thal corresponding to ey, lhere exists in
accordance with (3.4), a relation of the form Bw,=u,— z,,
where o, is an algebraic (£ + 1)-chain of norm e, on C and 3, is an
algebraic A-cycle of norm ¢, on V. If e,<<d and m2n, it follows
that u,, ~33, (on C), and selting 3, = 3(3d), (5.5) holds.

We have obtained (5.5) as a consequence of (5.4). The following
theorem gives a deeper consequence of (5.4).

Tueorem 5. 1. — If u is a k-cvele with carrier G, homologous to
zeromodV on C where V is a compact subset of C, then u~ ¢ on G,
where v is a k-cycle on V.

We introduce a reduction set W as follows. Let W (d) be the
group of algebraic k-cycles w(d) of norm 6 on V such that

w(8)~go  (on C).

To prove the theorem we shall first give an inductive definition
of a sequence of positive numbers e, tending to zero as n becomes
infinite. We take e, as an arbitrary positive number. Lemma 5.3
applies to the reduction set W. In particular we can set e =e,—, in
Lemma 5.3, supposing e,—, already defined. Lemma 5.3 then affirms
the existence of a constant § <<e. We lake ¢, << d. We also suppose
that e, tends to zero as n becomes infinite.

By virtue of (8.5) there exists an algebraic k-cycle z, on V of
norm e,, such that

(5.6) U ~e,2Zn (on C).
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We shall give an inductive definilion of a Vieloris k-cycle v = (v,)
on V. We begin by setting ¢, = z,. Suppose that the components ¢;,
where i =1, ..., m, have been defined in such a way that

(3.7) U ~e 9 (onGC;i=1,...,m),

(5.8) Vivt Ve, 91 (onVj;i=1,...,m—1).

We shall define ¢, and show that the relations (5.7) and (5.8)
hold for all integers i.

It follows from (8.6) and (8.7) that 2, .y — ¢, is in W (en). We
shall apply Lemma 3.3 with e=e,_,. By virlue of our choice
of e,n<< & where 4 is the ¢ in the lemma we can apply the lemma with

(5'9) Bm+H1— Pm= W(a).

Setting 0 = ep,y Lemma 5.3 affirms the existence of a cycle w(n)
in W(en.4) such that

(8.10) w(d) ~e,,_,w(n)  (on V)
Proceeding inductively we define vy, by the relation
(3.11) V1= Bmi1— w(n).

Since w(n) ~yo on C with n =¢en.,

(5.12) Pmit~Vepr @ (0n C)

by virtue of (5.6) and (8. 11), thus establishing (5.7) for i =m +-1.
Upon adding (8.9), (8.10) and (3.11) we find that

(8.13) Pm+1 ~Vep— ¥m  (0ORV),

establishing (8.8) for /= m. The algebraic k-cycles ¢; thus
satisfy (3.7) and (8.8) for all positive integers m. By virtue of
(8.8) the components ¢; admil connecting homologies on V, and by
virtue of (8.7) u ~ v on C as stated.

The principal theorem of this section is as follows.

Tueorem B.2. — If the subsets F <c¢ are compact for ¢ <1, the
hypothesis of F-accessibility is salisfied.

We begin by proving the following statements.

(). Under the hypothesis of the theorem the distances of points
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on' F<c +e, e>o, from F<c tend to zero uniformly as e tends
to zero.

If (a) were false there would exist an infinite ‘sequence of positive
constants e, decreasing to zero and corresponding to e, a point p,
on F<c¢ + e, such that the distance of p, from F<c¢ is bounded
from zero for all n. This is impossible if ¢ = 1. Suppose then that
¢ < 1. For n sufficiently large, ¢+ e, <1 and the points p, lie on
the compact subset F <¢ + e,. Let ¢ be a limit point of the points pn.
We have F(g)<c +en. But e, 1s arbitrarily small so that F(g)<c.
On the other hand p must be ata positive distance from the set F<¢,
since the distance of p, from the set F <c is bounded from zero.
From this contradiction we infer the truth of ().

(B)- If ¢ is the cycle limit of a non-bounding k-cycle u,
then u ~ o mod F<e.

Statement (B) is trivial if ¢ =1. We suppose then that ¢ <'1. Lete
be an arbitrary positive constant. We seek to prove that there exists
a positive integer N such that the components u, of u for which
n > N satisfy the homology

(8.14) Up ~eO (mod F <e).

Let 8 be so small a positive constant that each point on F <¢ + 3 is
at a distance less than g from F = c. It follows from the definition of
a cycle limit that there exists a A-cycle ¢ in the homology class of u

onF<c¢ + 9, and hence with vertices at distances at most g fromF<ec.

Let the integer N be chosen so large that
(5.15) Vn ~elslUn (n>N).

Let ¢, be mapped onto a chain fv, on F <c by replacing each vertex
of ¢, by a nearest point on F<e. It follows from Lemma. 3.1 that
¢y~ fon. Combining this homology withy(5.15), (5.14) is obtained
as required.

Te prove the theorem we must show that there is a k-cycle ¢
on F<c in the homology class of u. If c=1, we can take ¢ as u.
If ¢ <1, we infer from ($) that u ~ 0 mod F<¢, and conclude from
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Theorem 5.1 that there exists a k-cycle ¢ on F <¢ homologous to u.
The proof of the theorem is complete.

6. Homology groups of dimension at most alef-null. — Theorem 4.3
concerns the decomposition of a group of dimension at most alef-null.
The most important application of Theorem 4.3 is to a maximal
group H, of non-bounding A-cycles on F < 1. In this section we shall
give conditions under which the dimension of H; is at most alef-null.
These conditions are that the sets F<e¢ <1 be compact and locally
F-connected in a sense which we now define. Cf. Lefschetz [2].
These conditions will be shown 10 be fulfilled in the « locally convex »
varialional problem.

Let E,, n> o0, be an n-simplex, E, its closure. Let E, be continu-
ously mapped onto M. The resulting image of the boundary of E,
will be termed a singular (n — 1)-sphere and the image of E, a sin-
gular n-cell. We shall say that the singular (n — 1)-sphere bounds
the singular n-cell. The images of the vertices of E, form a vertex
n-cell on M spanned, as we shall say, by the singular n-cell, and
superficially spanned by the singular (n —1)-sphere.

Let p be a point of M at which F(p) = c¢. The setM will be said to
be locally F-connected of order m > o at p if corresponding to each
positive constant e there exists a posilive constant ¢ such that each
singular (72— 1)-sphere on the é-neighborhood of p and on F<c¢+6
bounds an n-cell of norm e on F<¢+-e. The constant 8 depends
upon ¢, m, ¢, and p. In this section we shall assume that M is locally
F-connected of all orders m > o at each point of the subset F <<r1. If
the subset F<ce <1 is compact it is clear that for ¢, m, and e fixed
the preceding constant & may be choson so as 1o be independent of p
on F<e.

We shall say that a set Z of algebraic cells can be e-spanned on a
subset B of M if the vertex i-cells of cells of Z can be successively
spanned in the order of their dimensions by singular i-cells of norm
e on B with the following properties. The singular (k —1)-cells
spanning the vertex (k —r1)-cells of a vertex k-cell z combine (with
proper closure) to form a singular (k—1)-sphere superficially
spanning z while this (A —1)-sphere bounds the singular k-cell
spanning z.

Let z be an algebraic p-chain. A process by virtue of which each
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verlex k-cell (k =o....,u)is e-spanned will be termed an e-spanning
of 5. Corresponding to an e-spanning of s there exists a new chain 37,
termed the first subdivision of 3, and constructed as follows. We
first replace cach algebraic o-cell of z by itself. Let u be an arbitrary
algebraic k-cell of z with & > o, and let $(u) be the singular A-cell
spanning u. Let P, be an arbitrary point of S(u). Proceeding induc-
tively we suppose thal the algebraic (k—1)-cells of Bu have been

replaced by a set of algebraic (k—1)-cells forming an algebraic
(kA —1)-cycle ¢. Let

(6.1) V... .\ (3CA)

represent an arbitrary term in the « reduced » form of v. We replace
u by a sum

(6.2) 8P, AL . Az

of terms obtained by adding P, as in (6.2) to each term (6. 1) in the
reduced form of ¢. It is clear that the boundary of the chain (6.2)
is ¢. Moreover the inductive hypothesis that Bu is replaced by an
algebraic (k —1t)-cycle ¢ is readily verified when £ is replaced by
k1. Cf. proof of Lemma 6.1. The inductive definition of z* is
complete.

Upon referring to the k-simplices of which the above singular
k-cells u are images, it appears that the point P, can serve as a new
vertex of a subdivision of the singular 4-cell S(u) into a set of new
singular A-cells determined as the join (relative to straightness on the
defining k-simplex) of P, and the singular (kA —1)-cells on the pre-
viously subdivided boundary of S(u). These new singular k-cells will
span the new algebraic p-cycle z*, and may serve to define a subdi-
vision of 5%, or as we shall say, a « second subdivision » of 5. An
algebraic k-cycle z which can be ¢-spanned thus admils an infinite
sequence of corresponding subdivisions z,, s, .... If the new
vertices P, of these subdivions are properly chosen the norm of z,
will tend to zero as n becomes infinite. We admit only such infinite
sequences of subdivisions.

Lemma 6.1. — The boundary of a subdivision of an algebraic
k-chain z is the corresponding subdivision of the boundary of s.

We shall designate the first subdivision of a chain by prefixing the



FUNCTIONAL TOPOLOGY AND ABSTRACT VARIATIONAL THEORY. 27

letter ¢. It is understood that we are concerned with a unique span-
ning of all algebraic cells involved and with the corresponding first
subdivision. Let u, be an arbitrary algebraic A-cell for which ¢u,
exists. As seen in connexion with (6.2)

(6.3) Bou,=gfu.

Moreover for any finite sum &;u,. 90, u, = ;9 u,.
Upon using these relations we find that

Bod,u;= B3;0u,= &;fou,= & 9B8u,;=98du,
and the proof of the lemma is complete.

Lewva 6.2. — If 7" is a subdivision arising from an e-spanning
on B of an algebraic p-cycle s, then

(6.4) z*~.z  (onB).

Lemma 6.2 follows from the theory of deformation chains and in
particular from (1.4). For the vertices of z* can be mapped onto the
vertices of z as follows. Each vertex of z* not a new vertex P, shall
be mapped onto itself, while P, shall he mapped onto an arbitrary
vertex of u. The algebraic k-cycle thereby replacing 5" « reduces »
to 5. The deformation chain Dz of (1.4) has the norm e so that
3"~ 3, as staled.

(«). Let 2, 35,... be an infinite sequence of subdivisions of an
algebraic p-cycle s e-spanned on B. Let K be the sum of the closures
of the singular p~cells spanning the respective vertex p-cells of 5. The
set K is compact. Upon applying the preceding lemma with K repla-
cing B we see that the successive subdivisions z, admit connecting
homologics on K with norms which tend to zero as n becomes infinite.
Hence the sequence 3, defines a Vietoris p-cycle with carrier K C B.
We denote such a cycle by V(z), and term V(z) a Vietoris p-cycle
derived from s.

Lemma 6.3. —— Let u and v be algebraic m-cycles which bound
an algebraic (m + 1)-chain w admitting a spanning on B by vir-
tue of which u is n-spanned on B and a Vietoris cycle (vy) is
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« derived » from ¢. Then
(6.5) u~yqor  (onB)
Jor all sufficiently large integers r.

Corresponding to the given spanning of w let (w,) and (un) be
infinite sequences of subdivisions of w and u respectively. If r is so
large that the norm of v, is less than v, then u, ~ ¢, on B in accor-
dance with Lemma 6. 1. By virtue of Lemma 6.2, u ~ ,u, on B for
all integers r. Combining these homologies, (6.5) follows as stated.

(B)- Under the hypotheses that the sets F <¢ <C1 are compact and
that M is locally F-connected of all orders at points of F <1, the
following statements are readily seen to be true. Corresponding to
a positive conslant e, a constant ¢ <C 1 and a positive integer m there
exists a positive constant ¢ and a positive function 6 () defined for
0 <n<o, tending to zero with n and possessing the following pro-
perty. The set of all algebraic cells on F<c¢ of dimensions at most
m + 1 and norms ¢ admils an e-spanning on F<c¢ + e in which a
singular k-cell spanning a vertex A-cell of norm » has a norm 6(xn).
The function 6(n) depends on ¢, e and m.

The group Ty (c). Under the hypothesesof (8) and corresponding
Lo the constants ¢, m and ¢ of (B) let (a,,..., a;) = (a) be a maxi-
)
3
with respect to s-homologies on F <¢. That the number of cycles in
such a linear set is finite follows from Lemma 5.2. Let the set of all
vertex A-cells of norm ¢ on F < ¢ for which o <C A <m + 1be e-spanned
in accordance with the conditions of paragraph (). So spanned let
V (a,) be a Vietoris m-cycle derived from a, in accordance with ().
Corresponding to each algebraic m-cycle u = d,a; we set

mal linear set of algebraic m-cycles of norm ; on F<¢, independent

V(u)=38V(a,).

