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ANALYTIC THEORY OF NON-LINEAR SENGULAR 

DIFFERENTIAL EQUATIONS 

By W . J. TRJITZINSKY, 

Professor at the University of Illinois (U. S. A.). 

Introduction. — In this work we consider the non-linear diffe-
rential équation of order n 

(A.) xPyW(sc) = a(x, y, yM, . . . , j ^ - M ) ( p a positive integer), 

where 

i'o '«-il» 

[#o...o(#) = o], the dtQ..,in{°) a r e analytic for [ # [ < r and the séries 
involved in the second member of ( i) converges for 

( i a ) \x\±r9 \y\, | jr('> |, • •- , I J ^ H ^ P ( 1 ) . 

Our présent object is to investigate the character of solutions 
of (A) in the neighborhood of the singular point x = o. This 

(1) Without any loss of generality it may be assumed tliat not ail the numbers 
^0...1,,-^0) are zéro. In fact, if the contrary were the case p could be diminished. 
Throughout the paper, whenever a statement is made that a power séries converges 
in a closed circular région, it Vill be understood that the radius of the involved 
circle is sufficiently smallso that the function represented by the séries is analylic 
at every point of the région. That is, ail such statements are made for sufficiently 
small circles. A similar remark is made concerning power séries in several variables. 



2 W.-J. TRJITZÏNSKY. 

investigation will be given in the cornplex plane of the variable x. 
Only those solutions will be considered which vanish at x = o (1). 

It will be convenienl to write (A) in the form 

(A i ) xPyM(x) — ai(x,y,yM, . . . , y - 0 ) = a*(x9 y, yM, . . . , 7 ^ - D ) , 

where aK (x, y, y^\ . . . , yKn-x)) is the pari of the second member 
of (A) linear injK? JK(,)? • • • ? y{n~l). Accordingly, a 2 (# , y, y{i)

y . . . , 
^( / I_I )^ i s represented by a sumlike(i) with i0 -+-. . . -J- Ï W _ J > 2 . In the 
spécial instance when the second member of (Ai ) is identically zéro 
there is at hand a linear homogeneons différenciai équation of order n 

(A 2 ) xPy^(x) — ai(x, y, y{l\ . . . , / ^ ) ) = 0 

which at # = o possesses a singular point (regular or irregular). 
Essenlially complète developments of the iheory of such équations, 
inasmuch as ihey relate to the properties of solutions in the 
neighborhood of the singular point, hâve been recently given by 
W . J. Trjitzinsky [cf. [19 a] , in the sequel referred to as (T\ ) ; also, 
[19 6] which will be referred to as (Ta)]- Since some of thèse results 
will be needed in the présent work it will be assumed that the reader 
is acquainted with the developments just referred to. 

The équation (A2) possesses n linearly independent formai solu
tions (2) 

Si(x) = é&Wxrxj^x) 
(2) . 

( [ Q i ( # ) polynomial in a?-1/**; integer a ^ i ; i = i , . . . , / i ) , 

w h e r e 

(2a ) <Si(œ) = ^i(x) •+• \*i{x) logx -4-...-+- mVi(x) log^a?, 

w i t h 

(2b) /ffi(#) = 2 / < r * : v # a t ( / = 0, i, . . . , m * ) -
V = 0 

Let R dénote any one of the aggregate of régions (extending to 
x = o) corresponding to which, according to (T<), (A3) possesses 
a set of n linearly independent solutions yi(x)t analytic in J\.(x ^é o) 

(1) The trivial solution y = o is to be disregarded of course. 
(2) That is, the power séries involved in thèse solutions may diverge for ail 
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and such that 

(3) yi{x)~st(x) (i = i, . . . , /i; x in R). 

If nothing is said regarding the number of terms to which an 
asymptotic relationship holds, such a relalionship will be understood 
to be in the ordinary sensé (that is, to infinitely many terms). A rela
tion (3) signifies thatyi(x) is a certain function which can be obtai-
ned by replacing in si(x) the formai séries j<7i(x) [cf. (2 &)] by 
certain functions, analytic i n R ( # ^ o ) and correspondingly asymp
totic to the j<Ti(x) when x is in R. 

In treating the case when n>2 it will be assumed that not ail 
the polynomials Q t ( # ) , involved in the formai séries (2). are 
identically zéro. 

In the theory of differential équations (and in the fields of certain 
other important types of équations) the study of the behaviour of 
solutions in the neighborhood of a singular point can be best effected 
on the basis of suitable formai séries solutions (the formai séries in 
gênerai involve divergent séries). By some analytic process " actual " 
solutions are found which are functions related in one way or another 
to the formai solutions. In this connection outstanding are (1) the 
methods based on what essentially amounts to u exponential summa-
bility " of the formai solutions ( this in volves factorial séries and 
Laplace intégrais leading to expressions involving convergent factorial 
séries) and (2) the asymptotic methods. At the basis of the methods 
of the first type to a large extentlie certain fundamenlal developments 
due to N. Nôrlund [15]. Whenever methods (1) are applicable the 
results are superior to those derived by asymptotic methods. Now, 
as pointed out in (T 2 ) , an équation (A2) may possess formai solu
tions to which methods (1) are not applicable. The équation (A2) , 
however, constitutes a spécial case of (A<). Gonsequently, whith the 
problem formulated as above, it is observed that asymptotic methods 
are to be employed in so far as the gênerai problem on and is con-
cerned. 

It is essential to note that, generally speaking, a differential 
System of the form 

( I ) ^ = « e ( ^ ^ i , . . - , ^ / 1 ) (¢ = 1 , . . . , / 1 ) 
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is in a certain sensé équivalent to a single ordinary differential 

équation of finite order. In fact, let cp0= cpo(#? y\, . . . , yn) be an 
arbitrary function of the displayed variables. On writing 

( n ) 7 = ?o(#, 7*> . - . ,711)1 

by successive differentiations and at each step using the relations of 
the given differential System we obtain certain expressions 

7 ( v ) ( = gg-r) = ? v ( * , 7 i > - - - , 7 1 ) (v = 0> Ï» • • • ) • 

W i t h a suitable choice of the function cp0 the Jacobian of the <pv 

(v :~ o, 1, . . . , n — 1), with respect to y^ . . . , yn, will not vanish in 
some domain CD of the coinplex variables x, y^, . . . , yn- It is then 
possible to solve the first n équationsyW = cpv fory K , . . . , y n , 

( I I I ) 7 « = < r « ( * > 7 > 7 ( l î f - - . . 7 ( n " 1 ) ) (* = I> •••> *)• 

Substituting (III) in the relation y(n) = yn(x, 7 ^ . . . , 7 « ) oneobtains 
an équation of the form 

(IV) 7 (n ) = ^ ( * , 7 , 7 ( 1 ) , - - . , 7 ^ - ^ ) -

Hère the second member dépends on the aL of ( I ) and on the choice 
of (p0. Il is clear that, subject to the condition that the Jacobian men-
tioned above should not vanish in a suitable domain 6i, the function 
cp0 must be chosen as u simple " as possible in order to avoid those 
difficulties which intrinsically do not belong to the given problem. 
The solutions of (Y) are seen to be expressible with the aid o / ( I H ) 
in terms of a solution of ( I V ) . 

In the présent work we shall not go any further in the study of the 
connection between a system ( I ) and an équation ( I V ) . 

Some facts of interest will be pointed out. Suppose the systein (I) 
has a singular point at x = oo. Then one can form the corresponding 
single équation ( I V ) so that the lalter willposses at x = 00 a singular 
point of essentially the same type. The parlicular very important case 
of (1) , namely when the System is of a gênerai type occuring in dyna-
mics (x in the at absent; the at analytic i n y u . . ,,yn at 

7 i = " - = 7« = °; 

the a j = o for yK = . . . =yn= o) Ieads one to a single équation ( I V ) 
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with the foliowing property. If in g only the part linear in y, 
7 ( 1 ) , . . . , y^n-K) is retained, there is on hand an ordinary linear diffe
rential équation which at x = oo has an irregular singular point 
generally of rank one. Analogous statements can be made when (I) 
is of a more gênerai or différent type. For instance, the a,- may be 
periodic in x, or the System (I) may be of the type considered in the 
highly significant researches of Bohl [4] , Cotton [7] and Perron 

If we fix our attention on that very important tradition in the 
investigation of gênerai problems of dynamics which goes back to 
the famous memoirs of Liapounoff [12] and Poincaré [18] and is 
receiving its culminating development in ihe profound investigations 
of Birkhoff [3] , we observe that it is possible to carry out the deve
lopments which are of a purely analytic characler (in ihe small) with 
the aid of a corresponding équation (IV), provided a suitable ana
lytic theory of the latter équation has been developed. 

Inala ter word the présent author intends to présent developments 
of ihe character just mentioned. 

W e note that équation (A) does not contain as a spécial case the 
équation (IV) corresponding to a System of dynamical type (whethcr 
following Birkhoff. Liapounoff and Poincaré or Bohl, Cotton and 
Perron). In fact, the présent work is not concerned directly with 
any dynamical aspects of the theory of differential équations. 
However, there is no doubt that, with suitable modifications, ana
lytic methods of the type presented in the subséquent pages are 
adéquate for the treatment of micro-analytic dijjerential pro
blems of dynamical character. This circonstance adds to the signi-
ficance of the présent work. 

The methods of the présent author on the whole do not follow any 
of the earlier patterns. Thèse methods consist in part of the following^ 
The problem (A) is resolved into a succession of linear problems* 
each with a singular point at x = o. Thèse problems are treated 
by asymptotic methods with the aid of some earlier results due to 
Trjitzinsky [19]. This is followed by a corresponding transfor
mation. Finally, by a certain limiting process the transformed 
équation is shown to possess certain suitable solutions. 

First we shall treat the case of the problem (A) when n = i. 
Then (2) will consist of a single convergent séries (not involving 
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logarithms). There will be only one polynomial Q(x). When n = i 
it will not be neccessarily required that Q(x) should be distinct 
from zéro. The main resuit for this case is given in the Existence 
Theorem I (§ 6). The trealment of the firsl order problem is followed 
by that of the gênerai n-th order problem (n>2.). The main resuit in 
this connection is embodied in the Existence Theorem II (§ 10). 
The reason, for the separate treatment of the two cases is that when 
n = i results can be obtained which are more spécifie than those for 
the higher order problem. Moreover, in developing the first order 
case one can take advantage of certain previously established results 
due to Horn [ 9 ] , Picard [17] and Poincaré [18] . The higher order 
problem is treated in sections 7, 8, 9, 10. 
- When n = 1 équation (A) will be written in the form 

QO 

j(B) **MjrW)(*) t= a(x, y) = ] £ av(*)y», 
V = l 

00 

(&) a^(x) = 2 a v , z # ' ( V = I , 2 , . . . ) . 
1 = 0 

ï t will be assumed that the séries hère involved converge for 

(5a) | * | £ r , l y l ^ p . 

For the case when in (B) the integer k is zéro essentially complète 
results hâve been obtained previously. Accordingly, in treating 
this équation it will be assumed that k >> o. With k > o the deve
lopments of Horn [9] would apply only of aK }0 7^ o. We impose no 
restrictions on a^o-

Problem (B) falls in the following two cases. 

CASE I. — In (B) we hâve not ail of the numbers 

( 6 ) «1,0, «1,1, • • - , a\»k—\ 

zéro. Thus 

(6a ) «i,o= «i,i = . . . = ^1,/-1 = 0, 0,1,17½ o (ogi^A: — 1}. 

CASE II, — In (B) ail the numbers (6) are zéro. 

In any case without any loss of generality it may be assumed 
that in (B) 

( 7 ) o = ai,&+-i = a l t4+a = 
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In fact, the transformation 

(8) 7 (^) = ^ (^ )7 (^ ) , 

where 

(8a) g(x) = \+ gyx-v- gtx* + ...= e • 

will yield the équation 

(B) x**iyM(x) = a(x9 y) = ^ «v(#)7v> 
V = ] 

in which 

(9) a t ( # ) = ai>a-h ai , t# -h...-+- alfkxk, 

(9«) âv(tf) = a v ( * ) ^ ^ ( a O = 2 « v i * ' ( V = 2 , 3, . . . ) , 
1=0 

the séries involved in(B) and (9 a ) being convergent for | # | _ r , 

2. Formai solution (case I). — Functions yj(x)(j= 1,2, . . , ) 
will be determined so that the formai séries 

(1) s(&) = Xj yj(x)cl (c an arbitrary constant). 
; = i 

will formally satisfy (B). W e note that 

(2) sv(x) = 2 v7;(x)cl (v7;(*) = ° for J < v)> 
; = i 

where îor j>v>2 

(aa) f 7 7 / ( ^ ) = 2 ^ ^ ^ ^ - - - ^ ^ 
l («t-i- /1,-1-...-4- / i v = / ; i-«i> "*, -.», iv^y — O-

When v>2 the inequalities n1? /i2, . . . , n^j—1 will necessarily 
hold in vievs of the following considérations. Suppose one of the 
numbers n^ n1. . . ., rav, say nu is >j then, since nK - r /ia + - . . + w v 

has more than one term (each being not less than unity). we would 
ha\é nK + . . . -+- ̂ v^7 H- 1 • Thus a contradiction would résulta 
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On substituting (i) in (B) and on using (2) it follows that 

(3) a?*** *(!)(*) — a[x9 s{x)] = 2 [x*+iyy)(x)—ai(x)yJ(x) — Wj(x)]c/ = o. 

Thus, the7/(0?) (y > i ) are to satisfy the équations 

(4) x^//\x)-a1(x)yJ(x)=W(x) ( 7 = 1 , 2 , . . . ) 

where tyi(x) = o and, for j = 2, 3, . * . , 

(4a) Wj(x) = %(x,y0, ...,7,--1) 

= 2 «v(*o v7;(̂ ) = 2 ttv(^)2 y^Wy^w- - -y*^*) 
7 = 2 7 = 2 

( # i i - H . . . H - / i v = y ; i ^ ^ i , • • - , w v ^ y —1) . 

Accordingly, for y = 1, (4) will yield 

where 

(6) ? ( # ) = ^ ^ - / ^ - ^ - ^ ) - 4 - . . . - 4 - ^ ^ - 1 , 
(6a) av = — - a i ^ - v (v = i ,2 , X:—0, 
(66) a*_/ * o (k-lli). 

Thus, in Case I, the polynomial q(x) is not identically zéro. 

DÉFINITION 1. — Let R ( r 0 ) , where o < r 0 < r , dénote a région 
satisfying the following conditions. 

i° 77ie boundary of R ( r 0 ) consists of an arc of the circle 
|a?| = r0 and of curves B1? B2 (eacA wi£/i a limiting direction at 
the origin) extending from the extremities of this arc to the 
origin. Except at the origin B1 and B2 hâve no points in common. 

20 The real partof q(x) [cf. (6 ) , (6 a ) , (6 6)] does not vanish 
interior R( / ' 0 ) ; moreover. 

(7) e<7(*)~o [« in R(r 0 ) ] . 

3° When x is in R ( r 0 ) every u on the rectilinear segment (o^x) 
is in R ( r 0 ) . 
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4° When x is in R(r0) and u is on the rectilinear segment (o, x) 
the upper bound of 

(7«) \t(u)u-*-*\ [cf. (5)] 

is attained at x* 

It will be shown that in the Case I régions satisfying the above 
définition always exist. On writing 

u = pe^^^9 qt=Lqt (* = i, . . . , # — / ) , 

b = ai$k— k — i = Ô'H- \/--îb\ 
it follows that 

(76) G(p,8) = lôg|*(i0i*-*-ij 
= ?*-/1 P"**-') c o s [ ( * - /)6 -qk-l] -4-.. . 

-4- | a41 p-1 cos(6 — ai) H- 6' logp — b"b 

and 

(7C) P5jjf = - ( * - / ) I ?*-/ I P"«*-fl cos[(*^- /)» - ? * - i J +• • • 
— | ai | p-i cos(ô — ai) -4- 6'. 

With E ( > O) a fixed number, however s m ail, define sectôrs W m ( r 0 ) 
with the aid of the inequalities 

^Lx<; \2.m + - J T-ZT, + / ! l / "~ £ (^ = o> l>**-î l^l^'o^o). 

For win W m ( r 0 ) 

(7«) l y * - / | c o s [ ( * - O 0 - ? * - i ] ^ - S K°)> 

where £ is independent of u, and £->o when s->o. Thus, by (7 c) 
and since (k — l)\ qk-i | > o, it is inferred that 

P ^ s - ( * - O l ^ * - i l p - ( ^ c o » [ ( * - / ) 0 - 5 w ] [ n - p ( p , 6 ) ] 

where |p(p, 0 ) |^ i for /i in Wm(r0) (r0 sufficiently small). Whence 
on taking account of (7 6) it is concluded that 

g^logl *(n)ir-A-i l^o [« in Wm(/-o)]. 
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Accordingly it is seen that W m ( r 0 ) satisfies conditions i°, 3°, 4% of 
Définition 1. Now 

(jf) Rq(u) = | qk-l\ p-l*-fl cos[(* -/)6 — ^ / ] -4-...-4- | qi I P"1 cos(e-^ qi) 

= | a*_/| pH*-iïco»[(A:-/)8 - ? * - / ] [i-4- *(p, 6)] 

where, by (7 e), | t/(p, 0) | < 1 /2 for u in W / n ( r 0 ) , provided r0 is suf
ficiently small. Ry(w) can not then vanish in W m ( r 0 ) . Moreover, by 
( 7 / ) and (7c) 

) e<rW | ^c-p-t*-I»Ç.[i + ̂ (p,8)]^e-p-t*-,^> 

whenever & is in W m ( r 0 ) . Hence, in W m ( r 0 ) , (7) is satisfied. Thus it 
has been shown that régions exist, for instance in the form of sec-
tors W m ( r 0 ) [cf. (7 d)] which, when r0 is sufficiently small, 
satisfy ail the conditions of Définition 1. With the aid of more 
extended developments existence of more gênerai régions, satisfying 
Définition 1, can be established. 

From (4) it follows that 

(8) ^,(x) = a,(x)yUx) = t*(x) ç t(*), 

(8a) ?*(#) = ctt(x) = 2 ?ï,i^S 

thelatter séries being convergent for | # | < ï r . On writing (4) in the 
form 

(.9) ?;<*) = t(x)fXu-*-^j{u)^L {j = 2, 3, . . . ) 

and on using (8) it is seen that 

(10) yi(x) = t(x)f u-k—1t(u)oi(u)du 

=^t(x) i u-h-i+a£ke9(u)9i[u)du. 

In conséquence of the methods of asymptotic intégration developed 
in (T<) the following statement can be made. 

Let 

(u ) Q(a?) = Qp«-PH-Qp_ia?-(Mï-f-...H-QiJT-i ( Q p ^ o ; p^i) 

and let B. be a région] of the type specified by Définition 1 [with 
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q(x) = Q ( # ) , and the conditions (4°) possibly omitted\. Suppose 

cp(#) is analytic inJ\.(x^éo) and 

( u a ) 9 ( ^ ) ^ ^ , ?*#l (a? in R). 
1 = 0 

Then the intégral 

(12) •• / uaeQMy{u)du 

can be evaluated as a function of the form 

(12a) xa+P+ieQWÇ(x) 

where'ÇÇx) isr analytic in R ( # ^ o) and 

00 

(iaé) C(* )~2JÎ : .*« [*mR;Ç, = -?./(pQp)]. 

