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ANALYTIC THEORY OF NON-LINEAR SINGULAR
DIFFERENTIAL EQUATIONS

By W. J. TRJITZINSKY,
Professor at the University of Illinois (U, S. A.).

Introduction. — In this work we consider the non-linear diffe-
rential equation of order n

(A) zryn(z)=a(z,y, yW, ..., y"=8)  (p a positive integer),

where

®

(1 a(=z g, y0, yr )= 2 Tty wntps () oy W, yln—tn

to,....l,,_,}__o

[@o...o (z) = 0], the a,_, (0) are analytic for [z |Sr and the series
involved in the second member of (1) converges for

(12) lzlsr,  1yL 1y o Lyt ]se (1)

Our present object is to investigate the character of solutions
of (A) in the neighborhood of the singular point z=o. This

(1) Without any loss of generality it may be assumed that not all the numbers
a,...i,—,(0) are zero. In fact, if the contrary were the case p could be diminished.
Throughout the paper, whenever a statement is made that a power series converges
in a closed circular region, it *will be understood that the radius of the involved
circle is sufficiently smallso that the function represented by the series is analytic
at every point of the region. That is, all such statements are made for sufficiently
small circles. A similar remark 1s made concerning power series in several variables.
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investigation will be given in the complex plane of the variable z.
Only those solutions will be considered which vanish at z =o (*).
It will be convenienl to write (A) in the form

(A1) zPyn(z) —ai(z, y, ), ..., yi=1)) = as (2, y, yH), ..., yla—1),

where a,(z, y, ", ..., y\»=1) is the parl of the second member
of (A) linear in y, ¥, ..., y(»=1), Accordingly, a.(z, y, y'*), ...,
yn=") is represented by a sum like (1) with {o~. ..+ i, 2 2. Inthe
special instance when the second member of (A,;) is identically zero
there is at hand a linear homogeneons differential equation of order r

(A2) zPyrl(z) —ai(z, ¥, y1, ...,y D) =0

which at o = o possesses a singular point (regular or irregular).
Essenlially complete developments of the theory of such equations,
inasmuch as they relate to the properties of solutions in the
neighborhood of the singular point, have been recently given by
W. J. Trjitzinsky [¢f. [19 @], in the sequel referred to as (T); also,
[49 &] which will be referred to as (T,)]. Since some of these results
will be needed in the present work it will be assumed that the reader
is acquainted with the developments just referred to.

The equation (A.,) possesses n linearly independent formal solu-
tions (?)

) { si(z) = el zrio,(2)
[Qi(z) polynomial in z—1/%; integer @;21; i =1, ..., 1),
where
(2a) oi(2) = o0i(2) + 10:(z) logz +. ..+ n0i(2) loghiz,
with
= hd
(20) jou(x) =2i°’z:v$a‘ (J=0,1, ..., my).

v=0

Let R denote any one of the aggregate of regions (extending to
z = 0) corresponding to which, according to (T,), (A,) possesses
a set of » linearly independent solutions y;(x), analytic in R(z 3£ o)

.
(') The trivial solution ¥ = o is to be disregarded of course.
(2) That is, the power series involved in these solutions may diverge for all

z2(# o).



ANALYTIC THEORY OF NON-LINEAR SINGULAR DIFFERENTIAL EQUATIONS. 3
and such that

(3) yi(z)~si(z) (i=1, ..., n;zin R).

If nothing is said regarding the number of terms to which an
asymptotic relationship holds, such a relalionship will be understood
to be in the ordinary sense (that is, to infinitely many terms). A rela-
tion (3) signifies that y;(«) is a cerlain function which can be obtai-
ned by replacing in s;(z) the formal series ,o:(z) [cf. (2 b)] by
certain functions, analytic in R(z 5% 0) and correspondingly asymp-
totic to the jo;(2) when « is in R.

In treating the case when n2 2 it will be assumed that not all
the polynomials Q;(z), involved in the formal series (2), are
identically zero.

In the theory of differential equations (and in the fields of certain
other important types of equations) the study of the behaviour of
solutions in the neighborhood of a singular point can be best effected
on the basis of suitable formal series solutions (the formal series in
general involve divergent series). By some analytic process ¢¢ actual ”
solutions are found which are functions related in one way or another
to the formal solutions. In this connection outslanding are (1) the
methods based on what essentially amounts to ‘¢ exponential summa-
bility ” of the formal solutions (this involves factorial series and
Laplace integrals leading to expressions involving convergent factorial
series) and (2) the asymptotic methods. At the basis of the methods
of the first type to a large exlentlie certain fundamental developments
due to N. Nérlund [13]. Whenever methods (1) are applicable the
results are superior to those derived by asymptotic methods. Now,
as pointed out in (T,), an equation (A,) may possess formal solu-
tions to which methods (1) are not applicable. The equation (A.),
however, constitutes a special case of (A;). Consequently, whith the
problem formulated as above, it is observed that asymptotic methods
are to be employed in so far as the general problem on and is con-
cerned.

It is essential to note that, generally speaking, a differential
system of the form

(I) %:a,(w,yi, ..o,)'n) (£=I, ey 1)
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is in a certain sense equivalent to a single ordinary differential
equation of finite order. In fact, let ¢o=9o(2, ¥4, ..., yn)be an
arbitrary function of the displayed variables. On writing

(II) y=?0(x,.}’h ---,.}’n):

by successive differentiations and at each step using the relations of
the given differential system we obtain certain expressions

av
yW (= dx{) =ow(®; Y15 «eey ¥n) (v=o0,1,...).

With a suitable choice of the funclion ¢, the Jacobian of the o,
(v=o0,1, ..., n—1), with respect to ¥4, ..., ¥, willnot vanish in
some domain (@ of the complex variables z, yi, ..., yn. It is then
possible to solve the first n equations y¥ = o, for ,, ..., yn,

(11r) Y=gz, y, yW, ---’}’(n_i)) (i=1, ..., n).

Substituting (III) in the relation y™) = @,(«, yi, . .., ¥n) one obtains
an equation of the form

(Iv) FM=g(, 3, YW, ..., yln1).

Here the second member depends on the a, of (I)) and on the choice
of ¢,. It is clear that, subject to the condition that the Jacobian men-
tioned above should not vanish in a suitable domain @, the function
9o must be chosen as ¢¢ simple ”’ as possible in order to avoid those
difficulties which intrinsically do not belong to the given problem.
The solutions of (1) are seen to be expressible with the aid of (III)
in terms of a solution of (1V).

In the present work we shall not go any further in the study of the
connection between a system (I) and an equation (IV).

Some facts of interest will be pointed out. Suppose the systewn (I)
has a singular point at # = . Then one can form the corresponding
single equation (IV) so that the latter will posses at 2 — o a singular
point of essentially the same type. The particular very important case
of (1), namely when the system is of ageneral type occuring in dyna-
mics (z in the a, absent; the a; analytic in yy, ..., yn at

1= =)n=0;

the a;=o for y,=...=yn,=0) leads one to a single equation (IV)
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with the following property. If in g only the part linear in y,
yWy ..., yt—1)is retained, there is on hand an ordinary linear diffe-
rential equation which at # = has an irregular singular point
generally of rank one. Analogous statements can be made when (I)
is of a more general or different type. For instance, the @; may be
periodic in z, or the system (I) may be of the type considered in the
highly significant researches of Bohl [4], Cotton | 7] and Perron
[16].

If we fix our attention on that very important tradition in the
investigation of general problems of dynamics which goes back to
the famous memoirs of Liapounoff [12] and Poincaré [18] and is
receiving its culminating development in the profound investigalions
of Birkhoff [3], we observe that it is possible to carry out the deve-
lopments which are of a purely analytic character (in the small) with
the aid of a corresponding equation (IV), provided a suitable ana-
lytic theory of the latter equation has been developed.

In a later word Lhe present author intends to present developments
of the character just mentioned.

We note that equation (A) does not contain as a special case the
equation (IV) corresponding to a system of dynamical type (whether
following Birkhoff. Liapounoff and Poincaré or Bohl, Cotton and
Perron). In fact, the present work is not concerned directly with
any dynamical aspects of the theory of differential equations.
However, there is no doubt that, with suitable modifications, ana-
lytic methods of the type presented in the subsequent pages are
adequate for the treatment of micro-analytic difjerential pro-
blems of dynamical character. This circumstance adds to the signi-
ficance of the present work.

The methods of the present author on the whole do nol follow any
of the earlier patterns. These methods consistin part of the following,
The problem (A) is resolved into a succession of linear problems.
each with a singular point at x = o. These problems are treated
by asymptotic methods with the aid of some earlier results dye to
Trjitzinsky [19]. This is followed by a corresponding transfor-
mation. Finally, by a certain limiting process the transformed
equation is shown to possess certain suitable solutions.

First we shall treat the case of the problem (A) when n=1.
Then (2) will consist of a single convergent series (not involving
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logarithms). There will be only one polynomial Q(z). When n=1
it will not be neccessarily required that Q(z) should be distinct
Jrom zero. The main result for this case is given in the Ezistence
Theorem I(§6). The treatment of the first order problem is followed
by that of the general n-th order problem (7> 2). The main result in
this connection is embodied in the Existence Theorem II (§ 10).
The reason, for the separate treatment of the two cases is that when
n =1 results can be obtained which are more specific than those for
the higher order problem. Moreover, in developing the first order
case one can take advantage of certain previously established results
due to Horn [9], Picard [17] and Poincaré [18]. The higher order
problem is treated in sections 7, 8, g, 10.

- When rn =1 equation (A) will be written in the form

(B) .’lr"+1_y(‘1)(.z')=a(x,y)_—_2 ay(z)yY,
{5) ay(z) =Z ayzt (V=1,2, ...).

1=0
Tt will be assumed that the series here involved converge for
(5a) lz|sr, |yl<e.

For the case when in (B) the integer 4 is zero essentially complete
results have been obtained previously. Accordingly, in treating
this equation it will be assumed that k > o. With k > o the deve-
lopments of Horn [9] would apply only of a, 054 0. We impose no
restrictions on a, .

Problem (B) falls in the following two cases.

Case I. — In (B) we have not all of the numbers

(6) Qai o, al,i) veey a,,k_l
zéro. Thus
(6“) a‘,o=a1,|=...=a‘,l_.|=0, ui,l¢0 (Oglgk——l)‘,

Case II. — In (B) all the numbers (6) are zero.

In any case without any loss of generality it may be assumed
that in (B)

(7) 0= Q241 = Qe k+2 =0 ons
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In fact, the transformation

(8) y(z) = g(2)y(),

where

j'z(al,l+1 4@y, kg X4 o) X
(8a) g(Z) =14 g12 + g2 2% +...=€" "

will yield the equation

(B) whe1y)(z) = alz, y) =Y, av(@) 7,
v=1

in which

(9) ;1(£)=a1,q+ a1z +...+a1,k$k,

(9a) Ev(m)=av(.t)g"—1(x) =zc—i\, 1t (v=2,3,...),

1=0

the series involved in(B) and (9 @) being convergent for |z|<r,
|7 1<e-

2. Formal solution (case I). — Functions y,(z)(j=1, 2, ...)
will be determined so that the formal series

(1) s(z) =2 yi(z)e (c an arbitrary constant).

]1=1

will formally satisfy (B). We note that

(2) #(@) =D vy (@) (yy(@)=ofor j <),
=1

where for j2v2>2

(02) 271(@) = 3, (@) (). Fna(2)

(R4 ot ovot ny=J; 1804, N3y o0y, RySj—1).

When v22 the inequalities ny, 7, ..., n,Sj—1 will necessarily
hold in view of the following considerations. Suppose one of the
numbers ny, n,. ..., ny, say n,, is 2j then, since ny +— ns+...+n,
has more than one term (each being not less than unity). we would
have ny +. ..+ n,2j -+ 1. Thus a contradiction would result.
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On substituting (1) in (B) and on using (2) it follows that

(3) ak+is) (@) — als, s(@)] = X, [#4+1y)"(2) — a1 (2) 3, (@) = ¥; (2)] e/ =0

1=t
Thus, the y;(«)(j 21) are to satisfy Lhe equations
(4) ahry(z) —a(2)y,)(2) =W/ () (j=12,...)
where ¢, (z)=o and, for j =2, 3, ...,
(4a) Wj(z)=",(2, yo, ---) ¥j—1)
=ﬁ ay(@)vy; () =ﬁ ay(2) Y, (@) Y (@) . . Fna(@)
v=(;1+...+ nv=j‘;'=1;n1, cey S j—1).

Accordingly, for j =1, (4) will yield

fa, (x)x—k—1dx

() n(z)=t(z)=e = eq(®) 201 k
where

(6) g(z)=  qrgx—*-04 4+ g2,
(6a) 9y ='—$a1,k—-v v=1,2,k—1),
(65) g1 # O (k—121).

Thus, in Case I, the polynomial ¢(2) is not identically zero.

Derinimon 1. — Let R(ry), where o <r,Sr, denote a region
satisfying the following conditions.

1° The boundary of R(r,) consists of an arc of the circle
|#|=r, and of curves By, B, (each with a limiting direction at
the origin) extending from the extremities of this arc to the
origin. Except at the origin B, and B, have no points in common.

2° The real partof q(z)[cf. (6), (6 a), (6b)] does not vanish

interior R(r,); moreover.

(7 e?lx) ~ o [2 in R(7))].

3° When z is in R(r,) every u on the rectilinear segment (o, z)
isin R(ry).
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4° When z is in R(r,) and u is on the rectilinear segment (o, x)
the upper bound of

(7a) |¢(u)u—k=1]  [ef. (5)]
is attained at z.

It will be shown that in the Case I regions satisfying the above
definition always exist. On writing

u = peV—1b, qi=Lq, (i=1, ..., k=1),

b=ag—k—1=b+ /=10,
it follows that

(70) G(p, 0) =log|t(u)u—t1|
= ga—t|p~k=0 cos[(k — )8 — gr—1] ...

| g1]p~tcos(0— g1)+ b logp — "8
and

G -
(7¢) P o =—(k—1)| qi-1] g% cos[(k — 1)0 — gr—1] +...
—lg1lp—tcos(6—gqy)+ 5"

‘With ¢(> o) a fixed number, however small, define sectors Wm(ro)
with the aid of the inequalities

1\ = qit
(7d) (2m+2>———k_l+k_l+e

3 T G
§Lx§<2m+§)m+qull—s (m=o, 1,...; |2 |SreSry).

For uin Wy,(r)
(7€) | gi—tlcos[(k— )0 —qrilS—E (<o),

where § is independent of u, and £ —~o when ¢ o. Thus, by (7 ¢)
and since (kK — )| gz~ | > o, it is inferred that
aG —
pop = (k= 1)l gi-tlp=te=h cos[(k — 1)8 — grt] [1+ 0 (p, 0)]

where | ¢(p, 8)|<1 for n in Wy (ro) (1o sufficiently small). Whence
on taking account of (7 &) it is concluded that

d%logl t(w)u—* 1|20  [uin Wp(ry)].
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Accordingly it is seen that W,,(r,) satisfies conditions 1°, 3°, 4°, of
Definition 1. Now

(7f) Rg) =1qi—1|p~*=Dcos|(k —1)0 —gr_s] ...+ | g1 | = cos(8— g1)
= | qi—1] p~*—D cos[(k—1)8 — ga_s] [1+ o1 (p, )]

where, by (7€), |¢'(p, 8)|<1/2 for w in Wn(ro), provided rq is suf-
ficiently small. Rg(u) can not then vanish in W,,(r,). Moreover, by

(7f) and (7€)

| egte) | L e—p—h=DE[1+ut (p, DI g—p—(k=DE/2,

whenever uis in Wy, (r,). Hence, in W, (ry), (7) is satisfied. Thus it
has been shown that regions exist, for instance in the form of sec-
tors Wp(ro) [cf. (7 d)] which, when r, is sufficiently small,
satisfy all the conditions of Definition 1. With the aid of more
extended developments existence of more general regions, satisfying
Definition 1, can be established.

From (4) it follows that

(8) ba(2) = as(@) 3 (2) = (@) 9a(),
(8a) 72(2) = ax(2) = Y, 924"

the latter series being convergent for |2z |<r. On writing (4) in the
form
du

0 p@=ua) [ ey gs G )

and on using (8) it is seen that

(19) (@) = t(@) [ utr (e (u) du
= t(m)fxu—"—“"‘!:ke'l(") 9:(u) du.