When u £ 0, V(u) is a Vietoris m-cycle « derived » from u. The
Vietoris m~cycles V(u) form a group T'n(c) with the finite base
V(ay),..., V(ay).

Turorem 6.1. — If the subsets F<c <1 of M are compact and
M is locally F-connected of all orders at points of F <1, then for
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a fized m > o and ¢ <1 any Vietoris m-cycle y = (y.) on F<c is
homologous on F<c + e to a cycle V(u) of the group T'n(c).

Without loss of generality we can assume that the norms of the
components (y,) of y are al most % where ¢ is the constant described

in (8). The algebraic m-cycle y» together with an algebraic m-cycle (*)
of the form u =4d,a; bounds an algebraic (m + 1)-chain w, on
F<e, of norm o by virtue of the choice of the base (a). If wy is
spanned with the aid of the singular cells described in (B), u will be
similarly spanned (') and determine the Vietoris m-cycle V (u). If e, is
the norm of yn, y, will thereby be spanned by singular cells of norm
n="0(e,). It follows from Lemma 6.3 that y, is n-homologous on
F<c¢+ e to each component V, of V(u) for which r is sufficiently
large. Recalling that 6(e,) tends to zero with e, we see that the
.Vietoris m-cycles y and V(u) are homologous on F<¢ +e.
The principal theorem of this section is as follows.

Taeorem 6.2. — If each subset F<c¢ <10f M is compact and M
is locally F-connected of all orders at points of F <1, the dimen-
sion of the mth homology group of F <1 is at most alef-null.

Let S be a maximal linear set of Vietoris m-cycles on F <1, non-
bounding on F << 1. The number of cycles of S on the respective sets
F<i— %7 n=r1,2,... is finite by virtue of the preceding theorem.

Hence the number of cycles in H is at most alef-null.
It is clear that the proofs of the two preceding theorems make use
of local F-connectedness merely of the orders 1 to m 4-1.

PART IL

CRITICAL POINTS.

7. F-deformations. — The fundamental theorem of Part II is that
each cap limit is assumed by F at some homotopic critical point pro-
vided F is upper-reducible. We shall presently define a homotopic

(Y) Independent of n and w,.

MEMORIAL DES SC. MATH, — N° 92, 3
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critical point. In the following section upper-reducibility will be
defined and the theorem proved. We do not assume that the sets
F<c <1 are compact. We shall begin by defining F-deformations.
They are abstract generalizations of deformations along the ortho-
gonal trajectories of the manifolds F = constants when such mani-
folds and trajectories exist.

Let E be a subset of M. We shall admit deformations D of points
initially on E which replace a point p on E at the time ¢=o0 by a
point ¢ = q(p, t) (p CE;0<¢<7)on M at the time ¢, where ¢ varies
on the closed interval (o, 7). We shall suppose that 7 is a positive
constant and that g( p, ¢) is a continuous point function of its argu-
ments. Such deformations will be termed admissible. The curve
g = q(p, t) obtained by holding p fast and varying ¢ will be termed
the trajectory T defined by p. If a point ¢ precedes a point r on the
trajectory T, g will be termed an antecedent of r.

We shall say that the deformation D admits a displacement func-
tion 3(e) on E, if whenever ¢ is an antecedent of r such thal
gr >e > o, then

(7.1) F(g)—F(r)> 8(e),

where 3(e) is a positive single-valued function of e. An admissible
deformation of E which possesses a displacement function on each
compact subset of E will be termed an F-deformation of E. A defor-
mation in which ¢( p, )= p is an F-deformation and will be termed
a null deformation.

If Fis continuous and E compact any admissible deformation such
that F(q) > F(r) whenever ¢ is an antecedent of r distinct from r,
is an F-deformation. This follows from the uniform continuity of F
on a compact set. If however F is merely lower semi-continuous the
situation is not so simple as examples will show. See Example 9.1,
M[T7].

A point p will be said to be homotopically ordinary if some
neighborhood of p relative to F<F(p) admits an F-deformation
which displaces p. A point which is not homotopically ordinary will
be termed homotopically critical. Simple examples of homotopic
critical points are maximum and minimum points and saddle points
of surfaces.

To illustrate these ideas we shall consider the case of a function
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F (&4, ..., xn) of class C? in an open region R of the space (z.)
We term (z) = (a) differentially critical if the first partial deriva-
tives of F vanish at (a). Otherwise we term (a) differentially ordi-
nary. We shall show that a point which is differentially ordinary is
homotopically ordinary.

To that end let z,=z,(ay, ..., @, t) =zi(a, t) be a trajectory
defined by the differential equations

(7.2) %’%_—:—F,ﬂ' (i=1,...,n)

with the initial conditions z,(a, o)=a,. A deformation which
replaces (a) by the point [z(a, t)] is an F-deformation neighboring
any ordinary point (a®) of R, provided ¢ be restricted to a sufficiently

small interval (o, 7). For under such conditions it follows from (7.2)
that

dF
2= Fy Fz < const. <o.

It is thereby seen that a point which is differentially ordinary is
homotopically ordinary. Hence a homotopic critjcal point of F is a
differential critical point. The converseis not true. For example z=0
is a differential critical point of F = 2, but not a homotopic critical
point.

We now develop certain properties of F-deformations. Let D be a
deformation of a set A. The set of final images of points of A under D
will here be denoted by DA. Let B,, ..., B, be a set of F-deforma-
tions, such that B, is applicable to A, B, is applicable to B, A, or
more generally B;., is applicable to B;B;_; ...B,A. In such a case
the deformations B, ... B, will be said to define the product defor-
mation A=B,...B, of A. Under A a point p is deformed
under B, into B, g, the point B, g is then deformed under B, into
B;B, ¢, and so on until B, ... B,g is deformed under B, into the
final image of ¢ under A.

Lemma 7.1. — The product A=B,...B, of F-deformations B;

with various domains of applicability is an F-deformation of any
set A to which A is applicable.

That A is a continuous deformation of A is clear at once. Let C be
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a compact subset of A. We continue by showing that A admits a dis-
placement function &(e) belonging to C.

Let 9, (e) be a displacement function for B, applied to C. Forz >1
let 3,(e) be a displacement function for B; applied to B;_, ... B,C.
Let ¢ be an antecedent of r under A on a trajectory A whose initial
point is p C C. If gr > e, at least one of the deformations B, must
have displeced a successor of p on A between g and r a distance

greater than %- Since the change of F' as ¢ moves along } from ¢ to r

is the sum of the changes in F under the different deformations B;
we see that

(7.3) F(q)—F(r)>mina,(%) (i=1,...,n)

The right member of (7.3) thus serves as a displacement function
d(e) for C, and the proof of the lemma is complete.

The following lemma concerns the extension of an F-deformation
beyond its original domain of definition.

Lemma T.2. — Let A and B be subsets of M such that A CB,
and let A, be anse-neighborhood of A relative to B which admits
an F-deformation D on M. There exists an F-deformation 6 of B
which deforms points initially on A, as does D, and subjects
the points of B not on Asess to the null deformation.

Suppose the time ¢ in D varies on the interval (o, 7). Under 6 the
time ¢ shall likewise vary on (o, 7). Points of B initially on A
shall be deformed under 6 as under D while points of B not on A3
shall be held fast. For points ¢ of B whose distance d(gq) from A is
such that

(7-4) 3 <d@)¥

we define § as follows. Let ¢; divide the interval (o, 7) in the ratio
inverse to the ratio in wich d(q) divides the interval (7.4). Under
6 points g of B which satisfy (7.4) initially shall be deformed as
under D until ¢ reaches #;, and shall be held fast thereafier. It
follows that 6 deforms points initially on B continuously. Further
if C is any compact subset of B the closure K relative to G of
CG.A,.; 1s a compact set on A,. One sees that § admits the same
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displacement functions on C as does D on K. Thus § is an F-defor-
mation of B, as slated.

Let D be an F-deformation of a set A. An F-deformation § of the
set A will be said to be related to D if the trajectory of each point p
of A under 6 is a subarc of the trajectory of p under D and if
there exist positive conslants ¢ and t with the following property.
Every point of A which is displaced under D a distance at most ¢
has the same trajectory under 6 as under D, while points of A
which are at any time displaced a distance exceeding ¢ under D are
at some time displaced a distance exceeding 7 under 8. We shall need
the following lemma.

Lemma 7.3. — Corresponding to an F-deformation of a set A
and a positive constant e, there exists a « related » F-deforma-
tion 6 of A in which no point of A is displaced a distance greater
than e.

It might seem that one could obtain 6 from D by merely shorten-
ing the time interval for D, bul this is hardly the case since there
may exist points of A which are displaced early in D while other
points are not displaced al all during the first part of the time
interval, but are displaced during the latter part of the time interval.
This difficulty will be met by making a change of parameter on the
trajectories of D, passing from ¢ to an intrinsic parameter p, with
the property that the point g(u) on a given curve is displaced
whenever p is varied. This parametization in terms of p has other
important properties of great use in our variational theory. We shall
describe this parameterization and its properties.

p-parameterizations. — For each ¢t on an interval (o, a),
with @ 2o, let ¢(¢) be a point on M which varies continuously with .
The set of points ¢(¢) taken in the order of the corresponding values
of ¢t will be termed a parameterized curve (written p-curve). In
general p-curves will be denoted by Greek letters a, 8, v, etc. while
points on M will be denoted by letters p, g, r, etc.

The Fréchet distance nZ between two p-curves n and ¢ will now be
defined. Suppose 7 and ¢ are represented in the forms

(7.5") p=p(t) (oStga),
(7.5" g=9(@) (oLusbh),
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respectively. Suppose first that a and b are positive and let  repre-
sent any sense-preserving homeomorphism between the intervals (0, @)
and (o0, b). Let d(w) be the maximum distance between points of
and ¢ which correspond under w. The Fréchet distance n¢ shall be
the greatest lower bound of the numbers d(w) for all admissible w.
If a=o0, n reduces to a point and the distance n{ shall be the
distance of this point from ¢, When b = o, ¢ is similarly defined.

We understand that the p-curves 1 and ¢ are identical if and only
ifa=1>0 and p(¢)=q(¢). It is readily seen that n{ may be zero
without v and ¢ being identical. However onc notes that n{ = ¢{x and
if A is a third p-curve that

(7.6) nL <A + AL,

The set of p-curves at a null Fréchet distance from a given p-curve
will be called a curve class, or more briefly a curve.

We are seeking a parameterization ¢(p) in which ¢ is displaced
when p is varied. Parameterizations in terms of arc length have this
property when they exist. Such parameterizations however fail to
exist for certain curves, and fail to have the important property that
points on 7 and ¢ bearing the same parameter s will be arbitrarily
near for n fixed and n¢ sufficiently small. It is however possible to
single out from each curve class « a unique p-curve ¢ with the
desired properties. The parameter of ¢ will be denoted by pn and
termed p-length, and ¢ will be called a p-curve. The characteristic
properties of these p-curves are as follows.

a. If n: p=p(t)is an arbitrary p-curve of the curve class a, the
corresponding p-curve ¢ takes the form

g=qm ) =pltr)] [osplp(n)h

where ¢ (@) is a continous non-decreasing function of i on the closed
interval [o, p(n)].

b. The value of p at an arbilrary' point ¢ on ¢ satisfies the
condition

(7.7)

A
A
A

psd,

where d is the diameter of the set of points preceding ¢ on 9.
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c. The limit p.(n) is a continous function of n, for n on the Fréchet
space of p-curves, and is independent of » in the curve class a.

d. For 0 fixed g(n, p) is constant with respect to g on no
subinterval of [ o, p(n)]-

e. The function ¢(», ) is continuous for » on the Fréchet space
and p on [0, p(n)].

The proofs of these properlics are to be found in M [6].
Cf. Whitney [1, 2] and Fréchet [2]. Whitney deals with curves
without multiple points. The intrinsic parameterizations of Fréchet
do not have the property e. We add the following definition. The
distance between two curve classes A and ¢ shall be the Fréchet
distance between any two p-curves in the classes A and ¢. It is thereby
uniquely defined.

Proof of Lemma 7.3. — Under D a point p of A determines a tra-
jectory which we denote by n(p). Regarding n(p) as a p-curve in
the Fréchet space. recall that w(p) varies continously with p.
Let ¢ = ¢(x, ) be the « p-curve » in the curve class of n(p). Recall
that ¢(», i) is continuous in its arguments provided p varies on the
interval [0, (n)]. Set

(7.8) ()] =p(p)
whenever the left member of (7.8) is less than g’ where e is the

constant e of the lemma. Otherwise let u(p) = g- Set

glnp)tu@)]=r(p,t) (WCA;o0<tL).

The point function r(p, ¢ ) defines a deformation 6 of A satisfying the
lemma as we shall see.

It is clear that the point r(p, ) varies continuously on M for pon A
and 0 <¢<1. Moreover 6 is an F-deformation of A. For its trajectories
are in the curve classes of subarcs of trajectories of D so that 6
admits the same displacement functions as does D. To show that 6
is « related » to D we shall first show that the constant ¢ in the

definition of the term « related » can be taken as g- For a point p
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which is displaced at most-g under D thereby defines a trajectory n

on which p(n)< g by virtue of (7.7) so that p has the same trajectory
under 6 as under D. The remaining points p of A give rise
to trajectories m under D for which p(n) > Z by virtue of (7.7).
Such points will define trajectories T under 6 on which p will

increase beyond ;l- The diameters of these trajectories T will then be
at least% again by virtue of (7.7). Thus 0 is « related » to D.

