Splitting method for elliptic equations with line sources
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1715-1739.

In this paper, we study the mathematical structure and numerical approximation of elliptic problems posed in a (3D) domain Ω when the right-hand side is a (1D) line source Λ. The analysis and approximation of such problems is known to be non-standard as the line source causes the solution to be singular. Our main result is a splitting theorem for the solution; we show that the solution admits a split into an explicit, low regularity term capturing the singularity, and a high-regularity correction term w being the solution of a suitable elliptic equation. The splitting theorem states the mathematical structure of the solution; in particular, we find that the solution has anisotropic regularity. More precisely, the solution fails to belong to H1 in the neighbourhood of Λ, but exhibits piecewise H2-regularity parallel to Λ. The splitting theorem can further be used to formulate a numerical method in which the solution is approximated via its correction function w. This recasts the problem as a 3D elliptic problem with a 3D right-hand side belonging to L2, a problem for which the discretizations and solvers are readily available. Moreover, as w enjoys higher regularity than the full solution, this improves the approximation properties of the numerical method. We consider here the Galerkin finite element method, and show that the singularity subtraction then recovers optimal convergence rates on uniform meshes, i.e., without needing to refine the mesh around each line segment. The numerical method presented in this paper is therefore well-suited for applications involving a large number of line segments. We illustrate this by treating a dataset (consisting of ~3000 line segments) describing the vascular system of the brain.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019027
Classification : 35J75, 65M60, 65N80
Mots-clés : Singular elliptic equations, finite-elements, Green’s functions methods
Gjerde, Ingeborg G. 1 ; Kumar, Kundan 1 ; Nordbotten, Jan M. 1 ; Wohlmuth, Barbara 1

1
@article{M2AN_2019__53_5_1715_0,
     author = {Gjerde, Ingeborg G. and Kumar, Kundan and Nordbotten, Jan M. and Wohlmuth, Barbara},
     title = {Splitting method for elliptic equations with line sources},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1715--1739},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {5},
     year = {2019},
     doi = {10.1051/m2an/2019027},
     mrnumber = {4003468},
     zbl = {1433.35129},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019027/}
}
TY  - JOUR
AU  - Gjerde, Ingeborg G.
AU  - Kumar, Kundan
AU  - Nordbotten, Jan M.
AU  - Wohlmuth, Barbara
TI  - Splitting method for elliptic equations with line sources
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1715
EP  - 1739
VL  - 53
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019027/
DO  - 10.1051/m2an/2019027
LA  - en
ID  - M2AN_2019__53_5_1715_0
ER  - 
%0 Journal Article
%A Gjerde, Ingeborg G.
%A Kumar, Kundan
%A Nordbotten, Jan M.
%A Wohlmuth, Barbara
%T Splitting method for elliptic equations with line sources
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1715-1739
%V 53
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019027/
%R 10.1051/m2an/2019027
%G en
%F M2AN_2019__53_5_1715_0
Gjerde, Ingeborg G.; Kumar, Kundan; Nordbotten, Jan M.; Wohlmuth, Barbara. Splitting method for elliptic equations with line sources. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1715-1739. doi : 10.1051/m2an/2019027. http://www.numdam.org/articles/10.1051/m2an/2019027/

I. Aavatsmark and R. Klausen, Well index in reservoir simulation for slanted and slightly curved wells in 3D grids. SPE J. 8 (2003) 41–48. | DOI

R.A. Adams and J.J. Fournier, Sobolev Spaces. Academic Press, Cambridge, MA, 140 (2003). | MR | Zbl

T. Apel, O. Benedix, D. Sirch and B. Vexler, A priori mesh grading for an elliptic problem with dirac right-hand side. SIAM J. Numer. Anal. 49 (2011) 992–1005 | DOI | MR | Zbl

T. Bærland, M. Kuchta and K.-A. Mardal, Multigrid Methods for Discrete Fractional Sobolev Spaces (2018) | MR

S. Balay, W.D. Gropp, L.C. Mcinnes and B.F. Smith, Efficient management of parallelism in object oriented numerical software libraries (1997) 163–202. | Zbl

S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. Mcinnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang and H. Zhang, PETSc users manual. Technical Report ANL-95/11 – Revision 3.8, Argonne National Laboratory (2017).