In consequence of the methods of asymplotic integration developed
in (T,) the following statement can be made.

Let
(1) Q(z)=Qaz B+ Qg1z—B+...+Qz—t  (Qps£o; B21)
and let R be a region! of the type specified by Definition 1 [with
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q(2) = Q(=), and the conditions (4°) possibly omitted|, Suppose
¢(z) is analytic in R(z £ o) and

(11a) o(z) ~E 9.zt (zmR).

Then the integral

x
(12) . f uaeQw o(u) du
can be evaluated as a function of the form
(12a) wa+B+ied® {(x)

where {(Z) is analytic in R(x # o) and
(12) ta)~ Y et [om R; G=— 0/ (BQp)]-

With the above in view and on taking account of (6), (6 b) it si
concluded that the function y,(z) can be evaluated with the aid
of (10) as an expression of the form
(13) yz(x) = t(w)x—k—1+a‘,k“'k—lﬂ—1 eq(x) n!(c”)

= z~t*(z)n:(2);

here n,(x) is analytic in R(r) (# 72 o) and

(13a) n(@) ~ Y neaat [2in R(ro)] (1),
By (4) )
(14) Y3(2) = ax(z) 21 (%) y2 () + as(z) yi(x).

Thus, in consequence of (5) and (13), (13 a),
(14a) b3(z) = z=1e3(2) 93(x)

where
93(2) = 2a2(2) a(2) + as(z) !

(%) In the case corresponding to that treated by Horn we would have @, , 7 0
and ! =o,
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is a function analytic in R(r), such that

(140) ?3(x) NE 93, 2° [# in R(7)].

Suppose now that

(15) { Iv—1(2) = a=0=0v—1(z)ny—y (2),
by (z)=a— U2 (z)ey () (v=2,..,,j—1) (1),
where the functions n,_;(z), ¢,(z) are analytic in R(7) (##0) and
Ny—1(2) "’2 Ny—1,1 *
(15a) = [zin R(r);v=2,3, ..., ] —1]
) v (2) NZ Qv &t

1=0

For x in R(r), e"9~o (m=1, 2, ...). Hence application of the
statement in italics, following (10), is possible to enable evaluation of
the integral

(16) .71—1(‘7")=t(x)f u-k_w/—l(u)t‘(l_:fj

T
= t(x) / u—t—1—U—1 12 (1) 5,4 () e

x
=t(z )f u—k—1—(]—=3) I+ (=2 ayk el/—2)q(u) ©—1(u)du
=t(x ) 2—l—()—=3)1+()—2)as k () —2)g (x) Ny—1 (x )

= 2= (2) ;i (@)

where n,—; (#) is analytic in R(r) (2 3£ 0) and

(16a) n-1(@)~ Py mia [#in R
i=0

With the aid of (15), (15 a) (16), (16 a) it follows from (4) that

]

(17) ¢, (=) =2 av(m)x a—(m—t) —na—t) = —(n —0) grotngtecctn, ()

v=2

X N (2) N (2)eeMn, () [Ra+od-ny=7; 1S04, ooy n S —1].

(1) For the present 1t 1s assumed that ; 1s a fixed integer 2 3.
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Thus

]
17a)  b(@) =, au(@)a % 81 (2) Y, 10, (2) 10y ().« 10 (2)
v=2

=z~ (z)¢,(z),
whefe

]
% (2) = X a(@) @0 Y 1y, (2)...10.(2)

v=2

(175)

(rni+...+ny=j; 1801, ..., ny,$j—1).

Manifestly ¢, (=) is analytic in R(r) (2 7 0); moreover,

(17¢) 9/(z) ~2 ¢u@t [« in R(r)].
Lemma 1. — Consider Case I (§ 1) of the equation (B) (§ 1),
(B) b1y (a) = a(z, y) =Y, av(2) y*(@).
v=1

Let t(z) be defined by (5) and let R(r) be a region as specified
by Definition 1. Equation (B) possesses a formal solution,

(18) s(z) =2 _y,(a:)cl=Zx—(l—”1tl(x)n,(w)cl.
=1

]j=1

Here c is an arbitrary constant, the n,(z) are functions analytic
in R(r) (z £ o), such that

(18a) n, () ~2-q,,,x¢ [/J=1,2, ...; zin R(r)],

1=0
n (&) =1; moreover, the n,(xz) are defined in succession with the
aid of the relations (9), (4)-

Whenever the series (18) converges, for z in a region
R(ro)o <1081

and for |c|<c, (¢, sufficiently small), it will represent an analytic
solution of (B); moreover, te above lemma would give detailed infor-
mation regarding the behaviour of this solution, for z in R(7), in

MEMORIAL DES 8C. MATH — N° 90, 2
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the vicinity of the singular point. When = o, convergence of (18)
follows from the developments of Horn in consequence of the consi-
deration of an equation

(B*) ki y ) (2) = a* (2, y*) =Y, a3 (2) 3™,

v=1

which is of the same character as (B) but is so chosen that it has a
convergent formal series-solution of type (18); moreover, from the
convergence of this series convergence of the original series may be
inferred. Proceedings of this type appear to break dow for [> o.
However, it is of interest to observe that the equation

l*
(9) el e =ai(2), Oyt
dy*?
T O=EEnG=19

o< |z|sre<r)
is ‘“ dominant "’ with respect to (B) provided oz, B, y are suitable
positive numbers and provided

(192) ai(lz|, §) =R(ay, 12!+ ar, izt 4.+ @y g 2k 1) + |z [fRayk
9 (Ru =real part of u; { angle of z) (%).

This equation, as can be easily observed, is of the same type in | z |
as the equation (B), whenever o <<|z|<ro. It has a formal solution
(20) sz l) =Yl -=ter (| )5 (|2 )e,

]=1

where c¢* is an arbitrary posilive constant and
l=| "
(20a) t(lz) =z, ) =ef Izi-tatzLbalz

The following can be demonstrated. The ) (| z|) are analytic in |z |
for o <|z|<ry <r; moreover, they are positive and

(208) (@)~ Dzl [<|z|Sroni(e)=1;7=23 ...],

1=0

(*) When I = o (Horn’s case) it is possible to simplhify (19 a) by letting a} = Ra, .
In the general case, however, in (19 @) the numbers @y 141y ++ o5 Gy cannot be repla-
eed by zero.
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provided (as is assumed throughout) that ¢ is allowed to assume only
the values of the angle of z, when z is restricted to the region
R(ro) (*).

Furthermore, there exists a constant n, independent of z and ¢,
such that the functions 7,(z) occurring in Lemma I, satisfy the ine-
qualities

(21) @) <winj(lz]) (j=23,...;0=Lx)

s

for z in R(r,).

Thus, whenever the formal solution (20), of (19), converges for
o <|z|SrySr[¢restricted as in the statement following (20b)],
the formalsolution (18)of (B) will converge for z inR(ro)(o < roSr)
and for | c|Sco(ro or co sufficiently small).

When the series (20) diverges the « dominant » equation (19) is
still useful, as with the aid of the ine qualities (21) and in consequence
of the special form of (19) it is always possible 1o obtain cerlain ine-
qualities for the absolute values of the n;(z) occurring in (18) (?).
But inasmuch as construction of an « actual » solulion is concerned
we shall have to employ certain asymptotic methods (¢f. §4, 6 below).

3. A transformation (Case I). — Let n be a positive integer. In
the transformation

(1) y(z) = Ya(z, ¢)+c"pn(z, )

let

(1a) Yu(o, )= pj@el  [o(@) =p;(@); j=1, .., n—150f. (18),§2],
J=1

pn(2, ¢) will be a new variable. As a matter of convenience we shall

write

@) { pi(z) =yi(x) (J=1,2, ..., n—1);
pj(zy=o0 (J=n,n+1,...).

e

(1) §{ (=angle of z) plays the role of a parameter of the equation (19).
(2) For the present these details will be omitted.
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Before applying (1) to the equation (B) the function
3) Fu(z, ¢) = ok Y1) (2, ¢) — a(z, Ya)

will be first considered in some detail.

One taking account of (2)itis noted that F,(z, ¢) can be expressed
in powers of ¢ by means of an expression analogous to that involved in
the second member of (3; § 2),

(4) Fa(z, C)Ei [z4+10i0(2) — as(@) pj(#) — ¥ (@)] e/
here ~

(4a) V(@) =4j(@, poy ...y pj=1)  [ef. (4a), § 2].

In consequence of (2) and (4@) by (4; § 2) it follows that

zkrt o) — as(@) pj(2) — ¥j(@)

(5) = gkt Yy (z) — ai(z)y;(z) —Yj(z) =0
(j=1,2, ..., n—1);
(5a) ot oM (2) — ay(2) po(x) —Yn(2) =— Yn(z);
(55) {xm #(2) — ar(2) pj(2) — §i(2) =— ¥, (2)
(j=n+1,n+2,...).

The §;(z) are known functions given by relations of the type of (17 a;
§ 2). Thus

(6) Yj(@) == (2)oj(z) (f=n,n+1,...),

where the ¢;(z) are analytic in R(r) (z £ 0) and
(6a) 5i(@)~ X 3mat [inR(r); (@) =ea(2)].

This follows from the fact that the ¢;(2) are the same functions of
the n;(#) [the n;(x) are the counterpart of the n;(z) of § 2] as the
9,(z) are of the n;(z). while n;(z) =ni(z) ({=1, 2,..., n —1) and
ni(z)=o(i=n, n+1,...). Hence by virtue of (5), (3a), (5b)
and (6), on writing

(7) ezl t(z) =x(2),
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it follows that
(8) —Fn(z, ) =22 ¥ 5,(2)v(2)  [of (6a)].

j=n

The series in the second member of (8) converges for |c|<¢,. z in
R(ro) (o <rySr; co or ry sufficiently small).

Substituting (1) in (B) we get
(9) =*H[Yi(2, ¢)+ cnpfl)(, ¢)]

=a(z, Ya+cton)=a(x, Yo)+ar(x)con—+ as(z)cpd +.. ,

where
_ 1 Ima(z, y)
(9a) an(®)= 77 —gym ]y:vn
=amp(x) +Z Chim ayym(x) Yh(2, ¢)
=an(z)+ Bn(z,c) (m=1,2,...)
On writing
(10) cron(2, ¢) = zltn(x) z(x, c)

and on observing that

W(x) —1  t(x) —1
@) = t(x) z

(10a)
it is concluded that
(108) croii)(z, c)

=zl (z) [(-l + ntm(w)> z(z, ¢) + i) (, c)]

x ()

=zl (x) [<— (n— I);l “+ ng—k-t al(w)) z(z, ¢) + zW)(x, c)].
In consequence of (10), (10b), (3) and (8) from (g) we obtain
zlrh+ign(g) [(-—— (rn—1) é “+ nx—kt ai(a;)) z(z, ¢) + s (z, c)]

=w211"(x)2'§,(w)t'l—"(x)+oc1(x)xltn(w)z(x, c)
j2n
“+ as (@)@ (z) 22 (2, €) +. ..y
so that,

(11) 2z, ¢) =a(zx)+ q'(z) z(z, ¢)+ T[z, 3(2, c)].
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Here

(11a) a(z) = zi—t1a(z)
where a(z) is analytic in R(r) (#5£ 0) and
(115) a(e) =Y, %(2)v(2) ~ 7a(2);

j2n
(116) ¢'(@) = z41[ay(@) + Bu(=, O]+ (n—1) % — na—t-t ay(a)

=g %1 By(z, ¢)+(n—1) (% — k1 aa(-'l'))
~(n—1) (;”l- — g~k a,(x)) .
Also

(12) Tz, z(z, ¢)] = a2l 1z (z)[a:(2z) 22(2, ¢)
“+ ag(z)x!wn(z) 23 (z, ¢)+...
—+ tp (2) =2 glm=2n () gm(z, €) +...]
= gkt (2) W[z, 2(z, c)]

where, by (9a),
(12a) am(z) ~ am(z) (m=2,3,...)

The asymptotic relations (11b), (11¢), (12a) are inzfor z in R(r).
The functions involved in the left members of these relations are
analytic in z for z in R(r,) (z £ o), provided |c|<co (¢, a fized
number). The above asymptotic relationships are in the following
sense. Let f(z, c) denote any one of the functions

a2)—on(@) 7(@)—(n—1) (5 — st a(a)),

am(z)—an(z) (m=1,2,...).

(125)

We have

J(z,e)~vo+o.z+o0.22+... [in R(ry)]
uniformly with respect to c (|c|<c,); that is,
(13) 1 f(= e)I<|zlPfpe [zinR(ro);lc|Seos p=1,12y...)

where the constants f,, ,, are independent of 2 and ¢. The rapidity
with which the functions (125) approach zero, as # — o within R(r),
can be specified by inequalities more accurate than (13). However,
such inequalities would not be necessary for our purposes.
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On taking account of the way in which the series

W(z, 2)= W[z, 3(z, ¢)]

had been derived it is seen that W (z, z) is analytic in z and =
for z in R(ro) (#5£ 0; r< ) and | 3| <p(ro) (1). Since from (7) it
follows that by taking r, suitably small the upper bound in R(r,) of
|7(2)| can be made as small as desired, ¢ is concluded that p(r,)
can be made arbitrarily great by assigning a suitably small value
tory. If ro is kept fized the number p(r,) could be made as large
as desired by taking c, sufficiently small.

Lemma 2. — Let nbe a fized posive integer. The transformation

(14)  y(=z) =2 = () nj(x) el + z—n—Ntn(z) z(z, c)er,
j=1

where t(x) and the nj(z) are functions involved in Lemma 1, (§2).
wheen applied to (B), will yield the equation

(15) zW)(z, ¢)=a(z)+ ¢'(z) 3(z, ¢)+ zl—F1n(z) W[z, 3(z, ¢)].

The various functions here involved are specifield by (11a), (11b),
(11¢),(12),(7),(12a). Moreover, these functions possess properties
indicated in the several italicized statements following (12a).

4. Solution of the transformed equation. — We shall now proceed
to obtain a solution of (11) bounded in R(r,) r, sufficiently small;
[ci<eo; ¢o fixed). In consequence of (11 ¢; § 3),

xq’(m)dx
(1 g(w)=ef .
n— lx—1—x—k—1a,(x))dx
ettt et e (2 ua, o

where u(z, ¢) is analytic in z (#z inR(r); [¢|<¢,) and

I

—u(a:, c)NI [z in R(7rg); | c|Seo) (2).

(1a) u(z, ¢)~1,

(1) Throughout we keep [c| < ¢,.
(2) Throughout this section asymptotic relations are uniform [cf. the italicized
statement in connection with (13; § 3) ] with respect to ¢, provided | c|<c,.
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Define z,(z) by the equation
(2) 2 (z) = a(z) + ¢'(x) 2(2).
In consequence of (1) and (114a; § 3)

¢n—1 (w)w—(n—l)l
u(z, c)

(a) so(a) = 2 (@) u(a, o) [

2l a(z) dz.

By virtue of the statement in italics following (10; § 2) and by (1a)
zo(z) can be evaluated asa function analytic inz, forzinR(r)(c|<¢o),
and such that

(3) zo() NS Zguxt  [in R(7)].

In particular, =

(3a) [20(2)|S30 [z in R(r);|elSe]

Take c, sufficiently small so that p(r)>r,) (cf. ilalicized state-
ment preceding Lemma 2 (§ 3). Whence, on writing

(4) Zy=p(r)—28 [o<28<p(r)],

it follows that

(42) 20 p(re) — 2,

whenever o <ry<r. Thus Wz, 3, (2)] is analytic in 2 in R(r,);

|e|<eo), the corresponding series being absolutely and uniformly
convergent.

There exists a constant M, independent of z, 5 and ¢, so that
(%) [W(z, 2)|<M  [|2[gp(r); zin R(r); | e|Sel.