Finally no point p of A is displaced a distance greater than e
under 6. For p is deformed under § along a itrajectory on which p

e . . . .
never exceeds 5 $0 that the diameter of this trajectory 1s at most e,

and the proof of Lemma 7.3 is complete.

Lewma T.4. — If an F-deformation A of a compact set A
on F<c carries A into a set d-below ¢, any «related » F deforma-
tion 6 of A will carry A into a set d-below c.

The set A is the sum A’ A" of sets of the following nature.
A’ consists of points which are displaced at least a distance = under 6,
where 7 is a positive constant, while A" consists of points deformed

under 6 as under A. The closure A’ of A’ is compact. Its points are
displaced under § at least the distance 7 and so are deformed under 6

onto F <¢—d(r), where d(e) is the displacement function of 6 on A’

8. Upper-reducibility and the fundamental theorem. — The func-
tion F will be said to be upper-reducible at p if corresponding to
each constant ¢ > F(p) some neighborhood of p relative to F<c
admits an F-deformation onto a set d-below ¢. If F is upper-reducible
at each point p of a set B, F will be said to be upper-reducible on B.

A function F which is lower semi-conlinuous is not necessarily
upper-reducible. For example let M be the semi-circle z° + y?=1
with y>o0. Let F(x, y) =y on M for z3£ 0, and let F(o, 1) =o.
The function F(z, y) is lower semi-continuous. It is not upper-
reducible at (o0,1). A function which is upper-reducible is not
necessarily lower semi-continuous. For example let M be the semi-
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circular disc 22—+ »*<1 with y > o0. Let F(z,y) =10 on M for z £ o,
and let F(o, y)=y. The function F is upper-reducible without
exception. It is not lower semi-continuous on the positive y axis.

A function which is continuous at p is upper-reducible at p.
For if ¢ > F(p), any sufficiently small neighborhood of p will be
d-below ¢, and will remain there under the null F-deformation. We
shall see that the functionals of ordinary variational theory are
upper-reducible, together with the more general functionals of our
abstract locally convex variational theory.

Lewma 8. 1. — Let C be a compact subset of F <c which contains
no homotopic critical points at which F=c. If F is upper-
reducible at points of G, there exists an F-deformation A of F<c
in which C is carried into a set d-below c.

- Corresponding to each point p of G some spherical neighbor-

hood V(p) of p relative to F <¢ admits an F-deformation D (p) onto
a set d-below c. This is true if F(p)=c since p is then homotopi-
cally ordinary, and it is true if F(p) << ¢ since F is upper-reducible
at p. Let V/(p) and V"(p) be respectively spherical neighborhoods
of p with radii one third and one sixth that of V(p).

Since C is compact there exists a finite set of the neighborhoods
V'(p), say V'(p1)s-.., V'(pn) which covers C. Upon setting A = p,
in Lemma 7.2 we infer the existence of an F-deformation B, of F<e
which deforms V/'(p,) as under D(p,). Let e be the minimum of the
radii of the neighborhoods V' ( p). By virtue of Lemma 7.3 there exists
an F-deformation 0; « related » to B, under which no point of F Scis

displaced a distance exceeding —:: - The product deformation A =6,...6,

is an F-deformation of F<¢ by virtue of Lemma 7.1. I say that A
carries G into a set d-below c.

Under A, V'(p,) is deformed on V'(p;) since A displaces no point
a distance greater than e. The deformation 6, being « related » to B;
deforms any compact subset of V'(p;) into a set d-below ¢ in accor-
dance with Lemma 7.4. Hence A deforms any compact subset of V/(p;)
into a set d-below c. But C is covered by the neighborhoods V"(p,),
and so is deformed by A into a set d-below ¢. The proof of the lemma
is complete.

The main theorem of Part 1I is as follows :
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Tueonem 8.1. — If F is upper-reducible, each cap limit ¢ is
assumed by F in at least one homotopic critical point p.

Let u be a k-cap with cap limit c. By definition « admils a compact
carrier x on F<¢ while Bu lies on F<b', where &' is some constani
less than c. Suppose the theorcm false. According 1o the preceding
lemma there will then exist an F-deformation A of F<¢ in which £ is
carried into a set on F<d", where 8" <c¢. Ifu, is the n th component
of u, there exists a deformation chain A,u, of norm e, belonging
to A and u, such that

(8.1) BArun=tp— fu,— ABu,,

where fu, is the final image of u, under A and where e, tends to zero
with n. Let b be the larger of the constants &' and 4". It follows
from (8.1) that

(8.2) Up ~e,0 (onF<cmodF<6).

According 10 (8.2), u is c-homologous to zero, contrary lo the
hypothesis that the cap limit of u is ¢. We infer the truth of the
theorem.

9. Critical sets and their type groups. — In this section we are
concerned with the counting and classification of critical points.
Consider for example a harmonic function u(x. y) which has a
crilical point at the origin at which all of the partial derivatives up to
but not including those of the n th order vanish. The function u(z, y)
is the real part of an analytic function of the complex variable
z==x + ty which has a zero of the (» — 1)st order at s =o. If one
wishes to use the critical poinl theory to derive and extend the clas-
sical theorems on the number of zeros of an analytic function in a
given region, il will be necessary to count the origin as if it were a
non-degenerate critical point of index one taken n —1 times,

A non-degenerate differential cmtlcal point of index k naturally
counts as just one such pomt In the general case where a critical set
is highly degenerate or is more than o-dimensional, it is possible to
give a group theoretic local topological mode of counting and classi-
fying critical sets. Corresponding to each dimension k one associates
with the given critical set ¢ a class of isomorphic groups of k-caps
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termed the k& th Lype groups of o. The dimension of these groups is
the £ th type number of ¢. For the case of the harmonic function in
the preceding paragraph the 1st type number will be n—1, the
other type numbers zero. The & th Lype nimber of a non-degenerate
differential critical point of index 1 is 1, the other type numbers 0. A
critical set with & th type number p; can be regarded as equivalent
(with respect to cerlain properties) to p; non-degenerate critical
points of index k. Our mode of counting critical sets will lead to a
proof of the following important theorem.

Turorem 9.1. — If M is F-accessible and F is upper-reducible
on F <1, the sum of the kth type numbers of the respective cri-
tical sets on F <1 is at least the smaller of the two cardinal num-
bers, alef-null and the kth connectivity of F < 1.

We begin with several definitions. By the complete critical set
at the level ¢ is meant the set of all homotopic critical points at which
F = c. It follows from the definition of a critical point that w is closed
relative to the set F =c. By a critical set o at the level ¢ will be
meant any subset of w which is closed in » and at a posilive distance
from w —o. A neighborhood of ¢ which is at a positive distance from
w —¢ will be termed separate.

Let R be a subset of M. If we regard R as a space M, a k-cap rela-
tive to R has a new meaning dependent on R. The type groups which
we shall associate presently with each critical set ¢ should be defin-
able in terms of the values of F on arbitrarily small neighborhoods
of o. To this end the following theorem is fundamental.

Tarowem 9.2. — Let U be a separate neighborhood of a critical

set o at the level ¢ and suppose that F (s upper-reducible on
F<e.

a. If u is a k-cap relative to U with cap limit ¢, u is a
k-cap relative to M.

b. If u is a k-cap relative to U with cap limit c, u is c-homo-
logous on'U to a k-cap on an arbitrarily small neighborhood of a.

In proving this theorem the closure of the e-neighborhood of a
subset g of M will be denoted by g°.
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Proof of (a). —1If (a) were false there would exist a formal
(k +1)-chain w on F< ¢ together with a formal k-chain y d-below
¢ such that

(9.1) Bw=u—y.

We shall show that thece then exists a formal (k —+ 1)-chain »" on
U and a formal A-chain »” on U and d-below ¢ such that

(9.1) Bow'=u—y’,

lherebj contradicting the hypothesis that u is a k-cap relative to U
with cap limit c.

Let w be the complete critical set at the level ¢ and let t = w —o.
Let x be a carrier of z on Uand on F<c¢. Let e be a positive constant
so small that o%¢ and x*¢ are on U while 3¢ and U are disjunct.
Without loss of generality we can suppose that w and u admit the
norm e/3.

Let B be a carrier of w on F<¢ with B”>x. The sets B and x are
compact. Let Cbe the closure of B— Bwe. The set C is compact and
contains no points of w. According to Lemmas 8.1, 7.3 and 7.4
there exists an F-deformation 6 of F<¢ which carries C into a set
d-below ¢ but displaces points of F<¢ distances less than e/3. The
images of u and w under § then admit the norm e. We sec that B—GC
is on w¢ and is deformed on ¢ under 6. Indicating final images
under 6 by prefixing f we sec that

(9.2) SB=f(B—C)+ fCCw’+ fC

where fC isa compact set d-below c.

Let the nth components of the formal chains w, u, etc., be denoted
by w,, un, etc. Corresponding to 6 let D, be a deformation operator
belonging to u, with norm e, tending to zero as n becomes infinite.
We have the relation

(9.3) BDrup=1upr— fup—D,Bu, (n not summed).

From the commutativity of 8 and f, and from (9.1) we see that
(9.4) Bfwn=fBwr=fun— f¥n.

Upon adding the extreme members of (9.3) and (9.4) we find thal
(935) Bovh=un—yn
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where

Yhw=Jf¥n+ DnBun, wh=D,u,+ fwn.
We set y'=(y)) and w'= (). The formal chain y' is d-below ¢
since y and Bu are d-below ¢. Moreover D, u, is on ¢ since u is onx,
while fw is on /B since w is on B. Hence w' admits a carrier ¥’ such
that

(9.6) x'C %+ fB (C xe+ we+ fC.

Thus cells of w' intersect ¢+ w2¢ or are on fC.

Let o be the formal A-chain obtained by dropping all cells from
the components of o' save those which meet x¢ + ¢2¢. The cells of w/
admit the norm e so that w" has the intersection of x' with x?¢ - g3¢
for a carrier. This carrier is on U. With &' so defined y" in (9.1) is
d-below c. For

(9.7) Bo=Bow'+ (' — '),
or upon using {9.5),
(9.8) B = u— 3+ B — o).

To show that B(w'—w') in (9.8) is d-below ¢, note that cells of
w"—w' are on x' [see (9.6)] but do not meet x* + ¢2¢, and accordingly
intersect z°¢ or are on fC. Referring to (9.7) recall that cells of B
do not intersect 2¢ nor do cells of B’ [see (9.5)] excepting at most
cells of »'. Relation (9.7) then implies that 3 (&’ — &) has a carrier
d-below c¢. Returning to (9.8) we conclude that y" in (9.1) is
d-below c. Statement (a) follows as indicated.

Proof of (b). — With B=1x (9.3) holds without the assumplion
that (a) is false. Hence u and fu are c-homologous on U. But fu is
on fB. Upon referring to (9.2) we see that cells of fu either
intersect ¢°¢ or are on fC. Upon dropping all cells of fu which do
not intersect ¢2¢ one obtains a k-cap ¢ on ¢*¢, c-homologous to fu on
U. Since ¢%¢ is on an arbitrarily small neighborhood of ¢ for e suffi-
ciently small, we conclude that u is c-homologous on U to a k-cap ¢
on an arbitrarily small neighborhood of ¢. The proof of (b) is com-
plete.

Let o be a critical set at the level ¢c. A k-cap u with cap limit ¢
will be said to be associated with g if u is c-homologous to a k-cap
on an arbitrarily small neighborhood of a. Two isomorphic groups of
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k-caps with cap limit ¢ will be said to be cap-isomorphic if corres-
ponding elements are c-homologous. A maximal group of k-caps
associated with a critical set g will be called a k th type group of ¢.
It follows at once from the definitions that any two & th type groups
of ¢ are cap-isomorphic. The dimension of a kth type group of ¢
will be called the & th ¢ype number of . That these type numbers
and type groups (with cap-isomorphic groups regarded as equivalent)
depend only upon F in arbitrarily small neighborhoods of o is shown
by the following theorem.

Tueorem 9.3. — A mazimal group g of k-caps with cap limit c
relative to any separate neighborhood of a critical set o at the
level ¢ is a kth type group of a.

It follows from Theorem 9.2 that each k-cap of g is associated
with o. That g is a maximal group of k-caps associated with o
on M is seen as follows. Any k-cap associated with ¢ is c-homologous
on M to a k-cap ¢ on U. Since ¢ is a k-cap relative to M it is a k-cap
relative to U. Since g is maximal among k-caps relative to U with cap
limit ¢, for some k-cap w in g, v— w is c-homologous to zero, and
hence not associated with ¢ on M. Hence g is a & th type group of o.

Traeorem 9.4. — Let the complete critical set w at the level ¢ be
represented as a sum of disjunct critical sets ¢*, 1 =1, ..., n,
and let g' be a k th type group of o'. Then the groups g* admit a
direct sum g, which is a kth type group of w.