W i t h the above in view and on taking account of ( 6 ) , (6 b) it si 

concluded that the function y*(x) can be evaluated with the aid 

of (10) as an expression of the form 

(i3) 7s (#) = t(x)x-k-*+ai,**-k-l+*e9lx)-i\t{x) 
= x-et*(x)T\*(x)\ 

hère ^2(^) is analytic in R ( r ) ( # ^ o ) and 

(i3a) ^ ( # ) ^ 2 ¾ ^ 1 [« in R(r0)] (1). 

By(4) 
(i4) tys(x) = at(x) 2y±(x)yi(x)^az(x)y^{x). 

Thus, in conséquence of ( 5 ) and ( i 3 ) , ( i 3 a), 

(lia) 4*,(a?) = ar-*t*(x) ?3(#) 

where 
93(#) = 2a 2 (#) Tj2(a?) -+- az(x)xl 

(1) In the case corresponding to that treated by Horn we would hâve a^^o 
and / = o, 
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is a function analytic in R(r) , such that 

QO 

(i4&) ? s ( a O ~ 2 ! 9 3 ' z ^ | > i n R ( r ) ] . 
1=0 

Suppose now that 

(i5) { • r v - l ( a ? ) = ^ - ^ ^ ^ ^ ( ^ ) ^ - 1 ( ^ ) , 
U ; U v (x) = x-0-W (x)9, (x) (v = 2, . . . , y - l ) (*), 

where the functions ^^(a?) , <pv(#) are analytic in R(r) (x^éo) and 

1 °° 

|
?v (^)~2?v5 Ï a?1 

i — o 

( i5a) < ^ | > in R(r); v = 2, 3, . . . , / — 1]. 

For r̂ in R(r) , e w ' ^ o (ra = 1,2, . . . ) . Hence application of the 
statement in italics, following (10), is possible to enable évaluation of 
the intégral 

(16) ^(^^(«ijv^vii»)!) 
= t(x)l a-*-i-</-*)Jf/-î(a) ïj-i(u)du 

= * ( # ) / * ^ - ^ - 1 - ( 7 - 3 ) / + ( / - 4 ) 0 1 ^ ^ ( 7 - 1 ) 7 ( 1 1 ) ^ ^ ( ^ ) rfw 

= £ ( x ) a?-'-(7-3) /+(7-s)«i,* e(7-*M*} •/),_! ( # ) 
= # - ( / - • ) ' # - * (a?)7i;_i(a?) 

where Y}y-i (a?) is analytic in R(r) (o; ^é o) and 

(16a) ^ - 1 ( ^ ) ^ 2 ^ 7 - 1 ^ 1 [a? in R(r)]. 

With the aid of ( i5) , (i5 a) (16), (16 a) it follows from (4) that 

7 

(17) tyj(x) = 2 « v ( # ) 2 ^-(^i-^Mii-l)/ (* -l)/^i+"s+...+«.(^) 
V = 2 

X W ^ W ^ ) — W * ) [#li-4-...H-/lv=./i I^/ll, ..., / lv£/—*]• 

(1) For the présent it is assumed that y is a fixed integer > 3. 
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Thus 
J 

(l7a) ^(^)=2av(^)^y/+V^ /(^)2^ l ('r)'n, îs ( ir ) , , ,71' lv (a7) 

V = 2 

= 37-(7-*)J«/(a?)ç 7 (<p) f 

whefre 

1 7 

(/11-4-...-4-/iv = y; i g n i , . . . , wv^y — 1). 

Manifestly 9y(^?) is analytic in R ( r ) (x^o); moreover, 

(17c) 9 / ( ^ ) ^ 2 ?ysl^ |>inR(/-)]. 
1=0 

IJEMMA I. — Consider Case I (§ 1) of the équation (B) (§ 1), 

(B) x^yW(x) = a (a?, y) s j «v(^)7v(^). 
V = l 

Le£ t(x) be defined by (5) a/ia? fe£ R ( r ) 6<? a région as specified 
by Définition 1. Equation (B) possesses a formai solution, 

00 00 

(18) s(x)=^àyJ(x)cJ=^x-iJ-^tJ(x)'r\J(x)cJ. 

7 = 1 7 = 1 

Hère c is an arbitrary constant, the v\j(x) are functions analytic 
in R( r ) (# ^ o), $ac/i £Aa£ 

(18a) ^ 7 ( ^ ) ^ 2 ^ 7 , ^ 1 L/ = I , 2, . . . ; a? inR(r) ] , 
1=0 

nu (x) = 1 ; moreover, the rij(x) are defined in succession with the 
aid of the relations (9), (4) . 

Whenever the séries (18) converges, for x in a région 

R(7-o )o<7 0 <>o 

and for | c | < c 0 (c0 sufficiently small), it will represent an analytic 
solution of (B); moreover, te abovelemma would give detailed infor
mation regarding the behaviour of this solution, for x in R(/ ,

0) , in 

MÉMORIAL DES SC. MATH — N° 9 0 . 2 
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the vicinity of the singular point. When l = o, convergence of (18) 
follows from the developments ofHorn in conséquence of the consi
dération of an équation 

00 

(B*) a>***y*M(*) = a*(«, y*) = 2 <{x)y*", 
V = l 

which is of the same character as (B) but is so chosen that it has a 
convergent formai séries-solution of type (18); moreover, from the 
convergence of this séries convergence of the original séries may be 
inferred. Proceedings of this type appear to break dow for Z]>o. 
However, it is of interest to observe that the équation 

(i9) 1 * 1 ^ ^ = ^ ( 1 * 1 , 0 7 * 

- ^ (P<\x\^r0<r) 
( i - P i * l ) ( i - ï , r * ) 

is u dominant " with respect to (B) provided en, [3, y are suitable 
positive numbers and provided 

( « î ( l # l , Ç) = R ( « I , / * / H - a1 , /+i^^i-t- . . . -4-a l j /t_ia?*-1)-4- |^|*Rai>A: 

( (Rw = real part of u\ Ç angle of x) ( 1 ) . 

This équation, as can be easily observed, is of the same type in \x\ 
as the équation (B), whenever o <.\^\_r0. It has a formai solution 

00 

(20) ,*(| x |) =21 * M'-^'U * IK(I * l)c% 
j=\ 

where c* is an arbitrary positive constant and 

(20a) t*(\x \)=t*(\x\9 l) = ef * l^l-^rfd'I .ÇJrfl*! 

The following can be jdemonstrated. The YK ( | x |) are analytic in | x \ 
for o <C | x | _ r0 < r ; moreover, they are positive and 

(206) V ( l ^ l ) ~ 2 V , * l * i ' [ ° < l # l ^ ' v , -nod^l) = 1;7 = 2, 3, . . . ] , 

(1) When l = o (Horn's case) it is possible to simphfy (19 a) by letting a* = Rax 0. 
In the gênerai case, however, in (19 a) the numbers ax ^,, . . . , axk cannot be repla
cée! by zéro. 
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provided (as is assumed throughout) that Ç is allowed to assume only 
the values of the angle of x, when x is restricted to the région 

R(ro)O). 
Furthermore, there exists a constant n, independent of x and Ç, 

such that the functions rij(x) occurring in Lemma I, salisfy the ine-
qualities 

(21) 1 ^(x) | < W (| x |) {j = 2, 3, . . . ; l = A*) 

for a? in R(r 0 ) . 

Thus, whenever the formai solution (20), of(19), converges for 
o < | # | ^ ' \ ) ^ r [C restricted as in the statement folio wing (20 6)], 
the formai solution ( 18) o/(B) will converge for x mR(r0) (o < r0^ r) 
and for \ c \ _c0(r0 or c0 sufficiently small). 

When the séries (20) diverges the « dominant » équation (19) is 
still useful, as with the aid of the ine qualities (21) and in conséquence 
of the spécial form of (19) it is always possible to obtain certain ine-
qualities for the absolute values of the v\j(x) occurring in (18) (2) . 
But inasmuch as construction of an « actual » solution is concerned 
we shall hâve to employ certain asymptotic methods {cf. §4, 6 below). 

3. A transformation (Case I). — Let n be a positive integer. In 
the transformation 

(1) y(x) = Y4#, c) -4- c*pn(x, c) 

let 
n — l 

( i a ) Yn(x,c)=^pj(x)d [pj(x)==yj(x)m,J = i,.>;n — i;cf.{i$),§% 

/ = 1 

P/i(#? c) will be a new variable. As a matter of convenience we shall 
write 

?j(*)=yj(x) (y =1,2, . . . , " - O ; 
(2) 

1
 9j(x) = o (j = n, n - t - i , . . . . ) . 

(1) Ç ( = angle of x) plays the rôle of a parameter of the équation (19), 
(2) For the présent thèse détails will be omitted. 
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Before applying ( i ) to the équation (B) the function 

(3) F»(a?, c)sa?*MYM>(*, c)-a(x, Y,) 

will be first considered in some détail. 
One taking account of ( 2 ) i t i s n o t e d that ¥n(x, c) canbe expressed 

in powers of c by means of an expression analogous to that involved in 
the second member of (3 ; § 2 ) , 

oo 

(4) Fn(*,c)^[x^?y>{x)-ai(œ)pj(x)-Wx)]ct; 
7 = 1 

hère 

(4a) tyj(x) = ty(x9 p0, . . . , p;-i) [cf. (4a), § 2J. 

In conséquence of (2) and ( 4 « ) b y ( 4 ; § 2 ) i t follows that 

l x**\ p^(x) — a1(x)pJ(x) — tyj(x) 

(5) =x*^y/)(x) — ai(x)yj(x) — ^f(x) = o 

( (7=i , 2, . . . , n — i); 

(5a) x^ p^Kx)-a,(x)pn(x)-^n{x)=-^l{x)', 

(5b) j œk+± py ) (^) — « i (^)py(^) — + / ( ^ ) = - 4 ^ / ( ^ ) 
( (y = n-4-i,4/i -4-2, . . . ) . 

The tyj(x) are known functions given by relations of the type of ( 1 7 a ; 
§ 2 ) . Thus 

(6) tyj(x) = X-V-V* t/(x)ôj(x) (/==/1, 71-4-1, . . . ) , 

where the <py(#) are analytic in R ( r ) (x yé o ) and 

(6a) ôf(x) ~ 2 ?/,«*' lin R(r)'> ?»(*) = ?»(*)]• 
1=0 

This follows from the fact that the c?j(x) are the same fonctions of 

the r\i(x) [the rn(x) are the counterpart of the rn(x) of § 2 ] as the 

Oj(x) are of the r)i(x), while ra(x) =im(x) (i = 1, 2 , . . . , /i — 1) and 

yjj(#) = o ( i = n, n H- 1 , . . . ) . Hence by virtue of ( 5 ) , ( 5 a ) , ( 5 6 ) 

and ( 6 ) , on writing 

(7) CX~'t(x) = T(x)9 
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it follows that 

(8) •F»(*,c) = ^ 2 ? y W ^ W [cf. (6a)]. 

The séries in the second member of (8) converges for | c | ^ c 0 . x in 
R( r 0 ) (o < r 0 ^ r ; c0 or r0 sufficiently small). 

Substituting (i) in (B) we get 

(9) x*"mK*, c) + c»M(x9 c)] 
= a(x, Yn-f-c»pre) = a(a?, Yu) -4- a1(^)^pn-4- a2(#)c2*p2-K. , 

where 

(9«) 
^ d*a(x9y)l 

* m W - m \ dym \y=Yn 

= am(x) -+-^0^ al+m(x)Yjl(xi c) 

= am(x)-+- $m(x, c) ( ^ = 1,2,.. .), 
On writing 

(io) cnpn(œ, c) = xlin(x)z(x, c) 

and on observing that 

(ioa) zi±)(X) —i m(x) —i . A , x 

x(#) a? £ ( # ) x 

it is concluded that 

(106) c^p^ar, c) 

= * ' T » ( * ) [ ( ^ + * l L ^ *(#, C) H- z(D(x, c)J 

= a?/xn(a7) I ( — (rc — i)--4- /ia?-*-1ai(a?)j *(#, c) 4- zM(x9 c) I. 

In conséquence of ( io) , ( 10b), (3) and (8) from (9) we obtain 

œt+k+ixn(x) (— ( / 1 - 1 ) - H- nx-*-i ai(x)\ z(x, 0)-4-^)(^, c) I 

= x2l-zn(x)2_, Oj(x)i'J—n(x) -4- a4(x)x lzn(x) z(x, c) 

-4- <Xi(x)x2i -z^(x) z*(x, c)-+-..., 

so that 

(il) £(!>(#, c) = a(x) -4- a'(#) *(#, c) *4- T[#, *(#, c)]. 
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Hère 

( u a ) a(x) = xl"k-^a(x) 

where a(x) is analytic i n R ( / * ) ( a ? ^ o ) and 

(nb) a(x) = 2 ^j(x)iJ-n(x) ~ ?n(#); 

(ne) q'(x) = x~k~1[ai(x) •+- $i(x, c)] -4- (n — i) nx~k-1 a±(x) 

z-x—k—i (^(^ c) _j_ ( n — jW a?-*-1 ai(ar) j 

~ ( / 1 - 1 ) ( - - ^ - ^ ( 3 7 ) ) . 

Also 

(12) T[x, z(x, c)] = xl~k~i -zn(x)[oL*(x)z*(x, c) 
-4- a3( x )xl-zn(x)z*(x, c)-4-... 
-4- am(x)xlm-z)l-zlm-*)n(x)zm(x, c)-*-...] 

= x1—*—1 tn(x) W[xy z(x, c)] 

where, by ( 9 a ) , 

(12a) a m ( # ) ~ a m ( # ) (/n = 2, 3, . . . ) . 

The asymptotic relations (1 i 6 ) , ( n c ) , ( i 2 a ) a re inxfor x in R(/*o). 
7%£ functions involved in the left members of thèse relations are 
analytic in x for x in R(r0) (x ^é o), provided | c | < c0 ( c0 afixed 
number). The above asymptotic relationships are in the foliowing 
sensé. Letf(x, c) dénote any one of the functions 

(12b) < ̂ ) — ? *(^) ' ^ ( ^ ) - ( ^ - 0 ( - - ^ - ^ ^ 1 ( ^ ) ) , 

\ <*,„(#) —am(#) (m = i ,2, . . . ) . 

We hâve 
/ ( # , c) ~ o-h o.#-4-o.#2-t-... [in R(r0)] 

uniformly with respect to c (| c | ^ c 0 ) ; that is, 

(i3) \f(x, c)\<\x\PfPtCo [x in R(r0); |-c|gc0; />'=i, a, . . . ) 

where the constants/^, 6o are independent of x and c. The rapidity 
with which the functions (126) approach zéro, a s# -> o within R ( r ) , 
can be specified by inequalities more accurate than ( i3) . However, 
such inequalities would not be necessary for our purpases. 
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On taking account of the way in which the séries 

W(x, *)== W|>, z(x, c)] 

had been derived it is seen that W(x, z) is analytic in x and z 
for x in R(/ '0) (x^éo; r0< /*) and \z \<p(r0) ( ' ) . Since from (7) it 
follows that by taking ru suitably small the upper bound in R ( r 0 ) of 
| T ( # ) I can be made as small as desired, it is concluded that p(r0) 
can be made arbitrarily great by assigning a suitably small value 
to r0. If rQ is kept fixed the numberp(r0) could bemade as large 
as desired by taking c0 sufficiently small. 

LEMMA 2. — Let n be a fixed posive integer. The transformation 

n — \ 

(i4) y(x) = V #-(7-1)/ tJ(x)v\j(x)c/-h x-i»-*)1 tn(x)z(x, c)cn, 
7 = 1 

where t(x) and the nj(x) are functions involved in Lemma 1, (§2), 
wheen applied to (B), willyield the équation 

(i5) zM(x, c) = a(x) -4- q'(x)z(x, c) -+• xl~k~^ in(x) W[x, z(x, c)]. 

The various functions hère involved are spécifie Id by (11 a), {11 b), 
( n e ) , ( 1 2 ) , ( 7 ) , ( 1 2 0 ) . Moreover, thèse functions possess properties 
indicated in the several italicized statements following (12a) . 

4. Solution of the transformed équation. — W e shall now proceed 
to obtain a solution of (11) bounded in R ( r 0 ) ''o sufficiently small; 
| c j ^ c0 ; c0 fixed ). In conséquence of ( 11 c ; § 3 ), 

t \ t \ f q'{x)dx 
(1) g(x) = e<> 

= e J u(x, c) = #(*—*)' t—n-+-1(x) u(x} c) 

where u(x, c) is analytic in x (x i n R ( r ) ; | c | <c 0 ) and 

( i a ) u(x,c)~i, ' , ~ i | > i n R ( r 0 ) ; | c | £ c 0 ) (2). 
u, y Xy ç) 

(1) Throughout we keep | c | < c0. 
(2) Throughout this section asymptotic relations are uni form [c/. the italicized 

statement in connection with (i3; § 3) ] with respect to c9 provided | c |<c0. 
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Define z0(x) by the équation 

(2) 4 n ( * ) = « ( * ) -*• ?'(*) *o(* )• 

In conséquence of ( i) and (i i a; § 3) 

i LÏ2i_ xi-k+i a(x)dx. 
U \X y C) 

By virtue of the slatement in italics following (10; § 2) and by (ia) 
zQ(x) can be evaluated as a function analytic in a?, for a? in R ( r ) (c | _ c0), 
and such that 

(3) z0(x)~Jy^ zQilx
l [in R(;-)]. 

1 = 0 

In particular, 

(3a) \z0(x)\^z0 [X in R(/-)î I c|gc0]. 

Ta/Ve e0 sufficiently small so that p(r)>i\) (cf. italicized state-
ment preceding Lemma 2 (§ 3). Whence, on writing 

(4) z, = />(/•) - 2Ç [o < 2? < />(r)], 

it follows that 

(4«) ^og/?(^o) —2Ç, 

whenever o < r0 < r. Thus W [ # , ^0 (#)] is analytic in a? in R(r 0) ; 
| c | ^ c 0 ) , the corresponding séries being absolutely and unifomily 
convergent. 

There exists a constant M, independent oîx, z and c, so that 

(5) | W ( * , * ) | < M [ l * l â / > ( r ) ; * i n R ( r ) ; | c | £ c 0 ] . 

In conséquence of the Cauchy theorem for analytic functions we hâve 

(6) \W(XyZ')-W(XyZ")\< ^ | ^ - / | [ * i n R ( r ) ; | c | ^ c 0 ] , 

provided 

(6a) l*'i </>(#•)-S, I ^ K / > ( 0 - 5 J (1). 

(1) The Cauchy theorem is applied to W(x, z) , considered as an analytic function 
of z, while a;(inR(r)] and c(\c\ < c0) are considered as parametric variables» The 
statement in connection with (5) plays an essenial rôle. 
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It will be also noted that 

(7 ) \u(XyC)\<h, <h [xm R ( r ) ; \c\^c0] \u(x, c)\ 

where h is independent ot x and c. W e choose G so that 

<7«> O l ^ l 

and so that 

(8) \Vf[XyZ0(x)]\<G\z0(x)\ [a? in R ( r ) ; | c | g c 0 ] . 

That such a sélection is possible can be inferred from the form of the 
function W (x, z), as defined by (12 ; § 3) . 