In consequence of the Cauchy theorem for analytic functions we have

(6) |W(z,s)—W(z 3")|< %lz—z”l [z in R(7); |e|Le0],

provided
(6a) 1z <p(r)—E |121< p(r)—E (1)

(1) The Cauchy theorem is applied to W(z, z), considered as an analytic function
of z, while z{inR(r)] and ¢(|c| £ ¢,) are considered as parametric variables. The
statement in connection with (5) plays an essenial role.
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It will be also noted that

1
u(z, c)

(7) lu(z, e)| <k, <h [zinR(r);|c|<e]

where 4 is independent of z and ¢. We choose G so that

(7) o2 2E)
and so that
(8) | W[z, 20(2)]| < G| 30(x)]| [z in R(7); [e|L 6]

That such a selection is possible can be inferred from the form of the
function W (z, z), as defined by (12; § 3).
Consider the function

(9)  In(u)=|u—ttn=tii—kmt pn=t(u) | = | t(u)ut |22 | £ )u—t—t |,

Recalling that the last factor above possesses the property (4°) of
Def. 1 (§ 2) the same is seen to be true of |z(u)u=*| (*). Thus
the following condition is satisfied.

1° When z is inR(ro) and u is on the rectilinear segment (o, x)

the upper bound of the function l,(u), defined by (9), is attained.
at z.

Choose r, sufficiently small so that the following will also hold.

2° With ¢y, G and h fixed in accordance with previous state-
ments, we have

(x0) e G2 | a—In—i—k tn(2) | €

Jor all z in R(r,).

S
p(r)—§

It is observed that r, can be selected independent of n. It is also to
be noted that in consequence of the above condition (1°) it follows
that

(1) [ @) duigiz @) (=i RE)

0

By virtue of the above choice of ¢y and r, it can be shown that the

(1) Since | t(u)n | = t(u)u | u i (k+1—1>0).
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equations
(12) (z) =a(z)+ ¢ (x)3/(x) + T[z, 5j—1(2)] (J=1,2, ...)

determine functions z,(z) j =1, 2,...), defined for z in R(r,) and
for | ¢ |<co. From (12) we have

(12a) 5(2)= g(w)f o)+ T, s} oy (20
On writing
(13) wo(z) = zo(2), wi(x) = zj(x) — 5j—1(x) (f=1,2,...)
in consequence of (12; § 3) and (1; § 3) it is inferred that
(14) wj(z)= g(x)f { Tlu, zj—1(w)] — Tlu, z,—s(u)]} —= (u)
= @) s on ) Wt 510} Wi 2—:00]) 20
{] =12 ...) W[“} z—‘l(u)]=0}'

By (6) and 6a), provided
(15)  |zj—(w)l,  [5—2(w)| < p(r)—§ [win R(ro); [elSal

g(u)

it follows that

| Wlu, z)—1(u)] — W[, zj—2(2)] < G|wj(u)]

(132) { [uin R(re); |e]Sco; j=2,3, ...]

For j =1 (15a) has been previously established in (8).
By (1) and (7) from (14) we obtain

(16) |wj(z)|= |zt (z)u(z, c)|

x
= f cn u-l—z(n—i)l—lc—i gan—1( u1)
0

1
u(uy, )

x { W[ut, z,-_i(ui)] —_— W[ul, z,_,(ui)] } dl“
< c} | zn—l—n+1(z)| thfxln(u) [wj—1(u)||du!
[cf. (9); z in R(7o); I e|S60],

provided (15) holds. Suppose (15) holds and assume that we have
previously shown that

(17) [wj—1(u) | <Bj—r  [win R(r); te[Seo].
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Then by (16) and (11) it would follow that
[wj(2)| <eg|zin-le=n+1(2) | 2G| z | In(z) Bj1;
so that, by (9),
[wi(2)| < e Gh? | z— ==k n ()| B;_y.

Furthermore, in consequence of (10) it would follow that

(18) [wj(z) ]| < =——= Bl—i [z in R(7y); |e|S el

p(r)
The above developments signify that if for a fized j inequalities
(15) and (17) are satisfied then (17) will necessarily hold also for j
increased by unity. Moreover, one may take

(19) gi= £ Bj—1-

p(r)
Since
[wo(u)| =12(u)|S530=p(r)—26< p(r)—E
it follows that, for j =1, inequalities (15) and (17) are satisfied with
Bo=p(r)— 2t
Therefore (18) holds for j =1. We have

(20) lwi(z)| < Br1= Bo-

£
p(r)—%
Accordingly

[21(2) | =[wo(2) +wi(@) | < Bo+B< p(r)—E [ in R(ro); |¢|Sal

Whence it is seen that (15) and (17) are satisfied for j = 2 with B,
defined by (20). By the above italicized statement it follows that

|w:(w)|<ﬁz=ﬁ_—gﬁx= (p_a(—r%—_éyﬁ" [« in R(7o)];

whence
| 22(x) | = | wo(2) + wi(x) + wa(z) |

3 g . : .-
< Bo (1+ P—E -+ [p(r)—E]z) <pr)—¢ [z in R(ro); || S €]

By induction, in view of the statement subsequent to (18), it is
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inferred that

&

(21) |W1($)|<51=[P(7')—2E]m’

(21a) |3(2)] S |wo(z) +wi(2)+...4+w,(2)| < Bo+ Br+.0s+ B
— N 3 £ _
=[p(r) 25][I+P(")_E +eet [p(r)——E]I] <pn—i§

[J=0,1,2, ...52in R(ro); |c1Se]

The series

; =N (e =
(22) lim 5,(2) = ¥, wi(x) = 2(a, <)

=0

is absolutely and uniformly convergent for z in R(7,). The consti-
tuent terms of the series being analytic in R(r,) (z £ 0) the same

will be true of the limiting function z(z). Moreover, by (21a) it
follows that

(23) iz(z, e)|Sp(r)—E [z inR(ro); |e]|Seol.

By (12)
W) (z) = g (z) w, () +z!—*-terz—nlen(z) { W[, 3,—1(2)]— W[z, 2,2 (2)]}.
Accordingly, by (21a), (15) and (15a),

1o (2) | <|g(@)||w,(2)]| + | a—in-D—k-1Gen tn(z) | | w)—1(2) |
[zin R(ro); |c|Seos j=1,2, ...]

(26) {

Whence in consequence of the absolute and uniform convergence of
the series involved in (22) it is concluded that the series

Zw‘l"(x)

possesses the same property for z in R(r,) ([¢{<¢o). Hence
(25) lllmz‘l”(w) = % [Ii;nz,(m)] =z (z, c).
Furthermore, it follows without difficulty that
(26a) limT[z, 5,4 (x)] = T[.z', limz,_i(w)]
] J
=T[z, z2(2z)] [z inR(r); |¢|S el

Application of (25) and (25a) to (12) makesit évident that the func-
tion z(«, ¢) defined by (22) satisfies equation (15; § 3).
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Lemma 3. — Suppose that ry(o <r,<r) is a number (indepen-
dent of n) sufficiently small so that the condition of the italicized
statement in connection with (10) holds. Let c, satisfy the state-
ment subsequent to (3a). The equation (15;§3) of Lemma 2(§3)
will then possess a solution z(z, ¢) with the following properties.

1° The solution is analytic in z for zinR(ro)(z#o0;|c|<co),
where R(r,) is a region as specified by Def. 1 (§2).

2° The solution is bounded uniformly with respect to xz and ¢
when z is in R(ry) and |c|<co [cf. (23)].

3° The solution is defined by the series (22) [cf. (13), (12) arnd
(14)], which converges absolutely and uniformly for x in R(ry)
and for | c|<c,.

8. A reduction for the case II. — Turning our attention to Case II
(§ 1) of the equation (B) (§ 1) we have

(B) zitriyll(z)=a(x, y)=airzty +2 ay(z)y’
v=2

=aq w2ty +av, (z) yV1+ av, () yr+. ..
where

)]

{ av () =a™ma,(z); a=TYi+...
[(yi=av,,m #0); (=1, 2, ...; 281 <ve <. L)] (1)

Atleast one of the functions a,, (2 ) must contain a constant term. Thus
(1a) my, My ooy Mg 21, mg=o0 (a2I1).

Consider expressions

() 2:(B) =—k+m+ B(vi—1)

and define numbers 3(7) by the equations ¢,[3(Z)]=o0; thus

(22) Ble)y=

k—m,
vi—1

(i=1,2,...).

By (1 @) in particular it follows that

k = l—‘ ( 51 in its lowest terms) .
Vo—I P1 P

(20) B(a) =

(1) In (1)... denotes positive integral powers of .
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Define ' as the greatest one of the numbers (1), B(2),. .., B(2).
Accordingly,

(2¢) F=B(u)=B(2)=...=8(m)>B() (4a<i<...<inge)

Jor iz iy, lay. .. ix(i<a). It then follow that

(3) u(f)=ou(B)=...=0u(f)=0, @(f)>o0
SJori=u1,2, ... ((Z 0, %, ..., Ig)-

To prove this statement we not that the equalities of (3) hold in con-

sequence of (2¢). Suppose the inequalities of (3) do not all hold as
stated. Then for some &'(¢'5£ 7y,,,. . ., ig) we would have

(3a) s(B) Lo

Case (1) ({>a). — From the latter inequality it follows that
B'<(k — my)[(vy—1). But 0;> ¢, so that 1/(v,—1) << 1/(va—1);
moreover, m,2> o. Hence

<

= B(a).

vg—1

A contradiction arises since by definition ' is at least equal to 3(«).
Case (2) (<«). — The inequality f'<(K — m,)/(9,,— 1) would

hold as above in consequence of (3a). By (2a) it would follow that

(4) FEB@E).

On noting that ' has the same properties as indicated in the statement
in connection with (2¢), it is observed that (4) is in contradiction to
(2¢) (with 7 =17").

Consequently the italicized statement in connection with ([3) is
seen to be true.

Application of the transformation

(5) y(z)=2Bn(z) (p:ﬁ’—.—.-;l.))
to (B) will result in
(6) z 0 (z) = (ar— B)n(x) +2 av, () z—1B—k q¥r(2).

By (1) and (2)

(6a) av,(z)zV—1B—k = a9 B ar(z) (r=1, 2 ...)

r=1
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On writing

(60) ?r(B)=——Ix+mr+1—i(v,_1)= % (integers Ny; r=1, 2, ...)
it is observed that, in view of (3),
(6¢) Ny=Ny=...=Ny=0, Np>o0 (rsi,is..., )

Hence (6) may be written in the form

(7) z ) (2) = (a1,r— ﬁ)’l(«”)"‘z by(z) gV (z),
v=2

(7a) o)=Y by1a”

the numbers .

(78) by,0 (r=u, 1t ..., m)

being the only constant terms [in the various series (7a)] which are
distinct from zero (*).
With the aid of the further transformation

(8) x = 3P

equation (7) assumes the form

(9) 33—2 = p(a,x— B)n +Z cy(3)7Y,

v=2
(ga) cv(z)':va(zp) =2 Cy .13, (V=2, 3, ...)
where B

{ #o0 (Y ="Y1y Va3 «++) Yig)y
Cyo
=o0 (Y52 Vi Yagy oo vy Viu )y

moreover, the series involved in (9) and (ga) conyerge for
(95) |z1€r, [n]|Sp1  (ri>o0;501>0)

Recalling certain developments due to Picard (3) and Poincaré (3),

1) b"x,= Y, and so on [¢f. (1)].
() Picarp, Comptes rendus, vol. 87, 1878, p. 430 and 743.
(3) PoiNcARE, Journal de U’Ecole polytechnique, 1878, p. 13.
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which are applicable to equations of the form (g), the following is
inferred.

Case (1°).— Thereal part of p(a,x—B)is positive but p(a; r— B)
is not a positive integer. Equation (9) has then a solution

(10) n= ¥ 1,#(cx)  [noo=0; g = p(asi— Bl
,]=0

Here c is an arbitrary constant and the involved series converged for
|8]|<ro, | €|Seo (roy €o>> 03 1y, ¢y sufficiently small).

Case (2°). — The real part of p(a,;— @) is So. There is then a
solution

1.5 (convergent for | z|<ry).

Ms

(100a) 6=

=1

1l

In the next section we shall consider the remaining case of (9) :
Case (3°). — g = p(a,xr— B) is a positive integer.

Lemma 4. — Consider Case II (§ 1) of the equation (B) [cf. (1),
(1a)]. Define (i) (i=1,2,...) by (2a) and let B=1[p be the
number specified by the italicized statement subsequent to (2b).

The transformation
y=a8n, az=2zr

will yield equation (9), which in the Case (1°) has a convergent
solution (10).and which in the Case (2°) has a convergent solu-
tion (10a).

6. The existence theorem (first order problem). — It will be now
shown that in case (3°) (§ B) équation (9; § 5) possesses a solution
of the same type as in Case (1°; § 5). Put

(1) 7 =2 ¥,(z)es (c an arbitrary constant)
]=1

so that

(2) =Y y(8)e  [;(s)=ofor j <v),
J=1

V71(3) =2, Ya(5). - yn.(5)

[Pat..c.+ny=j; 1801, ooy RySF—1; F2vE2).

(24)
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Substituting in (9; § 8) we get

znitl—gn —2 ev(z)n EZ Jiel=o.
j=1

v=0
Thus, equating the f, (j =1, 2....) to zero, it follow that
(3) 2y5°(2) — gy, (3) =¢;(5)  [$1(z)=0;j=12,...]

where
j

(3a) b(2) =) ev(2) X 7 (3)-. 7n(5)

v=2

(ri+...+ny=j118ny, ..., 0 j—15 j=2,3, ...}
Whence
(4) r1(2) =t(z) = 7.
‘Also
(4a) $2(2) = 2% 92(3)  [9:(3)=ca(3)=ac.p.s.] ().
The y,(3) (j =2, 3,...) are determined in succession, with the aid
of (3a), by the relations
(5) @ = [wry@de (=23, ...).

0
Thus, by (4a),
(5a) ya(3)=2%"M:(3) [n2(3)=ac.p.s.]
Let us assume that, for v =2, 3,..., j —1 (fixed j2>3),

(6) Iv—1(2) =300y (2)  [nv(3)ac p.s.],
(6a) by(3) = 27 9v(2) [?v(3)a c. p. s.].

In consequence of (5) (with j replaced by j—1) it is then inferred
that

2
(68)  yjma(s) =51 [ ub-de—t gy y(u) du = sU-1 ;4 (2)
0

(') The term « a c.p.s. » is to denote in a generic sense a power series in z con-
vergent for [z | S r, [cf. (9b; §5)].

MEMORIAL DES SC. MATH. — N¢ 90, 3
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where nj_;(2) = a.c.p.s. On the other hand, by (65) and (6) trom
(3a) we would obtain

J

@) 4 =D 6(5) D, (3. () Fcrctlr = 317 6, ()

v=2

where 9;(3)=a.c.p.s. By induction it therefore follows that for-
mulas (6), (6a) hold forv=1, 2,...
The equation

(8) z%:qt+a2§‘-’+a3ta+...,

where o is a positive constant, is a special case of (9; § 8). In view
of (4) we get

(8a) t%=c+°§c2+§ca+....

In consequence of certain results of Horn (') this equation is seen to
possess an absolutely convergent solution

(9) E=Cit(z)C+Le2(z)C2+... (the g, constants; i =1, 2, ...)

[C a positive arbitrary constant; | G| < Gy ; | 5 |Sr ()] where G > o,
r(a) > o and G, is sufficiently small. Write

(9a) L(s)=yi(z)=ti(2)n;(3), a'=cy(a).

The functions corresponding to the W, (z) will be

j J

) —_ —_ —_ —_
(9b) 4 (=) =vz,=2°‘ 2“"1(2)---%,(5)‘"**“* “=”VE=2°‘ z’lm(z)---"lnv(z)

(ni+...+ny=j;18n1, ..., ny$j—1; j=2,3,...)
where
J _ _ _ j
(9¢) Zavznn,(z)...n",(z)=9,(5)=Zavcn,...zn,=eonsc.
v=2 v=2

In particular

n(z)=1=n1(3) and  9:(3)=cs(3) =al

(1) Horw, Journ. f. Math., vol. 119, 1898, p. 287.
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Hence in view of (4a), if we let a22| ¢y (3) | (]| 3|Sry), it will follow
that | 95(2)|<94(%) so that

[42(2)1$92(3)  (13]Sm).
Whence by (3)

| 7a(@$1ae| [ Jul= () d
121
sl [ lumrtda(u dlul =pa(5) ()

for | 2| <ry. Suppose that, forv=2, 3, ...%Yj —1) (fixed 2 3),

(10) | yv=1(2)] £ | 2100271 (12]) [= et (151)],
(10a) [Y(2) =12P7ey(| s [=W(2D]  (121Sr).