Without loss of generality we can suppose that the k-caps of g* lie
on neighborhoods U¢ of the respective sets ¢* at positive distances from
each other. For Theorem 9.3 affirms that there exists a kth type
group on U!, cap-isomorphic with g*. We suppose then that the
k-caps of gi are on U. Let u', ..., u" be k-caps belonging to dis-
tinct groups g¢. Let U be the sum of the neighborhoods Ut. That
u'+...+u" =u is a k-cap with cap limit c relative to U may be
seen as follows. The neighborhoods Ut are at a positive distance from
each other so that if u were c-homologous to zero ou U, then u/
would be c-homologous to zero on U/ for each u/, contrary to the
nature of w/. Hence u is a k-cap with cap limit ¢ relative to U. It
follows from Theorem 9.2 (a) that u is a k-cap with cap limit ¢ rela-
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tive to M. Thus the groups g sum to a group g of k-caps with cap
limit ¢. By virtue of Theorem 9.2 (b) each k-cap of g is associated
with .

That g is a maximal group of k-caps associated with ¢ may be seen
as follows. Each k-cap ¢ with cap limit ¢ is c-homologous to a k-cap
on the above neighborhood U of w by virtue of Theorem 9.2 (b). Since
the groups g* are maximal on their respective neighborhoods U, ¢ is
then c-homologous to a sum of k-caps of the respective groups g'.
Thus g is maximal as stated. The proof of the theorem is complete.

CororLary 9.4. — The kth type number of a complete critical
set w is the sum of the kth type numbers of any finite set of dis-
junct critical sets summing to w.

Proof of theorem 9.1. — We base the proof of this theorem on
Corollary 4.3 and the following statement.

(a). Under the hypotheses of the theorem the kth type number
of a complete critical set at the level ¢ <t is at least the dimen-

sion of a mazimal group g of non-bounding k-cycles with cycle
limit c.

Each £-cycle of g is homologous to a k-cycle on F<¢. Without
loss of generality we can suppose that g consists of cycles on F<ec.
The cycles of g are then canonical (§ 2). They are also k-caps with cap
limit ¢ by virtue ot Theorem 3. 1. There accordingly exists a & th
type group of w with g as a subgroup. Statement («) is accordingly
true. Theorem 9.1 now follows from Corollary 4.3.

10. Non-degenerate critical points. — We shall apply the prece-
ding theory to the case where M is a regular n-manifold of class C3,
that is to the case where M is a compact Hausdorft topological space
with the following properties. Some neighborhood of each point p of
M can be mapped homeomorphically onto a region U of a euclidean
n-space of rectangular coordinates (z) such that whenever points (z)
and () belong to two such neighborhoods and define the same points
on M, the relation between the coordinates (z) and () is given by a
non-singular transformation z‘= z'(z) of class C3. Neighboring any
point ¢ of U we admit any system of coordinates (z) obtainable from
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the coordinates (#) by a non-singular transformation z'= zi(z) of
class C3. We suppose moreover that the function F on M reduces to
a function ¢(z) of class C? in terms of each admissible set of coordi-
nates (z).

A differential critical point (@) of ¢(z) will be termed a diffe-
rential critical point of F. The point (a) will be termed degenerate
if the hessian of o vanishes at (a). We assume that the differential
critical points of F are non-degenerate. In such a case F is termed
non-degenerate. As in the introduction the index of a differential
critical point (@) shall be defined as the index of the quadratic form
whose coefficients are the elements of the hessian of ¢ at (a). From
the non-degeneracy of F it follows that the critical points of F are
isolated.

Since M is compact the critical points of F are finite in number.
We shall show that a non-degenerate differential critical point ¢ is a
homotopic critical point, and shall evaluate the jth type number
of e. We begin with the following lemma.

Lemma 10.1. — If ¢(2) has a non-degenerate critical point of
index k at the point (z) = (o), there exists a non singular trans-
Jormation y,=y.(z) of class G' under which

(10.1) (@)—3(0)=—yF—...— Y+ VI IR
neighboring (z) = (o).

Employing Taylor’s formula with the integral form of the remainder
(Jorpban, Cours d’ Analyse, vol. 1, p. 249) we find that

(10.2) ?(z) —9(0) = aij(z)zi1z) (L, j=1,...,n),

(10.3) ai;j(r) =f (1—u) ?x'xl‘(uwl, vy uzy)du.

It follows from (10 3) that a;j(z) is of class C' neighboring (:v) = (o)
and that a, ,(o)_ > Pa, 2z, (0).

\

In particular the determinant |a;;(0)| 5 o.

If the coefficients a;;(z) were constants, the Lagrange mode of
reduction would carry ¢ into the form (10.1). Proceeding formally
as if the coefficients a;,(z) were constants we can still effect this
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reduction. In particular if a,, (0) 3£ o, the substitution

a1 x;
g

(10.4) 1=

1) Bo = X3, seey Zn==Xn

reduces ¢ to the form
(10.5) () — 9(0) = a1z} + b,j(x)3:153; (i, J=2,...,n).

If at least one of the coefficients a,-(0)3% o, a substitution of the
form (10. 4) is applicable after interchanging the variables z, and z,.
If each of the coefficients a,r(0) = o, at least one of the coefficients
air (0) % o. After a change of variables of the form z,= 2| —«,,
Z,= &', + «,, a substitution of the form (10. 4) will again be possible.
Thus in any case one is led to a quadratic remainder of the form
b, (x)z.5,(, j=2, ..., n) to which the same method of reduction
is applicable. Transformations such as these clearly are non-singular
and of class C' neighboring the origin in the respective spaces (),
(%), etc., and lead to a representation of ¢(z) of the form

(@) —2(0)=c(z)z]  [e(0)# 0],

where the coefficients ¢;(z) are of class C'. A further reduction to
the form (10.1) is immediate, and the proof of the lemma is com-
plete.

Tueorem 10. 1. — A4 non-degenerate differential critical point
o of index k is a homotopic critical point whose jth type number
equals the Kronecker d}.

‘We suppose that F(¢) =0 and that ¢ is represented by the point
(%) = (o) in a coordinate system (y) in which F takes the form
(10.6) F=—pt—..—0}+yi, +.. .+ 7h
as described in Lemma 10.1. Let r be so small a positive constant

that the transformation of the lemma holds whenever y;y:< r2. Let A
denote the set of points (y) for which

(10.7) F<o, pyuyi<r®

and let A’ denote the subspace of A on which F < 0. The set A forms
a neighborhood of ¢ relative to F<o free from differential critical
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points other than ¢, and hence free from homotopic critical points
with the possible exception of . We shall determine the dimension
1, of a maximal group of j-caps relative to A.

Ifthe index & of the critical point ¢ is zero, A consists of the point
c alone, and the theorem is immediate. We suppose therefore that
k > o. We note that A can be radially deformed on itself onto the
origin. We continue with a proof of the following statements.

(@). The homology groups of A’ are isomorphic with those of
the (k —1) sphere; (b). If uisa j-cap relative to A, Bu ~~ o on A,
(¢). If uwis a j-cap relative to A, j = k. (d). A mazximal group of

k-caps relative to A has the dimension p.—=1.

The reader will find it helpful to make a diagram of the sets A and
A’ in the case where F = y? — y{ in the y, y.-plane.

Proof of (a). — The space A’ can be radially deformed on itself
onto the subspace

(10.8) F <o, o<yzyz§r;2

holding this subspace fast. The set (10.8) can then be deformed onto
the subset

v

(10.9) o<y%+...+y%\§r?—, YEr1=...=¥Yn=0,

holding y, . ...y fastand letting each | y;| for which j =k +1, ...,
n decrease a unit of time at a rate equal to the initial value of |y, |.
The set (10.9) can be radially deformed on itself onlo its spherical
boundary

2
(10.10) Yi+.. . +yi= . “Ykti=...=)yp=0.

2
The preceding deformations leave the (k — 1)-sphere (10.10) fixed.
Statement (a) follows from the following readily established prin-
ciple : (£). When a space 2 can be continuously deformed on itself
onto a subspace S holding S fast, the & th*homology groups of Zand S
are isomorphic for each k.

Proof of (b). — We shall assume (&) false and seek a contradic-
tion. Let « then be a carrier of the homology Bu ~ 0 on A'. The set x
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is d-below o. Let u, be the nth component of u. There exists an
algebraic j-chain w, on x bounded by Bu, with norm e, tending to
zero as n becomes infinite. We have in u, — w;, an algebraic j-cycle
on A. Let 6 be a radial deformation of A into the origin, and let f be
prefixed to denote final images under 6. Let D, be a deformation
operator belonging to 6 and to u, and w,. Upon referring to (1.4)
we see that 3D, (up — wp) = tn— wn (n not summed) since f(u, — wn)
coincides with the origin and is null. Since w, is on x we conclude
that  ~ 0 on A modx, contrary to the assumption that u is a j-cap
relative to A. We infer the truth of (5).

Proof of (¢). —Ifuis a j-cap relative to A, Bu ~}~ oon A’ in accor-
dance with (b). It follows from (a) that j =1 or 4. If (¢) is false,
j=1 and k>1. For k>1, the space A’ admits the connected
deform (10.10) so that Bu~o on A'. From this contradiction we
infer that (¢) is true.

Proof of (d). — We begin by showing that p>1. The set A’
contains a non-bounding (k —1)-cycle ¢ on the (k—1)-sphere x
defined by (10.10). Let ¢, be a component of ¢ of norm e,, and let

(10.11) 3As...Ax  (3CA)

represent an arbitrary term in the reduced form of ¢,. Let P denote
the origin in the space A. The sum

(10.12) S3PA4... Ak

of terms derived from the terms (10.11) of ¢, by adding the vertex P
will be an algebraic k-chain z, such that gz, = ¢,. Corresponding to
each algebraic cell « of z, there is a straight cell (possibly degenerate)
on A whose vertices are the vertices of «. It is accordingly possible to
subdivide z, by introducing the barycenters of cells of z, as new ver-
tices, so that after a finite number of subdivisions z, is replaced by
an algebraic chain u, of norm e,. We shall perform this subdivision
without introducing any new vertices corresponding to cells of ¢, so
that we shall still have Bu,= ¢,.

I say that (u.) is a Vietoris k-cycle mod x. For the homologies
connecting the components of ¢, are defined by relations of the form
Bwn==0n,1— ¥n, where w, is an algebraic k-chain on x. One can
insert the vertex P in each term of w, asin (10.12) obtaining thereby
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a (k +1)-chain w), such that pw), = — z,., + %, + w,. One can then
subdivide w, as we have subdivided z, including the new vertices
of cells of zn,4 and z, in the process, obtaining thereby a new
(k+ 1)-chain w with Bw)=— uny s+ ts+ w,. Hence (u,) is a
Vietoris k-cycle mod x, as stated.

We conclude by showing that p.=1. Let u and ¢ be two k-caps
relative to A. The boundaries Bu and B¢ are (k — 1)-cycles on A'. It
follows from (@) that there exists a proper homology

(10.13) 31 fu+8Br~o  (onA')

Now &, u + d;v is a k-cycle 2 mod A’. But Bz~ 0 on A’ in accor-
dance with (10.13) so that it follows from () that 5 cannot be a
k-cap relative to A. Hence p =1, and the proof of (d) is complete.

We return Lo the proof of the theorem. We have seen that there
is at least one k-cap relative to A with cap limit o. It follows from
Theorem 3. 1 that there must be at least one homotopic critical point
at the level o. This point must be o. That the jth type number of ¢
is & now follows from (d), and the proof of Theorem 10.1 is com-
plete.

There is at most a finite number of critical points of a non-
degenerate function F, so that the sum of the 4 th type numbers of
the critical points of F is finite. The preceding theorem and Theorem
9-1 accordingly have the following corollary.

Cororrary 10.1. — The number My of critical points of index k
of a non-degenerate function F is at least the kth connecti-
vity of M.

Suppose that the preceding manifold M lies in an (7 + 1)-dimen-
sional euclidean space E. Let Q be a point in E, not on M. We shall
apply the preceding theory to determine the minimum number of
normals to M which pass through Q. The function F(p) shall be the
distance from Q to an arbitrary point on M and will be of class C?
in terms of the local coordinates of M. One sees that a necessary and
sufficient condition thata point ¢ on M be a critical point of F is that ¢
be the foot of a normal from Q to ¢g. Recall that there are n focal
points (centers of principal normal curvature) of M and ¢ on the
normal to M at g. Some of these focal points may however be at the
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« point at infinity » on the normal. One can easily prove the following
(M[2], p- 403) : The index of a critical point ¢ of F equals the num-
ber of focal points of M and ¢ which lie on the normal Q g between Q
and g exclusive. The point g is a degenerate critical point if and
only if Q is a focal point of M and g. We can accordingly state the
following theorem.

Tueorem 10.2. — Suppose Q is not a focal point of M. Of the
normals from Q to M cutting M orthogonally at points g on M the
number on which there are k focal points of M and q between Q
and q is at least the kth connectivity of M.

