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NONLINEAR STRUCTURES DETERMINED BY MEASURES ON BANACH SPACES

By K. David ELWORTHY

0. INTRODUCTION.
A. A Gaussian measure y on a separable Banach space E , together with the topolcT-
gical vector space structure of E , determines a continuous linear injection
i : H -> E , of a Hilbert space H, such that y is induced by the canonical cylinder
set measure of H. Although the image of H has measure zero, nevertheless H plays
a dominant role in both linear and nonlinear analysis involving y , [ 8] , [ 9 ] , [ 1 0 ] .
The most direct approach to obtaining measures on a Banach manifold M, related to
its differential structure, requires a lot of extra structure on the manifold :
for example a linear map i : H -> T M for each x in M, and even a subset M-^ of M
which has the structure of a Hilbert manifold, [ 6 ] , [ 7 ] . In the manifold case it
has not been clear how much of this additional structure is really required ; or,
slightly reformulated : do certain measures on an infinite dimensional manifold M ,
together with the differential structure of M, determine any such additional struc-
tures ? As a special case of this we can ask whether every diffeomorphism of E
which preserves the Gaussian measure y necessarily maps i(H) to itself, or has
derivatives which preserve i ( H ) .

2 1 2 1Along similar lines, it is plausible that the Hilbert manifold L ' (x) of L '
^opaths starting at x,, on a Riemannian manifold X may play a central role for the

Wiener measure on the manifold C (X) of continuous paths in X, [ 6 ] , [ 7 ] . If so it
ô 2 1 .should be possible to characterise L ' (X) in terms of that measure and the diffe-

^orentiable structure of C ( X ) .
0

Although we do; not answer these questions, we show here that any strictly posi-
tive Radon measure on a smooth manifold determines some structure : namely a par-
tition of M into subsets invariant under measure preserving diffeomorphisms, and
subspaces in the tangent spaces to M invariant under the derivatives of such dif-
feomorphisms. For infinite dimensional M these are shown to be non-trivial in a
class of important cases : and the partition may well be non trivial in general, in
infinite dimensions. A concrete consequence is obtained in Corollary 4 A : the group
of diffeomorphisms of an infinite dimensional separable Banach space E preserving
a given Gaussian measure does not act transitively on E. This is false for the
group of measure class preserving diffeomorphisms : Theorem I B . Another consequence,
concerning group actions, is given in § 3C.
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The precise definitions of the invariants may seem rather unnatural : they have
been chosen from a wide range of similar definitions simply in order to make the
theorems true and to show that non-trivial invariants' exist, not because of any
obvious intrinsic geometric meaning. A particularly interesting point is that the
interpolation K-functors, as described by PEETRE in [ 1 3 ] , play an important role
in several different places : especially Corollary 2 C and Proposition 4 B. Full
proofs and a more detailed discussion will be made available elsewhere.

B. We are concerned with measures on topological spaces : by which we mean posi-
tive Borel measures, usually locally finite (or even finite) and strictly positive ;
so every point has a neighbourhood of finite measure, and each open set has non-ze-
ro measure. Moreover in order that our constructions are non-trivial we shall often
have to assume that the measures p are tight i . e . for each Borel set B

p ( B ) = sup { p ( K ) : K C B, K compact}.

This follows automatically, when p is finite, if the space is separable and admits
a complete metric, see [ 1 2 ] , [ 1 5 ] . Recall that a Borel measure is a Radon measure
if it is locally finite and tight. - (

Two measures X , p on X are equivalent, \ ̂  p , if they have the same sets of mea-
sure zero. If so the Radon-Nikodym derivatives — , -^- are defined, almost every-
where, as measurable functions. This relation between measures seems to be to weak
for our purposes (see Theorem 1B) : so for x in X we define A and p to be pointD-ise
equivalent at x

X % p pointwise at x

if for all neighbourhood bases ^U at x, directed by inclusion, and all Borel sets B

lim p(U U B) ^ . lim X(U O B ) ^u e ̂  x(u n B) u and u e °U p (u n B) .u

where, in the computation of the lower limits, we remplace -- by 1 and — by ° ° , if
r >0.