By (5) (with j diminished by unity) and by (10a) we get
(1) | yj—1(2) $lai7 | Jul=77t [, (u)|d]u|
[}
2] — —
<tspe [ lu (el dlul =7l 5D (s1$m).
0

Furthermore in consequence of (10) and (11) it is concluded that

]
(12) [4;(=) 1S, 1ev(8) | X1 ¥ (). yml2)]

v=2
U

ez ym (s Fu(lz)) =Fi(lzl)  (151€r),

v=2
provided a is sufficiently great so that
(13) lev(z)|Sa¥  (v=2,3,...5]818r) (*)

Thus by induction it has been shown that the inequalities (10)-
(10a) are valid for v=1, 2, ... [provided « satisfies (13)]. Conse,
quently comparison of general terms in the series (1) and (g) will

(1) At this step use 1s made of the fact that p,(«) is independent of u.
(2) Such a number «, independent of v, can be found on account of the condi-
tions of convergence satisfied by the series of the second member of (9; § 5).
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give the inequalities
(14) lyi(8)ed |Sy;(121)Ci =8 (1z)C,  (18]<r).

These will hold for j =1, 2, ... and for | ¢| < C,. On taking account
of the character of convergence of the series (9), inequalities (14)
are seen to imply absolute convergence of the series (1), when-
ever |c|<G, and | 5|<r' [r'=least of the numbers ry, r(a)]. This
eslablishes existence of an ¢¢ actual "’ solution (1) [with (6) satisfied
forv=r1, 2, ...] for the Case (3°) (§ 5).

The results obtained above, together with the previously obtained
Lemmas 1, 2, 3, 4, enable formulation of the following theorem.

Existence Tueorem [ — Consider equation (B) of § 1 [cf. (5),
(5a) and (7) of § 1]. The problem falls in two cases, Case I and
Case 1l (cf. § 1).

Case I. — Let n be a fizxed positive integer, however large.
Let s(x) be the formal solution of (B), as specified in Lemma 1
by (18; 8§ 2), (18a; § 2). Moreover, R(r,)(o << r,<r)is to denotea
region of the character specified in Definition 1 (§ 2). Positive
numbers ry, ¢, (ry independent of n) can be found so that there
exists a solution y(z, ¢) (¢ an arbitrary constant) of (B), satis-
Sying the asymptotic relation
(15) y(z, e)~s(z)  [#in R(ro);lelfa]

in the following sense, We have
n—1

(16) y(=z,c) =Z =0 ti(z)nj(x)c] + z— im0 ¢n(x) n53(2, c)ecn.
Jj=1

Here the nj(z) are functions analytic in R(r)(z 3£ o) and satis-
Sying asymptotic relations (18a; § 2) in the ordinary sense;
Jurthermore

f ay (x) x—k—1dx N
(16a) ¢(z)=e » ng(2, )18 [ inR(ro);|c[Se].
Here the constant 3, is independent of x and c. Moreover, y (z, ¢)
is analytic in x and ¢ for xz in R(r,)(z7# o) and |c|<c, (*).

(') # = o in general is of course a singular point of ¥(z, ¢). The region of analy-
ticity can be shown to be more extensive.
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Case Il. — Let 3 = ' =1|p (the fraction in its lowest terms be
the positive rational number defined at the beginning of § 5.
There exist positive numbers ry, cy(0 << ro<r) such that the follo-
wing is true. If the real part of q [q=p(ax—B)] is positive
(¢ncluding the case when g is a positive integer), there exists a
solution

& LAY
(17) (2, ¢)=a” 2 Tia,j &7 <cx ) (nop=0) ().
1, ]=0
If the real part of q is not positive there exists a solution

[ = 3
(18) _j/(x)=x7’2m.z"’.

=1

In (17) and (18) the n,,, and n, are constants, and these series
converge for |z|<ry, | c|<co.

7. Formal solutions (n2>2). — Consider the n — th order pro-
blem (A) as formulated in § 1. The developments contained in
sections 7 and 8 will be given with R(r,) denoling a region satisfying
the definition.

Derinirion 2. — Let R(ry) denote any particular one of the set
of regions such that the following holds.

1° According to the developments given in (T,), the linear
equation (Ay; § 1) possesses a full set of analytic solutions asym-
totic, in R(ry), to the formal series (2; §1).

2° No function of the set
R[Q:(2)—Qj(2)] (i j=1,...,n)
vanishes interior R(r,), unless it is identically zero.

3° Theboundary of R(r,) consists of an arc of the circle |z =r,
and of curves B'. B" extending from the extremities of this arc to
the origin. The curves B', B" are regular in the sense of the term

(') When g is a positive integer in (17) we have n,,=o0 (i =0, 1, 2, ...).
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employed in (T,) (*). Moreover, except at the origin, B' and B’
have no points in common.

4° Forsome of the polynomials Q(x)of theset involved in (2;§1),
say for the polynomials Q,(z), Qa(x), ..., Qu(z), we have

(I) eQi(x)NO’ Q) Ay o, vy () ~v 0 [,1,' in R(ro)],
Existence of regions salisfying the above conditions 1°, 2°, 3°
follows directly from the developments given in (T,). The fact

that R(7,) can be also so chosen that 4° is satisfied is a consequence
1
of the following considerations. If Q(z) is a polynomial in z * (a a

positive integer), which is not identically zero, then there exist
seclors (?), extending to the origin, in which exp. Q(#) ~ 0. On the
other hand, by hypothesis rnot all the Q(z) of (2; § 2) are identically
zero.

‘With R(r,) defined as above first the case will be considered when
for z interior R(r,) and for some d (| <d!<m) we have

(1a) RQu(z)=RQ:(z)=...=RQz(z)>RQ,(x) (i=8+1,....m).

Every Q,(z) which is not identically zero can be written in the

form

II 1

(18) Q@) =g; 07 T+t gim B (g0 05 421)

where a;, l; are positive integers. Whenever Q;(z)=o0 we put
l,Jaj=0. The greatest one of the numbers l;[a;(j =1, ..., n)
will be designated as 1|« (positive integers [, o).

A formal solution of (A) will be found of the form

(2) s(x) =Z yi(z)e (c1 an arbitrary constant).
J=1
‘We have
(3) sV (2) = auyi(@)ef  Dri(@)=ofor j <]
j=0

(') In particular, every such curve would have a limiting direction at the origin.
(2) In fact, regions of a more general character.
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where, for j2>v22,

(3a) ari(2) =2 @)y (). . ¥ (=)
(ni+ns+...+ny=j; 18Ry, nsy ..., ny,<j—1);

(356) 5 1,1y,(x)=y}\”(x) (A=o0,1,...57=1,2,...)
{ Xoyj(2) =0 (J215 2205 20p0=1)

Furthermore, for iy, 1, ..., ina20 (lo+ i+ ..+ inu22),

so(2) s (). . . stn—=1)""( ) =2 ylotan=i(z)o)
]j=2

[yphe: wia—(g) =0 for j <ilo+ is—+...+ fa].

(4)

Here, for j2 i+ ...+ iy (22),
(4a)  pps (@) = B 0ol @) 10 I (@) ooty rus (@)

where the jo, ..., jn_s assume all the integral values subject to the
conditions

(4b) ].o+j1+../.+jn_1=j, Igjo, jl; ceey jn——léj_l-

The inequalities jo, ..., joy$<j—1 follow from the rest of (45).
On taking (A) in the form (A;) (§ 1) and on wriling

(6) auz, 3,y .o, y#V) = La(2, y) = b1(2) y—1)(2) 4.+ ba(2) y (2)

it is noted that the coefficients b,(z), ..., ba(z), involved in the
differential operator L,, are analytic for |2|<r. In consequence

of (4) substitution of (2) in (A,),

(Ay) sin)(z) — =P Lp(2, s) = as(z, s, s, ..., sin—1),

will result, formally, in

(8) s (2)— 2P L (2, 5)— &P ax(a, 5, st, ..., str—t)) = 3\ T, (2) ¢} =o.
j=1

If (2) is to be a formal solution of (A,) we must have

(7) L(@)=y(e)—zP Ll y,(2)] — 2P j(2)=0 (J=1,2..)
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where

bi(z)=dj(z, y15 o5 ¥j-1) =Z “imia,---,ln—t(-z').75“"”"""'"(-”)
[2€t0+i1+...+in1Sj5 7 =2, 3, ...; ¢f. (4a), (3a), (3D)].

(7a)

The W,(z)(j 21) are obtained with the aid of (4) as the coefficients
in the formal expansion

Q) N
as(z, s, s, ..., sii—1)) =an,~(x)cl,.

j=1

In particular, in consequence of (7a), (4a)and (3a),

®) §¢l(x)=o, 2(2) =, Oyt s (@) P (@) Y@ =1 2)

(foy @1y vvvy 1205 Do+ U+ o4 Iny=2) (1)

and, in general, for j 2> 2

(8a) ¥(=) =ZI‘, ¥y ]:[ 3 e aaei(@) @) ). . 7 ()
where o "

(8b) E' = ot itk it =93 oy dty -+, inm120),

(8¢) 2” =2 (Jo+Ji+...+Jna=j]—¢),

(8d) Z"’:Z (Ri+ Rar.. ok Ry = o+ By} Rty Rsy o. .y RR2L).
Thus y,(z) must be a solution of

(9) YN x)— 2P Lalz, y1(z)] =0  [ef. (5)] ().

Now R(r,) satisfies condition (1°) of Def. 2 (§ 7). Hence there exists
a linearly independent set of solutions of (9), ¥y (%), ..., ¥a(®),
analytic for z in R(r,)(# 52 0) and of the form

(10) F1a(@) = @@ arin (z)  [of. (2); §1]

(') Thus W,(z) is a homogeneous differential polynomial in y, (#) of order (r —1)
and of degree 2.
(?) This is equation (A,) of § 1.
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where
(10a) n(x)=[2)m, [m.20;1=1, ..., n;2zin R(2y)].

The symbol [z], used above and to be employed in the sequel will
be specified as follows.

Derinition 3. — Let R denote a region extending to the origin.
The expression [z],(v20) will then denote in a generic sense a
Sunction of the form

(11) [zly=on(2z) +1m(x)logz +...+ yn(z)log’x
where the j* (z)(j=o, ...,v) are analytic in z, for z inR(z # o),
and

A n
(11a) a(z) ~ o (x) =2,cuw°‘ (« in R; integer a 21).

n=0
The formal, possibly divergent series,
(115) o0(z) +16(z) logz +...+ o(z)log z
will be generically denoted as { x|, [thus, [z],~{x}, (z in R)].
A solution of (9) will be taken in the form
( yi(z)=y1 (&) + ko1 o(Z) +. oo+ kmyy1 ()
12) [k2, ..., ki arbitrary constants; |k, |[Sk (e =2, ..., m)].
Thus, by (10) and (1 a),

(13)  i(z) = A Yi(z) + 01(2)];
(13a) Y(zx)=a'r1q () + kax'smy o () +. oo+ Aaxmdmy 3(x),
(13b) 01(2) = kg1 +1@)—Qul®) zri+im; 5oy (2) +...
“+ kp e 0—Q(® 2T mn, p(2),
where

(14) | eQW+lx)—Qs(= | <1, veey | €m(t)—0i(x) | <1 [z 10 R(ro)].
In (14) the equality sign is possible only along the boundaries of R (r,).

Case (A). — R(r,) contains a subregion R'(ro) [of the same
description as R(7)] such that

(15) e +1(2)—Qu(2) ~ 0. veey eQn(x)—Q1(%) ~v 0 [z m R'(74)]).
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Wethen replace R(r,) by R'(r,) but continue to use the symbol R(r,).
Case (A) is certain to occur, for instance, when the limiting direc-
tions at the origin of the two boundaries of the original R(r,) are
distinct. R'(ry) can then be chosen as a region whose boundaries
have at the origin correspondingly the same limiting directions as
those of the boundaries of R(r,). In Case (A) the original
region R(ry) could be also used [ whether (13) is or is not satis-
JSied in R(r,)], provided in (12) we let

kiri=...=kn=o0.

Case (B). — R(r,) contains no subregion R'(r,) such that (15)
holds. We then continue to use the original region R(r,); however,
the constanls k3., k342, ..., kn are all put equal to zero [thus o, (x)
would be identically zéro]. Y

In the remainder of this section the developments will be given for
the Case (A) with the arbitrary constants kg4, ..., km present. The
corresponding results fro the Case (B) could be immediately inferred
from those obtained for the Case (A). It would be necessary only to
let k3;y=...=kn=o0and to atiribute to R(r,) its original meaning.

In consequence of (134), (15) and (10a)

(16) o(x)~o  [zin R(ro); | ks+1ly «.os 1 km|SK).

Here and in the sequel asymptotic relations (with respect to x)
are uniform with respect to the involved arbitrary constants;
that is, the absolute value of an asymptotic remainder is less than a
number independent not only of 2 but also of the arbitrary constants.

It is also to be observed that. throughout, a derivative of a function
will be asymptotic lo the formal series obtained by differentiating
term by term the series to which the given function is known to be
asymptotic (*).

Let

1 1
Qz)=¢qoz *+...+q1z *

where g,52 0 and /21 unless Q(z)= o, when [ is defined as zero.

() This is a consequence of the fact that the functions in question are solutions
of certain differential equations.
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In a generic sense

l
2 (o2l = g™ (78) (4
thus,

i
(17) E’%(eQ(x)x"[x]N) =g (H-E) [z (v=1,2, ...).
Accordingly, by (13), (13a), (16), (10a) and (17),

!
18) (o) = im0 ) iy v=0,1,..,
(18a) Y\ z)=x"1[2]m,+ kaz™[2|m,+. ..+ ksz™8[z]ns;  [2 in R(ro)].
The function [z],,, involved in the second member of (18a), is a
linear non-homogeneous expression in ks, ..., km; however,

in the second member of the asymptolic relation satisfied by this
function,

(182) [#]ln ~izim,  [2in R(r)],
the constants k3,4, .... kn do not enter. That is, it can be said
that [z],,, is asymptotically independent of ksyy. ..., kn, provided
of course that | kgy1 |, « .. | km |SKA' (K fixed).

‘Wriling
(19) gi(x)=kizn (J=1, .., 8; ko=1)
we observe that a product of ¢ functions (some of them possibly
alike), each of the form

(192) gi(z)[z]+ g2(x)[z]+...+ g5(2)[®] [« in R(m)]

and with logz entering to al most the m — th power, is a function
of the form

(198) Y (@) gu(@)...gn(@)zln  [#in R(r)]

ng ., n=1

Thus substitution of (12) [¢f. (13)] in (8) will give in consequence
of (18) and (18a)

!
(20) \Pz(w)=e2Qs(1‘)x—2m—”(1+E)

1
xz xi o l”-’yll‘)]lo(w)' N 'y[:;_jltn—t(x) alo--'ln—i(w)
(bo+...4+1n=2)
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where the A,, ..., {»_; are non-negative integers. Hence, on using
the form of the a,, ..., &, il is concluded that

1
—2(n—1) —
(21)  Ya(2) = el g " (H“)?,(x),
3

(e1a) p(@)= 3 gn(@)gn(@)zlm  [2in R(r); of. (19)]

ng,ng=1
where m is the greatest one of the numbers m,, ..., ms.

Derintrion 4. v Let [z], have the significance assigned by
Definition 3 and let the g.(x) be defined by (19). The sym-
bol [z]\, where v is a positive integer, will in a generic sense
denote a function of the form

() (5= gn (@) g0, (). gn(@)[a]  (Sny nsy .oy mED).
The symbol { z }y will denote a formal expression of the type
(220) {2 %=, 8u(2) gn(2). - -&u(2) [ % f.