Suppose that the preceding manifold M again lies on an (n +1)-
dimensional euclidean space E, and that it is the homeomorph of an
n-sphere. We shall consider chords which cut M orthogonally at
both ends and term such chords critical chords. Let p and ¢ be
arbitrary points of M and let F(p, ¢) be the distance between p
and g. When p £ ¢ a necessary and sufficient condition that F have
a critical point in terms of the local coordinates of p and ¢ is thatthe

chord pq be critical. The space of the independent variables is the
space of the pairs (p, ¢) with p and g on M, (p, ¢) identified with
(¢, p), and with cells on which p = ¢ regarded as null. lts connec-
livities in the field of integers mod 2 were first shown by the writer
to be null (M[3]) except that R,=R,.y=...=Ra,=1. For Vie-
toris cycles these connectivities are the same, as one can readily
show. Hence we have the following theorem.

Tarorem 10.3. — In case the chord length F(p, q) is non-
degenerate (p # q),andMis the homeomorph of an n-sphere, there
exists a set of critical chords of M which correspond respectively
to critical points of F(p, q) whose indices run from n to an
inclusive.

Applications of the critical point theory to harmonic functions of
two or three variables have been made by Kiang.
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PART I11I.

VARIATIONAL THEORY.

11. The space . — We shall apply the preceding theory to the
problem of finding extremals joining two fixed points @ and 4. The
underlying space shall be a connected metric space £ with a symmetric
distance function pg. The space of all sensed curves (curve classes,
§ 7) joining a to b on X will be denoted by Q(a, ). The metric of
Q(a, b) will be that defined by the Fréchet distance between curves.
The space 2(a, b) will replace the space M of the preceding theory.
The function F will be defined for each element X of @ and will be a
generalized « length ». The case of the space Q and corresponding
function F is typical of a class of general boundary value problems
defined and discussed in Chapter VII of M [5]. The space of closed
curves leads to difficulties of a diflerent character and will not be
discussed here. See Chapter VIII of M [5].

Before introducing F it will be desirable to investigate the manner
in which the & th homology group H%(a, b) of Q(a, b) depends on
the points (a, &). Understanding that the symbol (5) is read « is iso-
morphic with » we see that

(11.1) H(a, b) (S) HA(B, a).

‘We shall extend this result by proving the following theorem.
Tueorem 11. 1. — If 2 is arcwise connected,

(11.2) HE(a, b) (5) Hk (e, d),

where (a, b) and (¢, d) are arbitrary pairs of points on 3.
‘We begin by showing that

(11.3) Ht(a, b)(S) H(e, b).

Let © be a curve joining ¢ to a and X a curve joining a to b. Let @A
denote the curve obtained by tracing ® and 2 successively. The curve
O} joins ¢ to b and lies on (¢, b). We thus have a continuous map
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of Q(a, b) onto (¢, b) in which A on &(a, &) is replaced by 82 on
Q(c, b). A cycle z on &(a, b) will thereby be replaced by a cycle on
Q(c, b) which we denote by @z. Let @' be the curve obtained by
reversing the sense of ®. Let u be a k-cycle on &(¢, b). Then 8—'u
is a k-cycle on Q(a, b) and ©0—'u is a k-cycle on (¢, b). We shall
prove the following :

(i). The cycle u can be continuously deformed on Q(c, b)
into ©0—'u.

To that end let p = p(7) with 0<t<1 be a p-curve in the curve
class ® and let ©; denote the curve class defined by p = p(r) when
0<r<t. Let D be the deformation of (¢, &) in which each curve A
on (¢, b) is replaced at the time ¢ by the curve ,0,~'4,(0<¢<1).
Under D, u is deformed into 80— u.

We return to the proof of (11.3) and set up an isomorphism
between the groups H%(a, b) and H"(c, b). To a cycle z of 2(a, b)
shall correspond the cycle ®z of Q(c, b). If fz=1u on Q(a, b) it
follows from the fact that  and ® are commulative thatf 0 =0pz=0u
on (¢, b). Thus bounding cycles go into bounding cycles, and each
homology class of H*(a, b) determines a unique homology class of
H’(e, b). That the above mapping is an operator homomorphism
follows from the fact that ®(u+¢)=0Ou + 0v, O(du)=10(0u)
for formal k-chains v and ¢ on (@, b). It remains to show that this
homomorphism is an isomorphism.

The mapping leads to each homology class y of H*(¢, ). In par-
ticular if u is a cycle of y, ®'u is on Q(a, b). Its image ®8—'u on
Q(c¢. b) is homologous to u, and so is in the given homology class y.
To show that the homomorphism is one-to-one we have merely to
show that the null class of H*(c, b) is the map of the null class only
in H*(a, b). Let u be a cycle on Q(c,b) with u ~ o. Suppose that u
is the image of ¢ on Q(a, b). Then @¢v ~ u on (¢, b), and hence
0¢ ~ o. It follows that @—'®¢ ~ 0 on (a, b). Bult 8-'0¢~ ¢ on
Q(a,b) so thal v ~ o. Thus the mapping ® defines an isomorphism,
and (11.3) is proved.

To establish (11.2) we note that the operation of replacing a by ¢
in H*(a, b) or of interchanging @ and b leads to a group isomorphic
with H*(a, b). We can thus successively replace (a, b) by (¢, b),
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(b, ¢), (d, c¢) and (¢, d), oblaining finally a group H*(¢, d) isomor-
phic with H*(a, b). The proof of the theorem is complete.

, 12. The secondary metric [ pg]. — The function F will be defined
in term of the secondary metric [ pg]. The new distance [ pg ] shall be
defined for each pair of points of 2 and have the following properties

[pgl=0o if p=gq, [pgl>o0 ifpzgq, [prisipgl+Igqrl

The ordinary distance will again be denoted by pg.

We do not assume that [pg]=[gp]. We suppose that [pgq] is
continuous in p and ¢ for p and ¢ on 2. Cf. Menger [4].

The function F(}) will be defined for each curve A of Q(a, b).
Let ¢ be any p-curve in the curve class A. Let(p) = p,, p1,. .., pn be
a set of successive points on ¢. The sel (p) will be termed a partition
of A of norm ¢ if the maximum of the distances p,p,. is less than d.

We term
S=Z2[pipi1] (i=o0,1,. .,n—1)

a sum approzimating J(1), and define J(A) as the least upper
bound of such sums S for all partitions of 2. We term J(}) the
J-length of A. The J-length may be finite or infinite. We set

I

FO) = 70705

when J (1) is finite, and set F (1) =1 when J(}) is infinite.
The proof of the following theorem can be readily supplied by any
reader familiar with the ordinary theory of length.

Tueorem 12.1. — The J-length J(1) is the limit of any sequence
of sums S, approzimating J(1), provided the norm o, of the cor-
responding partitions tends to zero as n becomes infinite.

The following theorem is of course well-known.

Tueorem 12.2. — The J-length J(}) is a lower semi-continuous
Sfunction of ) in the space of the curves ).

Corresponding to each curve n and conslant a <<J(n) we shall
show that there exists a positive constanl &' such that J({)>a
whenever n¢ << ¢'. Let b be a constant between a and J(n). By virtue
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of the definition of J(n) there exists a partition py,..., p, of n such
that

(12.1) 2[ppir]>b (i=o0,...,n—1).

For n fixed we choose 4 so that 0 <<2nd <<b — a. If n{ << ¢ there
exists a homeomorphism T between p-curves of the curve classes 7
and ¢ such that the correspondent ¢, of p, has a distance from p; at
most ¢'. For fixed points p, we suppose ¢’ so small that the secondary
distances [p,q.] are less than d. From the triangle axiom we infer that

(12.2) [‘Iz qir] > [P1P1+l] — 29 (Z not summed),
o [9:91+1]1> [Pipis1] — 2R3 (7 summed).

It follows from (12.1) and (12.2), together with the relation
2né < b — a, that
JQ)2b—(b—a)=a

and the proof of the theorem is complete.

Lemma 12.1. On any compact subset A of X, pq is less than a
prescribed positive constant e whenever [ pq|is less than asuitably
chosen positive constant o where o depends upon e but not upon
the choice of p and q on A.

If the lemma were false there would exist an infinite sequence of pairs
of points p,, g, of A such that[p, g, ] tends Lo zero as n becomes infi-
nite, while p,¢, is bounded from zero for all n. The pairs pp, g,
would then have at least one cluster pair p°, ¢° since A is compact.
We see that [p°¢°] = o since [pg] is a continuous function of p
and ¢. Hence p®=¢° so that p°q°=o. The distance p, g, cannot
then be bounded from zero. From this contradiction we infer the
truth of the lemma.

13. Finite J-compactness of 2. — If for each fixed point p of %
and finite constant ¢ the subset [pg]<c of Zis compact, & will be
said to be finitely J-compact. If Z is compact it is elear that it is
finitely J-compact. If 2 is a euclidean n-space and [pg] is the ordi-
nary distance, X is finitely J-compact. We assume that 2 is finitely
J-compact.

In proving the next theorem we shall need several new terms. An
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ordered set of n 41 successive points on a curve A, including the end
points of A and dividing X into n successive arcs of equal J-length,
will be termed an n-set of \. We conlinue with the following lemma.

Lemma 13.1. — The curves A of Q(a, b) on which J is at most a
finite constant ¢ are divided by n-sets into arcs whose diameters
tend to zero uniformly as n becomes infinite.

By the J-diameter of a point set A is meant the least upper bound
of distances [pq| between pairs of points of A. Observe that the
J-diameter of a curve is al most its J-length. If J(})<¢, the J-dia-
meters of the arcs A, into which 1 is divided by an n-set are at most
¢/n and so tend to zero uniformly with n. Bul the points of 2 on
curves issuing from a with J <c are points p of the set |[ap]<c¢, and
this set is compact since 2 is finitely J-compact. Each of the above
arcs h, is on this compact set. It follows from Lemma 12.1 that the
diameter of A, is less than a prescribed positive constant provided n
is grealer than some integer N dependent only on ¢. The proofof the
lemma is complete.

The following theorem is well-known when the primary and secon-
dary metrics are identical. Its proof here depends upon the finite
J-compactness of 2

Tueorem 13.1. — The set of curves of 2(a, b) whose J-lengths
are at most a finite constant ¢ is compact relative to the metric

of Q(a,b).

Let A be an infinite sequence of curves of (a, b) with J at most c.
Because of the finite J-compactness of 2 there will exist a subse-
quence (), of A such that the 2-sets on curves of (1) converge to a
set of three points on X. Proceeding inductively we see that there
will exist a set (1),, (1)a,..., of subsequences of A such that (1), is
a subsequence of (A)m—; and the 2m-sets on the curves of (A)n
converge to a set of points p),..., p on 2. We shall define a p-
curve p = p(t) ou X with 0<¢< 1. For each m > o we set

(13.1) p(Z)=ph  (r=01,.m)

observing that the definitions (13.1) are consistent for successive
values of m.
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If ¢ and ¢" are any two values of ¢ for which p(¢) is defined we see
that '

(13.2) [p(£)p(]eit—1|.

Let ¢* be an arbitrary value of ¢ on the interval (o, 1) and let (¢,) be
an infinite sequence of values of ¢ for which p(¢)is defined and which
tend to ¢* as n becomes infinite. It follows from (413.2) that the points
p(tn) form a Cauchy sequence relalive to the secondary metric. But
these points lie on the compact subspace of % consisting of points p
such that [ap]<o. It follows from Lemma 12.1 that the points p(¢,)
form a Cauchy sequence relative Lo the metric pg and converge to a
point ¢ independent of the sequence (¢,) converging to ¢*. We set
p(&) = q and observe that (13.3) then holds for all values of ¢/ and
¢ on the interval (o,1).

Let ¢ be the curve defined by p = p(t). Let (ex) be a sequence of
positive constants tending to zero as k becomes infinite. Correspon-
ding to ¢, Lemma 13.1 implies the existence of an integer m — m;
so large that each of the arcs into which a curve 7 of Q for which
J<cis divided by its 2™-set has a dianeter at most e.. We suppose
m also so large that the arcs of p(¢) for which

r—1 r
(13.3) <L

A
LAY

(r=1,...,2m)

have diameters at most e;. With m so chosen let n; be a curve of
(M)m such that the points of the 2m-set of n; are at distances at
most ¢ from the corresponding points p/, on ¢. If v} is the r th of the
arcs into which a 2m-set divides n; and ¢ is the arc of ¢ for which
(13.3) holds we see that for m = my the distance of »} from ¢, is at
most 3e;. It follows that the distance 0 is at most 3ez. The sequence
7z thus converges to £. By virtue of the lower semi-continuity of J (1),
J(¢)<c. The set of curves of Q(a, &) for which J<¢ is accordingly
compact, and the proof of the theorem is complete.

Finite J-compactness thus implies the compactness of the subsets
F<c <1. But we have seen in Theorem b.2 that the compactness of
the subsets F <c implies F-accessibility, in this case F-accessibility
of Q(a, b). Hence we have the following corollary of the theorem.