Gonsider the function 

(9) ln(u) = | u-nn-l)l-k-l r-n-l(u) \ = \ t(u)u~l |2"~2 | t(u)u-*^* |. 

Piecalling that the last factor above possesses the properly (4°) of 
Def. 1 (§ 2) the same is seen to be true of \t(u)u~l\ ( 1) . Thus 
the following condition is satisfied. 

i° When x is mR( r0) and u is on the rectilinear segment (o,x) 
the upper bound of the function ln(u), defined by (g), is attained 
at x. 

Choose /*o sufficiently small so that the following will also hold. 

20 With c0, G and h fixed in accordance with previous state-
ments, we hâve 

(10) cgG/l* I # - ( " - ! ) / - * t"(x) | < - T - l r, 

for ail x in R ( r 0 ) . 

It is observed that r0 can be selected independent of n. It is also to 
be noted that in conséquence of the above condition (i°) it follows 
that 

(11) / ln(u)\du\<,\x\ln(x) \x in R ( r 0 ) ] . 
Jo 

By virtue of the above choice of c0 and r0 it can be shown that the 

(1) Since \t(u)nrl\ = \t(u)u-k-l\\u\h+l-l(k+ 1 — / > o ) . 
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équations 

(12) zy)(x) = a(x)-hq'(x)zj(x)-+-T[xi zj-i(x)] ( 7 = 1 , 2 , . . . ) 

détermine functions Zj(x) j = 1 , 2 , . . . ) , defined for x in R ( r 0 ) and 

for | c | < c 0 . From (12) we hâve 

X
x du 

j a(u) -4- T[uy Zj-y(u)] ) j ^ (jli). 
On writing 
(i3) w0(x) = z0(x)y Wj.(x) = Zj(x) — Zj-±(x) ( 7 = 1 , 2 , . . . ) 

in conséquence of (12 ; § 3 ) and (1 ; § 3 ) it is inferred that 

(i4) <*>j(x) = g(x)fX{T[Uy zHl(u)]-T[u, * y _ s ( w ) ] ) - ^ L 

X
x du 

Ul-k-, cn u-nltn{u) { W [ w , Zj_,(U)]-Vt[UyZ}-,(»)} i ^ 

{ 7 = 1 , 2 , . . . ; W[uy z-i(u)] =E o }. 

By ( 6 ) and 6 a ) , provided 

(i5) \zHl(u)\y \zHi(u)\<p(r) — l; [u in R(r0); | c | = c0], 

it follows that 

(i5a) j ' W[U' *'-*Wl " W [ W ' *J-*W1 < G I «V-i («0 I 
( [M in R(/-0); | c | g c 0 ; 7 = 2, 3, . . . ] . 

Forj= 1 (10a) has been previously established in ( 8 ) , 
By (1) and ( 7 ) from ( i 4 ) we obtain 

(16) \wj(x)\ = \x^-Wt-w(x)u(x, c)\ 
X f Cn

 M-2(/ l - l ) / -*- l £2/1-1 ( M ) _ _ ! 
\J0 'u(uuc) 

X { W[ai , ^y-i(wi)] — W[WI, ^/„i(ai)] } owi 

< cjf I #(*-!)'*-*+i(#) | A* G f ln(u) | wy-i(a) \\du\ 
Jo 

[cf. (9); a: in R(A-O); I c | ^ c 0 ] , 

provided ( i 5 ) holds. Suppose ( i 5 ) holds and assume that we hâve 
previously shown that 

(17) | «7-1(11) | < P7-1 [u in R(r0); ! c | gc0]> 
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Then by (16) and (i i) it would follow that 

I «7(*> K Ci | xW t-"+i(x) | h*G | x | |B(*) B/-I; 

so that, by (g) , 

I <*>j(x) I < cï GA21 ar-C-i)'-* *»(#) | p ^ . 

Furthermore, in conséquence of (10) it would follow that 

(18) | * y ( * ) | < — L — p , ^ [*inR(,.0); |c|^Co]. 

The above developments signify that if for a fixed j inequalities 
( io) and(i7)aresatisfied then (17) will necessarily hold also for j 
increased by unity. Moreover, one may take 

do) ^^hp/ -
Since 

\wo(u)\ = \z0(u)\<:Zo = p(r) — 2Ç<p(r) — S 

it follows that, for j = 1, inequalities (i5) and (17) aresatisfied with 

Therefore (18) holds for j = 1. We hâve 

(20) ' ^ W K ^ ^ r H ' ^ 

Accordingly 

\zt(x)\ = \w0(x) -h wt(a?) |<p 0 H-pi< J p{' , ) -"ï [arin R(r0); | c | = c 0 ] . 

Whence it is seen that ( i5) and (17) are satisfied for / = 2 with (3, 
defined by (20). By the above italicized statement it follows that 

1 ^ ( ^ ) ^ ^ = ^ ^ ^ 1 = ( ^ ^ ) ^ 0 [ * i n R ( r 0 ) ] ; 

whence 

| zt(x) I = I vt>o(x) -4- Wi(x) -4- wt(x) I 

<Po (1 + J(pprç + [ /? ( /.)
a_g]2) </>('')-? [* inR(/-0); |c |^]. 

By induction, in view of the statemenl subséquent to (18), it is 
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inferred that 

(21) \"j(*)\<$J=lPO')-ZÏ][p(J
i
)
J_iV> 

(21 a) | Zj(x)\ £ | ̂ 0 ( # ) + W l ( # ) + . . . + «,, ( # ) | < p 0 + p1 + .pl-f. p; 

[ / = = 0 , *> 2> . . . ; ̂  in R(/- 0 ) ; | c i ^ c 0 ] . 
The séries 

oc 

(22) lim Zj(x) = 2^1 wi(x) = *(&> c) 

1 = 0 

is absolutely and uniformly convergent for x in R(/ ,
0) . The consti

tuent terms of the séries being analytic in R(/'o) {00 ^é. o) the same 
will be true of the limiting function z(x). Moreover, by (21a) it 
follows that 

(23) \z(xyc)\^p(r)-^ [ * i n R ( r 0 ) ; | c | S c 0 ] . 

B y ( i 2 ) 

wy ](x) = q(x) Wj (x)-4- #'-*-i cn x~nit*(x) { W[x, z;-i(x)] — W[x, zr-%(x)] \. 

Accordingly, b y ( 2 i a ) , ( i5) and ( i5a) , 

( K y H ^ ) i < l ^ ( ^ ) l l ^ / ( ^ ) l + l^-1, l-1)/-A-1Gc^M^)]|^7-i(^)l 
( [x in R ( r 0 ) ; | c | g c 0 ; 7 = 1 , 2, . . . ] . 

Whence in conséquence of the absolute and uniform convergence of 
the séries involved in (22) it is concluded that the séries 

2Xi}(*) 
possesses the same property for x in R(/'0) (| c\<c0). Hence 

(2Ô) hmz^(x) = -^-riimzj(x)'] =zM(x9 c). 

Furlhermore, it follows without difficulty that 

(25a) l imT[#, z;-i(x)] = TTx, \imzj-i(x)~\ 

= T[xy z(x)] [x in R(/-0); I c | _c0]^ 

Application of (25) and ( 2 o a ) t o ( i 2 ) makes it évident that the func
tion z(x, c) defined by (22) satisfies équation ( i5 ; § 3). 
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LEMMA 3. — Suppose that r 0 (o <C r 0 < r ) is a number {indepen
dent of n) sufficiently small so that the condition ofthe italicized 
statement in connection with (10) holds. Let c0 satisfy the state-
ment subséquent to ( 3 a ) . The équation ( i 5 ; §3) of Lemma 2 (§3) 
will then possess a solution z(x, c) with the following properties. 

i ° The solution is analytic in x for x in R( r0 ) (x ^ o ; | c | < c0 ), 
where R ( r 0 ) is a région as specified by Def. i (§2). 

2° The solution is bounded uniformly with respect to x and c 
when x is in R ( r 0 ) and \c \<c0 [cf. (23)] . 

3° The solution is defined by the séries (22) [cf. ( i3 ) , (12) and 
( i4 ) ] , which converges absolutely and uniformly for x in R ( r 0 ) 
and for \ c | ^ c 0 . 

5. A réduction for the case II . — Turning our attention to Case II 
(§ 1) ofthe équation (B) (§ 1) we hâve 

QO 

( B ) xk+1yM(x) = a(x, y) s= ai}kxky - 4 - / , ay(x)yy 

V = 2 

= a i kxky -4- ay1(x)yv^-hayi(x)y^-^-... 
where 

( a v , ( # ) = xm*al(x); al=yl-^... 

\ [ ( Y ^ ^ m ^ o ) ; ( i = i, 2, . . . ; 2 ^ v 1 < v 2 < . . . ) ] ( 1 ) . 

At least one ofthe functions aUi(x) must contain a constant term. Thus 

( i a ) mi, m*y ..., m a _ i ^ i , / n a = o (a^O* 

Consider expressions 

(2) o , ( p ) = - Â : - 4 - m z + P ( v i - i ) 

and define numbers (3(i) by the équations <p,[j3(i)] = o; thus 

(2a) p ( l ) = i ^ («±»1,2,. . .) . 

By (i 'a) in particular it follows that 

(26) B(a) = = — ( — i n its lowest terms ) . 

(1) In (1) . . . dénotes positive intégral powers of x. 
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Defme (3' as the greatest one of the numbers (3(i), £(2) , . * «, P(^)« 
Accordingly^ 

(2c) P , = P ( Ï 1 ) = P ( ^ ) = - . . = P ( « H ) > P ( 0 ( « I < ! • -< . . .< ÏH^«) 

/ o r z =^ ii. i2,.. ., *A( *<<*)• It then follow that 

(3) ç,t(P') = ?JP') = . . . = ?..(?') = o, ?I(P') > o 

/ o r 1 = 1,2, . . . (i^éi<, i2, . . . , Ï„) . 
To prove this statement we not that the equalities of (3) hold in con
séquence of (2c). Suppose the inequalities of (3) do not ail hold as 
stated. Then for some if(i'^ i\,i<t9• • • ? in) w e would hâve 

(3a) Ç«'(P')So. 

Case (1) ( « ' > « ) . — From the latter inequality it follows that 
P'^(A: —#iv)/(*v—1). But ^ > t > a so that i /(p,— 1) < i/(t>a —1); 
moreover, m^>o. Hence 

A contradiction arises since by définition (3' is at least equal to (3(a). 

Case (2) (ï'<a). — The inequality (3'^(K — ml#)/((v— 1) would 
hold as above in conséquence of (3a) . By (2a) it would follow that 

(4) P'SP(0-

On noting that «' has the same properties as indicated in the statement 
in connection with (2c), it is observed that (4) is in contradiction to 
(2c) (with i= i'). 

Gonsequently the italicized statement in connection with (|3) is 
seen to be true. 

Application of the transformation 

(5) y(x) = x?Mx) (p=*p'=«|) 

to (B) will resuit in 

(6) x 7)(i)(#) = («i,*— p) i\(x) H - 2 «vP(a?)a?ïv^)M Vr(*). 

B y ( i ) a n d ( 2 ) 

(6a) aVr(*)*<v^>M:=atfr(P)ïr(ar) (r = 1, 2* ...¾. 
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On writing 
l N 

(6b) 9r(P)=— À-4-rar-4- - (v 7 _! )= — (integers Nr; r = i, 2, . . .) 

it is observed that, in view of (3), 

(6c) NZl=NZa = . . . = N iH=o, N r >o ( I - ^ Ï I , «i, . . . , I H ) . 

Hence (6) may be written in the form 

(7) x^)(x) = (al}k-V)v(x)+^bv(x)r?(x)y 
V = 2 

80 l 

(7a) M ^ ) = ^ V ^ 
ï = 0 

the numbers 

(lb) 6vrj0 (/" = «1, «1, • - . , m) 

being the only constant terms [in the various séries ( 7 a ) ] which are 
distinct from zéro (1 ). 

With the aid of the further transformation 

(8) x = ZP 

équation (7) assumes the form 

dt\ 
= jjyu\,k— p ; n "i 

V = 2 

(9a) cv(z)=pbv(zP) = 2 c v i * i (v = 2, 3, . . . ) 
1 = 0 

where 
C ^ o (v =v Z l , v*,, . . . , v lH), 

( = 0 (v ^vtl, vZs, . . . , vZH), 

moreover, the séries involved in (9) and (9a) conyerge for 

(9&) \z\i?'u h l^pi (/-i>o; pi>o). 

Recalling certain developments due to Picard (3) and Poincaré ( 3 ) , 

(i) 6V = yt and so on [cf. (1)]. 

(2) PICARD, Comptes rendus, vol. 87, 1878, p. 43o and 743. 
(3) POINCARÉ, Journal de V Ecole polytechnique y 1878, p. i3. 

(9) *g£ =p(<*i,k— P)-n + 2 cv(*K, 
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which are applicable to équations of the form (9), the following is 
inferre d. 

Case ( i°) . — The realpart ofp(aK^ — $)is positive butp(aK^— (3) 
is not a positive integer. Equation (9) has then a solution 

(10) ^ = 2 ^Jzl(^czqy ho,o=o; q=p(al,k— P)]. 
l,J = 0 

Hère c is an arbitrary constant and the involved séries converged for 
| z | < r0, | c | ^ c0 (r0, c0 > o ; r0, c0 sufficiently small). 

Case (20). — The realpart of p(a^k— (3) is' ̂ o. There is then a 
solution 

00 

(10 a) r\=\^'r\lzl (convergent for | z \ ^r0). 
i = \ 

In the next section we shall consider the remaining case of (9) : 

Case (3°). — q=p(aiyk— (3) w a positive integer. 

LEMMA 4. — Consider Case II (§ 1) of the équation (B) [cf. (1 ), 
( l a ) ] . Define (3(i) (i= 1,2,...) by ( 2a ) and let (3 = l\p be the 
number specified by the italicized statement subséquent to (26) . 
The transformation 

y = #3 rj, x = zP 

will yield équation (9), which in the Case ( i°) has a convergent 
solution (lo)-and which in the Case (20) has a convergent solu
tion (10 a ) . 

6. The existence theorem (first order problem). — It will be now 
shown that in case (3°) (§ 5) équation (9 ; § 5) possesses a solution 
ofthe same t}rpe as in Case ( i ° ; § 5) . Put 

(1) Y) z=S y/(z)cJ (c an arbitrary constant) 

so that 

(2) V = 2 v7/(z)cJ Uyj(z) = o for j < v), 

|>i-4-.*.-t-rtv = y; i<nu . . . , n^f — 1; / ^ v g a j . 

/ = i 

(2 a) 
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Substituting in (9; § 5) we get 

00 GO 

V=zO 7 = 1 

Thus, equating t h e / , (j = 1, 2 . . . .) to zéro, it follow that 

(3) */;>(*) - «7.T/U) = +;(*) [+i(*) = o; / = 1, 2, . . . ] 

where 

(3a) 

y 

+7(^)=2^(^)2^,,,(^)...^,(^) 
V=2 

(fti + . . . + nv = ; ; i^w1? . . . , n^j — 1 ; j = 2, 3, . . . ) . 

Whence 

(4) ^ (^) = *(*)=***. 

Also 

(4^) <M*) = ***?*(*) [?2(s) = C2(s) = a c. p. s.] (i). 

Theyj(z) (J = 2 , 3 , . . . ) are determined in succession, with the aid 
of (3a) , by the relations 

(5) &(*) = ** f u-9-i<\>j(u)du ( / = 2 , 3 , . . . ) . 

Thus, by (4 a) , 

(5a) y*(z) = z*<rt\t(z) [i\t(z) = a c. p. s.]. 

Let us assume lhat, for f = 2, 3 , . . . , j — 1 (f ixed/> 3), 

(6) Jv-i(*) = *<v^>**iv-i(*) [^-i(z)a c. p. s.], 

(6a) <\>v(z) = z*<? ç v (* ) [?v(*)« c. p. s.]. 

In conséquence of (5) (with / replaced by y — 1) it is then inferred 
that 

(66) yj-i(*) = ** f ulJ-*)q-i oj-i(u) du = zV-*)9 v\j-i(z) 

(1) The terni « a c.p.s. » is to dénote in a generic sensé a power séries in z con
vergent for | z | ^ r, [cf. (96; § 5)]. 

MÉMORIAL DES SC. MATH. — N* 90. 3 
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where rij-i(z) = a . c . p . s . On the other hand, by (66) and (6) trom 
( 3 a ) we would obtain 

/ 
(7) ty(z) = 2 c v ( * ) 2 ^ 1 ^ ) - • .T\nv(z)*ln*—+»**=*'* ?;(*) 

V = 2 

where cpy(s) = a . c . p . s . By induction it therefore follows that for* 
mulas (6) , ( 6 a ) hold for v = i, 2 , . . . 

The équation 

(8) z£=ql-*-**V-h**1? + ...t 

where a is a positive constant, is a spécial case of (9 ; § 5). In view 
of (4) we get 

(8-) , * - ç + ! j ! p + f ï p H - . . . . 

In conséquence of certain results of Horn (1 ) this équation is seen to 
possess an absolutely convergent solution 

(9) Ç = Çt t(z)C-h Ç2 *
2(*)C2-4-... (the Ç, constants; 1 = 1, 2, . . . ) 

[Ca positive arbitrary constant; | G | ^ C 0 ; \z |^ r (a)] where C 0 > o , 
r ( a ) 2> o and C0 is sufficiently small. Write 

(9a) lj tJ(z) =yj(z) = t/(zûj(z)y CL^=CV(Z). 

The functions corresponding to the xVJ(z) will be 

I I J 

^/(^)=2^2^^^^-^-^^^^^=^2^2^^--^^ 
V = 2 V = 2 

( A i 1 - h . . . - h / i v = i / ; i<,nu ...y n^j — 1; j = i, 3, . . . ) 
where 
(9c) 2"v2^ni^"-mi*n'(*) =?/(*) = 2 a v ^ - • -^^=c°nst-

V = 2 V = 2 

In particular 

-̂ 1(-3) = 1 = ^1(3) and 92(z) = câ(^) = a2. 

(1) HORN, Journ. f. Math., vol. 119, 1898, p. 287. 
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Hence in view of (4«) , if we let a2>\c2(z) | (| z | < n ) , it will follow 

that | 92(^)1^92(^) so that 

l+*(*)|£*i(*) ( l * I ^ O -
Whence by (5) 

\yt(z)\^\z<i\ T\u\-^\^(u)\d\u\ 
Jo 

±\*\if' | a r * - i f c ( l « I W I « l = J t ( | * | ) C1) 

for | -s | _:/•-!- Suppose that, for v==2, 3. . . .\J — 1) (f ixed/> 3), 

(10) lrv-i(^)i s 1 ^ - ^ - 1 ( i* l ) [= jv - i ( i* l ) ] , 
(10a) \Uz)\ = \z\^c,(\z\)[=^(\z\)] (\z\^n). 

By (5) (wi th / diminished by unity) and by (10a) we get 

(n) \yHl(z) ï\z\<r fZ\u\-9^\^]_l(u)\d\u\ 
^0 

ï\z\r f i i . r^+y- .dKDrf iB i^J /^d*! ) (WSM. 

Furthermore in conséquence of (10) and (11) it is concluded that 

j 

(12) 1 <wco 1 ̂ 21c^*) 12 ' y M - • -ynXz) ' 
V = 2 

/ 
^^(\z\)~yn,(\z\)..ryn^(\z\)^lii(\z\) (\z\£r±)9 

provided a is sufficiently great so that 

(i3) |c*(*)|£«v (v = 2, 3, . . . ; | * i g r i ) («). 