Using the above notation one may write
(23) o) =[zhm~{zlin [2in R(ro)]

By virtue of the statement in connection with (17) from (10)
and (10a) it follows that

(26) (o) = etz "V 05) i,
(24a) YWal(z)=[2lm, [i=1, ..., n;zinR()]
Matrix notation will now be introduced, with

(a.j) (G, j=1,...,n)

denoting a matrix of » rows and n columns, a, ; being the element in
the { — th row and the j — th column. The determinant of (a;,;) will
be designated by the symbol |(a;,;)|. Accordingly, by (24), (24a).

l
08) () | = etsrestutmgremcorn| (50 (2) i) |
= Qo +Qu(x) gratesatra g~ | (}/[1171](@-)) I

Py —

= eQ(x)+...+Qn(T) g 3 [2]5

([.’L‘]o= do+ d1$ +...)
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the latter series being convergent for |z|<r (*). Here

(25 a) %”=(1+§)+2<1+§) +...+(n—1)(1+25-

Not all the d; (j =o, 1, ...) are zero of course. Thus,

(256) [#)o= 2%[du+ dussz +...]  (diw 0).

Hence ,

(48) () = e umhmeute) s T R ) (oso)
(26 @) —:{ = ’_;.'_ w [integer w203 ¢f. (25a)].

The series involved here are convergent for |z |<r. The determinant
of the matrix obtained by deleting the j — th row and the { —th
column in the matrix (y¥/7"(z)) is seen to be of the form

(27) U (X) 40t Q) () + Q5 () 20+ Qy () w"i"'---+"1—x+"1+1+-~-+"n"Y-/“[.1:],,,;,

(- [0 -]

= (Mmy4+ma+...4+mn)—m; [z in R(r)].

where

s L

(270) @

| m

Let y,..;,(#) denote the element in the { —th row and j —th
column of the inverse of the matrix (y/;"'(z)); that is,
28) (Froj (@) = (PN @Dt (i, =1, ..., n).

Except for the sign, 5/',,1 1;() 1s given by the product of the functions
defined by (26) and (27). Thus

(28a) J1:1,j(2) =@ gV [Z]m;  [i ] =1, .0, n52i0R(10); cf.(272)]
where, by (26a), (25a) and (27a),

(285) L"='—'-—:I(—i=(i—t)(:+E‘)—w.

(') This follows by a known theorem regarding the Wronskian of an equation of
the form (g).
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For j =2, 3, ... equations (77) may be written in the form
(29) yi(=) =Zy“)‘(w)f uPYi(u, 1, ooy /_1)5’-1:n,)\(u)du.
A=1

This, in consequence of (10), (10a) and (28a) may generically be
written as

n x
30y 171 =2 cenaln, [ e tur-pLulag by (w) du
A=1

[¥'=Yn/a; of. (27a), (28a), (286)].

By (21) and (23) the integrand displayed in (30), when j = 2, is of
the form
_n+Y’—p—z(n—1)(l+é)[u]

(31) e2Qu(u)—M\(z) gy Zr’?wmi [u = R(ro)],

since
(B1a) [w]my [@]3m=[2]}5, m, -
In consequence of the integration methods developed in (T,) the

1
following is true. Let G(z) be a polynomial in z * with the lowest
2

power of z, z * (A1), actually present unless G(z) = o, when we
define )\ as zero (').
Then

x 2
(32) f eG(")uP[u]Ndu=eG(x)xp+(1+E)[w]N_H [« in R(ro)].

Here[uly,—=[u]y, unless G(u)=oandp+1=— E (integerv20)(?).

Since g, (%) ... g, (%)= cu? (c and g constants) it follows by the
definition of [u [} [¢f. (22)] that for z in R(r,)

x A
@) f eswulufydu = s’ (3 2R, = eotmzen o,

v
(') There are some conditions [c¢f. (T,)] which G(z) must satisfy with reference
to R(r,). However, in subsequent applications of (32) G(u) is always a function
satisfying these conditions.
(2) In the latter case [z ]n+1 will contain log)*!, the coefficient of this power of
v

the logarithm being ¢z® (¢ = constant).
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where G(u) has the same meaning as in (32). It will be assumed that
no curve R(jQi(2) — Qu(z)) =0 (j=2,3,...;A=38+1, ..., n) is
interior R(r,).

On noling that the integrand displayed iu (30; j=2) is of the
form (31) and on using (33) it follows that

(34) y2(2) =Y etle) o[ ]y, 20 7-N1=B[ 2 ]2 7,
A=1

so that, in view of (27a) and (28b),

(35)  yi(@) = ex B[ 2T, [« in R(ro)],
(35a) B=(n—1)(1+§)+w+p—1 (> o),
(35b) m@)=om+mi+...+~m; ().

We have previously chosen y,(z) as a function of the form

(36) y1(2) = @@ (@l [m() =m; 2 in R(ra)).

On the other hand, by (35a)

(37) Ys(z) = e2lx) g—2B+2tp—1[ 213, [n(2) =2m].
Suppose now that, for z in R(r,),

(38)  yv(z)= U=z 0-18[ 2], (v=12 ..., j—0),

(38a) dy(z) =e"u@ g—Vpr2wp—[ 2T, (v=12,..., Fj—1) ().

With the aid of (38) and of (8a) the form of W,(z) will be deter-
mined. In consequence of (17)

—v—1B-=2(1 L A
39) FW(z)=e"Uz (+2) [2]mw (=1L, f=1 =0,1,..).
Therefore the product

(40) iy tnes(2) Y (2) Y20 (2). .. Y2 (),

(?) Use is made of the fact that the functions 2Q, (%) — Q;(u)(A =1,...,n) are
allnot identically zero.

(') For the present j is a fixed integer 2 3. We take m(1)<m(2) <...
and n(1)<n(2)<... For j=2 formulas (38), (38a) have been established
previously.
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involved in (8a) and with the subscripts satisfying (8d), is given by

—nB-in (1+ é)

(41) e+ x) [x]ﬂ;;z")‘
where
(41a) | My =max{m(n)+m(n:)+ ..+ m(ny)}

(Ri+n2+ oy = A+ 0 Ry Ry ey RR2I).

Extending the summation symbol (8 ) (with respect to ny, n,, . .., n,.)
over the terms (40), by virtue of (41) we obtain a function Fy, of the
form (41) (A=o, 1, ..., n —1). Accordingly, since by (8¢)

Jo+Ji4+. +Jpa=j]—¢
and, by (85).
I+ lpg+...+1lp—1=0
it follows that
n—1
(42) [1 5= ertmau—ps-irams rtatita-iterua
A=o0

X |z .
[ ]Iu+‘o+MI:+'x+ +M/,,_,+l,,_,

Now. under (86),

u+ 20+ . +(n—1)ta1S(n—1)3.

Thus, on writing

M) o= max { M)+ Mpir,+. ..+ My, )
(]o+]1+ vk Jn—1 =] — Cilo+ U+t ln—1 = Q, 20y U1y wve rn_igo),

(o) |

from (42) it follows that
n—1 /
(dzb) H Fy= e/ Q(x) z.—[/—?)ﬁ—(""“c (1+E) [w]{!hn'

=1

Applying the summation symbol (8 ¢) (with respect Lo jo, jy, - .-,
Jn—1) to the product (42b6) we obtain a function F,, .~ . _ of the
same form as the second member of (425). With the summation
with respect to o, &y, . ., {n_, extended as specified by (85) it
follows that

'
(43) 2 Fo v mi=Fo
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is a function also of the type of the second member of (42 b). Thus,
since by (35 a)
. l .
—(J—=2)B—(r—1)¢ (1+ ;) =—JjB+e(w+p—r)

we shall have ;F of the form

(43a) e/ () g—jB+olw+p—1)[ g K‘m = e/Ulx) z—)f+2lw+p—1)[ m}"m ,

provided ¢ 22 (*). Hence in consequence of (8 a)

J
(44) LP](.%‘) =2]F?=e}Qx(-l‘)z—]3+2(w+p—1)[w]{”j),
=2
where
(44a) n(j)=maxM, o, [9=2,3,...,7,¢f (42a) (41a)],

Thus (38), (38 a) imply validity of (38a) for v = j. On making
use of (44) it will be proved that (38) holds for v = j. By (44) the
integrand displayed in (30) would be of the form

e] Qulu)—Qlw) yN,),

(N,x=-—u+ %"——p—j;3+2(w+p—1)).

‘“[ u ]‘z(} Y+,

(45)

By (28b; i =mn) and (35 @)
(45a) Nyjo=—1n—G—1)p—1

Accordingly, by (33) it follows that the integral displayed in (30) can
be evaluated as a function of the form

(46) e/ U(x)—0\(x) z—7 x—(/—l)B[ap]{lUH_m,x (2).
The product of the latter function by
€N 27 2 ]y
is a function ,£)(z) of the form

(46a) e/U z—U—1B8[ 2 ]{z( J)+metme+ +my,

(1) This follows from the mequality w+p—1 2 o.
(2) For j 2 2 [Case (A)] no function yQ,(u) — Qy(u) (A=1, ..., n) vanishes
1dentically.

MEMORIAI DECS SC. MATH — N° 90 &
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since by (27 @), m) + my= m,+ my+. ..+ m,. Hence
n
(47) 71(2) =, j60(@) = e/l o= U=18 [z ]y ),
=1

47a) m(j)=n(j)+m+m+...+mn [cf. (44a)]

Thus by induclion it has been proved that for z in R(r,), relations
(38), (38a) hold for all v=mn. 3, .... The rate at which the num-
bers (v) may increase with v can be inferred from (47 a), (44 a),
(42 @), (41 @) and from the relalions

m(2) =2m+ my—+...+ m,

(48) {

_ (m = max[my, m,, ..., ms]).
n(i2)=2m
In the Case (B) the corresponding relations are slightly modified.

If (1 @) does not hold, so that instead, for some m*(d<m* << m) we
have
(49) { RQi(z)=...=RQz(z)>RQ;(x)

9 [i=8+1,38+2, ..., m*; z interior R(7)],
while
(49) { RQi(z)=...=RQz(z) <RQ,(z)

(i=m*+1, m*+2, ..., m; z interior R(r¢)],

the preceding developments can be repcated, the only changes being
the following. Throughout. m is replaced by m"; moreover, we let

(490) kwy= kmpar=...= km=o0.

The functions y,(z), ¢y(z) [v=1, 2, ...; ¢f. (38), (38a)] are
asymptotically independant of some of the arbitrary constants. On
noting how these conslants enter in the involved functions [z ]}y,
[2]%y, the following lemma can be stated.

Lemma 4. — Let the Q,(z) [J=1, .... n; ¢f. (1b)] be the
polynomials associated with a set (2; § 1) of n linearly indepen-
dent formalsolutions of the linear equation (A,;§1) (*). Let R(ry)
be a region satisfying definition 2. Unless we have (have (49),
(49a) with m* =4, it is assumed that no curve

R(jQi(z)— Qu(2))

is interior R(r,).

(1) In this section (A,; § 1) is written in the form (g).
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When (la) holds equation (A; §1) has a formal solution s(x),

(50) s(2) =N\ yj(@)e},  y(2)=eVRsU=08n;(2)  (j=1,2, ..,
j=1

where ﬁ:(n—l)(1+§)+w+p—x, ¢, is an arbitrary
constant and, for j =1, 2, ...,

(50a) ; (@) = 02 (@) [ (@) [P (2) K T L (@) ]

(14 da.oo o= J; &1, %2, ...y %p20).
In (50 a) the hi(z) are analytic in R(r,) (z3£0). Moreover,

(50b) { - h;(z):xr, . ‘
[i=1, 2, ..., 8;¢f. (2), §1; hi(x)~oin R(ro); i=8+1, ..., m)]

and ky, ..., kn are arbitrary constants. The 0.4, 4, q,(2) are
Sunctions analytic in R(r,) (z # o) and of the form

(50¢) Njiay...,an(@)=[2lmii~ {2 imy [ in R(ro); of. (470)],

the involved symbols having the significance indicated in Defini-
tion 3. In the Case (A) the region R(r,) is selected so that (15)
holds for x in R(r,). When (15) cannot be satisfied or when this
condition is deleted the constants ks, ksiay .., km are all put
equal to zero.

The alternative of (1a) is given by (49), (49 a). We then have
a formal solutions as given above, except that in (50a) and
(30 b) m is replaced by the smaller number m* (29), involved in
(49), (49 a). Moreover, unless the region R(r,) can be so selected
that

(51) e+ Uix)~ o, eQm* (x)—Q1(x) ~ o [z in R(7)],

vy

the constants ksy,4, ksray -+ kn» are to be all replaced by zero.
In every case y,(z) is a solution of the linear problem (g)

[ef. (12), (10)].

Nore. — The function ¢%*), involved in (30), can be any one of
the set of functions ¢2®, each of which is asymptotic to zero in R(r,).
The functions A;(z) (i > &) approach zero, as #— o within R(r,),
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essentially as rapidly as the functions

e(x)—Qu(x) (i=8~+1,...,m),

where m' is m or m’, as the case may be. The {;(z), occuring in
(29), (30), are of the form

(52) bj(x) = e/l g—jB+2lrp—1) o (),
ej(z) =2 @)ty tay ey e (2) [ 2)]% [Pa(@) k2 1% o [P () Ko ]#me

[ar= st am=J; a1, %s, ..., apr20; cf. (5056)] (1)

(52 a)

Here the ¢;.q, g, ... () are analytic in R(r,) (2 £ 0) and are of the
form

(526) [Z]ng)~ {2 )0 [z in R(7); ¢f. Def. 3].

Mereover, m’ is m or m* as the case may be.

8. A transformation (n>2). — On the basis of the formal solu-
tion (50; § 7) we shall effect the transformation of the equation (A).

N—1
(1) y@)y=Y(z)+e(z), Y(z)= yj(x)d.
j=1

Here N is a fixed positive integer, however large, and p () is the new
variable. The discussion will be given under the supposition that
(1a; § 7) holds. From the results so obtained it would be easy to make
inferences regarding the alternative case when the inequalities (49; § 7),
(49 a@; § T) hold.

We have

(2) a:(z, Y+op, ..., Yin1) 4 pln—1))
= as[@, Y(2), ey YO (@)] 4 Y, 1y tams (@) §10(2).0optn—0 ()

(io+i1+...+in_;zl; l:o, ceny in_.@o),

( ) 1 Qo+ o Hlp—y as
[ venin—{Z) = = -
(2a) oy iy n—1 Zol. . in1 d_yio d‘}/“)l‘. . .dy("‘i)l"_'

[y(2)=Y(=z), ..., yle=1)(z) = Y-t (2)].

(') The functions A,(z) ({ =81, ..., m') may be distinct from the expressions
so denoted in (50 ).
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Taking r, sufficiently small so that

(3) YW (z)isr<r [#in R(r);i=0,1, ..., n —1),.

the series in the second member of (2) is observed to be absolutely
convergent whenever

(3a) |p@W(&)|Sr" [rF+r<riyzinR(r);i=o0,1,..., n—1].
By (2a), for é,+ i+ . .40y 21 (oy - v oy Ena20),
a'm“':tn—l(x)
(4) =2 Qo ovoytnmytin—s(#) CUo. Cln—tHin=sY)o(z)... Yin—v/n=t( z)
[Joteeet Jnos22— (oo Euey); Joy +vvy Jn—120].

These series converge absolutely and uniformly for z in R(r,). Now,
for  in R(r,), Y(#)~o ({=o0, ..., n—1). Hence from (4)it
follows that

a’o)---)in—t(x) = alo;---,in—l(x) -+ p’o,---’ln—t(x)
(5) . . ; .
(Zoy ooy Inm1205 lo+. oo+ In—q122),
where
(5(1) a10,,__,,"_‘(a;)=o (io+...+in_1=l)
and the 3, ;. _.(z) are analytic in R(r,) and

(5b) Bi..stna(®) ~ o [z in R(r); do.u .= in—21].

The asymptotic relations here and throughout are with respect to x
and are uniform with respect Lo the involved arbitrary constants
provided, as we shall indeed assume, the numbers

(6) ¢, cy= ¢ ki, veey cm=Cikm
satisfy inequalities
(6a) le. Sk (i=1,2, ..., m; K fixed).

With L, denoting the differential operator of (9; § 7) consider the
function

(7) —Fx(z) =YW (z) — 2=P La[2, Y(z)] — z2~Pas[2, Y(2), ..., Yir=1)(2)],

Comparison with (6), (7) and (8 a) of § 7 enables one to infer that

(7a) — Fx(2) =X, Tj(@)e},

izt



50 W.-J. TRJITZINSKY.

where
(70) T, (z) =y (x) — 2P Loz, y,(x)] — z—P 9, ().