For strictly positive measures X , p , we see that if X , p are orthogonal they are
not pointwise equivalent at any point, while, for X first countable, if \ and p are
equivalent they are pointwise equivalent at x iff both Radon-Nikodym derivatives
are essentially bounded in some neighbourhood of x. '

1 . GAUSSIAN MEASURES. • —

A. Since Gaussian measures furnish our main test bed we quickly give the defini-
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tion and most relevant properties. For simplicity we consider only strictly positi-
ve, mean zero measures.

Let E be a separable real Banach space. A measure y on E is Gausszan if for all
continuous linear surjections with finite dimensional range :

T : E -̂  F̂

the induced measure T(y) on F

T ( y ) ( B ) ^yT'^B) BC Borel(F )

is given by

T(y) (B) = (27T) n/2 f exp^-^Udx)
) T2 ~

where n = dim F , and the Lebesgue measure and norm come from some inner product
< , >̂  on F^.

For such a measure y :

Gl : [ 4 ] , there is a compact linear injective map i : H ->• E , of a Hilbert space
(H, < , >) into E such that the inner product < , > in the definition is
the quotient inner product under the map Toi : H -> F .

G2 : the image of H, i ( H ) , has y-measure 0.

G3 : translation, T : E -> E, by an element z of E preserves sets of measurez
zero, i . e . T (y) ̂  y , iff z lies in the image of H.

G4 : if j : E -> H denotes the adjoint of i then T (y) ̂  y pointwise at some point
. * ^iff z lies in the image of E by j o i , in which case T (y) ̂  y pointwise at

every point of E.

G5 : the image of H in E is the intersection of all measurable linear subspaces
of E with non-zero measure. Such subspaces have measure 1 (see [ 2 ] for a
short proof).

B. Given a Gaussian measure y on E let t? : U -̂  V be a C1 diffeomorphism of open
subsets of E , having the form q? (x) = x + iojoCt(x) where a : U -^E* is C 1 . Then
H-H. KUO [ 1 0 ] , proved that tp preserves sets of measure zero and its "jacobian"

is given by x »—> |det D^(x)| exp {j [-2a(x)(x) - | jo (x (x ) | 2 ] } (the determinant
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refers to D(p (x ) |H : H -> H, and is proved to exist).

It follows that

ip(Y|u) ^ y | v pointwise on V.

Ramer [14] has a stronger version of Kuo's theorem.

When E, and hence H, is infinite dimensional we can follow the construction

used by BESSAGA [1] , or [3], to show that H - {0} is diffeomorphic to H, and for

any r in E we can obtain a C00 diffeomorphism <? : E ^ E with (?(0) = v and such
that

4 > | E - {0} : E - {0} -> E - {v}

satisfies the conditions of Kuo's theorem. It follows that still tp(y) ^ y : al-
though now the pointwise equivalence at v will be lost in general. This proves :

THEOREM 1 B. - Let y be a st'pictty positive Gaussian measure on a separable Banach

space E. Then the grozqp of C°° diffeomorphisms preserving -y up to equivalence, acts
transitivel'y on E.

We show below. Corollary 4A, that the theorem is false for infinite dimensional

E when equivalence is replaced by pointwise equivalence at all points of E. In any

case the theorem does not necessarily imply that measure class preserving diffeo-

morphisms can behave in a completely abandoned way : for example

Problem^ - With the notation of the theorem : does there exist a diffeomorphism
^p : E -» E with

4>(y) ^ Y
and ip(i(H)) 0 i(H) = 0 ?

2. TANGENT CONES AND INTERPOLATION FUNCTORS.

A.f Let A be a subset of the real Banach space E.

For a point a in the closure A of A we shall define the tangent cone TC (A) to A
at a by

TC^(A) = {v € E s.t. d(a + sv. A) = 0(s2) as s -^ 0).

0

Note that the more natural definition would have 0(s) instead of our 0(s ). This

would have the advantage of being invariant under C diffeomorphisms, but Corolla-

ry 2C below would not hold with that definition. Our construction is easily seen to



have the following properties.

TC(i) : If ve TC (A) and \ > 0 then \v G TC (A).
a. a.