Thus by induction it has been shown that the inequalities (10)-
(10a) are valid for v == 1, 2, . . . [provided ce satisfies ( i 3 ) ] . Gonse, 
quently comparison of gênerai terms in the séries (1) and (9) will 

(1) At this step use is made of the fact that <p2(u) is independent of u. 
(2) Such a number a, independent of v, can be found on account of the condi

tions of convergence satisfied by the séries of the second member of (9; § 5). 
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give the inequalities 

(14) \yi(z)cI\^yj(\z\)Ci0 = ^tI(\z\)CI0 (\z\Sn). 

Thèse will hold for / = 1 , 2 , . . . and for | c | ̂  C0. On taking account 
of the character of convergence of the séries (9), inequalities ( i4) 
are seen to imply absolute convergence of the séries (1), when-
ever | c | < G 0 and \ z \<rr [/'' = least of the numbers /'<, r ( a ) ] . This 
establishes existence of an u actual " solution (1) [with (6) satisfied 
for v = 1, 2, . . .] for the Case (3°) (§ o) . 

The results obtained above, together with the previously obtained 
Lemmas 1, 2, 3, 4, enable formulation of the following theorem. 

EXISTENCE THEOREM I. — Consider équation (B) o / § 1 [cf. (5) , 

( 5 a ) and (7) of § 1] . The problem falls in two cases, Case I and 
Case II (cf. § 1 ) . 

CASE I. — Let n be a fixed positive integer, however large. 
Let s(x) be the formai solution of (B), as specified in Lemma 1 
by (18; § 2), (18a; § 2) . Moreover, R ( r 0 ) ( o < r0_r) is to denotea 
région of the character specified in Définition i ( § 2 ) . Positive 
numbers r0, c0 ( r 0 independent of n) can be found so that there 
exists a solution y(x, c) (c an arbitrary constant) of (B), satis-
fying the asymptotic relation 

( i5 ) y(xyc)~s(x) [x in R(/'o); | c\ ^ c 0 ] 

in the following sensé, We hâve 
n — \ 

(16) y(x, c) =y?x-V--V! tl(x)-r\j(x)cl-h x-i*1-*)* tn(x) nz(x> c)cn. 

7 = 1 

Hère the f)j(x) are functions analytic in R ( r ) ( # ^ o) and satis-
fying asymptotic relations (18a; § 2) in the or dinar y sensé; 
furthermore 

I al(x)x— *—1dx 
(16a) t(x) = eJ , \nz(Xy c)\<,$n I> in R ( r 0 ) ; | c | < c 0 ] . 

Hère the constant (3̂  is independent of x and c. Moreover, y(x, c) 
is analytic in x and c for x in R( r0 ) (x ^é- o) and | c \ < c0 (

i ). 

( i) x = 0 in gênerai is of course a singular point of y(Xy c). The région of analy-
ticity can be shown to be more extensive. 

file:///z/Sn
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CASE II. — Let [3 ~ (3'_— Ijp (the fraction in its lowest terms be 
the positive rational number defined at the beginning of § 5. 
There exist positive numbers r0 , ce(o < r0<r) such that the follo
wing is trus. If the real part of q [q = p(ax^— (3)] is positive 
(including the case when q is a positive integer), there exists a 
solution 

(17) A*,c) = *"2iTlhjœP\cœP) (-no,o=o) (1). 
I, J=0 

If the realpart of q is not positive there exists a solution 

l °° X 

(18) jr(«) = ^ 2 ^ -
l = \ 

In (17) and (18) the fihJ and rit are constants, and thèse séries 
converge for | x | ^ r0, \ c j ^ c0. 

7. Formai solutions (n = i). — Consider the n — th order pro
blem (A) as formulaled in § 1. The developments contained in 
sections 7 and 8 will be given with R(ro) denoling a région satisfying 
the définition. 

DÉFINITION 2. — Let R(r 0) dénote any particular one of the set 
of régions such that the following holds. 

i° According to the developments given in (T<), the linear 
équation (A2; § 1) possesses a full set of analytic solutions asym-
totic, in R(r0)? to the formai séries (2 ; § 1). 

20 No function of the set 

R[Q«(*)-Q/(*)1 (i,J = h -••>*) 

vanishes interior R ( r 0 ) , unless it is identically zéro. 

3° The boundary o /R(r 0 ) consists of an arc ofthe circle \ x f t= r0 

and of curves B'. B" extending from the extremities of this arc to 
the origin. The curves B', B" are regular in the sensé of the ter m 

(1) When a is a positive integer in (17) we hâve i\hQ = 0 (i = 0, 1, 2, . . .)• 
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employed in (TA) ( 1) . Moreover, except at the origin, B' and W 
hâve no points in common. 

4° For some of thepolynomials Q (x) of the set involved in (2 ; § 1 ), 
say for the polynomials Qi(-z), Q*(x), • . •? Qm(#), we hâve 

(x) eQj(*)~o, eQ*W~o, . . . , eQm(x)~o [x in R(r0)]. 

Existence of régions salisfying the above conditions i°, 20, 3° 
follows directly from the developments given in (T,,). The fact 
that R( r 0 ) can be also so chosen that 4° is satisfied is a conséquence 

_ j _ 

ofthe following considérations. K Q(x) is a polynomial in x a (a a 
positive integer), which is not identically zéro, then there exist 
seclors (-), extending to the origin, in which exp. Q(x) nu o. On the 
other hand, by hypothesis not ail the Q(x) of (2 ; § 2) are identically 
zéro. 

Wi th R(/'o) defined as above first the case will be considered when 
for x interior R ( r0 ) and for some à ( | ̂  8 \ < m) we hâve 

( l a ) RQ1(a?) = R Q î ( a ? ) = . . . = R Q 8 ( a ? ) > R Q l ( a r ) ( Ï = Î + I m ) . 

Every Qj(x) which is not identically zéro can be writlen in the 
form 

- i - i 
(ib) Qy(#) = a / o # */-*-...+çj-.i^tx a / (q/:o9^o; If^i) 

where a/, lj are positive integers. Whenever Qj(x) == o we put 
lj((Xj=o. The greatest one of the numbers (//«/(y =1, ...,n) 
will be designated as 1\OL (positive integers l, en). 

A formai solution of (À) will be found of the form 

(2) s(x) = \ yj(x)c\ (ci an arbitrary constant). 

W e hâve 

(3) sh)v(x) = 2 ^ 7 7 ( ^ [Wy(a0 = ° f o r J < v l 
7 = 0 

(1) In particular, every such curve would hâve a limiting direction at the origin. 
(2) In fact, régions of a more gênerai character. 
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where, f o r / > v > 2 , 

(3a) j ^^/(^)=2^^)^^)---^^) 
( (wi-h nt-\-,..-+- 7zv = / ; i^/ii , ^2, . . . , ^v^y — 0 ; 

(36) j ^ ^ ( ^ ) = 7 ^ ( ^ ) (X = o, i, . . . ; y = i , 2 , . . . ) 
(\o,ry(a?) = o (7^1; X^o; x,oJKo = 0 

Furthermore, for i0?i i{, . . . , *"„_! > o ( i 0 + ^ + . . . + in-\ > a ) , 

7 = 2 

[/y0''1" -^-^(^) = 0 for 7 </ 0H-«i-*- . . .H-ia- i ] . 

Hère, f o r / > i 0 - f - . . . + i / i_ i (>a) , 

(4a) j } - * - . .«- i ( a . ) = 2 o,hyjQ(x) i.iiJ0i(*)- • •« - i . i . -^ / . - t t* ) 

where t h e / 0 , . . . , jn~\ assume ail the intégral values subject to the 
conditions 

Ub) /o-t-7i + . . . + 7,1-1 = 7, i^jo, Ju . . . , 7 n - i ^ y —!• 

The inequalities y 0 , . . . , jn-\^j — i follow from the rest of (4^)* 
On taking ( A ) in the form (A1 ) (§ 1) and on writing 

(5) a,(x9 yy yM9 ..., y(n-V) = L„(ar, 7 ) s= ôt(ar)^(#.-1)(^) -+-....+. bn(x)y(x) 

it is noted that the coefficients b\(x), . . . , bn(x), involved in the 
differential operator L^, are analytic for | x | < /'. In conséquence 
of (4 ) substitution of (2 ) in (A<), 

(Ai) $(«)(#) — x~PLn(Xy s) = ai(a?, 5, s*1), . . . ,5(1-1)), 

will resuit, formally, in 

(6) s^)(x) — x-Phl(Xy s) — x-Pat(Xy 5, 5(1), ..., *(*-!)) = 2 Tj(x)c\ = o. 

/ = 1 

If ( 2 ) is to be a formai solution of (A< ) we must hâve 

(7) f7(x) ^y{jn)(oc) - X-P hn[xy y,(x)] - X-P <\>j(x) = 0 (7 = 1, % ...) 
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where 

( a) i M*) = + ^ - ^ - ^ ^ ) = 2 ^ , !»-*(*)&*' **-*(*) 
( [2gI'O-H «1-+--. --»- «n—iâ/5 7 = 2> 3> •• • ; c / (4«), (3a), (36)]. 

The ^ ( # ) ( 7 ^ 1 ) are obtained with the aid of (4) as the coefficients 
in the formai expansion 

a*(x, s, 5(1), . . . , ^ - ^ ) = 2 ^ ( ^ ) ^ -
j=\ 

In particular, in conséquence of (7a ) , (4« )and ( 3 a ) , 

( 8 ) j <W(*) = °> <M*) =2 a i " f * in-Ax)y\<x)yV]i\x)"-yr-K)'n-\x) 

[ (i0y il, . . . y i , i - l = o;i0-+-ii+...-lrin-i=2) ( l ) 

and, in gênerai, for j>2 

I n — l 

(sa) w*) =2 2' 2" IISV..^*)^*)/^*). • .ĵ (»> 
Cpr=2 A = 0 

where 

( 8 è ) 2 = 2 (*o-H*i-+-...-i-*/i-i = ? ; *o, «ii . . . , «»1-1^0), 

(8c) 2 = 2 (yo-*-yi-t-...H-y»-i=7 —ç)» 
(8rf) 2 = 2 (/liH-/|î- |----- |-n«iL = yx-+-*x; «t, /is, . . . , n/x^i). 

Thus jKi(#) must be a solution of 

(9) y^(x)-x-PLn[Xyyi(x)] = o [cf. (5)] («). 

Now R ( r 0 ) satisfies condition (i°) of Def. 2 (§ 7). Hence there exists 
a linearly independent set of solutions of (9), y1:1(x), .. ., yun(x)9 

analytic for x in R(r0)(a? ^ o) and of the form 

(10) yui(x) = e*Aoc)xrlTiVl(<x) [ c y . ( 2 ) ; § 1 ] 

(1) Thus W2(x) is a homogeneous differential polynomial in yx (x) of order (n — 1) 
and of degree 2. 

(2) This is équation (A2) of § 1. 
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where 

( i o a ) -ru i(x) = [x]mi [m^o; i = i , . . . , n; x in R( /o ) ] . 

The symbol [# ] v used above and to be employed in the sequel will 
be specified as follows. 

DÉFINITION 3. — Let R dénote a région extending to the origin* 
The expression [x]v(v>o) will then dénote in a generic sensé a 

function of the form 

(i i) ["#]v= o-n(tf) -+- î-n(^) iog# -+-...-+• VYJ(#) log'.r 

where the Jr (x) (j = o, . . . , v) are analytic in x, for x in R(# ^±' o), 
and 

oo n 

(na) jf\(x) ~jv(x) =2.j,Jnx* (^ in R; integer a ^ i ) . 
n = 0 

The formai, possibly divergent séries, 

(nb) o<*(x) -hi<j(x)\ogx -h . . . -H v <i (# ) log v # 

will be generically denoted as {x }v [thus, [ # ] v ^ {x }v (x in R ) ] . 
A solution of (9) will be taken in the form 

( y\(x) = j i x(x) + k*yi t(x) - + - . . . H - km y\ m(x) 

\ [k±y . . . , km arbitrary constants ; | kt | ^ k (1 = 2, . . . , m)], 

T h u s , b y ( 1 0 ) and (1 a), 

(13) yx(x) = (îfi.W[ Yi(jr) H- 0 i ( # ) ] , 

( i 3 a ) Y i ( # ) = #' ir„ i (#)-+- k±x'*r\\ 2 ( « ) + . . . + ^ ^ r i i § (#) • 

( i 3 6 ) 01(37) = ^ 8 + 1 ^ + 1^)-01(^2:^+1^1 ô+i ( # ) - + - . . . 

where 

( i 4 ) |eQ*+i(*)-Q*(*)|£i, . . . , |CQ.»(*MM*)|<ii [ a ? i n R ( r 0 ) ] . 

In (i4) the equality sign is possible only along iheboundaries of R(r 0) . 

CASE (A). — R(^o) contains a subregion R ' ( r 0 ) [of the same 
description as R ( r 0 ) ] such that 

( i 5 ) e Q * + i d ) - Q i U ) ~ o . . . . , eQmlx)-Qiiv) nu o [aï 10 R ' ( / a ) ] . 
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We then replace R(r0) by R'^'o) but continue to use the symbol R(/*o). 
Case (A) is certain to occur, for instance, when the limiting direc
tions at ihe origin of the two boundaries of the original R(/'o) are 
distinct. R'(''o) can then be chosen as a région whose boundaries 
hâve at the origin correspondingly the saine limiting directions as 
those of the boundaries of R ( r 0 ) . In Case (A) the original 
région R ( r 0 ) could be also used [whether ( i5) is or is not satis-
Jied in R ( r 0 ) ] , provided in (12) we let 

£ 0 + 1 = . 

CASE (B). — R( r o) contains no subregion R ' ( r 0 ) such that ( i5 ) 
holds. W e then continue to use the original région R ( r 0 ) ; however, 
the constants /r§+1, A"8+2, . . . , km are ail put equal to zéro [thus o1 (x) 
would be identically zéro]. 

In the remainder of this section the developments will be given for 
the Case (A) with the arbitrary constants /rg+1, . . ., km présent. The 
corresponding results fro the Case (B) could be immediately inferred 
from those obtained for the Case (A). It would be necessary only to 
let /r§+4 = . . . = km = o and to atlribute to R(/ ,

0) its original meaning. 
In conséquence of ( T 3 6 ) , ( I 5 ) and ( i o a ) 

(16) O I ( J ? ) ~ O [x in R(/-o); | &ô+i |, . . . , \km\<k']. 

Hère and in the sequel asymptotic relations (with respect to x) 
are uniform with respect to the involved arbitrary constants; 
that is, the absolute value of an asymptotic remainder is less than a 
number independent not only of xhul also of the arbitrary constants. 

It is also to be observed that. throughout, a derivalive of a function 
will be asymptotic to the formai séries obtained by differentiating 
term by term the séries to which the given function is known to be 
asymptotic ( 1 ) . 

Let 

Q(x) = q0x
 a -+- . . .-f- qix a 

where q0^o and l_i unless Q ( # ) = o, when l is defined as zéro. 

(1) This is a conséquence of the fact that the functions in question are solutions 
of certain differential équations. 
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In a generic sensé 

^ ( e Q ^ ) ^ [ ^ ] N ) = eQU)/~^14"*J|-^jN; 

thus, 

(17) ^ - 7 ( e Q ( ^ ^ [ a ? ] N ) = eQ^)a; ^ a / | » j (v = i, 2, . . . ) . 

Accordingly, by ( i3) , ( i 3a ) , (16), (10a) and (17), 

(18) yW(x) = eQ^)x~^^^y^(^) (v = o, 1, . . .) , 

(18a) ylp(x) = x' i[x]ma + kîXr*[x]„h-¥-...-+- k$xr*[x]ms [x m R(7'o)3-

The function [x]mx, involved in the second member of (iSa), is a 
linear non-homogeneous expression in /r$+1, . . . , km ; however, 
in the second member of the asymptotic relation satisfied by this 
function, 

(186) [x]m ~\x)mx [^ in R(r 0 ) ] 5 

the constants k§+K, . . . . km do not enter. That is, it can be said 
that [x]mj is asymptotically independent of/r§+1. . . . , km, provided 
of course that | k%+\ \, . . . | km \<kr (k' fixed). 

Writing 

(19) gj(x) = kixn (y = r, . . . , S; Zr0 = i) 

we observe that a product of i functions (some of them possibly 
alike), each ofthe form 

(19a) g\(x)[x] -+- gt(nB)[x]^r...-hg^(x)[x] [x in R ( r 0 ) ] 

and with log# entering to at most the m — th power, is a function 
of the form 

s 
(196) 2 **»(*) **(*) • ••*».(*)!>]»» I>inR(r 0)] 

^ 4 , . . . , ^ = 1 

Thus substitution of (12) [cf. ( i3)] in (8) will give in conséquence 
o f ( i 8 ) a n d ( i 8 a ) 

(20) tyi(x) = e*M*)x V *J 

x y x[ â
 Xh~ ln-1 yf*(x)...y^f-*(x)ah..,ln_x(x) 

(/o-+"...H- in= 2) 
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where the Aïo, . . . , in_i are non-negative integers. Hence, on using 
the form of the aio, . . . , î ^ , it is concluded that 

— 2(« —1 ) T u — ^ 
(21) tyt(x) = e**Mx V a ^ ? 2 ( # ) , 

8 

(21a) ? • ( * ) - 2 tf»^*) * " . ( * ) ! > km [ « i n R ( i - o ) ; c/ . (19)1 

where m is the greatest one of the numbers /n t , . . . , mg. 

DÉFINITION 4. >— Le£ [# ] v Aape the significance assigned by 
Définition 3 and let the gi(x) be defined by (19). The sym-
bol [# ]N, where v is a positive integer, will in a generic sensé 
dénote a function of the form 

(22) \x^^=^Àgn,(x)gn9(x)...gnM)lX'\^ 0 ^ , /l*, - . - , ^ 8 ) . 

TVie symbol \ x }N fwf/Z dénote a formai expression of the type 

(22 a) { x Jj = ^ ^#,,(a?) # « , ( # ) . . .^nv(^) { * j N . 

Using the above notation one may write 

(23) 9i(*) = [*lîm~ f * lîm [* i n R('"o)]-

By virtue of the statement in connection with (17) from (10) 
and (10a) it follows that 

(24) y[Jû]\^) = eQ^)xri~U~']y^^y[^(x)9 

(24a) y[fri])(x) = [«*]«, [* = ii . . . , n; aîinR(ro)]. 

Matrix notation will now be introduced, with 

(««/) ( ' 3 y = i 5 .••>*) 

denoting a matrix of w rows and /i columns, aïj7 being the élément in 
the i — th row and the y — th column. The déterminant of (a*,/) will 
be dcsignated by the symbol | ( a / > y ) | . Accordingly, by (24), (2^a). 

(25) I (y[{ïx)(x)) I = eQ**»-.:-&*{*)#/VK..+r» I (ar~ ( ;" , ) Vt+ * Vt^T1^*)/ I 
= eQi^'î+-.--»-Qn(*)^i+...+rll^-r' ] (y[/.Jl](x)) \ 

( [#]o = 0*9H- o*ia? H- . . . ) 
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the latter séries being convergent for | x ] < r ( * ). Hère 

(25 a) ^(^s)^2^;)"*"-"4"^"1^1*-)' 
Not ail the dj (j = o, i , . . . ) are zéro of course. Thus, 

(256) [x]0= xw[dlv-h dw+iX-*-...] (dw^6 o). 