CoroLrary 13.1. — The finite J-compactness of % implies the
F-accessibility of Q(a, b).
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14. Spaces 2 locally J-convex. — The principal hypotheses of the
general theory were the F-accessibility of the space and the upper-
reducibility of F. In our variational theory we have seen that the
finite J-compactness of Z implies the F-accessibility of 2(a, b). Upon
adding the assumption that X is locally J-convex the upper-reducibil-
ity of F will be implied as we shall see.

A simple sensed curve A joining two points p and g will be termed a
right arc if a point r lies on A when and only when

(14.1) (pgl=[pr]+[rql

We assume that 2 is locally J-convez in the following sense. With
each point p of 2 there shall be associated a positive number p(p)
conlinuous in p and such that when ¢ £ p and [pg]<p(p), p can be
joined to ¢ on X by a right are E(p, q), every subarc of which is a
right arc. We term E(p, ¢) an elementary arc joining p to ¢,
applying this term only in the case where [ pg]<p(p).

The condition on an elementary arc that every subarc be a right
arc is a consequence of the other condilions on an elementary arc in
the case where p(p) is a constant. That subarcs of a right arc are not
necessarily right arcs is shown by an example due Lo Dr. Busemann.
Let the space M be a unit segment 0 <z <1 of a straight line. Let the
secondary distance [z ] between two points z and y, £ < y, on this
segment be defined by the formula

[zy]=lo—y|{1+ gmin(s, 1—)].

When either point is an end point of the unit segment this distance
reduces to |z —y|so that the whole arc is a right arc. One sees
however that subarcs for which z + ) 521 are not right arcs. If 2 is
a regular manifold of class (i* geodesic arcs of suitably restricted
lengths are elementary arcs, as we shall see in § 16. The following
theorem is an immediate consequence of the definition of an elemen-
tary arc.

Tueorem 14. 1. — There is at most one elementary arc joining
a point p to a point q.

Tueorem 14.2. — The J-length of an elementary arc E(p, q)
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equals [pq] and is a proper minimum relative to the J-lengths of
all curves which join p to q on 2.

Let p, ..., pn be a set of points which appear in the order written
on E(p, ¢). Any segment of an elementary arc is a right arc. It then
follows inductively for n =1, 2, ..., that

(14.2) [Pg]l=[pp:i]+[p1p2]+...+[pPrgql

Hence the J-length of E(p, ¢) equals [pgq].

Let A be any « curve » joining p to ¢. It follows from the definition
of J-length that J(A)<[pgq]. It remains to show that J(A)>[pq]
when o« is not the elementary arc E(p, ¢). The proof falls into two
cases.

Case [. The curve A contains a point s not on E(p, ¢). Case 1I.
Each point of A is on E(p, ¢) but A= E(p, q). In Case I,
J(A)2[ps] +[sq] >[pgq], and the proof is complete. In Case II there
must be distinct points 7 and s on A and on E(p, ¢) which appear in
the order rs on E(p, ¢) but in the order sr on A. Then

I 2[ps]+[sr]+[rq]l>[ps]+[rq]l>[ps]l+[sq]=1[pq],
and the proof is complete.

Tueorem 14.3. — Corresponding to any one-to-one continuous
representation r =r(t) of an elementary are joining p to q, the
distance [pr(t)] is a continuous increasing function of t.

The continuity of [pr(t)] is a consequence of the continuity of
r(t), and of [pr] as a function of p and r. To show that [pr(¢)]is an

increasing function of ¢ we note that
(14.3) [pr(¢)] = [pr()] +[r(2) r(t)]

when 0S¢ <t so that
Lor()]> [pr(0),

and the proofis complete.

We are able to prove a theorem which is much stronger than
Theorem 14.3. To formulate this theorem let E(pg) be an elemen-
tary arc with variable end points p and g. Let ¢ be a number between
o and [ pg] inclusive. Let the point r on E(p, ¢) for which [pr]=¢
be denoted by f(p, g, t).. Our theorem is as follows.
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Taeorem 14.4. — The point function f(p, q, t) is continuous in

its arguments for [pq]<p(p)and o<t<[pq] and for p and q on
any compact subset A of 2.

We shall begin by proving the following statement.

(a) The points f(p, q, t) of the theorem lie on a compaet subset

of X.

Since A is compact its J-diameter is a finite number d. If b is the
maximum of p(p) for p on A, the points f(p, ¢, t) have secondary
distances at most b from A, and accordingly at nost d+ b from any
fixed point of A. Since 2 is finitely J-compact the points f(p, ¢, t) of
the theorem lie on a compact subset of 2, as stated in ()

To establish the theorem let p,, ¢n, t, be a sequence of sets p. g, ¢
admitted in the theorem and possessing a limit set po, ¢°, 0. Set
rn=/f(Pny qn, tn). By virtue of («) there is a subsequence of the
points r, with a limit point ro. For simplicity we assume that the
sequence r, converges to r°. We shall show that

(14.4) ro= f( p% q° tv),

thereby establishing the theorem. Upon letting n become infinite in
the relation [p,g.] = [para] + [rngn], we infer that

(14.5) [prgel=[poro]+[rogel.

‘We also have the relation
(14.6) [prg°] =lim[ppr,] =lim¢, = to.

From (14.5) and (14.6) we see that r° is the point on the elementary
arc E(p°, ¢°) at which [p°¢g°]=1t°. Hence (14.4) holds, and the
theorem is true.

Under the hypotheses that 2 is connected, finitely J-compact, and
locally J-convex we could prove that the space Q(a, b) is separable.
We shall not use this fact and accordingly omit the proof. The fol-
lowing lemma will suggest the well-known Theorem of Osgood in the

classical variation theory. It will be used in studying certain basic
deformations.

Lewma 14.1. — Let H be a compact subset of 3. Corresponding
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to H and a positive constant e there exists a positive constant 8
such that when ¢ and n are respectively an arbitrary curve and
an elementary arc with common and points, with first end point
on H, and with tn 2e, then

(14.7) J(&)—I(n)23.

The J-lengths of elementary arcs with end points on H are at most
a positive constant p. To prove the lemma we accordingly need con-
sider only those curves { whose J-lengths are at most 2p. The set B
of such curves with end points on H is readily seen to be compact by
an obvious extension of the proof of Theorem 13.1. Let A be the
subset of curves of B whose end points can be joined by an elemen-
tary arc » such that ¢n2>o. The set A is closed in B, and accordingly
compact. For ¢, on A and n the corresponding elementary arc, J(n)isa
continuous function ¢(¢) of . The difference A(Z) =J(2)—¢(%) is
lower semi-continuous. Hence A(Z) assumes its minimum m on some
curve of A. But we have seen that each elementary arc v affords a
proper minimum to J so that m > o. Thus (14.7) holds with é = m.

13. The upper-reducibility of F on Q(a, b). — In this section we
shall derive a number of consequences of the finite J-compactness
and local J-convexity of X including the upper-reducibility of F
on Q(a, b). We first define a basic deformation.

The deformation 6(r). — Let A be any compact set of curves
of &(a, b). The curves 1 of A can be represented in the form

p=9(,A) [ogpsp)]

where p is the intrinsic parameler defined in § 7. For 2 on A
and oS <p(1) the function ¢(p, 1) is uniformly continuous. The
set of all points on the curves of A is readily seen to be compact.
There accordingly exists a constant 8 > o0, such that on arcs of A
for which Ap.<9d successive points p and ¢ satisfy the condition
[rg] <p(p). Let M be an upper bound of (1) for 2 on A. Let
(rvs ..., ) =(r) be a set of positive numbers such that

(15.1) 4.4+ rp=1, Mrss  (i=15,...,n0)
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Corresponding to the numbers () we shall define a deformation 6(r)
of A. We shall refer to the numbers (r) as the ratio set defining 6(r).

Let each curve A of A be divided with respect to its p-length into »
curves for which the differences Ap (measuring p. from the initial
point of 1) are proportional to the respective numbers ry, ..., rn.
Let & be the & th of these curves and let p; be the initial point of ;.
For 0<z<1 let p, be a point on Xz which divides 3, with respect to
p-length in the ratio in which ¢ divides thesinterval (o, 1). At Lhe time ¢
let the arc p; p, of }, be replaced by the elementary arc E( px, p¢).
The curve A will thereby be deformed into the sequence of elemen-
tary arcs determined by the points p;. We denote this deformation
by 6(r).

Let n be an arbitrary curve of Q(a, b). The deformation 6(r) can
be defined for any sufficiently small neighborhood U of n. For the
constant ¢ can be chosen so that on arcs of n for which Ap. <6 succes-
sive points p and ¢ satisfy the condition [pg] <<p(p). Let U be a
neighborhood of 1 so small that for A on U, arcs of A for which Ap.<¢
at successive points p, ¢, again salisfy the condition [pg]<<p(p)-
Suppose U so small that for A on U, (3) has a finite upper bound M.
The ratio set () will next be chosen so as to satisfy (15.1) taking n
sufficiently large. The deformation 6(r) can then be defined as pre-
viously for curves 2 initially on U.

Lemma15.1. — A4 deformation 6(r) is an F-deformation of any
subset A of Q(a,b) on which it is defined and on which J is at
most a finite constant c.

We must show that 6(r) admits a displacement funclion d(e) cor-
responding to each compact subset B of A. Let n and ¢ be images of
a curve of B with { an antecedent of v under @(r) and {n > e>o.
The curve n is obtained from ¢ by replacing certain subares g, of ¢
by elementary arcs n; where 7 joins the end points of ¢;. If tn>e,
then for at least one of these subarcs 7, > e. The points of B are
on a compact subset of 2. It follows from Lemma 14.1 that there
exists a constant ¢ > o such that

J(Cr)—I(m)28.
Hence

JE)—I(m)23,  F(E)—F(n)>3,
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where 0, depends only on e and ¢, and the proof of the lemma is com-
plete.

The function F can be shown to be upper-reducible on Q(a, b).
The proof of this fact however would require the use of deformations
more complicated than the deformations 6(r). Cf [T], p. 443.
Fortunately our present purposes will be served adequately by
showing that F on the subspace F <1 of (a, b) is upper-reducible.
The following theorem justifies the omission of the general proof of
the upper-reducibility of F.

Tueorem 15.1. — There is no cap limit withc =1 relative to
the function F on Q(a, b).

Suppose that the theorem is false and that w is a k-cap with cap limit1.
Let x be a carrier of u. Since x is compact the « ratio set » (r) can
be so chosen that 6(r) is defined over x. On the trajectories of 6
F never increases and x is deformed into a compact sct x’ of curves
each of which is a sequence of n elementary arcs. The points of ¥’
form a compact set on X, so that the J-lengths of the above elemen-
tary arcs are less than some finite constant. Thus the final image of u
lies on a subset of Q(a,b) on which J is at most a finite constant.
Hence u is c-homologous to zero with ¢ =1. We infer that c =1 is
not a cap limit.

We state the following principal theorem.

Tueorem 18.2. — The function F on the subspace F <1 of Q(a, b)
is upper-reducible.

Let n be a curve of (@, b) on F <1 and let 4 and ¢ be constants
such that F(n) <d <c¢ <1. To establish the theorem we shall show
that a deformation 6(r) defined on a sufficiently small neighborhood U
of n relative 10 F<¢ F-deforms U onto F<d. Under 4(r), 0 is
F-deformed into a curve ¢ composed of elementary arcs. Observe
that F(£)SF(n) < d. Let U be so small aneighborhood of v relative
to F<c that for i on U, 6(r) F-deforms 2 into a curve A, for which
F(A) < d.Thisis possible since the vertices of the elementary arcs
of A, will lie arbitrarily near the corresponding vertices of £ if U is
sufficiently small. The theorem follows from the definition of upper-
reducibility.

MEMORIAL DRS SC. MATH., — N° 92. 5
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A homotopic critical point (i.e curve) of F on 2(a,b) will be
called a homotopic extremal of @(a, b). On the other hand a curvern
will be called a metric extremal provided every closed subarc of 0
whose J-length is sufficiently small is an elementary arc. An elemen-
tary arc is a meltric extremal in accordance with Theorem 14.2 More
generally we have the following theorem.

Tueorem 15.3. — Each homotopic extremal of R(a, b) is a
metric extremal.

This theorem will be proved merely for extremals of finite J-length.
It is vacuously true for extremals of infinite J-length because it can
be shown that (under our hypotheses) there are no homotopic
extremals of infinite length. Gf M [7], Theorem 14.3.

Let A be a curve of Q(a.b) of finite J-length ¢, not a metric
extremal. We shall show that A is homotopically ordinary. Since 2
is not a metric extremal there cxists a subarc pg of A which is not an
elementary arc and whose J-diameter is less than p(p). A suitably
chosen F-deformation 6(r) of a neighborhood of A on J<c¢ will
replace the arc pg by the elementary arc E(p, ¢). This deforma-
tion 6(r) displaces A so that A is homotopically ordinary. The
theorem follows for extremals of finite J-length.

By virtue of Theorem 15.3 a homotopic extremal will have the
same degree of regularity and differentiability as have elementary
arcs. Since elementary arcs are minimizing arcs this means that
a homotopic extremal in a classical problem will satisfy the Euler
equations and have the differentiability of ordinary extremals.

Recalling the definition of local F-connectedness of § 6 we conlinue
with a proof of the following theorem.