Here T, () is T,(2) and §,(z) is §,(2z) with yx(2), ¥xea (@) -«
replaced by zero. Since ¢, (2) is independant of y,(z), ¥, (2). - .+,
it follows that

(8) (@)=Y (z) (j=12, ..., N)

Thus, by (7), I)(z)=T,(z)=o0 (=1, 2, ..., N—1) so that
(9) —FN(w)=—w—PE Y, (z)e,.

J2N
On using the notation of definition 4 (§ 7) we have

(10) $] () = e/N(®) z—B+2(+p—1) 31 (),

(10a) (@) =[2Yy~ 2l LoinR(rn), j2N].
Accordingly, the function (g) is of the form

(11) Fy(z) = z=P M@ g—Ng+2bp—i) cfon () + cY fin ()],

(11a) Br(@)~vo [z m R(ro)],

where ox(z) is the function given, for j =N, by the formulas
(32a), (52b) of §17.

Substitution of (1) in (A; § 1), with the latter equation in the form
(A; § 7), will result in

Y (2) + pi)(2) — 2= Ln[ 2, Y(2)] — 277 La[ 2z, p(2)]
—xzPasx, Y(x)+ pn(x), ..., Yr—U(z) + plr—t(z)] = 0.

Thus, by (2) and (7),
(12) pin(#) — 27 Ln| 2, p()]
=t a, (@) ph(a)...pln (@) + Fa(a)

[éo4.oi= 11215 10y .oty tna20; cf. (11), (11a), (5), (5@), (5b)]

By (5), (3 @), (5 b) transposition to the left member of the linear
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part of the second member of (12) will yield

(13) Llp(@)]=p(2) — 27 Lj|x, p(2)] = «—7 H[ 2, p()] + Fx(2),

ey ) I8 p@] =Dy (2) p(a). o ()

{lg+. ..+ (12 2)
where

(13a") Lile, o(2)] = b3(2) pln=t)(2) ...+ b} (2) p(2),

the coefficients b; (z) being asymptotically the same as the corres-
ponding. ones in L, [cf, (3; § T)]. More precisely,

(135) 0} (x)y—b.(z)~o [i=1, ..., n; zin R(r)].

Equation (13) will be further transformed with the aid of the sub-
stitution

(14) p(a)=efg(z), G(2)=NQi(z)—(N—1)Blogz.

This transformation is suggested by the form of yy(z), as given By
(50;§7). We have

(14 a) (v (.’L‘) = Z Cm m)(x) dzi—m eG(Z)'
m=0
Furthermore
(14) z‘g_ec(x)_e(;(r)(} (@), Gj(x) = Gl (&) Gj—r(z) + Gi*) (2

[_j—I 2y o0l Go(.@‘):[],
Since, by (14). G(z) is of the form 1
(14¢) G(z)=—(N—1)Blogz + gz *+...

it follows from the recursion relations (14 b) that
-i(1+3) .
(14d) Gi(z)== % gj(x) [J=0,1, c..; g(z) =1],

1

where the g,(z) are polynomials in z*. Thus,

v 1
18 oi(a) =t B Ca (2) 4, ey i)

m=0

(1) Here... stands for a finite number of powers of  higher tha
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Substitution of (15) in ,L[p(z)] of (13) will yield, by virtue of (13 a),
(13 ),

(16) iL[p(2)] = et L (2)],
(16a) L[4 (@)] = L (@) — 28 3 By(2) L) ().

Here g is the greatest one of the numbers

n(l-l—é); p+(n—1)(1+§)

and the B,(z) are analytic in R(ro) (z # o), asymptotic [in R(r,)]
to series of the form .

(17) Bo+ Biwé+(3=mi+....

Substitution of (15) in (13 @) will give

(18) H(z p) = ex6(®a—2n=1 H(z, ),

where

(18a) H(z,?Q) ___2 2 e(m—2)6(x) g—(m—2)(n—1) ()G, Gln—1)m 1

m=2 Y+ Hip—y=m

Here the h,, ,_.(z)are analytic in R(r,) and are asymptotic in
R(ry) to series of the form (17). Moreover, as seen from (14) and
(3 @), the series (18 @) is absolutely convergent for

(185) |C(V)[<r”(ro) [v=0,1, ..., n—1; xin R(ry)],
where
(18¢) 7"(r¢)-»  (when ro—> o).

Thus, in eonsequence of (16), (16 a), (18), (11), (11 @), [¢f. (52 a),
(52b) of § 7], application of (14) to (13) is seen 1o result in the
equation

L[&(2)] = et@ = H[z, {(2)] + 2" ¢(#)

(19) 3 [n,:z(n —1)+p;na=—2w—p+2+B=(n—1) (1+§) +1:—W],

where

(19a)  o(z)=[2hm~ izl [z in R(r); of. Def. 4 (§ 7)].
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Lewma 5. — Let N be a fized positive integer, however large.
Let the functions y,(z), y2(2), ..., yn(2) be those involved in
(50; § 7). Apply the transformations (1), (14) to (A; § 1),
[ef. (Ay; § T)]. The new variable {(z) will satisfy equation (19).
In (19)L is given by (16 a) [cf. the italics following (16a)].
G(z) is given by (14), ¢(z) is of the form (19a) and H(z, {) is of
the form (18a) [cf. italics after (18 a)]. Considering the
tM(v=o, ..., n—1) as variables independant of z, the series
representing (18 a) converges absolutely and uniformly in R(r,),
provided (18b) holds [¢f. (18 ¢)]. Either the number ro, used in
the definition of the region R(r,), or the number k', involved in
(6 @), must be taken sufficiently small so that (3) is satisfied.

9. Existence of « proper » regions. — Consider now the linear
problem (A,; §1) with which there are associated formal solutions
(2; §1) [¢f. (2a) and (2b) of § 1]. We are interested in the case
when (A,; §1) is formally not of Fuchsian type al z = o; thatis,
when not all the polynomials Q(z) of (2; § 1) are identically zero.
Let the distinct polynomials

(1) Pi(z), Ps(2), ..., Pm(z)

constitute the totality of all those Q(z) which are not identically
zero. We shall write

(1a) P (z)=piz—P+... (i=1,2, ..., I;; p£0; 0, >0),

where the p; are rational numbers, the terms displayed in the second
member being the leading ones.

Derinimion B. — Let B and H be positive numbers and let N ‘be
any integer greater than unity. Let P(z) stand for a particular
polynomial of the set (1). Consider a region R (ro) whose boundary
consists of an arc of the circle |z|=r, and of two regular (')
curves B!, B' extending from the extremities of this arc to the
origin. Such a region will be termed proper with respect to P(z)
if for some sufficiently smallr, (> o), independent of N, we have

(') The meaning of the term « regular curve » here is the same as in (T,). Conse-
quently B’B’ have limiting directions at the origin. Mereover, except at the
origin B’ and B” are to have no points 1n common.
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all of the following conditions satisfied when x is any point-
in R(r,).

1° AUl the points of the rectilinear segment (o, z) are in R(r,);

2° The linear equation (Ay; §1) possesses a full set of analytic
solutions which in R(r,) are asymptotic to the series (2; § 1).

3° The real part of P(z), RP(x), is the least of the real parts
of all those polynomials Q(z) [cf. (2; § 1)] which are distinct
Jrom P(z).

40 e!’(ac)N o.

5° With G(u)=NP(u) — (N —1)plogu and with u on the rec-
tilinear segment (o, z) the upper bounds of the functions

(2) f(H,u)=|eCuly—H  A(u)=]|ebut-Quiy—n| (h=1,2, ..,n)
are attained at z.

It is Lo be noted that proper regions constitute a particular instance
of the regions characterised by Def. 2 (§ 7).
The following lemma regarding proper regions will be now proved.

Lemva 6. — Suppose that not all the polynomials Q (z),
involved in (2; § 1) are identically zero. There exist then regions
proper, in the sense of Definition 5, with respect to at least some
of these polynomials.

If ¢" is a fixed positive number, however small, it follows from the
consideration of (1a) that

(3) ePl@) ~ 0
in any region, extending to 2 = o, in which
(3a) cos(pz—p)s—¢ (p=Lp;a=Laz).

This implies that with ¢ > o, however small, (3) is satisfied in every
one of the finite set of sectors W, ,,(r,) (m =o, 1, ...) characterized
by the inequalities

T

1\ ® P — 3 P
4 =) = 4+ £ 4L g( _)_ £ < .
€)) (2m 2) o o el 2rn+2 .°¢+Pl € (lz]Sr0)
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We select (> o) sufficiently small so that

(4a) I _2e>0 (i=1,..., Hy).

o

In consequence of a Fundamental Existence Theorem established
by Trjitzinsky (') the following may be slated. Let B, ; denole a curve
along which R[Q;(z — Q,(z)] =0, when Q;(z) is distinct from
Qj(z). Let R, R}, ..., Ry be regions separated by the B,; curves,
none of these curves lying interior of an R} (i =1, ..., N') (2). Let
it be said that a region R has an angle w; if the tangents at z =o to
the boundaries of R, make an angle w; (3). When ;£ 0, in some
cases [ for details ¢f. (T,)]R; is replaced by two subregions R, R;.
The subregion ;R has one of the boundaries (extending to z = o)
coincident with a boundary of R}, while the other boundary (exten-
ding to # = o) is a certain regular curve, interior to R}, with the same
limiting direction at z =o as that of the other boundary of R;. On
the other hand, R} is formed similarly with the roles of the two
boundaries (exlending to z =o0) of R; interchanged. Thus the
angle of ,R; (and of ,R;) is w, Corresponding to a particular
region R; the linear problem (A.; § 1) has a full set of analytic
solutions which. when w;= o0, are asymptotic to the series (2; § 1)
for z in R;. When w; £ o the same result holds, unless R; is to be
replaced by the above regions /R;, +R.. When the latter is the case
there exists a full set of analytic solutions (for 3£ 0) asymptotic
in ;R to the series (2; § 1); and there also exists another full set of
solutions asymptolic to these series in ;R;.

Corresponding to every Q;(z) which is not identically zero there
exists a finite number of curves B,, defined by the équation RQ;(z) =0
and extending to the origin. These curves are regular. Interior
a circle | z| =r, (1, sufficiently small) the B; curves have no points
in common amongst themselves and with the B, ; curves (except at the
origin of course). There is occasion to introduce the B; curves only
if all the Qi(z)(i=1, 2, ..., ) are distinct from zero.

() Cf. (T,y)-

(2) For every z in R, we have |z | <7, The boundary of Rj consists of two
regular curves and of an arc of the cirele | z | = r, The regular curves extend from
the extremities of this arc to the origin; mereover, except at the origin, they have
no points in common.

(®) This is the angle corresponding to the interior of R;.
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Let £ be a fixed positive number, however small. Take

(5) s<g‘-_25 (i=1,...,Hy).

Corresponding 1o £ we can take r, sufficiently small so that the fol-
lowings holds. All the curves B,, and B, and all the regions R;, for
which w,= o, can be enclosed in a set I' of sectors (bounded by ares
of the circle |z|=r,) the sum of whose angles does not cxceed £;
moreover such a set I' can be so selected that the limiting directions.
at £ = o, of the various curves B,, and B, are all distinct from those
of the boundaries (rays) of T. The complete vicinity of z = o will
consist of the sectors T and of a certain complementary set of non
overlapping and non adjacent sectors T,

(6) Th Tz; [ERX) Tn (|x|§"0)~

Corresponding to every T, the equation (A,; § 1) has a full set of
analytic solutions ,y,(«) such that

Wyi(x) ~ e ario () (J=1, .., n;zinT;; |z |<ro).

‘Moreover, no curve B, g has at x = o the same limiting direction as
that of any one of the rays bounding the sectors T.

Consider now the sectors W, ,, ({=1. ..., H;m==0,1,...), as
defined by (4). The angle of W, », is 5 — 2¢. All these angles are
positive by (4 a). The set of the sectors T has in common with a par-

ticular sector W, ,, a point sel which contains a finite number of non
adjacent and non overlapping sectors

(7) Tll'm’ Tl'.;m) ey Tf\’zl,m) (l z I é 7.0):

each with an angle distinct from zero. Existence of such a set (7) can
be proved as follows. Suppose there exists no such set. Then the
sector W, ,, would be contained in a sector of the set T (with some
of the boundaries of W, , and T possibly coincident). Now, by
construction, the sum of the angles of I being equal to or less than
than £, the angle of W, ,, would be <. On taking account of (5) and
of the above italicized statement, this is seen to be impossible. Hence
a set () with properties as slated exists.
Let R(r,) be any particular one of the regions

" (i=12,....Hy;m=o0,1,...; k=1,2, ..., N(i, m)]
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This region satisfies conditions 1°, 2° of Def. 5. Moreover, no curve
Bi,; and no curve B, has at x =o the limiting direclion of a ray
bounding R(r). If R(r,) is T\™, in consequence of the fact that
R(ro) is a subset of W, ,, it will follow that (3) and (3 a) hold
in R(r,). There exist polynomials

(8) Q"i(x)=Q"g(x)="‘=Q"8(x)
such that, for z in R(r,) and for all j (3£ n4, Z nay ..., 3 n3),
(8a) RQn (z) =...=RQny(x) <RQ,(2).

Just as a matter of notation, involving no loss of generality, designale
the polynomials of (8) as

(9) Qu(2) = Qa(2) =...= Qs(2).
There are two cases.

CaseI. — P,(z2) = Q, ().

Case II. — P,(z) 2 Q,(z) so that
(9a) RQ:(z) < RP,(zx) [z in R(r)].

In the Case 1I in consequence of (3) it follows that
(98) el ~vo [z in R(r).
The relation (g &) will also hold in the case I. This is inferred from
the statement in italics preceding (8). Let P(z) denote Q,(z). Of
course in consequence of (9 ) P(z) £ o. Thus P(z) is a polynomial
of the set (1). We have then all the conditions 1°, 2°, 3°, 4° satisfied.
In order to demonstrate that R(r,) is « proper » with respect to P(z)
it remains only to prove that the condition (5°) of Def. B is satisfied
for some sufficiently small r, (> 0), independent of N (>2), when
in (2) G(u) =NP(u) — (N —1)plog u.

With

RQ,(z)=RQ;(2)<RQx(z) [, j=1,..,3; k=38+1,..,n; zinR(ry)]
it follows that the f; (u). defined by (2), are of the form

(10)  A(u)=g(B+ 7 €)%, u) (A=1,2...,5),
(100) A(u)=|e@t-@luiniosu | gN—1(B, )  (A=3-+1, ..., n)
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where

(11) g, u) = | eqlw—vlogu |,

Let

(12) Yy=max{B; H; R(B+m)} (A=1,2, ..., 1)

Now for 2 > & we have RQ,(u) <RQ;(u) [« in R(r¢)]. Hence

; Qi(u)— Qy(u) =ar1u—%+ asu=%—+. ..+ aqru—%

13
(13) <<, . . <wma<<a; a1 0; A=08+1, ..., )

where the a; (i=1, ..., k) are rational numbers (*).
On writing

(x4) f u=pe¥=10,  gy=|a;|eV=ia, m=r)+ =1
| (i=1,...,k; A=1,...,n)

it follows that, for A=9d 41, ..., n,

(18)  R[Qi(z)— Qu(u)— i logu]
= Gu(p, 9)
={ai|p~*cos(a 0 —ay)+...

+|ar|p~% cos(ar® —azr) —r} logp +730  (Jas| o).
For a fixed A (A > 9) the limiting directions at # = o of the various
curves By (along which R[Q,(u) — Qy(u)]= o) are given by the
values 6 satisfying the equation

(16) cos(a 0 —a;) =0 (2).

In consequence of the construction of R(r,), for no v in R(r,)
(bounding rays included) is & (= angle of u) coincident with a root
of (16). Hence

(17) cos(a10—ay)|2¢>0 [winR(r)] (%)

(1) The fact that the constants in the second member of (13) depend on A is not
explicitly stated. That is, the involved expression is in a generic sense.

(*) Cf. (T).

(1) Suppose (17) does not hold. Then the lower bound of the continuous function
l cos (a,0 —Z,) l, for 6 on a closed interval A, would be zero and would be attained
for a particular 6 = 8, in A. This value of § would be a root of (16). A contradiction
arises since the ray 6 = 6, (| u | < ry) is in R(r).
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where ¢’ is independent of 8. Since

R[Qi(u) — Qu(#)] <o [ in R(ro)],
(17) implies

(17a) cos(aie—ai)g——e’(< 0).
Now from (15) it follows that

d -
(18) p% =—oy|a|p~—*cos(o 0 —a;)—...