Hence 

0*6) I (y[Jûl)(x))\-i = ^ ^ - . . • ^ ( ^ ^ " • • • " ^ « ( y o + Y i ^ - f - . . . ) (Yo*o), 

(26a) — = w [integer w^o; cf. (25a)]. 

The séries involved hère are convergent for | x | < r. The déterminant 
of the rnatrix obtained by deleting the j — th row and the i — th 
column in the matrix (y[J.Tl}(&)) IS seen to be ofthe form 

(27) eQi^)+.--+Q7-i(^)+Q;+i(^)+--.+Q»(^) ^^1+---+0-1+0+1+--•+r™-T*/a[ic]w/, 

where 

M lï-H)^-"-']-
( m'j = (/ni-4- m*-4-...-h mn) — m/ [x in R(r0)]. 

Let yllU}J(x) dénote the élément in the i—th row and j *— th 

coluinn of the inverse of the matrix (y\Jui](x))] that is, 

28) ( ^ : ^ ( ^ ) ) = ( ^ 7 ^ ( ^ ) ) - 1 («,y = i , . . . , » ) . 

Except for the sign, yi:u,j(^) is given by the product of the functions 
defined by (26) and (27). Thus 

(28a) yi:ij(x) =e-%^)x-n+t>[x]m'} [*,y = i, ...,/i;#inR(/-0); 0/.(27a)] 

where, by (26a) , (20a) and (27a) , 

(286) ? - £ - ? - < » • - ' > ( « - ; ) — ' • 

(1) This follows by a known theorem regarding the Wronskian of an équation of 
the form (9). 
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For y = 2, 3, . . . équations (7) may be wrilten in the form 

n x 

(29) yi^)^^jy f u-p*ti(u,yu ...9yj-i)yun,\(u)du. 

\=\ 

This, in conséquence of (10), (10a) and (28a) may generically be 
written as 

\ yf(x) = >* c<h(*)xn,[x]mx I H h W t t - ^ - n ' - ^ B ] ^ <W(M) ^ 
o) \ ^** %J 

[ ï '= Tn/«; cf- (27«), (28a), (28*)]. 

(3o) , 
1 \ = \ 

By (21) and (23) the integrand displayed in (3o), when j = 2, is of 
the form 

— n,-HY'—p— 2{n — 1) (i + _ ) 
(3 i ) «*Q.(«JHW»)B V ''[u]*-^ [ « = R ( r , ) ] , 

since 

(3i«) [»]mv[a]ïm=[«];^m ] L f-

In conséquence ofthe intégration methods developed in ( T ^ t h e 

following is true. Let G(x) be apolynomial in x a with the lowest 
_\ 

power of x, x a (X > 1), actually présent unless G(x) = o, when we 
define X as zéro (*). 
Then 
(3a) f eG(")MP[M]N^ = eG^)^P +v+â)[- r]N_H 1 [a? in R(r0)]. 

Hère[a]K+l= [w]N, unless G(u)==oandp + i = (integerv>o)(2). 

Since gni(
u) • • • 8nXu) — CM^ (c a n ( l ? constants) it follows by the 

définition of [u'% [cf. (22)] that for x in R ( r 0 ) 

(33) /" eG(M)Mp[w]V^ = eG(x)/+(1+â)[^]V+i=eG(x)^p+l[^]V+i 

r 
(1) There are some conditions [cf. (T t)] which G(x) must satisfy with référence 

to R(r0). However, in subséquent applications of (32) G ( M ) is always a function 
satisfying thèse conditions. 

(2) In the latter case [#]N-M will contain logj4"1, the coefficient of this power of 
v 

the logarithm being ex* (c = constant). 
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where G(u) has the same meaning as in (32) . It will be assumed that 
no curve R(jQ{(x) — Qi(&)) = ° (j = 2? °\ ...;X = ô + i, ..., n) is 
interior R( r 0 ) . 

On noting that the integrand displayed iu (3o; j' = 2) is of the 
form (3i) and on using (33) it follows that 

n 

(34) yt(œ) = J etoW xn[x]mxe*M*^M x ^ ^ x ] * ^ 

\=i 

so that, in view of (27a) and (286) , 

(35) y,(x) = e*Mx)x-P[xrm2) [x in R(r0)]f 

(35a) B = ( a - i ) f i + - j + w + / > - i O o), 

(356) m(2) = 2ffi + mi + . , , + mn
B ( 3 ) . 

W e hâve previously chosen yK (x) as a function of the form 

(36) yi(x) = eQ*W[xymn [m(i) = m; x in R ( r 0 ) ] . 

On the other hand, by (35a) 

(37) tyt(x) = e*VM # - ^ + 2 ( ^ - 1 ) [x]Jl{2) [n(i) = 2m]. 

Suppose now that, for x in R(/ ' 0) , 

(38) ^v(ar) = ^Qt(*)ar-(v-i)P[a.]Ji(VJ (v = 1, 2, . . . , y ' - i ) , 

(38a) tyy(x) = eWMa.-vp+î(«H-/i-i)[^(v) (v = 2, . . . , / — 1) (1). 

With the aid of (38) and of ( 8a ) the form of ^j(x) will be deter-
mined. In conséquence of (17) 

(39) yv
AH*) = « v Q ^ * " ( V " , > P " ^ 1 + i a * I ^ ( v ) (v = i , . . . ,y - i ;X = o, 1,...). 

Therefore the product 

(40) al0...ln_i(x)y^(x)y^(x)...y^(x), 

(3) Use is made of the fact that the functions 2Q,(w) — Q^(w)(X = 1, . . . , n) are 
allnot identically zéro. 

(1) For the présent j is a fixed integer > 3. We take m(i) g /n(2) < . . . 
and /i(i) < / i ( 2 ) < . . . For 7 = 2 formulas (38), (38a) hâve been established 
previously. 
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involved in ( 8 a ) and with the subscripts satisfying (8d), is given by 

(4I) eln+iïMiMx ^ a ' l>]ô + , Î L 

where 
J MA+ZX= max { m(nx)+• m(nt)-+• . .H-m(/i ,x)} 

I (^-hrii-h ..-+-wa = y\H-«x; ni9 n^ . . . , /1,^1). 

Extending the summation symbol (Sd) (with respect to n{, n*, . .., nlv) 
over the terms (4o), by virtue of (4i) we obtain a function F\ of the 
form (4i) (X = o, i, . . ., n — i) . Accordingly, since by (8c) 

, /0-+- /1-+- . -*-jn-i = j — e 

and, b y ( 8 6 ) . 

it follows that 

w—i 

(42) T l Fx =e/Qi(^)a?-(/-?)?-[zi+2z»+ •+("-!)*«-ii(i+//a) 

l=o 
x [ ^ ] M . , .-i-M. ,.-+• +M. , . 

/o+'o /i-+?i y«—i-t-^»—i 
iVow. under (86) , 

il-+-2i2-+- . - i -(ft— l ) ln—l^(n — i ) ? . 

Thus, on writing 

W2 a ) { / S X 

from (42) it follows that 

rc — 1 rt / / \ n —17 — 9 ) P — (» — 1 ) 0 ( 1 + - ) J 

FX=*/Q.M* V ^ f * ] ^ . ) = i 

Appljing the summation symbol (8 c) (with respect toy0 , y i ? . . ., 
jn—i) to the product (426) we obtain a function 7F,p hjh }ln_i ofthe 
same form as the second member of (426) . With the summation 
with respect to i0, «,, . . , in_x extended as specified by (8 6) it 
follows that 

(43) ^ /F® '0 *i ,*„-i=7F<P> 
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is a function also of the type of the second member of (42 6). Thus, 
since by (35 a) 

— ( y — ? ) ? - ( * — o ? ( i - + - - ) =—yp-+-?(w+/>-o , 

we shall hâve y F ç of ihe form 

(43a) e/QiM ̂ -/P+©(t*M-/'-i)[̂ ]/M = e/QiM X-JP+^W+P-DIXYM , 

provided 9 > 2 ( * ) . Hence in conséquence of (8 a) 

1 

( 44 ) +7 ( x ) = 2 j F 9 = c/Qi(*) ar-/ 3+*(«H-/>-IÎ [ * ]/, ( j ), 

9=2 
where 

(44«) /i(y) = maxM;j<p [0 = 2, 3, . . . , y, c/. (42a), (4ia)J, 

Thus (38), (38 a) imply validity of (38a) for ^ = 7 . On making 
use of (44) it will be proved that (38) holds for v = j . By (44) the 
integrand displayed in (3o) would be of the form 

(45) j (Nyx=-/x+J-/>-yp-+-2(iv+/>-i)). 

By (286; i = n) and (35 a) 

(45a) N/.x = - / A - ( y - i ) P - i . 

Accordingly, by (33) it follows that the intégral displayed in (3o) can 
be evaluated as a function of the form 

(46) em4^*)x-n-U-W[xYnUHmi («). 

The product of the latter function by 

eWi)xn>[x]mx 

is a function jg\(x) of the form 

(46a) eJQiWx-(J-i)Hxyn{/)+mi+mi+ +„ln 

(1) This follows from the inequality w-\-p — 1 > 0. 
(2) For y > 2 [case (A)] no function yQ t (w) — Q\(u) (X = i, . . . , n) vanïshes" 

identically. 

MKMORIAF DES SC. MATH — N« 9 0 4 
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since by (27 a ) , mxH- m\=z m1 + m2-\-.. . + mn. Hence 
n 

(47) y, ( * ) = 2 /**(*> = ^ ^ ^ ^ ^ ^ ( , - ) , 
/ = i 

47a) m(y) = n(j)-+- m t + m*-+-...-+-m„ [c/ . (44«)]« 

Thus by induction it has been proved that for x in R ( r 0 ) , relations 
(38), (38 a) hold for ail v = n, 3, . . . . The rate at which the num
bers n(v) may increase with v can be inferred from (47 a ) , (44#)? 
( 4 2 a ) , (4i a) and from the relations 

(48) { m (2) = im -h /«i -+- . . . -h mn ,— x 
\m = max[/Mi, m.>, . . . , mg]). 

/1(2) = 2 m 

In the Case (B) the corresponding relations are slightly modified. 
If (1 a) does not hold, so that instead, for some m*(à_^m*< m) we 

hâve 
) = . . . = RQa(*)>RQ,(*) 
8-4-2, . . . , m* ; # interior R(r0 )], 

(49) 

while 

(49«) 

( R Q i ( * 
( [1 = 8 + 1, . 

| RQi( RQl(x)=...= RQz(x)<RQl(x) 
m*-+- 2, . . . , tnm, x interior R(r0)] , 

the preceding developments can be repeated, the only changes being 
the following. Throughout. m is replaced 6y m*; moreover, we let 

( 49 b ) km*+l = km*+2 = • • • = km = o. 

The functions y^(x), +v(#) [v = îi 2? • • • 5 c/ . (38), ( 3 8 a ) ] are 
asymptotically indépendant of some of the arbitrary constants. On 
noting how thèse constants enter in the involved functions [#]^(v)? 
[#]«(v) tne following lemma can be stated. 

LEMMA ht. — Let the Qj(x) [j = \, . . . . nm, cf. (16)] be the 

polynomials associated with a set ( 2 ; § 1 ) of n linearly indepen
dent formai solutions of the linear équation (A2 ; § 1) (1). Let R(r0) 
be a région satisfying définition 2. Unless we hâve (hâve (49)? 
(4ga) with m*= d, it is assumed that no curve 

R(yQi(*) -Qx(*)) 
is interior R ( r 0 ) . 

(1) In this section (A2; § 1) is written in the form (9). 
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When (la) holds équation (A; § 1) has a formai solution s(x), 

oc 

(5o) s(x) = 2 M*W> yj(x) = a/Qi(*î J H / - D P r^j(x) (y = i, 2, ...), 
7 = 1 

where fi = (n — 1 ) ^ + - 1 _|_ çv _j_ p — x ? Ci ^ #^ arbitrary 

constant and, forj = 1,2, . . . , 

(5oa) ! ^^)=2^^ .^- - .^ (^ )^ 1 ^^ 
( ( a i - H « 2 - » - . . . - ^ a w i = y ; «i? «2> - . . J « m ^ o ) . 

/TI (5o a ) £Ae hi(x) are analytic in R(/*o) (x^éo). Moreover^. 

(5ob) j * ' < * 
( [î = i, 2, . . . , 8 ; c / . (2), § 1 ; A, 

) = #^ 
( x) ~ o in R (/'o) ; ^ = 8 -h 1, . . . , m)] 

and k2, . . . , /:m a re arbitrary constants. The *î/:ai,a2,am(#) a r e 

functions analytic in R ( r 0 ) (x 7½. o) ararf o / the form 

(00c) -17:0^,...,0^(^) = [>]„,(/) ~ {J? }„,(/, [a? in R( r 0 ) ; c/. (47«)L 

£Ae involved symbols having the significance indicated in Défini
tion 3. //z the Case (À) £/i<? région R(/V) ts selected so that ( i5) 
holds for x inR(r0). When ( io) cannot be satisfied or when this 
condition is deleted the constants £$+1, /:5+0, , . . , km are ail put 
equal to zéro. 

The alternative of ( i a ) is given by (49)? (49 a)- We then hâve 
a formai solutions as given above, except that in (ooa) and 
(5o 6) m is replaced by the smaller number m* (^ô) , involved in 
(49), (49 a). Moreover, unless the région R ( r 0 ) can be so selected 
that 

( 5 l ) é?Q$+i(r)-Qi(.r),v,0j . . . , eQrn*[x)-Qi(x) ~ o [x in R(/'o)], 

the constants k^+i, A-g+o, . . . , km* are to be ail replaced by zéro. 
In every case y\(x) is a solution of the linear problem (9) 

[cf. ( 1 2 ) , ( , 0 ) ] . 

NOTE. — The function eQ^x), involved in ( a o ^ c a n be any one of 
the set of functions eQ(r), each of which is asymptotic to zéro in R(r0) . 
The functions ht(x)(i>à) approach zéro, as # - > o within R ( r 0 ) , 
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essentially as rapidly as the functions 

CQ.(r)H*i(*) ( ̂  = S -H Ï , . . . , m')> 

where m' is m or m*, as the case may be. The ^j(x), occuring in 
(29), (3o), are ofthe form 

(52) <W(*) = ¢ ^ ^ ¢ - / ^ ( ^ - 1 ) 9j(x)y 

,. , \ 9/(*) = Y 97^,^,...,^,,(^) [ M * ) M (02 a) < ^"* 

f [ a i - + - a â - h . . . - f - a m ' = y ; a t , a*, . . . , a m ^ o ; cf. (5o6) ] ( 1 ) . 

Hère the 9/:^,^,...,^(^) a r e analytic in R(r 0 ) (#^= o) and are ofthe 
form 

(52b) [x]n[j)~ f x}n{j) [x in R(7'0); c/ . Def. 3 ] . 

Mereover, mf is m or m* as the case may be. 

8. A transformation (71^2). — On the basis of the formai solu
tion (5o; § 7) we shall effect the transformation of the équation (A). 

N - l 

(1) y(x) = Y(x)+9(x)% ^(x)=^àyj(x)cJi. 

7 = i 

Hère N is a fixed positive integer, however large, and p(x) is the new 
variable. The discussion will be given under the supposition that 
( i a ; § 7) holds. From the results so obtained il would be easytomake 
inferences regarding the alternative case when the inequalities (49 ; § 7), 
( 4 9 « ; § 7 ) hold. 

We hâve 

(2) at(Xy Y + p, , . . , Y M ) + P M ) ) 

= a2[*, X(x)y ..., Y<»-i ï (*)]+2X«. !.-.(*) PM*).-.p^ ,' , ,- |v*) 

( i0 -+- i\ •+•. . . •+• i/2_i_I ; *'o, . . . , in-v Z °)y 

I / v __ 1 0̂-+--. .-H»-1 as 

*l°'li ' » - l W " ~ *o!...i"»i-i 0^1.^(1)^.. .^(11-1)^-1 

[y(x) = Y(*), . . . , y^-v)(x) = Y(«-D(*)]. 
(1) The functions hv(œ) (i = 8 4-1, . . . , m') may be distinct from the expressions 

so denoted in (5o b). 
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Taking r0 sufficiently small so that 

(3) \YW(x)\ïr'<r [x m R(r0); * = o, 1, . . . , n-i),. 

the séries in the second member of (2) is observedto be absolutely 
convergent whenever 

(3a) \?W(x)\<,r" [r'+r><r; x in R(/-0); i = o, i, . . . , / 1 - 1 ] . 

By (2 a ) , for ¢ 0 + ^ + . . . + ^ ^ 1 (t0 , . . . , in-\>o), 

!

* ! . , . . . , « . _ t ( « ) 

[jo-h.. .^- jn-i=2 — (i0-h.. .-h iJ}-i)-y y0, . . . ,y 'n- i^o] . 

Thèse séries converge absolutely and uniformly fora? in R ( r 0 ) . Now, 
for x in R ( r 0 ) , Y(x) ^ o (i = o, . . ., n — 1). Hence from ( 4 ) it 
follows that 

/0 * . - . ( * ) = « 1 . / « - , ( * ) •+• fr.,...,!„-«(*) 
(5) 

( («o, . . . , « / Î - I ^ O ; i 0 -+ - . . . -+ - « » - 1 ^ 2 ) 
where 

( 5 a ) «/., . . . ,1.-1(^) = o (^0-+-. •.-+- in-i = i) 

and the (3¾ ...,*„_,(#) are analytic in R ( r 0 ) and 

( 5 6 ) P/.,. . . ,i»-i(^)~° l > i n R ( / ,o); *o-H...-+-ïn-i^i]. 

The asymptotic relations hère and throughout are with respect to x 
and are uniform with respect to the involved arbitrary constants 
provided, as we shall indeed assume, the numbers 

(6) Ci, c2=CiA:2, . . . , cm=cikm 

satisfy inequalities 

(6a) | cz \ = k' (i = 1, 2, . . . , m; k' fixed). 

W i t h hn denoting the differential operatorof ( 9 ; § 7 ) consider the 

function 

( 7) _ FK(a?) = Y<«> (x) — x~P Ln[Xy Y(x)] - x~Pat\x. Y (a?), ..., Y(»-i)(*)l. 

Gomparison with ( 6 ) , ( 7 ) and (8 a ) of § 7 enables one to infer that 

(7«) -FN(#)=2r;(*)c/;, 
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where 

( 7 6 ) fJ(x)^y^(x)-x-PLn[XyyJ(x)]-x-P^;(x). 

Hère F, (a?) is Tj(x) and ¢,( a?) is tyj(x) with yN(x), y^x), ..., 
replaced by zéro. Since tyj(x) is indépendantoiyj(x),yj+\(x)* • . •? 
it follows that 

(8) • , ( * ) = * / ( * ) ( 7 = 1 , 2 , . . . , N ) . 

Thus, by(i),Tj(x) = Tj(x) = o(j = i, 2, ..., N — 1) so that 

(9) — FN(#)=— a r - p ^ ¢/(^)^,-

7^N 

On using the notation of définition 4 (§ 7) we hâve 

(10) tyj(x) = tf/OtWar-yMï"^/»-1) Çy(a7), 

(10a) ? , ( * ) = 0 ] / , ( y ) - { # }/ | ( y ) [x in R ( r 0 ) , y £ N ] . 