TC(ii.) : If A is convex then so is TC (A).
^ _

TC(iii) : If 4? : U -^ V is a C map of open sets of Banach spaces, and A C U,

then D^(a)(TC^(A)) C TC ,( (p (A) ) .

r\

From TC(iii) it follows that tangent cones are defined for subsets A of C

Banach manifolds M. They then lie in the tangent spaces :

TC (A) C T M.

->-
B. Let E denote a pair of Banach spaces (E.,E) with a given continuous linear

injection i : E. •> E. As in PEETRE [ l 3 ] , for 0 < t < oo and v € E define

K(t,v) = inf {Hv-vJ + til v, II : v, G E,} ,I 1 ^ 1 1

where || || and || |L denote the norms of E and E respectively, and elements of E

are identified with their image in E.

For 0 < 6 < 1 define

t^ ^ = {v G.E : K(t,v) == 0(t8)}

and set ||v|| ^ = sup K(t>v) if v G ?„6.. ̂  ,9 ———e.oo-

This is a special case of the more general construction of K-functors described in

[ 1 3 ]. The properties we need are

Kl : E , | | is a Banach space.
9,00 l 1 Q,00

K2 : The map i factorizes by continuous linear maps
a ^ f3

E ——> E ——r E.
1 6,°°

K3 : If i was compact then so are both a and 3.

C. For ~S as above, let B (x ; r) denote the closed ball

{y : ||x-y^ < r}

about x, radius r, in E - .
-»-

Define the contact space T(E ,E) of E by

T(E^E) = T C ^ ( i [ B ^ ( 0 ; 1)] ).
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PROPOSITION 2C. - As subsets of. E

T ( E ^ E ) = ^ .

i - '

From property K3 and the fact that any compact subset of E lies in the image of

the unit ball of Banach space mapped into E by a compact linear map, the proposi-

tion yields :

COROLLARY 2C. - If K is a compact subset of the infinite dimensional 'Banach space E

then for all a E K

Linear span TC (K) ^ E.

[However TC (K) can certainly be dense in E . ]

3. INFINITESIMAL PROPERTIES OF MEASURES.

A. Let p be a strictly positive, locally finite, measure on a metric space (M,d) .

We say that the Borel subset A of M infinitesimally supports p at the point a of M,
A E Supp(p ; a), if for all r > 0 ? (B(a ; t) - A) ^ ^ as t -^ 0 where B(a ; t)

p ( B ( a ; rt2))

denotes the closed ball about a, radius t. It is easy to see that this definition

depends only on the local Lipschitz class of the metric d, and on the pointwise

equivalence class at a of y .

PROPOSITION 3A. - If p is a Radon measure^ ( e . g . if (M,d) is complete and if

A G Supp(p ; a.)) then there is a compact set K with • • . ;

K C A U {a}

and K e Supp { y ; a}.

2 .Now suppose that M is a separable C Banach manifold and that the metric d is in

the local Lipschitz class determined by the differentiable structure. For a in M

define the tangent cone, TC (p) = D {TC (A) : A E Supp(p ; a)}.

Thus TC (p) C T M.a a

THEOREM 3A :

( i ) For every strictly positive Radon measure y on the infinite dimensional metri-

zdble C Banach manifold M the tangent cone to p at a general point a satisfies.

Linear span TC (p) ^ T M.a a '. . ' .
o

( i i ) Let (p : M -> M be a C diffeomorphism such that
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ip(p) ^ p pointwise at (^>(a). 27zen

T^[TC^(p)] =TC^(p).

Part .(i) follows from Corollary 2C and Proposition 3A, and (li) is straightforward.

B. We have yet to show that T C (p) can ever be larger than {0} when E is infinite

dimensional. This can be done usinge a more geometric differential invariant of
^

measures : For a point a of a C manifold M and a strictly positive measure p on M

define

Q^)C^M

0

to consist of those tangent vectors v for which there exists a C vector field E,

on M with E, (a) = v suchat that there is a neighbourhood V of a and positive cons-

tants e, a satisfying

(i) the flow o : V x (-e,e) ^ M of ^ is defined.

