[Projecteurs en plusieurs variables complexes]
Ce travail comporte deux parties. Dans la première, nous appliquons la méthode de Menikoff-Sjöstrand au laplacien de Kohn, défini sur une varieté CR compacte orientée connexe et nous obtenons un développement asymptotique complet du projecteur de Szegő pour les formes quand la forme de Levi est non-dégénérée. Cela généralise un résultat de Boutet de Monvel et Sjöstrand pour les formes. Nous utilisons des opérateurs intégraux de Fourier à phases complexes de Melin et Sjöstrand. Dans la deuxième partie, nous obtenons un développement asymptotique de la singularité du noyau de Bergman pour les formes quand la forme de Levi est non-dégénérée. Cela généralise un résultat de Boutet de Monvel et Sjöstrand pour les formes. Nous introduisons un nouvel opérateur analogue au laplacien de Kohn défini sur le bord du domaine, et nous y appliquons la méthode de Menikoff-Sjöstrand. Cela donne une description modulo les opérateurs régularisants d’un nouvel projecteur de Szegő. Enfin, nous obtenons notre résultat principal en utilisant l’opérateur de Poisson.
This work consists two parts. In the first part, we completely study the heat equation method of Menikoff-Sjöstrand and apply it to the Kohn Laplacian defined on a compact orientable connected CR manifold. We then get the full asymptotic expansion of the Szegő projection for forms when the Levi form is non-degenerate. This generalizes a result of Boutet de Monvel and Sjöstrand for forms. Our main tools are Fourier integral operators with complex valued phase Melin and Sjöstrand functions. In the second part, we obtain the full asymptotic expansion of the Bergman projection for forms when the Levi form is non-degenerate. This also generalizes a result of Boutet de Monvel and Sjöstrand for forms. We introduce a new operator analogous to the Kohn Laplacian defined on the boundary of a domain and we apply the heat equation method of Menikoff and Sjöstrand to this operator. We obtain a description of a new Szegő projection up to smoothing operators. Finally, we get our main result by using the Poisson operator.
Keywords: CR manifold, Szegő kernel, Bergman kernel, heat equation, microlocal analysis
Mot clés : Variété de CR, noyau de Szegő, noyau de Bergman, equation de chaleur, analyse microlocale
@book{MSMF_2010_2_123__1_0, author = {Hsiao, Chin-Yu}, title = {Projections in several complex variables}, series = {M\'emoires de la Soci\'et\'e Math\'ematique de France}, publisher = {Soci\'et\'e math\'ematique de France}, number = {123}, year = {2010}, doi = {10.24033/msmf.435}, mrnumber = {2780123}, zbl = {1229.32002}, language = {en}, url = {http://www.numdam.org/item/MSMF_2010_2_123__1_0/} }
Hsiao, Chin-Yu. Projections in several complex variables. Mémoires de la Société Mathématique de France, Série 2, no. 123 (2010), 144 p. doi : 10.24033/msmf.435. http://numdam.org/item/MSMF_2010_2_123__1_0/
[1] Calculus on Heisenberg manifolds, Annals of Math. Studies, vol. 119, Princeton Univ. Press, 1988. | MR | Zbl
& –[2] « A direct approach to Bergman kernel asymptotics for positive line bundles », Ark. Mat. 46 (2008), p. 197–217. | MR | Zbl
, & –[3] « Asymptotics for Bergman-Hodge kernels for high powers of complex line bundles », arXiv:math/0511158. | MR | Zbl
& –[4] CR manifolds and the tangential Cauchy-Riemann complex, Studies in Advanced Math., CRC Press, 1991. | MR | Zbl
–[5] « The Bergman kernel and a theorem of Tian », in Analysis and geometry in several complex variables (Katata, 1997), Trends Math., Birkhäuse, 1999, p. 1–23. | MR | Zbl
–[6] Partial differential equations in several complex variables, AMS/IP Studies in Advanced Math., vol. 19, Amer. Math. Soc., 2001. | MR
& –[7] « On the asymptotic expansion of Bergman kernel », J. Differential Geom. 72 (2006), p. 1–41; announced in C. R. Math. Acad. Sci. Paris 339 (2004), no. 3, 193–198. | Zbl
, & –[8] Fourier integral operators, Progress in Mathmatics, vol. 130, Birkhäuser Boston Inc., 1996. | MR
–[9] « The Bergman kernel and biholomorphic mappings of pseudoconvex domains », Invent. Math. 26 (1974), p. 1–65. | MR | EuDML | Zbl
–[10] The Neumann problem for the Cauchy-Riemann complex, Annals of Math. Studies, vol. 75, Princeton Univ. Press, 1972. | MR
& –[11] Estimates for the -Neumann problem, Mathematical Notes, vol. 19, Princeton Univ. Press, 1977. | MR | Zbl
& –[12] Microlocal analysis for differential operators, London Mathematical Society Lecture Note Series, vol. 196, Cambridge Univ. Press, 1994. | MR | Zbl
& –[13] « estimates and existence theorems for the operator », Acta Math. 113 (1965), p. 89–152. | MR | Zbl
–[14] —, « Fourier integral operators. I », Acta Math. 127 (1971), p. 79–183. | MR | Zbl
[15] —, The analysis of linear partial differential operators. III, Grund. Math. Wiss., vol. 274, Springer, 1985.