Accordingly, the function (9) is ofthe form 

( n ) FN(a?) = ar-PcNQiW^-wp+^^^-^fc^NÎa?) -+- c*$v(xj\9 

(lia) $*s(x) ~ o [ # in R ( r 0 ) ] , 

where ^(x) is the function given, for j = N, 6JK the formulas 
( 6 2 a ) , ( 5 2 & ) o / § 7 . 

Substitution of (1) in (A; § 1), with the latter équation in the form 
(A; § 7), will resuit in 

YW(x) H- p W ( # ) — arv» L„[>, Y(a?)] — ar-/> Ln[x, p(x)] 

— x-P a*[Xy Y(x)-*-pn(x), . . . , Y("-D(#)-+-p( '*- i (#)] = 0. 

Thus, by (2) and (7) , 

(I2) p(n)(x) — X-PLn[Xy p(x)] 

= x-9^ «,0> , , . _ , ( * ) p««(*).. .pCt-D'-^a?) + FK(a?) 

[«0 + . . . - ^ « n - i ^ i ; «o, . . . , * * - i ^ o ; c/. (11), ( n a ) , (5), (5a), (5b)] 

By (5), (5 a ) , (5 6) transposition to the left member ofthe linear 



ANALYTIC THEORY OF NON-LINEAR SINGULAR DIFFERENTIAL EQUATIONS. 5l 

part of the second member of (12) will yield 

(i3) M?(x)]^?{nKx)-x-PLl{x, p(x)] = x-P1H[x9 p(x)]-+.Fx(x)y 

(i3a) \ l H [ ^ ? p ( * ) ] = 2 ««*-. '- .(*) ?l<x)-..?{n-l)ln~\x) 

i < i 0 -4- . . .-+- in-1^2) 
where 

( i3a ' ) L* [a?, p(x)\ = &î(a?) p(«-i)(a?) -+-...-+- &,*(#) p(#), 

£/*e coefficients b*(x) being asymptotically the same as the corres* 
pouding, ones in Ln [cf, (5 ; § 7)]. More precisely, 

(i36) bî(x)—bl(x)~o [i = i, ..., n, x in R(r0)]. 

Equation ( i3) will be further transformed with the aid of the sub
stitution 

(14) p(aO = eG<r)î(tf), G(x) = NQt(a?) - (N —1)[3 Iogar. 

This transformation is suggested by the form ofy-^(x), as given by 
(5o; § 7) . We hâve 

V 

(14a) p 'v) ( x ) = 2 C)n^){x)^^e^). 
711 = 0 

Furthermore 

(i46) 1 ̂ ^ = ^ ^ ) , 0,(^) = 0 ( 1 ) ( ^ ) 0 , ^ ) + 0 ) 1 ^ ) 
f [y = i, *> •••; G 0 ( # ) = I ] . 

Since, by ( i4) . G(x) is ofthe form 

(14c) G(a?)=—(N —i)pioga?-f-#aT « + . . . 

it follows from the recursion relations (i4 b) that 

(i4rf) 0,(^) = ^ ^ ^ , ( ^ ) [y = 0 , i, *••; ^0(^) = 1], 
1 

where the gj(x) are polynomials in a?a. Thus, 

^ - - — (v — m) f i H— ) 

(i5) p^(x) = e^) 2^0,^x ^ *J gv-m(x)rW(x) (v = o, 1, ...), 
7W = 0 

(1) Hère... stands for a finite number of powers of a? higher thaï 
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Substitution of ( i5) in jL[p(#)]of ( i3) will yield, by virtueof ( i 3 a ) , 
( i 3 6 ) , 

(16) .! . [?(*)] « « O W L ^ * ) ] , 
« — 1 

(16«) L[Ç(*)] = ÇW(ar) - ar-r^ &,(*) ÇM(«). 
v = o 

i /ere ^ is the gréâtes t one ofthe numbers 

n ( , + ï ) » / » + ( » - i ) ( i + - - ' ) 

a/id Me pv(#) #^£ analytic in R(/\>) (#7^ o)? asymptotic [in R(^0)] 
to séries of the form 

A 1 
(17) Po + Pi x*+$*x* + . . . . 

Substitution o f ( i 5 ) i n ( i 3 a ) will give 

(18) tH(ar p) = e2G(^)^-2("-DH(a:, Ç), 

where 

(18a) H(#, Ç ) = 2 2 e<'"-2)GM ̂ ^ H ' 1 ' 1 ) A*0,. , ^ ( ^ ) ^ . . . ^ - 1 ^ 1 

m=2 *0-f- -hin—i=m 

Hère the hht ,ln_x(
x) are analytic in R ( r 0 ) oind are asymptotic in 

R ( r 0 ) to séries of the form (17). Moreover, as seen from ( i4) and 
(3 a ) , the séries (18 a ) is absolutely convergent for 

(186) K< v M<r"(r 0 ) [ v = o , 1, . . . , n-iy x in R(r 0 ) ] , 

where 

(18c) /-"(''o)-*-3© (when/'o + o). 

Thus, in conséquence of( 16), (16 a) , (18), (11), (11 a) , [cf. (52 a) , 
(626) of § 7] , application of ( i4) to ( i3) is seen to resuit in the 
équation 

l L[Ç(a?)] = cG(*)ar-«iH[ar, l(x)] + ar*« ç(*r) 

) /21 = 2 ( / i— i ) + y ? ; Ai2 = —-2 **>—/? + 2 + £ = (/2—1) (1 + - ) + 1 - ^ , 

where 

(19a) 9 (*) = [*E W ~ I * £(*) l* ^ R('-o); c/. Dcf. 4 (§ 7)]. 
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LEMMA O. — Let N be a fixed positive integer, however large, 
Let the functions yK(x), yi(x), . . ., j 'N_i(#) oe those involved in 
(5o; § 7). Apply the transformations (\), ( i4) to (A; § i) , 
[cf. (A, ; § 7 ) ] . The new variable K(x) will satisfy équation (19). 
In (19) L is given by (16 a ) [cf. the italics following ( 1 6 a ) ] . 
G (x) is given by (i4)> ? (# ) is of the form(\§a) and H (x, Ç) is of 
the form (18 a) [cf. italics after ( 1 8 a ) ] . Considering the 
Ç(v)(v = 0, . . . , n — 1) as variables indépendant of x, the séries 
representing (18 a ) converges absolutely and uniformly in R ( r 0 ) , 
provided (186) holds [cf. (18 c)] . Either the number r0, used in 
the définition of the région B.(i\), or the number kr, involved in 
(6 a ) , must be taken sufficiently small so that (3)" is satisfied. 

9. Existence of « proper » régions. — Consider now the linear 
problem (A2; § 1) with which there are associated formai solutions 
(2 ; § 1) [cf. (2 a) and (26) of § 1]. W e are interested in the case 
when (A2 ; § 1) is formally not of Fuchsian type at x= o; that is, 
when not ail the polynomials Q(x) of (2; § 1) are identically zéro. 
Let the distinct polynomials 

(1) Pi(*) , P*(*), . . - , P H , ( * ) 

constitute the totality of ail those Q(x) which are not identically 
zéro. W e shall write 

(ia) P,(a?) =/>,*-?• + . . . (i=i, 2, ...,Ur, Pi^ o] p,>o), 

where the pL are rational numbers, the terms displayed in the second 
member being the leading ones. 

DÉFINITION 5. — Let (3 and H be positive numbers and let N be 

any integer greater than unity. Let P ( # ) stand for a particular 
polynomial ofthe set (1). Consider a région R(r0) whose boundary 
consists of an arc of the circle \ x | = rQ and of two regular (* ) 
curves B', B" extending from the extremities of this arc to the 
origin. Such a région will be termedproper with respect to P ( # ) 
if for some sufficiently small r0(>o), independent o /N , we hâve 

(1) The meaning of the term « regular curve » hère is the same as in (TJ. Conse-
quently B'B" hâve limiting directions at the origin. Mereover, except at the 
origin B' and B" are to hâve no points in common. 
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ail of the following conditions satisfied when x is any point 
inR(r0). 

i° AU the points of the rectilinear segment (o, x) are in R(/*o); 
2° The linear équation (A2 ; § 1 ) possesses a full set of analytic 

solutions which in R ( r 0 ) are asymptotic to the séries (2 ; § 1). 
3° The realpart ofP(x), BP(x), is the least of the realparts 

of ail those polynomials Q(x) [cf. (2 ; § 1)] which are distinct 
from P ( # ) . 

4° eV{x)~o. 
5° With G(w) = NP(w) —(N — i)(31ogw and with u on the rec

tilinear segment (o, x) the upper bounds of the functions 

(2) / ( H , u) = \eSMu-* y yx(w) = |eG(«)-Q/(")w-a| (X = 1, 2, ..., n) 

are attained at x. 

It is to be noted that proper régions constitute a particular instance 
of the régions characlerised by Def. 2 (§ 7) . 

The following lemma regarding proper régions will be now proved. 

LEMMA 6. — Suppose that not ail the polynomials Q(x), 
involved in (2; § 1) are identically zéro. There exist then régions 
proper, in the sensé of Définition 5, with respect to at least some 
of thèse polynomials. 

Ifs" is a fixed positive number, however small, it follows from the 
considération of ( i a ) that 

(3) e*>W~o 

in any région, extending to x = o, in which 

(3a) cos(plx — pl)<, — z" (pi= Lpi\ x = Lx). 

This implies that with e > o, however small, (3) is satisfied in every 
one of the finite set of sectors W^ m ( r 0 ) (m = o, 1, . . .) characterized 
by the inequalities 

(4) ( 2 / 7 l + ^ - + ^ + £<J< ( ^ + - ^ - + ^ - s ( |*|<r0) . 
\ 2 / pz pz - - V. 2 / p i p, Vl ! - ' 
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W e select £ ( > o) sufficiently small so that 

(b-a) 2 £ > o (i" = i, . . . , Hi). 

In conséquence of a Fundamental Existence Theorem established 
by Trjitzinsky ( ' ) the following may be stated. Let Btj dénote a curve 
along which R [ Q t ( # — Qj(x)] = o, when Qi(x) is distinct from 
Qj(x). Let R',, R'2, . . . , R^ be régions separated by the B / ; curves. 
none of thèse curves lying interior of anRJ (i = i . . . ., N') ( 2) . Let 
it be said that a région R', has an angle wt if the tangents at x = o to 
the boundaries of B.[ make an angle Wi ( 3 ) . When wt^o, in some 
cases [for détails cf. (T^JRj is replaced by two subregions /RJ, ,R-. 
The subregion /R'£ has one of the boundaries (extending to x = o) 
coincident with a boundary of R'z, while the other boundary (exten
ding to x = o) is a certain regular curve, interior to R-, with the same 
limiting direction at x = o as that of the other boundary of RJ. On 
the other hand, ,R- is formed similarly with the rôles of the two 
boundaries (exlending to x = o) of Rz interchanged. Thus the 
angle of /R- (and of ,RJ) is w,. Corresponding to a particular 
région RJ the linear problem (A2 ; S 1) has a full set of analytic 
solutions which. when Wi=o, are asymptotic to the séries (2; § 1) 
for x in R;. When wi^o the same resuit holds, unless RJ is to be 
replaced by the above régions /R7,, 7R',. When the lalter is the case 
there exists a full set of analytic solutions (for x^o) asymptotic 
in iR.[ to the séries (2 ; § 1) ; and there also exists anolher full set of 
solutions asymptotic to thèse séries in ,R*. 

Corresponding to every Q/(#) which is not identically zéro there 
exists a fini te number of curves B,, defined by the équation RQ;(#) = o 
and extending to the origin. Thèse curves are regular. Interior 
a circle \x\ = r0 (r0 sufficiently small) the B; curves hâve no points 
in common amongst themselves and with the BtJ curves (except at the 
origin of course). There is occasion to introduce the B/ curves only 
if ail the Qi(x)(i= 1,2, . . ., n) are distinct from zéro. 

(l)Cf. ( T x ) . 
(2) For every x in R'f we hâve \x\<rQ. The boundary of R/ consists of two 

regular curves and of an arc of the circle | x \ = r0 The regular curves extend from 
the extremities of this arc to the origin; mereover, except at the origin, they hâve 
no points in common. 

(3) This is the angle corresponding to the interior of R t. 
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Let £ be a fixed positive number, however small. Take 

(5) j < i _ a e (/ = 1, . . . , H t). 

Corresponding to £ we can take r0 sufficiently small so that the fol-
lowings holds. Ail the curves Blf and B, and ail the régions B[, for 
which wt— o, can be enclosed in a set T of sectors (bounded by arcs 
of the circle \x\ = r0) the sum of whose angles does not exceed £; 
moreover such a set T can be so selected that the limiting directions, 
at x — o, of the various curves B, ; and BL are ail distinct from those 
of the boundaries (rays) of T. The complète vicinily of# = o will 
consist of the sectors T and of a certain complemenlary set ofnon 
overlapping and non adjacent sectors T, 

(6) Tlf T2, . . . , TN (\x\ïrQ). 

Corresponding to every Tt the équation (A2 ; § 1) has a full set of 
analytic solutions tyj(x) such that 

ly;(x)~eQjWxrj<jJ(x) ( / = i, . . . , n; x in Tz; \x\<,r0). 

Moreover, no curve Ba>p has at x = o the same limiting direction as 
that of any one of the rays bounding the sectors T. 

Consider now the sectors W,?m (i = i, . . . , H, ; m — o, i, . . . ) , as 

defined by (4). The angle of Wl>m is 26. AU thèse angles are 
Pi 

positive by (4 a). The set of the sectors T has in common with a par-
ticular sector W l ; W a point set which contains a finite number of non 
adjacent and non overlapping sectors 

(7) T r , TYS . . . , T$tm) (\x\iro), 

each with an angle distinct from zéro. Existence of such a set (7) can 
be proved as follows. Suppose there exists DO such set. Then the 
sector Wj>m would be contained in a sector of the set T (with some 
of the boundaries of W l>m and T possibly coïncident). Now, by 
construction, the sum of the angles of T being equal to or less than 
than £, the angle of W l ? m would be <̂ £. On taking account of (5) and 
ofthe above italicized statement, this is seen to be impossible. Hence 
a set (7) with properties as stated exists. 

Let R( r 0 ) be any particular one of the régions 

Tl£m (i = 1,2, . . . , H t ; m = Oy 1, . . . ; A = 1 , 2, . . . , N(«, m)]. 

file:///x/iro
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This région satisfies conditions i°, 20 of Def. 5. Moreover, no curve 
B*j7 and no curve B* has at x = o the limiting direction of a ray 
bounding R( r 0 ) . If R ( r 0 ) is T1/11, in conséquence of the fact that 
R( r 0 ) is a subset of W l fW iV will follow that (3) arcd (3 a ) /zo/rf 
m R ( r 0 ) . There exist polynomials 

(8) Qni(x) = (±ni(x)=...= Qnè(x) 

such that, fora? in R ( r 0 ) and for ail y (yé. nK, ^ n%, . . . , ^ ni), 

(8a) RQni(x)=...= RQn8(x)<RQ;(x). 

Just as a matter of notation, involving no loss of generality, designale 
the polynomials of (8) as 

(9 ) Q i ( * ) = Q s ( * ) = . . . = Qô(*) . 

There are two cases. 

C A S E I . — Vl(x) = Q<(x). 

CASE II. — P,(#) ^ Qi (a?) so that 

(9«) RQi(*)<RP,(ar) [ar in R(/-0)]. 

In the Case II in conséquence of (3) it follows that 

(96) eQM~o [a? in R(/'0). 

The relation (9 6) will also hold in the case I. This is inferred from 
the statement in italics preceding (8). Let P ( # ) dénote Qi(x). Of 
course inconséquence of (gb)V(x) ?â o. Thus P(x) is a polynomial 
ofthe set (1). W e hâve then ail the conditions i°, 20, 3°, 4° satisfied. 
In order to demonstrate that R(r0) is « proper » with respect to P(#) 
it remains only to prove that the condition (5°) of Def. 5 is satisfied 
for some sufficiently small r0 ( > o ) , independent of N ( ^ 2 ) , when 
in (2) G(u) = N P ( u ) — (N — i)(31og u. 

With 

RQ,(aO = RQ y0r)<RQ*(*) [i,j = i , . . . , 8 ; * = 8 - + - i , . . . , / 1 ; x in R(r0)] 

it follows that ihefi(u). defined by (2), are ofthe form 

(10) Mu) = *(P•+• 1, ")g™--(& «) (x = 1,2, . . . , §), 
(10a) t/x(M) = |c«*W-^«Il)-^lo«Bl^I,-1(P, «) (X = S-hi, . . . , n ) 
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where 

( n ) g(Vy u) = | eQi(«)-^»ogw |# 

Let 

(12) y = max { P; H ; R(P -H n)} (X = i , 2, . . . , n). 

Now for X > d w e hâve RQi(u)<RQ1(u) [u i n R ( r 0 ) J . Hence 

j Q i ( w ) — Qx(w) = alu-^^-aiu-^-h...-^akU-«* 

\ ( o < a* < . . . < « • < 04; a l 5 ^ o; X = 8-4-1, . . . , n) 

where the a* (i = 1, . . . , / : ) are rational numbers (1 ). 
On writing 

(i4) \u = pe\/~^, ai=\ai\e>/-^, n= rx-i-s/^1 r{ 
{ (i = h . - . , k\ X = i, . . . , /1) 

it follows that, for 1 = S -J- 1, . . . , n, 

(15) R [ Q 1 ( M ) _ Q x ( M ) _ a l o g w ] 
= GX(p, 6) 

= i «i | p - a i cos (a i6 — a i ) - h . . . 

- H a * | p- a *cos(a*0 — a*) — r'K\ogp -h r{% ( | a t | 5^0). 

For a fixed X (X > à) the limiting directions at x = o ofthe various 
curves Bit\ (along which R f Q ^ w ) — Q X ( M ) ] = O) are given by the 
values 0 satisfying the équation 

(16) cos(a10 —ai) = 0 (2). 

In conséquence of the construction of R ( r 0 ) , for no u in R ( r 0 ) 
(bounding rays included) is 9 ( = angle of u) coincident with a root 
of (16). Hence 

(17) cos(aie — â i ) | ^ e ' > o |>inR(/-0)] (1) 

(1) The fact that the constants in the second member of (i3) dépend on X is not 
explicitly stated. That is, the involved expression is in a generic sensé. 

n c/. (Tt). 
(1) Suppose (17) does not hold. Then the lower bound of the continuons function 

I cos (o^ô — ax) |, for 0 on a closed interval A, would be zéro and would be attained 
for a particular 0 = 0O in A. This value of 0 would be a root of (16). A contradiction 
arises since the ray 0 = 0O ( | u | < r0) is in R(/*0). 
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where er is independent of 0. Since 

R [ Q i ( « 0 - <M«0] < o [w in R ( r 0 ) ] , 

(17) implies 

(17«) c o s ( a i 0 — â i ) < — e ' « o ) . 

Now from ( i5) it follows that 

(18) p _ X =__ a i l a ^ p - a . c o s ^ e - â O — . . . 