Tueorem 18.4. — The space Q(a, b) is locally F-connected of
all orders.

Let e be a positive constant. Let the e-neighborhood relative
to 2(a, b) of a curve n on &(a, b) be denoted by .. Let A(c) be the
subset of Q(a, b) on J <¢. We shall prove Theorem 15.4 by proving
the following statement.

(a). Corresponding to the constants c and e and any curve u
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of A(c) there exists a constant & > o such that ns A(c + 3) can be
deformed on n.A(c + e) into a single curve of n..

Let 6(r) be a deformation of a neighborhood of 0 of the Lype pre-
viously defined. In the set (r) we suppose that ry=...=r,.
Under 6(r) a curve 1 is deformed into a succession of n clementary
arcs with vertices on A. If the number 7 is sufficiently large and if 8 is
at most a sufficiently small positive constant &,, §(r) will deform =3
on n.. We suppose n and d so chosen.

Let A be an arbitrary curve of A(¢ + ) on ns. Let m; and A, be
final images of n and A respectively under 4(r). Let p, and ¢, be
corresponding vertices of n, and A, respectively. The points p, being
fixed by n and the choice of n the distances [ p,g, ] will be arbitrarily
small if d is sufficiently small. If these distances [ p,¢.] are sufficiently
small the curves A, can be deformed into 7, as follows. As t varies
from o to 1 inclusive, ¢, shall be replaced by a point ¢,(¢) which
divides E(p,, ¢.) in the same ratio with respect to J-length as that in
which ¢ divides the interval (0,1). We replace the ith elementary arc
of &, by the elementary arc

13.2) E[q:(2), qiva(2)]

at the time ¢. and denote the resulting deformation by A.

If the distances [p,q;]| are sufficiently small the elementary
arcs (15.2) will exist and vary continuously with their end points.
For their end points will be arbitrarily near the corresponding
end points p, of n and these end points satisfy the condi-
tions [ pipia] < p(p2)-

Il the constant ¢ is then sufficiently small and in particular < d,,
the deformation A will be possible, and will deform the curves 4,
on 1. A(c + e). The deformation §(r) followedby \ will satisfy (a),
and the proof of the theorem is complete.

Traeorem 15.5. — 4 maximal group of non-bounding k-cycles on
the subset F <1 of Q(a, b)is a mazximal group of non-bounding
k-cycles on Q(a, b).

We have seen in the proof of Theorem 45.1 that any compact
subset of Q(a. b) admits a deformation of the type §(r) into a set of
points d-below 1. The deformations 6(r) never increase F along a

9,
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trajectory so that sets on F' <1 are deformed on F < 1. Theorem 15.1
follows readily.

It will be useful at this point to give a resume of the implications
of the finite J-compactness and local J-convexity of 2. (a). Fiuite
J-compactness implies the following : (1). The subsets F<c <1
of Q(a, b) are compact. (2). The space Q(a, b) is F-accessible.
(b). Finite J-compactness and local J-convexity imply the following :
(3) The function F is upper-reducible. (4) The space Q(«, b) is
locally F-connected. (5) The cycle limits are less than 1.

The following theorem combines the preceding conditions with the
general theory of critical points of Part II.

Tueorem 15.6. — If 2 is finitely J-compact and locally J-convez,
then corresponding to each cycle limit s of a non-bounding
k-cycle on Q(a, b) there is at least one homotopic extremal on
which F =s. Moreover the sum of the kth type numbers of the

critical sets of F on F <1 is at least the kth connectivity
of Q(a,b).

Under the hypotheses of the theorem properties (1) to (3) preced-
ing the theorem hold. It follows from the upper-reducibility of F
(¢f. Theorem 8. 1) that there is al least one homotopic extremal on
which F equals the cycle limits. Properties (1) and (4) imply (cf.
Theorem 6.2) that the connectivitics of the subset F <1 of Q(a, b)
are at most alef-null. According to Theorem 15.5 the conneclivities
of Q(a, b) are then at most alef null. The concluding statement of
the theorem follows from Theorem 9. 1.

16. The theory under classical hypotheses. — We concern
ourselves here with a regular manifold 2 of class C* defined as in § 10
in lerms of overlapping coordinate systems except that we do not
assume X compact. In every local coordinate system (z) we suppose
that there is defined a function F(z', ..., 2™, r', ..., r")=F(=z,r)
which is of class G* in (2, r) for (2) in the local coordinate system
and for any set of numbers ()4 (0). We require that F be an
invariant. More precisely if

(16.1) zt=zl(x) (i=1,...,m)
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is an admissible transformation to a coordinate system (z) and

Q(z, o) is the function replacing F(z, r) we suppose that the
relation

(16.2) F(z,r)=Q(3,9)

shall be an identity in (z) and (r) when (5) is given by (16.1) and
(o) is the contravariant tensor image of (r). We assume that F is

positive and positive homogencous of degree 1 in the variables (7). As
is well-known,

(16.3) IFrua(z,r)|=o0 (G j=1,...,m).

We assume however that the rank of the determinant (16.3) is
m —1 and that all of its characteristic roots save the null one are
positive. As a consequence (M [5], Chapter V, § 7) of these hypo-
theses the classical Legendre and Weierstrass sufficient conditions
are satisfied along any extremal of the integral

(16.4) J _—_fF(x,az)dt.

A curve A whose closed subarcs are rectifiable in each coordinate
system in which they lie will be termed rectifiable. If 1 is rectifiable
there will exist a p-curve » in the curve class of A such that the coor-
dinates of a point of any closed subarc n* of n which lies in a coordi-
nate systemn (z) are absolutely conlinuous functions of the parameter
t. On 7" the integral J will have a determinate value J(n") as a
Lebesgue integral. To obtain J(2) one breaks » up into a finite set of
arcs such as n* and sums the corresponding values J(7").

We assume that 2 is arcwise connected, and for any two points p
and g of X we let the distance [ pq] be the greatest lower bound of J
along all rectifiable curves which join p to g on 2. The distance [ pq]
is in general not symmetric in p and g. One shows readily that

[pg] = o if and only if p = ¢ and that [ pg ] <[pr] + [rq]. If one sets
pg =max {[pg],[qp]}

one obtains a new symmetric distance function. As before pg = o if
and only if p = ¢. The distance pq also satisfies the triangle axion.
For if pg=[pq], pg<[pr]+[rgl<pr+rg, and if pg=[qp] a
similar result holds. We shall regard pq as defining the metric of X
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and [pq] as defining a secondary metric. From the fact that
[Pg]1<pgq and that [pq] satisfies the triangle axiom it follows readily
that [pg] is a continuous function of p and ¢ (with respect to the
primary metric). The distances pg and [ pg] can accordingly be iden-
tified with the corresponding distances of the general theory.

We assume that X is finitely J-compact in the sense of § 13.

It follows that an extremal A on which the parameter ¢ is the value
of the integral J can be continued for unrestricted positive values of
t. For if ¢ > o werc a finite greatest lower bound of the values of ¢
on 1 and ¢, were an increasing sequence of values of ¢ tending to ¢,
the corresponding points p, on A would have at least one cluster
point g. The classical existence theorems for extremals applied to a
neighborhood of ¢ would then show that 2 could be continued so
that ¢ exceeds ¢ on 2, and our statement follows.

Turorem 16.1. — The space 2 is locally J-convex.

To establish the theorem one must establish the existence of a
function p(p), positive and continuous in p such that whenever

(16.5) o< [pglse(p)

p can be joined to ¢ by a « right arc » (§ 14), every subarc of which
is a right arc.

We begin with a statement of facts well-known in the classical
theory. Cf. Cairns [1]. Let z be an arbitrary point of 2. Correspon-
ding to any sufficiently small neighborhood U of z there exists a
positive constant ¢ with the following property. Any point p on U
can be joined to any point ¢ such that o <<[pg]<c by a unique
extremal 2 with the following minimizing property. If » is any subarc
of X (including 1), if r is any point not on n, and { is a curve joining
the end points of 2 and passing through r, then J(¢) > J(n) +e,
where e is a positive constant depending only on r and 7.

This is the uniform minimizing property implied in the classical
theory by Osgood’s theorem and the usual field constructions in the
small. Tt follows at once that X is a right arc. We have yet to define
the function p(p) appearing in the definition of an elementary arc.

To define p(p) let z be a fixed point of X and let S, be the set of
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points of X whose secondary distances from z are between n and
n + 1 inclusive, n 2 0. Since S, is compact it follows from the results
of the preceding paragraph that there exists a positive constant o,
such that any point p of S, can be joined to any point of = whose
secondary distance from p is at most ¢, by a unique right arc, every
subarc of which is a right arc. We admit the possibility of the sets
S. being vacuous for sufficiently large integers n. In any case we can
suppose that the conslants ¢, do not increase with n. We now define
a function ¢(s). We set ¢(n) =0, and for other positive values
of s define ¢(s) by interpolating linearly between the successive
values ¢,,. At a point p whose distance from the fixed point z is s we
sel p(p) = ¢(s). The function p(p) is readily seen to be continuous
for p on 2. The extremal arc issuing from p and consisting of points ¢
such that (16.5) holds is thus an elementary arc in the sense of § 14,
and the space 2 is locally J-convex.

For the purposes of the next theorem the value of the integral
(16.4) taken along a curve n will be called the integral J-length
J(n), understanding that this J-length is infinite if n is not rectifiable.
On the other hand the J-length of 1 as defined in § 12 will be called
the abstract J-length J*(n). We shall prove the following theorem.

Tueorem 16.2. — The integral J-length and the abstract
J-length of a curve n are equal.

We shall rely on the classical theory only to the extent of using
the lower semi-continuity of the integral J-length. We first observe
that if A is an elementary arc its integral and its abstract J-lengths
are equal. This is also true of a finite succession of elementary arcs.
But corresponding to an arbitrary curve A there existe a sequence
Aty Ay ..., of curves each of which is a finite succession of elemen-
tary arcs whose vertices define a partition of A, and which are such
that the Fréchet distance 3,2 tends to zero as n becomes infinite,
while J*(},) tends to J*(}) as n becomes infinite. From the minimi-
zing properties of clementary arcs we infer that J*(2,)<J(}), and
hence that

(16.6) I*(VSIQ).

But since the abstract and integral J-lengths are equal on elementary
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arcs and J (n) is lower semi-continuous we conclude that the equality
only can hold in (16.6), and the proof is complete.

Conjugate points and the index theorem. — A closed extremal
segment will ordinarily be given in several overlapping coordinate
systems. The coordinates of such an extremal will be of clase C* in
terms of the J-length as a parameler. Lel us term a coordinate system
which is obtained from admissible coordinate systems by non-
singular transformations of class C7, 0 <r<35, a coordinate system
of class C’. Such coordinate systems are not admissible in the earlier
sense unless 77 =5, but nevertheless are useful. As shown in M[5],
p. 108 a simple regular curve 2 of class C! is wholly contained in at
least one coordinate system of class C7. If A is not simple it is possible
to map a suitably chosen region R of a euclidean m-space () onto 2
by a transformation locally non-singular and of class C” in such a
fashion that A is the image of a simple regular arc of class C” in R.
We term R a special coordinate system of class G” containing A.

In case X is an extremal with initial end point A, the conjugate
points of A on 2 are defined as follows. Let (p) be the unit contrava-
riant vector which gives the direction of Aat A in a special coordinate
system (z) with r = 4. Suppose the J-length of 4 is s. In the system
(z) let the components rt of the unit vectors neighboring (p) be
regularly represented as functions r*(u) of class G* of n=m —1
parameters (u). Suppose that (p) corresponds to (z) = (0). In the
system R the extremal issuing from A with the direction r{(u) canbe
represented in terms of (%) and its J-length ¢ in the form 2, = ¢i(¢, u)
where the functions ¢¢ are of class C? in terms of their arguments for

t on the closed interval (o, s) and (u) neighboring (o). The zeros of
the jacobian .

D(:Pl,.__,q;m) B

D an . Luy =0l

A(t)=
on the interval o << t<a are isolated and define the conjugate points
of A on A. The order of any onc of these zeros is at most m — 1. and
will be termed the order of the corresponding conjugale point of A.
(M[3], p. 117).

An extremal on which the final end point b is not conjugate to the
initial end point @ will be termed non-degenerate. We shall show
that a non-degenerate extremal X of Q(a, b) is a homotopic extremal
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of Q(a, b) and determine the type numbers of 2. To that end the
following construction and thcorem are fundamental.

Let n be a finite extremal arc. We refer 7 to a special coordinate
system (x) of class C* as previously. Let @, a,, ..., a,, b be a set
of successive points on n such that the segments into which 7 is
thereby divided have J-lengths less than the minimum of p(p) on .
We cut across 7 at the respective points @q, ¢=1,...,p, by
regular manifolds M, of class C3, not tangent to n at the points a,.
We supposc that M, is regularly represented neighboring a, by a
sel (uq) of n=m — 1 paramelers u; in such a manner thal the set
(uq) = (o) determines a, on n. The ensemble of the pn parameters
u, will be denoted by (z). The set (5) delermines a set of points
Qi ..., Q, on the respective manifolds M. If (z) is sufficiently near
(o) successive points of the set @, Q,. ..., Q,, b can be joined by
extremals to form a broken extremal E(z) whose J-length will be a
function I(z) of class C*. Let ¢ be the J-length along v measured
from the initial point of n. Our theorem is as follows. (M[8]).

