The convex and concave decomposition of manifolds with real projective structures
Mémoires de la Société Mathématique de France, no. 78 (1999) , 112 p.
@book{MSMF_1999_2_78__1_0,
     author = {Choi, Suhyoung},
     title = {The convex and concave decomposition of manifolds with real projective structures},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {78},
     year = {1999},
     doi = {10.24033/msmf.391},
     mrnumber = {2001j:57030},
     zbl = {0965.57016},
     language = {en},
     url = {http://www.numdam.org/item/MSMF_1999_2_78__1_0/}
}
TY  - BOOK
AU  - Choi, Suhyoung
TI  - The convex and concave decomposition of manifolds with real projective structures
T3  - Mémoires de la Société Mathématique de France
PY  - 1999
IS  - 78
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/MSMF_1999_2_78__1_0/
DO  - 10.24033/msmf.391
LA  - en
ID  - MSMF_1999_2_78__1_0
ER  - 
%0 Book
%A Choi, Suhyoung
%T The convex and concave decomposition of manifolds with real projective structures
%S Mémoires de la Société Mathématique de France
%D 1999
%N 78
%I Société mathématique de France
%U http://www.numdam.org/item/MSMF_1999_2_78__1_0/
%R 10.24033/msmf.391
%G en
%F MSMF_1999_2_78__1_0
Choi, Suhyoung. The convex and concave decomposition of manifolds with real projective structures. Mémoires de la Société Mathématique de France, Série 2, no. 78 (1999), 112 p. doi : 10.24033/msmf.391. http://numdam.org/item/MSMF_1999_2_78__1_0/

[1] B. Apanasov ET Al. (Ed.) Geometry, Topology, and Physics, W. de Gruyter, Berlin, New York, 1997.

[2] T. Barbot - On certain radiant affine manifolds, preprint, 1997.

[3] T. Barbot, Structures affines radiales sur les variétés de Seifert, preprint, 1997.

[4] T. Barbot, Variétés affines radiales de dimension trois, preprint, 1997.

[5] Y. Benoist - Nilvariétés projectives, Comment. Math. Helv. 69 (1994), p. 447-473. | Zbl | MR

[6] J.-P. Benzécri - Variétés localement affines et projectives, Bull. Soc. Math. France 88 (1960), p. 229-332. | Zbl | MR | Numdam

[7] M. Berger - Geometry I, Springer-Verlag, New York, 1987. | Zbl

[8] Y. Carrière - Autour de la conjecture de L. Markus sur les variétés affines, Invent. Math. 95 (1989), p. 615-628. | Zbl | MR

[9] Y. Carrière, Questions ouvertes sur les variétés affines, Séminaire Gaston Darboux de Géométrie et Topologie Différentielle (Montpellier) 1991-1992, (Univ. Montpellier II. Montpellier), 1993, p. 69-72. | Zbl | MR

[10] S. Choi - Convex decompositions of real projective surfaces. I: π-annuli and convexity, J. Differential Geom. 40 (1994), p. 165-208. | Zbl | MR

[11] S. Choi, Convex decompositions of real projective surfaces. II: admissible decompositions, J. Differential Geom. 40 (1994), p. 239-283. | Zbl | MR

[12] S. Choi, i-convexity of manifolds with real projective structures, Proc. Amer. Math. Soc. 122 (1994), p. 545-548. | Zbl | MR

[13] S. Choi, Convex decompositions of real projective surfaces. III : for closed and nonorientable surfaces, J. Korean Math. Soc. 33 (1996), p. 1138-1171. | Zbl | MR

[14] S. Choi, The decomposition and classification of radiant affine 3-manifold, GARC preprint 97-74, dg-ga/9712006, 1997.

[15] S. Choi, The universal cover of an affine three-manifold with holonomy of discompactedness two, in Apanasov et al. [1], p. 107-118. | Zbl | MR

[16] S. Choi, The universal cover of an affine three-manifold with holonomy of infinitely shrinkable dimension ≤ 2, submitted, dg-ga/9706011, 1997.

[17] S. Choi ϑ W. M. Goldman - The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc. 34 (1997), p. 161-171. | Zbl | MR

[18] S. Choi, H. Kim - H. Lee (eds.) - Proceedings of the conference on geometric structures on manifolds, in preparation. | Zbl

[19] S. Dupont - Solvariétés projectives de dimension 3, Ph. D. Thesis, Université Paris 7, 1998.

[20] H. Eggleston - Convexity, Cambridge University Press, 1977.

[21] W. Goldman - Projective structures with Fuchsian holonomy, J. Differential Geom. 25 (1987), p. 297-326. | Zbl | MR

[22] W. Goldman, - Convex real projective structures on surfaces, J. Differential Geom. 31 (1990), p. 791-845. | Zbl | MR

[23] H. Kim - Geometry of left-symmetric algebra, J. Korean Math. Soc. 33 (1996), p. 1047-1067. | Zbl | MR

[24] S. Kobayashi - Projectively invariant distances for affine and projective structures, Differential Geometry, Banach Center Publication, vol. 12, Polish Scientific Publishers, Warsaw, 1984, p. 127-152. | Zbl | MR

[25] N. H. Kuiper - On compact conformally euclidean spaces of dimension > 2, Ann. Math. 52 (1950), p. 487-490. | Zbl | MR

[26] E. Molnár - The projective interpretation of the eight 3-dimensional homogeneous geometries, Beiträge zur Algebra und Geometrie 38 (1997), p. 262-288. | Zbl | MR

[27] T. Nagano ϑ K. Yagi - The affine structures on the real two torus. I, Osaka J. Math. 11 (1974), p. 181-210. | Zbl | MR

[28] J. Ratcliff - Foundations of hyperbolic manifolds, GTM 149, Springer, New York, 1994. | Zbl | MR

[29] P. Scott - The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), p. 401-487. | Zbl | MR

[30] E. Suarez - Poliedros de Dirichlet de 3-variedades conicas y sus deformaciones, Ph. D. Thesis, Univ. Madrid, 1998.

[31] D. Sullivan ϑ W. Thurston - Manifolds with canonical coordinate charts: Some examples, Enseign. Math 29 (1983), p. 15-25. | Zbl | MR

[32] B. Thiel - Einheitliche Beschreibung der acht Thurstonschen Geometrien, Diplomarbeit, Universität zu Göttingen, 1997.

Cité par Sources :