— a* | a* | p-a* cos(a*0 — a*) — /•$,, 

By ( i3) and (17) we hâve 

(18a) p - y i = - a 1 | a 1 | p - « i c o s ( a i 0 — â 1 ) [ i - H P ( p , 0)], 

(186) | P ( P , 6 ) K ' , [ g i l a a l P « i - « - 4 - . . . 

-4-a*|<2*| p a i - a n - j , . ^ | pa ]̂ < pO^-a.p [M Jn R(/-0)] (2). 

Hère v is a constant. For r0 sufficiently small | v(p9 0) | <i [w in R(7\>)]. 
Hence, on noting that v(p, 0) is real, from (18 a) with the aid 
of (17 a ) i t i s inferred that 

(19) ^ ^o |> in R(/-0)]. 

It is clear that r0 can be taken independent of X so that (19) holds 
for X = ô-f- 1, . . . , 71. In conséquence ol (19), for x in R(/'o) and u 
on the segment (o, x), the upper bound of Gx(p, 9) and hence of 

(20) |eQi(«Mh(")-aioga| (X = 5-4-1, ...9n) 

is attained at x. 
Consider now the function g(^, u) [cf. ( n ) , (12)]. W e hâve 

Qi(u) ^ o. Hence Qn(u) is given by an expression similar to the 
one in the second member of ( i3) . Furthermore, on taking account 
ofthe notation (i4)» l°g£"(ï> u) would be given by an expression 
analogous to that in the last member of (15) (with r{ = y, and r'{ = o). 
The several B, curves [cf. statement preceding (5) ] , along which 
RQi (u) •= o, possess each a limiting direction at x = o, given by a 

(2) Use is made of the fact that the numbers a2— a3, ..., a2— at, a2 are ail positive. 
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root of the équation cos (a , 0 — ah ) — o. It is to be recalled that by 
construction ail the Bt curves are exterior t o R ( r 0 ) and hâve limiting 
directions at x = o distinct from those ofthe boundingrays of R(r0)* 
Accordingly, by a reasoning precisely analogous to that used in 
proving (17) and (17 a) we again obtain inequalities of similar type» 
As a conséquence p;r-logg(y, u) is seen to be expressible in the 
form of the second member of (18a) . Hère \v(p, 0 ) | would satisfy 
(186), with r[ replaced by y and rQ possibly dépendent on y. Hence 
it is inferred that 
(21) àg(^yU)^o [ M m R ( r o ) ] . 

Whence it is concluded that, for x in R ( r 0 ) and for u on the seg

ment (o, x), the upper bound of g(y, u) is attained at x Let 

a- = a'-r- y — 1 a" be a number real or complex, with cr'^y. Then 

(22) g(a9 u) = #(T, u) | aï-* | = #(y, u) \ u\i-°'e*° . 

With u on a segment (o, x) the upper bound of | u |ï-ff 'e0(r will be 
attained at x. Hence, with x in R( / ' 0 ) , the same will be true of 
g (a, u). On taking account of (12) this is seen to imply that the 
upper bounds of the functions 

(23) j *(M), ^(H,M), *(?-*-a, «0 
\ [u on (o, x)\ x in R(/*o), X = 1, 2, . . . , n] 

are attained at x. Hence, by (10) and (10 a) and in conséquence of 
the property, previously stated with respect to (20), it is concluded 
that the condition (5°) of Def. S holds for the functions 

f\(u) (X = i, . . . , n) 

[with P(w) = Q l ( u ) ] . The remaining function ( 2 ) , ' / ( H , u), is of 
the form 

(24) / ( H , M) == I eQi(")u-H , | cOi(«)M-P IN-I = ^ ( H , a)*N -*(P, u). 

Thus, by virtue of the property proved for the function (23), it is 
observed that condition 5° holds for the function / ( H , u) as 
well. This establishes lemma 6. Incidentallj it has been shown that 
proper régions can always be constructed in the form of circular 
sectors. With the aid of a more extented analysis it is possible to 
obtain proper régions of a more gênerai character. 
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10. The existence theorem (/i-th order problem). — A solution 
of the équation (19 ; § 8) will be found for x in a région R(r 0 ) proper, 
in the sensé of Définition 5 (§ 9 ) , with respect to a non vanishing 
polynomial Q(x) of the set involved in ( 2 ; § 1 ) . As a matter of 
notation this polynomial will be designated as Q< (x). W e shall hâve 

(1) R Q i ( a r ) = . . . = RQ8(ar)<RQI(a?) [t = 8 + i, . . . , n; x in R(r0)]. 

Moreover, in the sequel, when using the conditions of Def. 5 (§ 9 ) , 
we shall let P ( # ) = QA(X). It is to be noted that (1 ; § 7) will be 
satisfied for some / n > ô . The character in R ( r 0 ) o f the formai solu
tions of the non linear problem (A< ; § 1) is specified by Lemma 4 (§ 7) . 
This Lemma is to be applied with the number m*, involved in 
( 4 9 ; § 7 ) and (49 a\ § 7 ) , assigned the value ô\ The only arbitrary 
constants entering in the formai solution will be 

(2) c i , kty k3y . . . , kl. 

Now équation (19; § 8 ) was established under the supposition that 
( i a ; § 7 ) holds. For the case under considération we put 

(2a) #8+1 = fa+t = . . . = km = o, 

as required by a previous statement [cf. (49 6; § 7 ) with m * = ô ] . 
For this case équation (19; § 8 ) will be of the form specified by 
Lemma 5 (§ 8 ) . 

A solution will be found in the form of a séries 

(3) C( * ) = C o ( * ) H - C i ( * ) H - f c ( * ) H - . . . . 

Write 

(3a) zj(x) = Z0(x) -hlx(x) +.. .+ lj(x) ( y = o , 1, . . . ) . 

The terms of the séries will be determined in succession by means of 

the linear non homogeneous équations 

(4) L[Z0(x)] = tQ(x) = x-»>9(x)y 

(4a) L[d(a:)] = h(x) = e*War** U(xf Ç0), 
(46) L[C,(a?)] = h(x) = *G(*)ar-»i[H(x, zx) — H(x, *<>)], 

( L[Kj(x)] = tj(x) = eWx-*>[H(Xy zHx)- K(x9 *,__,)] 
( 4 C ) ( [J = 2, 3, . . . ; c / . ( i 6 a ) , § 8 ] . 

Adding the corresponding members of thèse équations we obtain, 
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provided certain convergence conditions are satisfied, 

(4c/) 2 L [ ^ , ( a 7 ) ] = L f2^ ( a ? ) ) 
l = o \ ; / 

= x~n* ? (a?) •+- eG<x) x~ni l i m H ( # , */—i) 

= a?-'1» 9 (x ) -t- eG(*)#—"* H / # , l im3/-.1^ 

or 

( 4 e ) L[l(x)] = x~n* i(x) + eW*)x-ntJl(x9 Ç). 

We shall proceed to construct the Çj(x) (J = o, i, . . . ) and to 
establish appropriate convergence properties of (3). 

Consider an équation 
(5) L[Ç(*)] = *(*). 

By (16; §8) and(i4; § 8) (5) can be written in the form 

(5a) J'[p(*)] = eG(x) l(x) [?(*) = *G(r) £(*)], 

where, L is given by ( i3 ; § 8 ) , ( i 3 a ; § 8) [cf. the statement in 
italics subséquent to ( i 3 a ) ] . The solutions of the homogeneous 
équation, <L[p(#)] = o are asymptotically the same as those of 
(A2; § 1) ( ' ) . Hence a solution of ( 5 a ) can be given in the form 

(6) p(x) =^eQ'iWxr-kpi(x) f c-QA(«)M-a+Y' pi(u)eG(") t(u)du 

A = 1 

[cf. formulas (28), . . . , (3o) of § 7 ] , where 

( 6 a ) pi(x) = [x]miy PA(«) = ["]/ni [X = i, ..., n; cf. Def. 3 of § 7j. 

Thus, by (5 a) a solution of (5) can be given in the form 

(7) ^(x)=^eQ-M-^)xnpl(x)Zf[t(u)l 

/

x 

eG{»)-Q\(")u-ri pX(u)ur t(u) du. 

(1) By (i36; § 8) the corresponding coefficients of the two équations are asympto
tically the same. On the other hand, in conséquence of the developments in (T t) 
it is observed that the asymptotic form of the solutions is not changed whenever 
the coefficients of a given équation are replaced by functions which are corres-
pondingly asymptotically identical. 



ANALYTIC THEORY OF NON-LINEAR SINGULAR DIFFERENTIAL EQUATIONS. 63 

Let e dénote an arbitrarily small positive number. In conséquence 
o f ( 6 a ) 

(8) iPX(*)l, \n(x)\<p\x\-£ [a? in R(r0); X = i, . . . , « ] . 

Hence, for x in R(r0) , 

I !£[<(«).] I<P f A(u)\u>\r-*\t(u)\d\u\ (X = i, . . . , n ) , 

provided the intégral in the second member exists. Hère f\(u) is 
given by (2 ; § 9). By virtue of the satisfied condition 5° of Def. 5 (§ 9) 
it follows that 

(9) I Cf [*(")] l < P . A ( * ) f \u\r-z\t(u)\d\u\ [*inR(r0);X= i,...,n) 

whenever the intégral exists ('). By(7) , (8) and (9) on taking 
account ofthe form oîf\(u) it is inferred that 

(10) | Ç ( a ? ) | < / i p * | a : | - e j \u\l'-*\t(u)\d\u\ [x in R(r 0 

Jo 
)], 

if the involved intégral converges (2). Let y be a positive integer and 
assume that, for x in R(r 0 ) , 

( u ) \t(x)\<\ e/G(«) jT-Ti-A', tj 

where rA, T ' ( > O ) are ,yo/rce real numbers, independent ofy. Then^ 
for u in R(r 0) , 

( l i a ) \u |T'-e | * (a) | < f/ | e/G(") a- /^a-T t+T'-e [ 

= tjfl-l(z'y ^ / ( x ' - h T t — Y ' + C , w) 

[c/. (2, § 9)]. In using the conditions of Def. 5 (§ 9) (3 wwfM 6e £Ae 
constant so denoted in Lemma ht (§ 7). Write 

(12) a> = ^ - + - i - t - - ( / i — 2 ) ( / 1 - 3 ) . 

(1) Throughout this section intégrais from o to a; are along a straight line. 
(2) It is to be noted that p dépends only on the character ofthe linear operator, 

L and on s. 
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Let the number H, involved in Def. 5, be the greatest of the numbers 

(12a) x', T'H-TI+W. 

As y ' > O, s can be so chosen that y'— e >> o. Thus 

(126) T'<;H, x ' + i i - Y ' + S < H . 

With the condition 5° of Def. 5 satisfied for the function / ( H , u), 
the same will be true of the functions 

/(*'> u)> / ( T ' -+- t i - ï '+O-

This fact is a conséquence of (12 b) and of the statement in connec
tion with (22, § 9). Therefore the second member of (11 a) attains its 
upper bound at#, whenever x is in R(/'o) and u is on the rectilinear 
segment (o, x). Thus, in conséquence of (10) we hâve 

(i3) | l(x) \<tjn?*\x l-5-"/'-1^', *) / ( ^ + T!- y'-*-1, x) 

< nftj | c/GWar-Ti-yp' 11 x |ï'-*e+i [# in R(/-0)]. 

Whence it is observed that (5) and (11) imply (i3) GM7A rap2 a/io* 
y'— 2 s + 1 independent of j . 

In view of the purposes on hand it will be essential to obtain cer
tain inequalities for the | K{v)(x) | (v = 1, 2, . . . , n — 1). On taking 
accountof (16 a, § 8) équation (5) may be written in the form 

n — l 

04) ?«»>(*) = •»(*) +2o W , , ( i r ) ?U)(a:)' 
z = l 

(i4a) 0^(^) = ^(^) + 0^0(^)^(^), 0^(^) = ^ - ^ ( ^ ) (1 = 0, 1,... ra—1). 

For convenience of writing some of the intégrais in the sequel will be 
expressed with the aid of négative superscripts; thus, 

(i5) 

w(o) (x) = w(x)9 

w(-i)(x)= I w(xi)dxiy 

w<-2)(#)=/ I / w(xi)dxi j dxi. 
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Successive intégrations by parts applied to (i4) will resuit in 

n — l 

(16) Ç(»-0(aO = ow(-D(^) + 2 oM*0 ;t«-D(a?) 
i=i 

n — i 

-2o<'(*)C"-*>(*)H----
« — 1 

±2°w, ( ' , l~21(a?^ ( ,~ , i + l ï^) 
1 = 1 

7 1 - 1 X 

+ y r 0^-^(^)^-^^(^)^-
1 = 0 

Accordingly 
/1 — 2 

(i6a) ^-D(^) = ,w(x) + 2 1^(^) t(,,(*) 

where 
n-% X 

(166) !»(*)=•»(-*)(*) ± 2 y o^£^(x)V^)(x)dx 
1 = 0 

n—1 

± 2 [««"V (*)—•«if (*) +-'-± »«toîi(*)] ?(-"(*)» 
/1 — 2 

( i 6 c ) 1^.(^) = 0 ^ , + 1 ( ^ ) - 0 ^ ( ^ ) + . . . + 0^111¾2-0^) (Ï = I , . . , » — 2). 

In gênerai, for v = i, 2, . . ., n — 1, 
n — v — 1 

(17) C(»^)(a?) = v«'(ar)+ ^ vW,(*K ( , ,(*) 
1 = 1 

where 
/1—v—1 

(17a) ^ ( ^ ) = ^ 1 - 1 ) ( ^ ) + 2 f^i^£iïU(x)V-*)(x)dx 
1=0 

n—v—1 

+ 2 [v-i<H*)-...±v-l<„^i,(*)Kl-'>(*), 
1 = 0 

^176) vw l(a?) = v - i « ' l + 1 ( a ; ) - v - i « ' ^ ( a ; ) + . . . 

±*-M£3-*-l)(x) (i = i, ..., n - v - i ) . 
5. 
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Inparticular 

(18) W(X) = n-M*) •+• n-^i(x) ^)(X)9 

(18a) CW(ar) = „-!«>(*) = ^ - 1 ) ( ^ ) - T n-^V'(a?) C (*)«** 

+ n_ îw1(a?)C(a7) . 

The (3t(#) of (i4 à) are of the form specified in the italicized state
ment subséquent to (16 a, § 8). We hâve 

Z 
P i ( * ) ~ 2 P l ' ' * " [*inR(r0)]. 

y=o 

It is a conséquence of the construction of the operator L that 

P i v ) ( * ) ~ 2 P " > 3 & * " [^inR(r0);v = i ,2 , . . . ] . 
y 

This enables one to assert that the Qwt(x) of ( i4 a) and the deriva-
tives of thèse functions satisfy inequalities 

\*«t}\x)\<\x-*-l*wto 
[i = o, . . . , n — i ; X = o, i, . . . ; x in R ( r 0 ) ] . 

(19) 

B y ( i 9 ) a n d ( i 6 c ) 

( I l ^ ( ^ ) K l * | - * - > - ( n - î - 0 twO) < | X | -*-X-(n-l) l W a ) 
(19a) -j 

( [i: = 1, . . . , n — 2; X = o, 1, . . . ; x in R(/ - 0 ) ] . 

Similarly from (17 b ; v = 2) it follows that 

( i ^(X) \<\X \-g-\-(n-Z)-(n-L) ,W(X) 

( [ Ï = 1, . . . , n — 3; X = o, 1, . . . ; a? in R(/-0)J. 

In g ê n e r a i , for v = o , 1, . . ., n — 1, 

I X ' ° ( # ) \<\x \-r-l-p* wfr) 
(20) 

H è r e 

(20 a ) 

[i = 1, . . . , n — v — 1 ; X = o, 1, . . . ; a? in R ( r 0 ) ] . 

Pv = (n — 3) + (/i — 4 ) + . . . + (AI—v— 2 ) = - (2»—v—5) ( v = o , 1 , . . . ) , 

file:///-r-l-p*
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Gonsequently, for i = o, . .., n — v — i, 

(21) I v- i< - ) (x)-. . . + v - i ^ ™ ^ ) I 
< I X |-*-j»»_i-(n-v_i) v _ l W <; | x \-g-pv-\ w 

[«inR(/ 'o); v = 1 , . . . , /i —1]. 

By virtue of ( i4 #) , (19; X = i = o ) and of (i3) from (11) it would 
follow that 

(22) | 0vr(u) | < 0wtj | e/'GMur-'Ci-J'e'-* \ [u in R(r0)] 

where 0w is independent of y. More precisely, with r0^r (r fixed)? 
0w dépends only on r, s and on the operator. L. The second member 
of (22) can be written as 

(22a) oWtj I é?G(.r)#-T' | / - l | eG(x)-T9-t'-gr |. 

In conséquence of the définition of H and w [cf. (12), (12 a)] it 
follows that T'^H and T| + T ' + £• <; H. Hence the upper bound of the 
function (12 a), for u on (o, x) [x in R(r0)] is attained at x. Whence 
it is inferred that 

(23) | owM)(^) i < owtj | e/GMar-Wir'-é+i | [x in R(/'o)]. 

Write (i3) in the form 

| l(u) ! <np*tj | u | Ï ' + » * « / ( T I + T', u)fHi(-z'y u) [u in R(r0)]. 

On noting that y'— 2 £ + 1 > o, TI + T ' < H and T'<^H it is concluded 
that the upper bound of the involved second member is attained at x, 
when u is on (o, x) [x in R(r 0 ) ] . Whence we hâve 

(24) \^-i)(x)\<oltj\ei^)x-^-r'\ [1 = 0, 1, . . .;a?inR(r0)]. 

Hère 0£ is independent of y and dépends only on r and on the ope
rator, \L. By (20) and (24), for u in R(r0)and v = 1, . . . , n— 1, we 
hâve 

(24a) i v-i^-vv-l,(^) ^ - « ( M ) I < o!><»-v>*/1 e/GdoM-Ti-yT'-«v 1, 

(246) 0)v= g + (Al — V) + / l v - l ^ + ^#1-1+ I. 

Except for the constant facto r the second member of (24 a) can be 
written as the product of the functions 

(24c) / ' "-H*' , «0, / ( - d + x ' + t o v , u). 
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By (24 b), (20), (12) and by the définition of H it follows that 

T l + T ' + 0 ) V = T I + T' + g -h pn-ï-i-l = TI + T ' + 0 ) ^ H (v = I, 2, ..., 71—i). 

Hence it is inferred that the upper bounds of the functions (24 c) 
are attained at x when u is on (o, x) [x in R(r 0 ) ] . The same will be 
true of the second member of (24 a). Hence, for x in R(r 0 ) , 

(25) \ f* v - i ^ - z ( u ) V~l)(u)du < oSw<»-v>tj I <?/<*<*)ar-̂ -

f (i = o, . . . , n — v — 1 ; v = 1, . . . , n — 1). 

•i-;V-&>v-Hi 1 

From (16 b), by virtue of (23), (25; v = i), (21 ; v = 1) and (24), 
it follows that 

(26) | xw(x) I < iU)£y | e/GM -̂Ti-zV-ttOil, 
(26a) 1(1)! = £•+ /i —2 = # + / ^ + 1 [# in R(r0)] 

where A(Ù dépends only on r and >|L. Since ^v^co it follows that the 
upper bound of 

| eG(M)w-T,-T;'-ia>i | [M on (o, # ) ; # in R(/*o)] 

is attained at a?. Hence the second member of (26) possesses this 
property. Accordingly 

(266) | l W H ) ( f l î ) | < tu f / I c/GMar-Ti-yT'-tCfli+i |. 