Tueorem 16.3. — The point (z) = (o) isacritical point of 1(3).
It is degenerate if and only if the initial point t =o of =0 is
conjugate to the finalend point t =t, of n. The index of (3) = (0)
equals the number k of conjugate points of t = o on the interval
o0 << t<t,counting these conjugate points with their orders.

The set S(n) of broken extremals E(z) used to define J(z) is a
subset of the curves of (a, b) neighboring n. We term S(x) a
canonical section of Q(a, b) neighboring n. The set S(n) can be
taken arbitrarily near ». « Relative » to S(n) the terms homotopic
extremal and the jth type number of n are well defined. With this
understood we state the following lemma.

Lemma 16.1. — Relative to any canonical section of Q(a, b)
neighboring a non-degenerate extremal 1, 7 is an isolated homo-
topic extremal. If there are k conjugate points of aon v, the jth
type number of n relative to S(n) equals &.

The broken extremal E(z) is determined by (z), and for (z) suffi-
ciently near (o) the relation between (z) and E(z) is a one-to-one
continuous mapping of a neighborhood N of (z) = (0) in the space
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(%) upon a canonical section S(n) of Q(a, b) neighboring n. Under
this mapping I(3) =J(E). The lemma follows from Theorems 16.3
and 10.1.

Leuma 16.2. — Corresponding to anv canonical section S(n)
of Q(a, b) neighboring the extremal n any sufficiently small
neighborhood V of m relative to the subset J<J(n) of Q(a, b) can
be F-deformed onto S(n) without displacing 7.

We shall obtain the desired deformation as the product of two
F-deformations of which the first shall be a deformation @ (r)
(cf. § 15) of a neighborhood of n. The final images under ® (r) are
broken extremals with vertices (py, . ... p.) neighboring a particular
sel of n verlices on 7.

The deformation L. — For the purpose of defining Z we admit
any set A of curves A of Q (a, b) neighboring » such that } intersects
the respective manifolds M, in unique points p,(1) which vary conti-
nuously with A on A and which divide X into successive arcs A, with
J-diameters less than the greatest lower bound of p(p) on points of A.
If the neighborhood V of the lemma is sufficiently small the final
images under @ (') of curves of V will be admissible in the preceding
sense. To define Z we deform each arc 2, into the elementary arc
which joins its end points exactly as in defining @ (7). For V suffi-
ciently small the product deformation Z® is well defined, and satis-
fies the lemma.

Recall that a non-degenerate extremal n of Q(a, b) is isolated
among extremals of 2(a, b). For the hypothesis that 6 is not conju-
gate to @ on 7 implies that the extremals issuing from « with direc-
tions sufficiently- near that of n form a field near 6, with n the only
curve in their field to pass through &. For the purposes of the
following proof the reader should recall the definition of a A-cap
« associated » with a critical set o relative to a subset S of Q(a, b)
containing ¢. Let u be a k-cap with cap limit equal to the value ¢ of
Jono. If u is « associated » with o relative to S, then corresponding
to each of ¢’s neighborhoods U relative to S, there shall exist a k-cap
v relative to U, c-homologous to u on S. Recall also that the j th type
number of ¢ is the dimension of a maximal group of j-caps associated
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with . With this understood the fundamental theorem of this section
is as follows.

Tueorev 16.4. — Each non-degenerate extremal v of Q(a, b)
is an isolated homotopic extremal of Q(a, b). If there are k
conjugate points of a on w, the jth type number of n is 9j.

That 0 is isolated among extremals of  (a, b) follows from the
fact that its end points are not conjugate on n as noted. To continue
let S(n) be a canonical section of Q(a, b) ncighboring n. We have
seen in Lemma 16. 1 that » is a homotopic extremal relative to S(n).
We base the remainder of the proof on statements () and (7).

(£). Any j-cap u associated with m relative to S(n) is a. j-cap
associated with n relative to Q(a, b).

It will be convenient to write u c-hom ¢ when « u is c-homologous
to ¢ ». Set J(n) =c. If u is associated with  relative 1o S(x), then
u c-hom ¢ on S(n) where ¢ is a j-cap on an arbitrarily small neigh-
borhood of 7. In particular we suppose that v is on the neighborhood
V affirmed to exist in Lemma 16. 2.

Suppose () false. Then u c-hom o on (a, b). Hence ¢ c-homo
onQ(a,b),and it would follow from Theorem 9.2 (a) that ¢ c-hom o
on V, at least if V is a separate neighborhood of n as we suppose the
case. But V can be F-deformed under Z® onto S(7) as in Lemma
16.2. In this deformation let < be the final image of ¢. Since ¢
c-homo on V, w c-hom o on S(n). Let x be a carrier of ¢ on S(x)
and ' the point set swept out by x under Z0. The curves of x' are
broken extremals to which Z is applicable at least if V is suffi-
ciently small as we suppose the case. But Z deforms »' onto S(n)
leaving ¢ and w fixed. Hence ¢ c-hom w on S(7). In résumé we have
u c-hom ¢ c-hom w c-hom o on S(n). Thus uc-homo on S(n),
contrary to the nature of u. We infer the truth of (i).

(ti). Any j-cap u associated with n relative to Q(a, b) is
c-homologous on Q (a, b) to a j-cap v associated with n relative to
an arbitrary canonical section S (n) of Q(a, b).

The k-cap u is c-homologous on Q(a,d) to a k-cap on the
neighborhood V of Lemma 16.2. Hence u can be F-deformed onto
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S(n) so that u is c-homologous to a j-cap ¢ on S(n). Moreover ¢ is
a j-cap relative to S(n), for otherwise it could not be a j-cap relative
to (a, b). Finally ¢ is associated with n relalive to S(n) in accor-
dance with Theorem 9.2 (&), since 7 is the only extremal among
curves of S(n).

Proof of the theorem. — 1 say that n is not homotopically
ordinary on (a, b). Otherwise it would follow from the definition
involved that some neighborhood N of 7 relative to J<c on 2 (a, b)
would admit an F-deformation onto a set d-below c. This is impos-
sible since there is a k-cap associated with » relative to S(n), and
hence associated with 7 relative to Q (a, b), as stated in (). It now
follows from (¢) and (i) that a maxemal group of j-caps associated
with 7 relative to S(n) is a maximal group of j-caps associated with
7 relative to Q(a,b). We can use Lemma 16.1 to conclude that

the dimension of such a group is dj. The proof of the theorem is
complete.

Tueorem 16.5. — If the manifold X of this section is the
homeomorph of an m-sphere and if a and b are points of X which
are conjugate on no extremal through a, then for every integer
k=o0 mod m —1 there is at least one extremal joining a to b on
which there are k conjugate points of a.

The connectivities R, of the space Q(a, b) are all null except
those for which k=0 mod m—1, and the latter equal unity.
Cf. M[5], Chapter VII, Theorem 15. 1. Since @ and b are never con-
jugate the critical sets of F on & (a, b) consist of isolated homotopic
extremals. If Ry=1, there must be a homotopic extrcmal n whose
k th type number is at least one by virtue of Theorem 15.6. In accor-
dance with Theorem 16.4 the k& th type number of 7 is exactly one,
and k is the number of conjugate points of @ on n. The proof of the
theorem 1s complete

The condition that a be conjugate to b on no extremal is not very
restrictive. In fact the writer has shown that the set of points on X
which are conjugate to a given point A on extremals through A has
an m-dimensional measure zero on X (M[5], Chapter VII, Theorem
12.1). If the point b is conjugate to @ on some exiremal, b is never-
theless the limit point of points never conjugate to a. Using this fact
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one can prove the following. If y; is a non-bounding k-cycle on
Q(a, b), the cycle limit J(a, b) of y; is a continuous function of
a and b on 2, and there exists a homotopic extremal v, whose J-length
is J(a, b) and on which there are at least k and at most k +m — 1
conjugate points of @ (M[3], Ghapter VII, Theorem 13.3).
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GLOSSARY.

Arc : elementary, 56; right, 56.
Boundary operator, 5.

Canonical section, see Section.

Cap : h-cap, 12; k-cap associated with a critical set, 41; k-cap relative to
space R, 39.

Cap limit, 12; associated with a critical set, 41.

Cap-isomorphic groups, 42.

Carrier : of a A-cycle, 6; of an homology, 6; of a formal k-chain, 7.

Cell : algebraic k-cell, 5; null k-cell, 5; oriented h-cell, 5, (of norme) 5; oriented
(k —1)-cell, 5; singular n-cell, 25: vertex k-cell, 5.

Chain : k-chain of norm e, 5; algebraic A-chain, 6; boundary chain, 6;
equality of chains, 5; formal k chains, 7, (sum of) 7; reduced chains, 5;
sum of chains, 5.

Conjugate point, 68.

Connectivities, 19.

Coordinate system : admissible, 43; of class C’, 68; special, 68.

Critical chords, 49.

Critical points, 3o.

Curve, 34; p-curve, 34; rectifiable curve, 65.

Curve class, 34; partition of, 52.

Cycle : algebraic cycle, 6; canonical k-cycle, 11; cycle mod B on C, 6; non-
bounding k-cycle, 7; rank of a k-cycle, 11; singular cycle, 3; Vietoris
k-cycles mod B on C, 6, (homologous) 6, (derived from an algebraic k-cycle) 27.

Cycle bound, 1o0. '

Cycle limit, 10.

Definitely below (d-below) a, 12.

Definitely-modulo (d-mod), 12.

Deformation : admissible, 30; D, 30; A, 63; 0 (r), 59; Z, 70.
Deformation chain, 8, g.

Deformation operator, 8, 9, 10.

Derived cycles, 27.

Displacement function, see Function.

Distance between curve classes, 35.

Distance, Frechet, 34.
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Distance pq, 4.
Distance, secondary, [pq], 52.

Elementary arc, see Arc.
Extremals : homotopic, 62; metric, 62; non-degenerate 68.

F-accessibility, 11; sufficient conditions for, 23.
F-connectedness, local, 25.

F-deformations, 30; admissible, 30; null, 30; related, 33.
Finite J-compactness, see J-compactness.

Function, displacement, 3o0.

Function, F (p), 10.

Group : dimension of, 14; direct sum of groups, 17; maximal, 14; see also Cap-
isomorphic group, Homology group, Operator group and Type group.

Homology : a-homology, 12; connecting homology, 6; e-homology mod B
on C, 6; homology mod B on C, 6.

Homology class, 7.

Homology group, 7.

Homotopic extremals, see Extremals.

Homotopic critical points, see Points.

Index of a differential critical point, 44.
Isomorphism, see Operator isomorphism, Rank isomorphism, and Cap-isomorphic
groups.

J (A), 52.

J-compactness, finite, 53.
J-convexity, local, 56.

J-diameter, 54.

J-length, 52; abstract, 67; integral, 67.

k-cap, k-cell, k-chain, k-cycle, see Cap, Cell, Chain, Cycle, respectively.

Length : generalized, 50; p-length, 34; see also J-Length.
Limit, cycle, see Cycle limit.

Local F-connectedness, see F-connectedness.

Local J-convexity, see J-convexity.

p-curve, p-length, p-parameterizations, see Curve, Length, Parameterizations,
respectively.

Manifold, regular, 43.
Metric extremal, see Extremal.

Metric : pq of M, 4; pq of I, 50; secondary [pq] of X, 52.
Metric of Q, 50.

Neighborhood, 4.
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Neighborhood, separate, 3y.
Norm e, 5.

Operator : 3, 5; D, 9; A, 10; 1, 9; group, 13; isomorphism, 13; property, 13;
subgroup, 13.
Order of a conjugate point, 68.

Parameterized curve (p-curve), 33; identical p-curves, 34.

Point set definitely below a, 12.

Points : critical, 3o, (non-degenerate) 44; differentially critical, 31, (degene~
rate) 44, (index of) differentially ordinary, 31; homotopic ecritical, 3o,
homotopic ordinary, 3o.

Rank class (p-class), 5.
Rank conditions, 11.

Rank isomorphism, 15.
Rank of a k-cycle, see Cycle.
Right arc, see Arc.

Secondary metric [pg], see Metric.

Section, canonical, 69.

Separate neighborhoods, 39.

Set : closed, 4; compact, 4; eritical, 39, (complete) 39; n-set, 54; open, 4;
ratio, 60; reduction, 2.

Singular (n —1) sphere, 25.

Space : M, 4.

Spanning, 25; e-spanning, 26.

Subdivision : first, 26; second, 26; infinite sequence of subdivisions, 26.

Superficial spanning, 25.

Trajectory, 3o.
Type number, 42; sum, 64.

Type groups, 39. , é\\yl—g‘\%&
Upper-reducibility, 36. 2y 0? ﬁ}
e A )
Vertex k-cell, see Cell. ;:‘f ~ §7
Vietoris k-cycle, see Cycle. \"’ﬁ ‘q“““
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