[16] —, The analysis of linear partial differential operators. IV, Grund. Math. Wiss., vol. 275, Springer, 1985.
[17] —, An introduction to complex analysis in several variables, third éd., North-Holland mathematical library, vol. 7, North-Holland Publishing Co., 1990.
[18] —, The analysis of linear partial differential operators. I, Classics in Mathematics, Springer, 2003.
[19] —, « The null space of the -neumann operator », Ann. Inst. Fourier 54 (2004), p. 1305–1369. | MR | EuDML | Zbl | Numdam
[20] « Projections in several complex variables », Thèse, École polytechnique, 2008, available at http://tel.archives-ouvertes.fr/tel-00332787.
–[21] General topology, Graduate Texts in Math., vol. 27, Springer, 1975. | MR
–[22] Complex manifolds and deformation of complex structures, classics in mathematics, Springer, 2005. | MR
–[23] « Harmonic integrals on strongly pseudo-convex manifolds. I », Ann. of Math. 78 (1963), p. 112–148. | MR | Zbl
–[24] —, « Harmonic integrals on strongly pseudo-convex manifolds. II », Ann. of Math. 79 (1964), p. 450–472. | MR | Zbl
[25] « The first coefficients of the asymptotic expansion of the Bergman kernel of the Dirac operator », Internat. J. Math. 17 (2006), p. 737–759. | MR | Zbl
& –[26] —, Holomorphic morse inequalities and bergman kernels, Progress in Math., vol. 254, Birkhäuser, 2007. | Zbl
[27] —, « Generalized Bergman kernels on symplectic manifolds », Adv. Math. 217 (2008), p. 1756–1815, announced in C. R. Math. Acad. Sci. Paris 339 (2004), no. 7, 493–498. | MR | Zbl
[28] « Fourier integral operators with complex-valued phase functions », in Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974), Lecture Notes in Math., vol. 459, Springer, 1975, p. 120–223. | MR
& –[29] « On the eigenvalues of a class of hypoelliptic operators », Math. Ann. 235 (1978), p. 55–85. | MR | EuDML | Zbl
& –[30] « Comportement d’un opérateur pseudo-différentiel sur une variété à bord. I et II », J. Analyse Math. 17 (1966), p. 241–304. | Zbl
–[31] —, « Boundary problems for pseudo-differential operators », Acta Math. 126 (1971), p. 11–51. | MR | Zbl
[32] —, « Hypoelliptic operators with double characteristics and related pseudo-differential operators », Comm. Pure Appl. Math. 27 (1974), p. 585–639. | MR | Zbl
[33] The spectral theory of Toeplitz operators, Annals of Math. Studies, vol. 99, Princeton Univ. Press, 1981. | MR | Zbl
& –[34] « Sur la singularité des noyaux de Bergman et de Szegő », Astérisque 34-35 (1976), p. 123–164. | MR | Zbl
& –[35] Complex manifolds, Athena series; selected topics in mathematics, Holt, Rinehart and Winston, 1971. | MR | Zbl
& –[36] « Parametrices for pseudodifferential operators with multiple characteristics », Ark. Mat. 12 (1974), p. 85–130. | MR | Zbl
–[37] Partial Differential Equations. II, Applied mathematical sciences, vol. 116, Springer, 1996. | MR
–[38] « Szegő kernels and a theorem of Tian », Int. Math. Res. Not. 1998 (1998), p. 317–331. | MR | Zbl
–Cité par Sources :