From (17 a; v = 2), (26 6), (25; v = 2), (21; v = 2) and (24) it is 
inferred that 

(27) \tw(x)\<i<ùtj\ e/G(*)3?-Ti-;~'-iw« |, 

(27a) 2(j)2= ^-+ /?2 +i^o) [# in R(r0)] 

where 2o) dépends only on r and <L. By induction it can be esta-
blished that, for v = 1, 2, . . . , n — 1, 

(28) | v<v(x) I < v<*>*/ | e/G(ar)ar-'C1-/T'--vWv [, 

(28a) vwv = £• + / > v + 1 [ # in R(r 0 ) ] 

with v&> depending on r and 4L only. It is essential to note the fol
lowing. Suppose (28) had been established for some v (v < n — 1), 
We hâve 

(286) |e/G(w)M-<-T1-;V-vtov| = / / - I ( T : ' , M ) y ( T l _ f - T ' _ H w ? M ) ] M | a 
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where a = w — vwv>o ('), while r< + T ' + CO<H. Hence the upper 
bounds of the three factors in the second member of (28 b) are 
attained at x when u is on (o, x) [x in R ( r 0 ) ] . Accordingly, the 
second member of (28) [with x in (28) replaced by u] would possess 
the same property. Thus (28) would imply 

(28c) | vK»(-0(a?) | < vwfy | eJG(x)#-TI-/T'-VW,+I | [x i n R ( r 0 ) ] . 

Relations (28), (28 a), with v replaced by v + 1 , are established by 
means of the formulas (17 a) , (25), (21) [in (17 a ) , (25) and (21) 
v is to be replaced by v + 1] and with the aid of (24) and (28 c). 
This complètes the induction. 

By ( 18 a) and (28 ; v = n — 1 ) we obtain 

(29) | W(x) |< iî*; | ei^x)x-^-n'-&\y 

(29a) !£ = „_!(*>, tÇi = n-ii»n-i = g + jO/z_i + i [x in R ( r 0 ) ] . 

Hence, by (18), [28; v = n — 2) and (20; \ = o], 

(30) i ÇW(ar) | < &tj , eM*)x-*r-n'-& |, 

( 3oa ) 2 Ç 2 = 1 Ç 1 + £ • + / > - * > 1Ç1 [x in R(/"0)] 

where 2Ç dépends on r and 4L only. By virtue of (17), (28) and 
(20; X = o) it follows that, for v = n — 2, n — 3, . . . , 1, 

w — v — 1 

(3 i ) I Q"-v)(x) I < vo>*7 | e/G(*îa?-Ti-/T'-vo, | + Y w«» | # | -«-v* | Ç(«î(a?) |. 

z = l 

Suppose that, for / = 1, 2, . . . , a — 1 ( 2 ^ a < / i — 1), 

(32) I Ç(Z)(*0 | < £tj | tf/G(x) ar-Ta-yT'-.?, |, 

( 3 2 a ) i î i = i_ i ï i - i + # + />n-i | > in R(r 0 ) ] 

where the ,Ç(i = i, 2, . . . , a — 1) dépend on r and ^L only. By 
(3 i ; v = n—a) we then would obtain (32) with i replaced by a 
and aÇa equal lo the greatest of the numbers 

n _ a w „ _ a , ^ + / ? I I _ a + , î I (*"=i , 2, . . . , a —1). 

By (28 a) and since the ,Çf increase with « it follows that 

a£a = a—i£a— i "+- £" + /?«—a-

(*) This inequality is a conséquence of (12), (28 a) and (20 a). 
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Moreover, the number a£ can be chosen depending on /*, s and 4L 
only. Thus (32) and (32 a) hold for i = i, 2, . .., n — 1. By(29 a) , 
(28 a) and (32 a) 

(33) Xi= 1 + ig + / > - i + J0/1-2 + . . . + / > - i [̂  = 1,2,..., n — 1 ; cf.(20)]. 

The following Lemma has been established. 

LEMMA 6. — Let R ( r 0 ) (r0<r) be a région, as specified in Défi
nition 5 (§9) , proper with respect to Q1 (x). Let r0 be sufficiently 
small so that ail the conditions of Définition 5 hold when H is 
assigned the value specified in connection with (12 a) and (12). 
Consider an équation (5), where L is given by ( J 6 a ; § 8 ) and 
where t(x) is a function satisfying (11) (where j is a fixed posi
tive integer). There exists a solution of (5) , Ç(x), analytic 
in R( r 0 ) (x ?é o) and together with its derivatives satisfying the 
inequalities 

(34) \^)(x)\<ltj\eJ^^x-^-J^-^\ [v = 0, i, ..., n— 1; xinK(r0)]. 

Hère o = 0£o < i£i < . . . < n- i^-i [c/. (33), (29 a), (20)]; moreover, 
Ç is a constant depending only on r and on the character of the 
operator L [that is (A2 ; § 1)], (1). 

Let r be a positive number. The transformation 

(35) zW=x-*~zW (v = o, 1, . . . , n — 1), 

applied to H(#, .s) of (18 a; § 8), will resuit in 

(36) U(Xy z) = x-^W(xyz) 

where 1 

(36a) W ( * , i ) = 2 2 *""~,<*)*«* ,i.-,(*)*w',2i]\..ït"--tl,"-«, 
/«=2 vi- -hi„—i=m 

( 3 6 6 ) £•(#) = eG(a:)^-(/i-l)-r. 

In conséquence of the convergence properlies of H(# , z) [cf. § 8; 
in particular, (18 6; § 8 ) , (18c; § 8)J the following can be stated 
regarding W {x, z), when the z[v] (v = o, 1, . . ., n — 1) are consi
dered as variables not necessarily depending on x. 

(1) It is essential to not that the ,Çv(v = i, . . . , n — 1; dépend only on L. 
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There exists a positive number r'= r ' ( r 0 ) (r'-+oc a* r 0 - ^ o ) (1) 
such that, whenever 

07) \*M\, l^l^r'(ro) (v = o, 1, . . . , / * - i ) , 

we hâve 

(37a) | W ( ^ , ^ ) - W ( ^ , J 1 ) I 
< M {| 4<>]_ [̂o] | _+_ | - H ] _ 5m | -4... .H- | 4 " - " - z\n~" |} 

w/ie/i o? is in R ( r 0 ) . /Zere M is independent of x, 

ïivi, Ï£l (v = o, 1, . . . , / i - i ) . 

The proof of the above may be made on the basis of the Cauchy 
intégral theorem for analytic functions of several variables. 

On writing 

<38) z^(x) = x^z[J\x) ( v = o , 1, . . . , # 1 - 1 ; / = o, 1, . . . ) 

.équations (4) , (\a), (46) are brought to the form 

(39) L[îo(*)] = t0(x) = x-»> o(x) [W(x) = x-*zW(x)l 

L[ïj(x)] = tj(x) = CGWflr».-w [W(*, ïy_i) - W(ar, */_2)] 
< 3 9 « ) i . n 

[; =1 ,2 , . . . ; ^ J = o ( v = o, . . . , / 1 - 1 ) ] (*) 

where, by (3 a ) , (38), 

<4o) z%(x) = zy±^x) + x^±x(x) ( v = o , . . . , / i - i ; y = i , 2 , . . . ) . 

Thus, in view of the above italicized statement, inequalities 

3 ^ ) 1 , \zfl,(x)\ = ̂ (r0) 
(Ï0 

( [v = o, i, . . . , n — i ; x in R(/-0 ) ; fixed j ^ i] 

would imply that tj(x), as defined in (3o, a), satisfies 
/ l—l 

(42) I «;(*) | < I ««<«)*-.-« | M^ I 3 ^ 0 0 - ¾ ^ ) I 
V = 0 

71—1 

(1) r' dépends on the choice of T. 
<2) It is to be noted that W(a;,o) = o. 
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Solving équation (3g) by asymptotic methods a solution K0(x) is 
obtained, analytic in R(r0) (x^éo), together with its derivatives 
satisfying inequalities 

(43) | ^)(x) \$\x \~Ko [v = o, . . . , n - 1 ; x in R ( r 0 ) ] . 

Let this value of T be used in the transformation (35). In the 
sequel Lemma 6 will be applied with 

( 4 3 a ) T i = T —Ç, T , = W 1+T + Ç (£ = n - l£n- ) . 

Corresponding to this choice of T4 and zf, applicability of the 
Lemma nécessitâtes that r0 be sufficiently small. Choose r0 also 
so that 

(436) ÇoS'-'C-o) (*)• 

It is observed that in conséquence of (43), (43 6) and (38; j = i) 
the inequalities ( 4 0 hold for y = i (with z[l\(x) = o). Hence by 
(4a;y = i ) (43 ) and (43 6) 

( I ^ ^ K I eGM X-HI-T; \Mnr'\x\-* = \ eGM x~^-^ \ h 
( ' ( [^inR(/-0); tt= Mnr']. 

In applying Lemma 6 the inequalities (34) will be used in the 
simplified form 

( i IW(œ) | < Itj | em*)xr**-l*-< j 
\ (v = o , i , . . . , n — i ; x in R ( r 0 ) ; £ = n-iÇn-i) (s 

)• 

By (44) and Lemma 6 the équation (3g a; j = i) possesses a solu
tion Ç, (x) such that 

(46) | l^(x) ] < lu | gGWar^'-; | [v = o, . . . , n — i ; x in R (/•<,)]. 

Thus, by (4o; j' = 2) we hâve for x in R(r0) 

(46a) \zW(x)\ £ |20
VH^)I + I^ITI^V)(^)I 

< r ' + Çfi | cGtxîar-Tt-r'-Ç+T | = ^ + Ç*i | «<*(*) « - * j </ • ' .+-$ 

[8 = /-7(1 + /̂ )5 v = o, i, . . . , n — 1] 

(1) This is possible since /*'(r0)-> 00 as r0-> o. 
(2) In conséquence of a previous remark £ dépends on the linear operator tL only. 
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provided r0 is such that, with gK denoting the greater one of the 

numbers\th, M/iÇ, we hâve 

(47) T(x) = | eGMx-^'gi | <; 8 [x in R(i-0)] . 

Since r ' + â < ; 2 r ' it is observed that inequalities (4i) are satisfied 
for y = 2 so that, by (42; j = 2) and (46), 

(48) \*t(x)\<\ c G W a r » ^ \Mnlt,\ e*W x-*r-*'-< \ 

= | e^W 3 .-^-21' | tt ( h = *iM n 0 . 

W e now solve (3g a ; y = 2). By Lemma 6 (with j — 2) it follows 
that 

( 4 8 a ) |Ç( 2
v ) (^) i<^ 2 | e2G(x)^-T 1 -2x ' -q ( v = o , I, . . . , / * —1). 

From (4o ; j =± 3) it is inferred that 

( 4 8 6 ) . | ï(v](a?) | < | zW(x) | + | a? |f Ç^ | e2G(x)^-^-2^'-; , 

so that in conséquence of (43 a) and (46 a) 

(48c) | I ^ ( a : ) | < / - ' + 8 + Ç/:2|e2G(^)^-2i:'|. 

Now since t2 = £< M n \ and g-, is the greater one of the numbers \t\, 

M/iÇ it follows that Çt2<g*. Thus by (47) and (48 c) 

(49) | *£!(*?) | < r ' + 8 + 8 * < 2 r ' [a? in R(/\>); v = o, 1, . . . , /1 — 1). 

Assume now that for some j(j>2) we hâve 

(ôo) j l ? i 1 ( ^ ) l < ' / + ô + 82 + . . . + 8 / - i « 2 / ) 

( [v = o , 1, . . . , n — 1; x in R(r 0 ) ] ( 1 ) 

and that, for # in R ( r 0 ) , 

(5i) | f ^ ) | < | e / G ( % - ^ ' | < / [ 0 = ' i ( M / l ? ) / " 1 ] (2)-

In view of (5i) and by Lemma 6 the équation L(Çy) = /y(#) 
possesses a solution Zj(x) for which 

(52) I tf\x) I <Ztj i c/Gtxîar-T.-yt'-; | [v = o, . . . , n - 1 ; x in R ( r 0 ) ] . 

(1) This has been previously established in (43), (43 b), (46 a), (48 c) for y = 1, 
y = 2, y = 3. Foi- y = 1 the second member of (5o) is written as /•'. 

(1) (5i) has been proved for y = 1 and y = 2 in (44) ana" (48). 
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By virtue of (4o), with j increased by unity, it would follow that 

"z[J](x) | < r ' + 8 + . . . + 8/-1+ | x \~\tj | e/GU)#-iWT'-; | 
<53) 

[v = o, . . . , n — i ; x in R(/*0)] 

Now, by (43a). T — T4 — Ç = o. Hence on substituting the expression 
for tj and on noting the définition of gK, as given in connection with. 
(47)) it is inferred that 

(54) \z^(x)\< r ' + 8 + . . . + 8/-1+ (lu) (Mniy-1 | e/G(.r) #-/V j 

^ /•' + 8+ . . .+ 8/-1+ 17(#)^r' + 8 + . . . + 8 /<2r 
[# in R(r0); v = o, . . . , n — 1]. 

Accordingly, by (5o) and (54) the inequalities (4i ) are seen to hold 
with y replaced byy + i- Therefore (42) holds with j increased by 
unity. With the aid of ( 52) we obtain 

| tf+l(x) | < | eG^)x~n^ | Mnltj | ei*Wx-**-l*'-< |. 

By(43 a) — rc, — T — T< — jz'— Ç = — T, — (y + i)r'. Thus 

(55) | */+i(* ) I < I ¢ ( /+1)^^^ - ( /+1^ | * /+l [*y+l = ^(MnÇy]. 

Hence it is observed that (5o) and (5i ) imply (54) and (55). It fol
lows by induction that inequalities (5o) and (5i ) hold for ail posi
tive j , the same of course being true ofthe inequalities (52). 

In view of the above it is concluded that £(#), as given by the 
séries (3), represents a solution of the équation (19; § 8). Each of 
the séries 

(56) ^)(x)=^J\x) (v = o, 1, . . . , # i - i ) 
1=0 

will converge absolutely and uniformly when x is in R(r 0 ) . In fact, 
b y ( 5 2 ) 

oo 00 

(56 a) i^KaOi^y, | '&(x) | < ; (* )-*i-<-il- Y (Mniy\eM**x-i*'\ 
, = 0 ^ ">J = 0 

<; | x | - r ' - V Y Yi(x) < I x \-*i-ïr'(i + 8+...) = | x \~* r(i + r) 
j=o 

[x in R(/*o); v = o, i, . . . , n — 1]. 

Higher ordered derivatives of Ç(x) will be also represented by abso-

file:///~/tj
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lutely and uniformly convergent séries. The constituent éléments of 
the séries (56) being analytic in R ( r 0 ) . for every x, except x = o, 
the functions Ç(v)(#)(v = o, i, . . .) wifl possess the same property. 
It is notdifficult to see that the heuristically outlined interchanges of 
limiting processes, involved in (4 d), are legitimate in conséquence 
of (52) and (5i ) . 

The developments of sections 7, 8, 9, 10 enable formulation ofthe 
following theorem. 

EXISTENCE THEOREM II. — Consider the non-linear n-th order 
problem (A), as formulated^l. The corresponding linear équation 
(A2; § 1) has a complète set of formai solutions (2; § 1). Assume that 
not ail the polynomials Qt(x) involved in (2 ; § 1 ) are zéro. That 
is. (A2) is to be formally not of Fuchsian type at x = o. As 
stated in Lemma o (§ 9) there exist régions u proper ", in the 
sensé ofDef. 5 (§ 9), with respect to some of those Qt(x) which 
are not identically zéro. Let R ( r 0 ) (c/ . Def. 5) be such a région 
and designate the Q(x) with respect to which R(/ '0) is proper as 

QU*)[=Q3(*) = . . . = Q8(*)]. 
Consider a formai solution s(x) satisfying équation (A) and 

specified in Lemma 4 (§ 7) under the assumption that (49; § 7), 
(49 a ; § 7) hold with m * = ô : 

l s(x) = s(x, ci, ki, h, ...,kt) sVc/fiiWarlMiPii^Jcj 

(57) / = ' 

f (3 = (n — 1) ( 1 + - J + «> + /? — 1; | et |, ' cikt \, . . . , | cxk^\ = k . 

Hère â arbitrary constants. cA, k2, . . . , /rg, are involved. Given 
N ( > 1), however large, équation (A) has a solution y (x), ana
lytic in R(/*o) (x7^°)-> with a singular point at x — o and such 
that 

(58) y(x)~ s(x) [̂  in R(/"0)]. 

Hère r0 must be sufficiently small (cf. Def. 5) but can be taken 
independent of N, whenever kf (depending on N) is taken suffi
ciently small [cf. Lemma 5 (§ 8)]. The asymptotic relation (58) 
is in the following sensé. 
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The solution y(x) is representable with the aid of the expres

sion 
N - l 

(5g) y(x) = S c/Ui(r)arH/-OP -r\j(x)c\ + cNQ,(x) jpHN-Dp £ ( # ) , 

where Ç(x) is a function (defined by the convergent limiting 
process developed in this section), analytic in R(/'o) (# ^ o). This 
function, together with its derivatives, satisfies inequalities 

(60) \lW(x)\<\x\-*k | > i n R ( r 0 ) ; v = o, 1, . . . , n — i] 

where k and T are constants, the latter depending only on the 
character of the linear problem (A; § 1). [Nothing is assumed 
regarding the curves R(y Q< — Q^) = o] . 

NOTE. — The asymptotic character of y{i)(x), . . ., y{n~^(x) can 
be easily inferred from (5g), (60). The asymptotic character of the 
derivatives y[n)(x), y(n+x ](x), y^n+2)(x) . . ., can be inferred directly 
with the aid of équation (A; § 1). It is essential to note that the 
functions fij(x), involved in (07), are well defined by means ofthe 
recursion differential équations of § 7. In ail cases whatsoever the 
r)j(x) possess certain asymptotic forms specified in Lemma ht (§ 7). 
The first term ofthe formai séries (07) is a solution, involving a 
number of arbitrary constants, of the linear problem corresponding 
to (A). Under additional hypothèses with respect to the given pro
blem (A; § 1) the method of defining the r\j(x) may yield additional 
information regarding their properties (1). Thus, for instance, under 
appropriate restrictions the formai séries to which the r\j(x) arc 
asymptotic may be il summable ", say, with the aid of Laplace inté
grais leading to convergent factorial séries. In the latter case such 
expressions, involving convergent factorial séries, would correspon-
dingly represent the f)j(x). W e hâve termed the relationship (5g), 
(60) asymptotic, since this relationship implies that the sum of the 
first N — 1 terms of the formai séries (57) can be used for computa-
tion of the u actual " solution y(x) with an error which can be 

(1) The propertise of interest are those for the neighborhood [within R(r0)] of 
x= 0. 
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made as small as desired by letting r0 be suitably small [while x is 
restricted to R ( r 0 ) ] . 

Similar remarks can be made, of course, regarding the Existence 
Theorem I (§ 6) . 

Finally, it is to be noted that a shghtly greater generality can be 
achieved when the previously used conditions of the type 

6?Q(*)~o [ t f i n R ( / 0 ) , a lsocf (7) , § 2 ] 

are replaced by certain other less stringent relations. 
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