—ag|az| ok cos(ard — az) — Y

By (13) and (17) we have

(18.) p‘-’%=—a11a1|p—°=xcos<me-51)[r+v<p, o)1,

(188) |o(p, 0)I< —

‘aila“e'

+oaglag|p®—o% 4 | 7-') | p%] £ p%1—%ap [uin R(7)] (2).

[as] @z | pr—Pa ...

Here ¢ is a constant. For ry sufficiently small | ¢(p,0) | <1 [w in R(r0)].
Hence, on noting that ¢(p, 6) is real, from (18 @) with the aid
of (17 a) it is inferred that

(19) %%‘ 2 [« in R(7o)]-

It is clear that r, can be taken independent of A so that (19) holds
forA=8-+1, ..., n. In consequence ol (19), for z in R(r,) and u
on the segment (o, z), the upper bound of Gy(p, §) and hence of

(20) | eQutu)—Qu(u)—r\logu | (A=3+1,...,n)

is attained at z.

Consider now the function g(y, ) [¢f. (11), (12)]. We have
Qi (u) =£ 0. Hence Q,(u) is given by an expression similar to the
one in the second member of (13). Furlhermore, on taking account
of the notation (14), logg(y, u) would be given by an expression
analogous to that in the last member of (15) (with r;, =, and r; = o).
The several B, curves [c¢f. statement preceding (3)], along which
RQ,(u) = o, possess each a limiting direction at 2 = o, given by a

(2) Use is made of the fact that the numbers «,— a;, ..., ®,— @, a, are all positive.
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root of the equation cos (@6 — @, ) =o. Tt is to be recalled that by
construction all the B, curves are exterior to R(r) and have limiting
directions at z = o distinct from those of the bounding rays of R(r,).
Accordingly, by a reasoning precisely analogous to that used in
proving (17) and (17 @) we again obtain inequalities of similar type.
As a consequence p dilogg (Y, u) is seen to be expressible in the
form of the second member of (18 a). Here |v¢(p, 6)| would satisfy

(18 ), with r} replaced by y and r, possibly dependent on y. Hence
it is inferred that

(21) 98 (v, )

90 20  [un R(ro)].

Whence it is concluded that, for z in R(r,) and for u on the seg-
ment (o, z), the upper bound of g(y, u) is attained at x Let
¢ =20¢'+/— 10" be a number real or complex, with ¢'<y. Then

(22) glo,u)=g(y, u)|ur=—o|=g(y, u)|u -0,

With u on a segment (o, z) the upper bound of | u [1~7¢%" will be
attained at z. Hence, with = in R(r,), the same will be true of

g (o, u). On taking account of (12) this is seen to imply that the
upper bounds of the functions

(23) { 8B, u), g(H,u), g(3+n,u)
- [uon (o, z); z m R(r), A=1,2, ..., n]

are attained at 2. Hence, by (10) and (10a) and in consequence of
the property, previously stated with respect to (20), it is concluded
that the condition (5°) of Def. 5 holds for the functions

f)\(u) ()“_'11 -~-:n)

[with P(z)=Q,(u)]. The remaining function (2), f(H, u), is of
the form

(@4)  f(H, u)=]e®wiut, | ey N-1= g(H, u)g¥1(B, u).

Thus, by virtue of the property proved for the function (23), it is
observed that condition 5° holds for the function f(H, u) as
well. This establishes lemma 6. Incidentally it has been shown that
proper regions can always be constructed in the form of circular
sectors. With the aid of a more extented analysis it is possible to
obtain proper regions of a more general character.
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10. The existence theorem (n-th order problem). — A solution
of the equation (19; § 8) will be found for x in a region R(r,) proper,
in the sense of Definition 8 (§ 9), wilth respect to a non vanishing
polynomial Q(z) of the set involved in (2; § 1). As a matter of
notation this polynomial will be designated as Q,(z). We shall have

(1) RQi(z)=...=RQs(z) <RQ,(z) [i=8+1, ..., n; zin R(ro))-

Moreover, in the sequel, when using the conditions of Def. 5 (§ 9),
we shall let P(2) = Q,(z). It is to be noted that (1; § 7) will be
satisfied for some m >48. The character in R(r,) of the formal solu-
tions of the non linear problem (A, ; §1) is specified by Lemma 4 (§ 7).
This Lemma is to be applied with the number m*, involved in
(49; 8§ 7) and (49 @; § 7), assigned the value 8. The only arbitrary
constants entering in the formal solution will be

(2) ci, ks ks, ..., kg
Now equation (19; § 8) was established under the supposition that
(1a; § 7) holds. For the case under consideration we pul
(2a) k1= ksr2=...= km=o,
as required by a previous statement [¢f. (49b; § 7) with m*=4d].

For this case equation (19; § 8) will be of the form specified by
Lemma 5 (§ 8).

A solution will be found in the form of a series
3) z)=Co(z)+ Ca(2) +La(2) +. ...
Write
(3a) zj(z)=b(2)+8(z)+...+i(z) (J=o0,1,...).

The terms of the series will be determined in succession by means of
the linear non homogeneous equations

(4) L[Go(2)] = to(2) = ™ 9(=),

(42) L[%(2)] = t1(z) = b=z H(z, L),

(46) L[{a(2)] = ta(z) = ef@z— [H(z, 51) — H(2, %)),

(4¢) { L[g;(2)] = tj(2) = eS@a—m[H(z, 5j~) — H(2, 3j-2)]
[fj=23, ...; ¢f (16a), § 8].

Adding the corresponding members of these equations we obtain,

MEMORIAL DES SC. MATH. — N° 90, 5
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provided certain convergence conditions are satisfied,

4d)  JLG=N=L (Z z;m)
j

I=o0
=z~ 9(x) + eblx) gz—n liij(w, Zj—1)

= g~ 3(x) + Gl g—n1 H(x, limz,-_g)
J
or

(4e) L[§(2)] = 2= 9(z) + eC¥ 2= H(2, {).
We shall proceed to construct the ¢,(z)(j=o, 1, ...) and to

establish appropriate convergence properties of (3).
Consider an equation

(8) L[E(2)] = ¢(=).
By (16; §8) and (14; § 8) (5) can be written in the form
(5a) Lp(z)] =6 t(z) [p(z)=eb"(2)],

where, L is given by (13; §8), (13a; § 8) [¢f. the statement in
italics subsequent to (13 a)]. The solutions of the homogeneous
equation, ,L[p(2)]=o0 are asymptotically the same as those of
(Ag; §1) (*). Hence a solution of (5 @) can be given in the form

n
x
(6) e(z) =2 e (x) g p)\(.z')/‘ e~ 0u) y—r+y oy (1) eS8 ¢(u) du

A=t
[ef. formulas (28), ..., (30) of § 7], where
(6a) oa(z)=[2lmy on(u)=[ulni [*=1, .., 7n;cf. Def. 30f§7|.

Thus, by (5 @) a solution of (5) can be given in the form

() Ua) =Y, etz 2 o) () G [¢(u)],
A=1
(7a) e(u)] =fxeG(u)—Qm(u)u—n ex(u) Y t(u) du.

(1) By (13b; § 8) the corresponding coefficients of the two equations are asympto-
tically the same. On the other hand, in consequence of the developments in (T,)
it is observed that the asymptotic form of the solutions is not changed whenever
the coefficients of a given equation are replaced by functions which are corres-
pondingly asymptotically identical.
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Let ¢ denote an arbitrarily small positive number. In consequence
of (6a)

8) i@, |ee)|<plzlt  [@inR(ro); =1, ..., n]

Hence, for z in R(r,),
1Freli<e [ AW luir=iw@)ldlu] (=1, ..., n),

provided the integral in the second member exists. Here fi(u) is

given by (2; § 9). By virtue of the satisfied condition 5° of Def. 5 (§9)
it follows ‘that

(9) 1ELeNI<eh@ [ lulr=@ dia]  [einRED;A=1, )

whenever the integral exists ('). By(7), (8) and (9) on laking
account of the form of f;(u) it is inferred that

(x0) lC(w)I<n92le—5fxlulY’—elt(u)ldlul [z in R(ro)],

if the involved integral converges (2). Let j be a positive integer and
assume that, for z in R(r,),

(11) | t(z)] < | eibia =it ;
where 7,, (> 0) are some real numbers, independent of j. Then,
for w in R(ry),

(11a) luwlt—e|t(u)| < t;|e/Cly—)v y—Tory'—¢ |
=t | eGlu) y—' [l eGlu) y—1'—T+y'—¢ |

=t; f11(7, u) f(V+ 11— Y 4+ u)

[ef. (2, § 9)]. In using the conditions of Def. 5 (§9) B will be the
constant so denoted in Lemma 4 (§ T). Write

(12) m=g+1+§(n—2)(n—3).

(t) Throughout this section integrals from o to z are along a straight line.
(?) Itis to be noted that p depends only on the character of the linear operator,
L and on e.
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Let the number H, involved in Def. 8, be the greatest of the numbers

(12a) T, T+ T+ w.

As y'> o, ¢ can be so chosen that ' — & > o. Thus

(120) vSH, Y4+tu—y+e<H

With the condition 5° of Def. B satisfied for the function S(H, u),
the same will be true of the functions

f(,u), f(7+m—7y +c¢)

This fact is a consequence of (12 &) and of the statement in connec-
tion with (22, § 9). Therefore the second member of (11 @) attains its
upper bound at z, whenever z is in R(r,) and u is on the rectilinear
segment (o, #). Thus, in consequence of (10) we have

(13)  [U@) | <gner|z = fi71(7, 2) f(V'+nu—7Y +¢, 2)
< np?t) | /6@ g—"—yv || g [Y'-2e+1 [z in R(r)].

Whence it is observed that (5) and (11) imply (13) with np? and
Y — 2e+1 independent of j.

In view of the purposes on hand it will be essential to obtain cer-
tain inequalities for the |{™(z)|(v=1, 2, ..., n —1). On taking
accountof (16 a, § 8) equation (5) may be writlen in the form

n—1

(14) z;(n)(x)=ow(.z')+2 wi(2) L0 (),

=1

(tha) w(@)=1(2)+wo(2)0(2), ow(z)=2"¢B(z) (i=o,1,..n—1).

For convenience of writing some of the integrals in the sequel will be
expressed with the aid of negative superscripts; thus,

WO (2) = w(a),
w1 z) =fxw(a:,)dx1,

wi=2) (z) =fw (fx’w(w,)dwi) dz,,

.....................................

(15)



ANALYTIC THEORY OF NON-LINEAR SINGULAR DIFFERENTIAL EQUATIONS. 65

Successive integrations by parts applied to (14) will result in

n—1
(16) Ln—1)(z) = owi—1) () _,_z owi(2) L) (2)
—
—E oW 1(2) L= () ...
it
£ 3 1= (2) Lo ()
L
¥ oW1 () L—n+1) () d.
>/
Accordingly
n—2
(16 @) in—)(z) = ,w(2) +2 w () L0 (2)
where
n—2 x
(168) 1w (2) = w1 (z) iz f i (z) (- (2) d
-
T [ (@) — o (2) -k ol ()] S0 ),
n—2

(16¢) 1w (&) = owira (&) — W13 (@) ok MR (@) (=1, ,n—2).

In general, forv =1, 2, ..., n—1,

n—v—1

) L (2) = (@) + 3y w(@) L()
=1

where o
178) w (@)= vawt(@) = 3y [ runlis (@)t (2) do

=0

n—v—{

) D)ot ()] E0(2),
=0

uzb) v“’t(w)="v—in+1(w)‘—v—1""§-:-)z(w)+u-
+ "IN 2) (=1, cesy, R—V—1I)a
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In particular

(18)  LON(2) = n—sw(&) + n—awi(2) {0 (),

(18a) (W (z)= pw(z) [= n—:w(—“(w)*—fxn—zw‘a"(w)t(w)d‘”
+n—zW1(-”)c(“')]'

The B.(x) of (14 a) are of the form specified in the italicized state-
ment subsequent to (16 a, § 8). We have

> L
Bu(@)~ Y Biy@® [ in R(r)].
j=0
It is a consequence of the construction of the operator L that
L :
Q‘,“)(x)~2 Bigs e  [einR(r)iv=1,2, ...]
J

This enables one to assert that the (w,(z) of (14 a) and the deriva-
tives of these functions satisfy inequalities

| oW?‘)("l') | <[z —&kow
[i=o0,...,n—1;A=0,1,...; zin R(ro)].

(19)

By (19) and (16 ¢)

| 1W?\)( z)| < |z |-81—(n—2—1) 1wl <| z [~ r—n=3) ;M)

[i=1,...,,n—2;A=0,1,...; 2 in R(7))].

(19a) {

Similarly from (17 &; v = 2) it follows that

LM ()| < | @ e A—n—si—n—) 4w

(195) {

[i=1,...,n—3;A=0,1, ...; 2 in R(7)].

In general, forv=o0,1, ..., n —1,

(20) | Wit (z) | < | 2 |-8—h—Py W
[{=1,...,n—=vy—1;1=0,1, ...; zin R(r)].
Here
Po=o0,
(20a) Pv=(n—3)+(n—§)+...4+(n—v—2)= 12(2n—v—5) (v=0, 1, ...).
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Consequently, for i=o,...,n —v—1,

(21) [y—1td (@) —. .= v—1W(,:'_'§,v:l')(-Z')|

<& |aP—ny—) < | o |e—Ptw

[z in R(re); v =1, ..., n—1].

By virtue of (14 a), (19; A=1{=0) and of (13) from (11) it would
follow that

(22) Jow(u) | < owi; | €iGlu) y—"1—jt'—¢ | [# in R(7o)]
where oo is independent of j. More precisely, with r,<r (r fixed),

ow depends only on r, ¢ and on the operator. L. The second member
of (22) can be written as

(22a) owitj | e6l@) g |j—1 | gGla)—TT'—¢ |,
In consequence of the definition of H and o [cf. (12), (12 a)] it
follows that t’gH and 7, + 7+ g << H. Hence the upper bound of the

function (12 a), for u on (o, z) [# in R(r,)] is attained at 2. Whence
it is inferred that

(23) [owt1)(2) | < owij| e/6@ g—"—jT—g+1| [z in R(ro)].
Write (13) in the form
1G(w)! <nmpty|ulr+2e+t fr+ 7', u) fi=1(¥, ) [win R(ro)]

On noting that Y — 2¢+1>0, 7, + 7' << H and 7’'CH it is concluded
that the upper bound of the involved second member is attained at z,
when u is on (0, #) [z in R(r,)]. Whence we have

(24) 1L-0(@) | <obtj|e/f@a—mit|  [i=o0, 1, ...; z in R(ro)].
Here (¢ is independent of j and depends only on r and on the ope-

rator, ,L. By (20) and (24), for w in R(r¢)and v=1,...,n—1, we
have

(4a) |y () LD (1) | < L win—Vg; | ef6l u—Tijv—wy |,
(246) wV:g+(”’_v)+PV—1§g+Pn—z+I.
Except for the constant factor the second member of (24 a) can be

written as the product of the fuunctions

(24¢) fi—t(e', u), J (43 + oy, u).



68 W.-J. TRJITZINSKY.

By (24 b), (20), (12) and by the definition of H it follows that
T+THOy=T+ T+ g+ paa+i=1+T+0lH (v=1,2,.,0—1).

Hence it is inferred that the upper bounds of the functions (24 ¢)
are attained at # when u is on (0, z) [# in R(r,)]. The same will be
true of the second member of (24 ). Hence, for z in R(r,),

x
(25) 3] S () 0 () du | < kw16t i

(i=o0, ..., n—v—1;v=1, ..., 0 —1I).