(ii) there is a base )̂ for the neighbourhood system of a in V with

p(o (B)) > ap(B) for all 0 < t < c , B e <%>.

THEOREM 3B. - Q (p) C TC (p) .—~~———•~~—•— a a

COROLLARY 3B 1 . - Q (p) does not span T M, if M is infinite dimensional and sepa-

yab te.

COROLLARY 3B2. - For a Gaussian measure y on a separable Banach space E^

. - TC (y) ^ {0} all a € E.a

In 3B2 we have ioj(E*) C Q^(y) C TC (y), each a G E.

9
C. As an application of the above : if GxM -> M is a C action of a Banach Lie

group G on a metvizdbte Banach manifold 'M. which preserves^ up to pointujise equiva-

lence^ some stricTpty positive^ Radon measure on M, then for each. a in M the deriva-

tive map at the identity

T G -^ T M• e- • a . . ^ • , • ' • • • . '

obtained from g*——>-g.a is compact.

However it semms likely that the above is true for group actions which only pre-

serve the measure up to equivalence. For the linear case with G a group of trans-

lations see [ 16 ] . • „ <.,.
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4. ORDERING INDUCED BY A MEASURE.

A. Let p be a strictly positive measure on a metric space (M,d) . For x and y in M

write

x < - if r^ ^tfef = ̂  -" - > °.
If neither x < y nor y < x write x ~ y. It is easy to see that this defines an

equivalence relation on M.

PROPOSITION 4A. - Let f : M -> M be a homeomorphism which is locally bi-Lipschitz

and satisfies f(p) w p pointwise on M. Then x ~ f(x) all x e M.

From the proposition, in order to show that the group of such home omorphisms f

of M does not act transitively on M it suffices to show that the equivalence rela-

tion ~ is non-trivial. Possibly this is true for a general class of measures on M

when M is infinite dimensional. The proof of the following theorem depends on the

fact that Gaussian measures are convex in the sense of BOREIL[2] : in fact the

theorem is true for arbitrary convex measures.

THEOREM 4A. - For a Gaussian measure y on the Banach space .E ; if ~Q denotes the

equivalence class of 0^ ue have

'0 C T C (y).

This combines with Theorem 3A. to give the required non-triviality, whence :

COROLLARY 4A. - Let E be a separable infinite dimensional Banach space and y a

Gaussian measure on E. Then the group of locally bi-Lipschitz homeomorphisms of E

•uvifh f(y) w y pointu)ise on E does not act transitively on E.

B. The problem remains of characterizing the orbits of 0 under the group of dif-

feomorphisms of Corollary 4A, (or under the group of measure preserving diffeomor-

phisms) or perhaps a simpler problem is to characterize the equivalence class (V

of Theorem 4A. The following is suggestive, at least of the type of characteriza-

tions which may be true.

PROPOSITION 4B. - For a Gaussian measure y on E^ with corresponding maps

E*-i-» H -i» E ue have

T(E^ ,H) C '0

In fact for all z e H and x e T ( E ,H) we have z ~ z+x.

[We identify points of E and H with their images in E] .
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Proof. - Let | | denote the norm of H, and || II that of E.
^ )K

Since x e T (E ,H) there is a function e : (0,1) -^ E and a constant k with

|x-e(s)| < ,- s

and ||e(s)ll < k/s.
E*

By the change of variable formula, § 1B, for e = e(s)

f 1 9
y (B(z ; s)) = exp(e(y) -- |er)dY(y)

-'B(z+e ; s) z

= exp(e(z) + - |e| ) exp(e(y-e-z))dy(y)
-'B(z+e ; s)

>exp(e(z) + y |e |2) exp (-sllell ^ )y(B(z+e ; s))
E

1 9> exp(< x , z > - < x-e, z > + - |e| - k)y(B(z+e ; s))

Now B(z+x ; y s) C B(z+e ; s) , so we have

lim Y ( B ( z ; s)) > exp (< x,z > - k) > 0
s ' ° y(B(z^x ; -t s))

whence z ̂  z + x.

substitution shows that also

z + x ̂  (z+x) - x

giving z ~ z+x as required.
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