From (16 &), by virtue of (23), (25; v=1), (21; v=1) and (24),
it follows that

(26) [1w(z) | < 1wt | e/ 6x) g—Tiv' =01,

(26a) =g+ n—2=g+ Ppi—+1I [z in R(7)]

where ;0 depends only on r and ,L. Since ,w,{w it follows that the
upper bound of

| eGlu) gg—T1—T'—1t01 | [« on (0, 2); z in R(r)]
is attained at z. Hence the second member of (26) possesses this
property. Accordingly

(265) | 1',,,(—1)(_1,;) | <10 t; | €/ 6{x) z—Ti—jT' kL |,

From (17 a; v=2), (26 b), (253; v=12), (21; v=2) and (24) itis
inferred that

(27) [aw(2) | <2002 | €/6(%) =TT,

(27a) wy= g+ p2+1Sw [z in R(r)]

where ;o depends only on r and ,L. By induction it can be esta-
blished that, forv=1, 2, ..., n —1,

(28) [y (z) | < ywt;j | er6lx) g—Tamiv =y |,

(28a) Wy= g + py+1 [2 in R(7o)]

with ,o depending on r and ,L only. It is essential to note the fol-
lowing. Suppose (28) had been established for some v (v <<n—1).
‘We have

(280) | e1608) y=Ta—jT'—ooy | = f1=1(%, u) T+ T +w, u)|ule
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where a =w — 0,20 ('), while 7,474 w<H. Hence the upper
bounds of the three factors in the second member of (28 b) are
attained at & when u is on (o, z) [# in R(r,)]. Accordingly, the
second member of (28) [with z in (28) replaced by u] would possess
the same property. Thus (28) would imply

(28¢) [yt (z) | < ywt, | es6(@) z—T—/T'—p+L | [z in R(ro)].

Relations (28), (28 @), with v replaced by v 41, are established by
means of the formulas (17 @), (25), (21) [in (17 a), (25) and (21)
v is to be replaced by v+ 1] and with the aid of (24) and (28 ¢).
This completes the induction.

By (18 @) and (28; v=n —1) we obtain
(29) 180 (2) | <Lt | er8® Ty e —ilal,
(29a) 1= n—w, 151=n—1Wp—1= g+ pny1—+1 [z in R(7o)].
Hence, by (18), [28; v=r —2) and (20; A = o],
(30) LR(2) | < oLty | /8@ gy T =k |,

(30a) o= 1l1+ &+ pr_e> 1l [2 in R(70)]

where ;¢ depends on r and ,L only. By virtue of (17), (28) and
(20; A= o) it follows that, forv=n—2,n—3, ..., 1,
n—v—1
(31)  [Ln—V(z)| < yot, | /6@ g=T—T 0, | 4 2 o) | 2 |—&—py | ) (2) ]
=1
Suppose that, for i=1,2, ..., 2 —1 (2Sa<n —1),
(32) [L(2) | <Lty | €16 g—myv=la],
(32a) ztz=l—1Cz—1+g+Pn—l [x in R("o)]

where the {({=1,2, .... a—1) depend on r and ,L only. By
(31; v=n—a) we then would obtain (32) with ¢ replaced by «
and ,%, equal lo the greatest of the numbers

n—oaOn—g, &+ Pn—a+ (i=1,2, ..., a—1).
By (28 a) and since the ,¢, increase with ¢ it follows that

aba= a—18a—1+ & + Pn—a-

(1) This inequality 1s a consequence of (12), (28 a) and (20 a).



70 W.-]. TRJITZINSKY.

Moreover, the number . can be chosen depending on r, ¢ and ,L
only. Thus (32) and (32 @) hold for i =1, 2, ..., n —1. By (29 a),
(28 a) and (32 a)

(33) Li=14+1g+pra+pPrst...dpoa  [2=1,2,..., 2 —1;cf.(20)]

The following Lemma has been established.

Lemma 6. — Let R(r) (r,Sr) be a region, as specified in Defi-
nition B (§ 9), proper with respect to Q,(x). Let r, be sufficiently
small so that all the conditions of Definition 5 hold when H is
assigned the value specified in connection with (12 a) and (12).
Consider an equation (5), where L is given by (16 a; §8) and
where t(z) is a function satisfying (11) (where j is a fized posi-
tive integer). There exists a solution of (5), ¢{(x), analytic
in R(ro) (x # 0) and together with its derivatives satisfying the
tnequalities
(34) 1¢(z)| < Tt les6@z—n—1v—=%|  [v=o0, I, ..., n —1; 2z in R(r0)].

Here 0 = o8 <48 <...<n—1&n_1 [cf. (33), (29 @), (20)]; moreover,

¢ is a constant depending only on r and on the character of the
operator L [that is (As; § 1)], (*).
Let r be a positive number. The transformation

(35) M=z—7z" (v=o0,1, ..., n—1),
applied to H(z, z) of (18 a; § 8), will result in
(36) H(z, z) =2 W(z, 3)
where

|
G6a) W(a,2)=Y N @)k (@)F00E S,

m=2 y+ Filp—y=m

(365) glz)= e6(x) p—(n—1)—7,

In consequence of the convergence properties of H(z, z) [cf. § 8;
in particular, (18 b; § 8), (18¢; § 8)] the following can be stated
regarding W (z, z), when the 2" (v=o0, 1, ..., n —1) are consi-
dered as variables not necessarily depending on .

(1) It 1s essential to not that the ¢, (v=1, ..., n —1) depend only on L.
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There ezists a positive number r'=r'(ry) (r'—« as ry—o0) (1)
such that, whenever

(37) 7], = <2r(r)  (v=o0, 1, ..., n—1),
we have
370) |W(z,2)—W(z,2)]
< M{|E0— 301 | 4 | Z01— 21 | 4. .+ | BT — Fn |}
when z is in R(r,). Here M is independent of x,
M, W (v=o,1, ..., n—1).

The proof of the above may be made on the basis of the Cauchy
integral theorem for analytic functions of several variables.
On writing

(38) zﬁ”(w):x—fzy](x) (v=o0,1, ..., n—1; j=0,1,...)

equations (4), (4a), (4b) are brought to the form

(39) LlG(2)]=t(2z) =2m3(2) [t))(2)=2—F)(2)),

L[Zj(z)] = ¢;(z) = ebd) g—n=2t [ W (2, Zj—1) — W (2, 5j—s)]
[]=1, 2, ...,zl_"}=o(v=o, ceey n—l)] (2)

where, by (3 a), (38),

(392)

(o) F(z)=Fy(2)+ 2 (2) (v=0,...,n—1;j=1,2 ...).

Thus, in view of the above italicized statement, inequalities

(i { B s
[v=o0,1, ..., n—1; z in R(ro); fixed j21]
would imply that ¢,(2), as defined in (39 a), satisfies
n—
@) 14(2)| < es@gmnr | MY | H (2) — 3 (@)
v=0
n—
= | e6@) g—ni—71 | M2|t‘."),(w)| [z in R(7o)].
v=0

(*) " depends on the choice of 7.
{2) It is to be noted that W (x,0) =o.
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Solving equation (39) by asymptotic methods a solution %, (z) is
obtained, analytic in R(r,) (#3£0), together with its derivatives
satisfying inequalities

(43) e (z)1Sl2 =% [v=0, ..., n—1; 2 in R(ry)].

Let this value of = be used in the transformation (35). In the
sequel Lemma 6 will be applied with

(43a) u=1t1—2F, T=m+1+7 (£ = n—1tn-).
Corresponding to this choice of t, and ', applicability of the

Lemma necessitates that r, be sufficiently small. Choose r, also
so that

(430) LS (ro) (1)

It is observed that in consequence of (43), (43 b) and (38; j =1)
the inequalities (41) hold for j=r1 (with z%(#)=o0). Hence by
(423 j =1) (43) and (43 b)
1t (z) ] <!e6@ z—n—T | Mpnr'| z |-7 = | 6(®) z—7—7"| ¢,

(44) { [z in R(ro); t1= Mnr'].

In applying Lemma 6 the inequalities “(34) will be used in the
simplified form

1L(z) | < Zti | €7 6lx) z—Ti—jT—E |

(45) % (V =0,1I, ..., —1; z in R(l‘o); C=n—1t'l—i) (2)'

By (44) and Lemma 6 the equation (39 @; j =1) possesses a solu-
tion ¢, (2) such that

(46) 1T (2)] < Tt | Bl =T | [v=o0, ..., n—1; 2 in R(r))].
Thus, by (40; j =2) we have for z in R(r,)

(46a) |Z)(2)| S |Z(2) |+ |z [T (2)]

<P+t | SR gt | =1 4 Tty | el g~ | < ' 4 §
[8=rja+7r);v=0,1, ..., n—I]

(1) This is possible since r'(r,) > © as ry—>o.
(2) In consequence of a previous remark ¢ depends on the linear operator ,L only.
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provided r, is such that, with &1 denoting the greater one of the
numbers {ty, Mng, we have

(47) T(z)=|eS®z—"g,|<8 [z in R(r)].

Since r'+ 0 <<ar' it is observed that inequalities (41) are satisfied
fOI‘j: 2 SO that, by (42;]': 2) and (46),

(48) | t,(,z‘)l < | eG(x) pg—ni—1 | an ty | eG(x) ;1:'—71‘4'"‘C|

= l e26(x) p—T1—21’ ! ts (lg: 2] Mnf).

We now solve (39 a; j =2). By Lemma 6 (with j = 2) it follows
that

(48a) |L(z)| < Tts| el g—T—2v—| (v=o0,1, ..., n—1).

From (4o; j = 3) it is inferred that

(488) . [A(@) | <|(@) |+ |2 [t Tea | o6l g—mimw=3

so that in consequence of (43 a) and (46 a)

(48¢) |20 (2) | < 7'+ 8+ Tta| e26@) z—27').

Now- since ¢,~=t,MnZ and &1 1s the greater one of the numbers Et.,

Mnz it follows that £¢,< g2. Thus by (47) and (48 ¢)

(49) 180(2)|<r+38+8<ar [oinR(r);v=0,1, ..., n—1).
Assume now that for some j(j>2) we have

2 e

and that, for 2 in R(r,),

(60 gy <|es@amTv |y [g=a(MalYT] ).

In view of (51) and by Lemma 6 the equation L(Z;)=¢;(2)
possesses a solution ¢, () for which

(52) 1(2)| <TtjleS@a—iv=| [v=o, ..., n—1; z in R(ro)].

() This has been previously established in (43), (43 b), (46 @), (48 c) for j =1,
J =2, =23.For j =1 the second member of (50) is written as 7.
(1) (51) has been proved for j =1 and j = 2 n (44) and (48).
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By virtue of (40), with j increased by unity, it would follow that

[;}v](x) |<r+8+...+81+ |2 53¢ | /6@ g—Ts—jt'—3 |
[v=o0, ..., n—1; 2 in R(r)].

(83)

Now, by (43a). T — 7, — { = o. Hence on substituting the expression
for ¢; and on noting the definition of g,, as given in connection with,

(47), it is inferred that

4) | (@) <r+84+...+ 8514+ (Tt) (Mal)/ | efbia g—iv' |
SrH4+ 34+ + "+ Ti(2)Sr+8+...+di<2r
[z in R(ry);v=0, ..., n—1].

Accordingly, by (50) and (54) the inequalities (41) are seen to hold
with j replaced by j +1. Therefore (42) holds with j increased by
unity. With the aid of (52) we obtain

[t ()| <| €6 g—ns—T| anti | e/6l2) g—Ti—jT' = |,
By(43a) —ni—t—1t—ji'—¢{=—7y—(j +1)7. Thus
(55) | tjm(@)] <|eUitn6@ g=t+v 1 ;0 [tj4=ta(MaT)].

Hence it is observed that (30) and (51) imply (54) and (53). It fol-
lows by induction that inequalities (50) and (51) hold for all posi-
tive j, the same of course being true of the inequalities (52).

In view of the above it is concluded that {(z), as given by the
series (3), represents a solution of the equation (19; § 8). Each of
the series

(56) W@) =X t(@) (v=0,1,..., n—1)

1=0

will converge absolutely and uniformly when z is in R(r,). In fact,
by (2)
(56a) IC(V)(.z')[§2 [ c(}')(‘z) 1<z (z)—" t 2 (MnZ)jl el 6(@) z—jv' |

j=0 w Mnt/‘:—_o
a5 Y T @) S a - (13 ) = | 2 (1)
j:O
[z in R(ro);v=0,1, ..., n—1].

Higher ordered derivatives of {(z) will be also represented by abso-
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lutely and uniformly convergent series. The constituent elements of
the series (56) being analytic in R(r,). for every z, except z == o,
the functions {™(z)(v=o, 1, ...) will possess the same property.
It is not difficult to see that the heuristically outlined interchanges of
limiting processes, involved in (4 d), are legitimate in consequence
of (52) and (51).

The developments of sections 7, 8, g, 10 enable formulation of the
following theorem.

Existence Tueorem [I. — Consider the non-linear n-th order
problem (A), as formulated §1. The corresponding linear equation
(As; §1) has a complete set of formal solutions (2; §1). Assume that
not all the polynomials Q,(z) involved in (2; § 1) are zero. That
is. (As) is to be formally not of Fuchsian type at x=o. As
stated in Lemma 5 (§ 9) there exist regions *‘ proper ”, in the
sense of Def. 5 (§ 9), with respect to some of those Q,(x) which
are not identically zero. Let R(r,) (¢f. Def. 5) be such a region
and designate the Q(x) with respect to which R(r,) is proper as
Qu(@)[=Qa(@) = ..= Qs(2)].

Consider a formal solution s(z) satisfying equation (A) and
specified in Lemma 4 (§ T) under the assumption that (49; § 7),
(49 @; 8§ T) hold with m* =23 :

s(z) = s(=, e1, ky, ks, ..o k3) =2 /=) z—U—1B 7, (z)¢),
(57) =t

l 4
[p:(n—l) (1+ ;) +w+p—r1;lel, ek, ...,lcikalgk].

Here o arbitrary constants. ¢y, ka, ..., ks, are involved. Given
N(> 1), however large. equation (A) has a solution y(z), ana-
lytic in R(ro) (£ 0), with a singular point at z = o and such
that

(58) y(x)~s(x) [z in R(70)].

Here r, must be sufficiently small (cf. Def. 5) but can be taken
independent of N, whenever k' (depending on N) is taken suffi-
ciently small [cf. Lemma 5 (§ 8)]. The asymptotic relation (58)
is in the following sense.
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The solution y(z) is representable with the aid of the expres-
sion
N—1

(59)  y(2) =, eruna—u=Bn;(z)0] + eNilz 5~ V-8 { (),

j=1

where {(x) is a function (defined by the convergent limiting
process developed in this section), analytic in R(r,)(z 3 o). This
Sunction, together with its derivatives, satisfies inequalities

(60) itM(z) | <lz|"k [#in R(re);v=o0,1, ..., n—1]

where k and © are constants, the latter depending only on the
character of the linear problem (A; § 1). [Nothing is assumed
regarding the curves R(jQ, — Q,)=o].

Nore. — The asymptotic character of (') (z), ..., y*—*(z) can
be easily inferred from (59), (60). The asymptotic character of the
derivatives y") (z), yin+1)(z), y»+?(2) ..., can be inferred directly
with the aid of equation (A; § 1). It is essential 1o note that the
functions 7,(z), involved in (57), are well defined by means of the
recursion differential equations of § 7. In all cases whatsoever the
n;(z) possess certain asymptotic forms specified in Lemma 4 (§ 7).
The first term of the formal series (57) is a solution, involving a
number of arbitrary constants, of the linear problem corresponding
to (A). Under additional hypotheses with respect to the given pro-
blem (A; § 1) the method of defining the n,(z) may yield additional
information regarding their properties (*). Thus, for instance, under
appropriate restrictions Lhe formal series to which the 7,(xz) arc
asymptotic may be ‘* summable ", say, with the aid of Laplace inte-
grals leading to convergent factorial series. In the latter case such
expressions, involving convergent factorial series, would correspon-
dingly represent the n,(z). We have termed the relationship (59),
(60) asymptotic, since this relationship implies that the sum of the
first N — 1 terms of the formal series (57) can be used for computa-
tion of the ¢ actual ” solution y(z) with an error which can be

(1) The propertise of interest are those for the neighborhood [within R(r,)] of
X = 0.
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made as small as desired by letting r, be suitably small [while z is
restricted to R(r,)].

Simular remarhs can be made, of course, regarding the Existence

Theorem I (§ 6).
Funally, it is to be noted that a slightly grealer generality can be
achieved when the previously used conditions of the type

edri~o  [2m R(7o), also of (7), §2]

are replaced by certain other less stringent relations.
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