S. Bertoluzza, A. Decoene, L. Lacouture and S. Martin, Local error estimates of the finite element method for an elliptic problem with a dirac source term. Numer. Methods Partial Differ. Equ. 34 (2018) 97–120. | DOI | MR | Zbl

W.M. Boon, J.M. Nordbotten and J.E. Vatne, Functional Analysis and Exterior Calculus on Mixed-Dimensional Geometries. Preprint arXiv:1710.00556 (2017). | MR

L. Cattaneo and P. Zunino, A computational model of drug delivery through microcirculation to compare different tumor treatments. Int. J. Numer. Methods Biomed. Eng. 30 (2014) 1347–1371. | DOI | MR

L.D. Dalcin, R.R. Paz, P.A. Kler and A. Cosimo, Parallel distributed computing using Python. New Computational Methods and Software Tools. Adv. Water Res. 34 (2011) 1124–1139. | DOI

C. D’Angelo, Finite element approximation of elliptic problems with dirac measure terms in weighted spaces: Applications to one- and three-dimensional coupled problems. SIAM J. Numer. Anal. 50 (2012) 194–215. | DOI | MR | Zbl

C. D’Angelo and A. Quarteroni, On the coupling of 1D and 3D diffusion-reaction equations: Application to tissue perfusion problems. Math. Models Methods Appl. Sci. 18 (2008) 1481–1504. | DOI | MR | Zbl

F. Drechsler, C. Wolters, T. Dierkes, H. Si and L. Grasedyck, A full subtraction approach for finite element method based source analysis using constrained delaunay tetrahedralisation. NeuroImage 46 (2009) 1055–1065. | DOI

L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, RI (2010). | MR | Zbl

R.E. Ewing, R.D. Lazarov, S.L. Lyons, D.V. Papavassiliou, J. Pasciak and G. Qin, Numerical well model for non-darcy flow through isotropic porous media. Comput. Geosci. 3 (1999) 185–204. | DOI | MR | Zbl

A. Ferroni, L. Formaggia and A. Fumagalli, Numerical analysis of Darcy problem on surfaces. ESAIM: M2AN 50 (2016) 1615–1630. | DOI | Numdam | MR | Zbl

V. Girault, K. Kumar and M.F. Wheeler, Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium. Comput. Geosci. 20 (2016) 997–1011. | DOI | MR | Zbl

I.G. Gjerde, K. Kumar and J.M. Nordbotten, A singularity removal method for coupled 1D–3D flow models. Preprint arXiv:1812.03055 (2018). | MR

I.G. Gjerde, K. Kumar and J.M. Nordbotten, Well modelling by means of coupled 1D–3D flow models.In: ECMOR XVI – 16th European Conference on the Mathematics of Oil Recovery (2018). | DOI

L. Grinberg, E. Cheever, T. Anor, J.R. Madsen and G.E. Karniadakis, Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study. Ann. Biomed. Eng. 39 (2011) 297–309 | DOI

V.A. Kondratiev and O. Oleinik, Russian mathematical surveys boundary-value problems for partial differential equations in non-smooth domains. Russ. Math. Surv 38 (1983).

T. Köppl and B. Wohlmuth, Optimal a priori error estimates for an elliptic problem with dirac right-hand side. SIAM J. Numer. Anal. 52 (2014) 1753–1769. | DOI | MR | Zbl

T. Köppl, E. Vidotto and B. Wohlmuth, A local error estimate for the poisson equation with a line source term. Numerical Mathematics and Advanced Applications ENUMATH 2015. In Vol. 112 of Lecture Notes in Computational Science and Engineering. Springer, Cham (2016) 421–429. | MR | Zbl

T. Köppl, E. Vidotto, B. Wohlmuth and P. Zunino, Mathematical modeling, analysis and numerical approximation of second-order elliptic problems with inclusions. Math. Models Methods Appl. Sci. 28 (2018) 953–978. | DOI | MR | Zbl

V.A. Koslov, V.G. Mazya and J. Rossman, Elliptic boundary value problems in domains with point singularities. In Vol. 52 of Mathematical Surveys and Monographs (1997). | MR | Zbl

M. Kuchta, M. Nordaas, J.C.G. Verschaeve, M. Mortensen and K.-A. Mardal, Preconditioners for saddle point systems with trace constraints coupling 2D and 1D domains. SIAM J. Sci. Comput. 38 (2016) B962–B987. | DOI | MR | Zbl

A. Kufner, em Weighted Sobolev Spaces. John Wiley and Sons, Hoboken, NJ (1993) | MR | Zbl

K.-A. Lie, S. Krogstad, I.S. Ligaarden, J.R. Natvig, H.M. Nilsen and B. Skaflestad, Open-source matlab implementation of consistent discretisations on complex grids. Comput. Geosci. 16 (2012) 297–322. | DOI | Zbl

A. Llau, L. Jason, F. Dufour and J. Baroth, Finite element modelling of 1D steel components in reinforced and prestressed concrete structures. Eng. Struct. 127 (2016) 769–783. | DOI

A. Logg, K.-A. Mardal and G.N. Wells, Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012) | DOI | Zbl

V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667–1691. | DOI | MR | Zbl

S.S. Mundal, E. Keilegavlen and I. Aavatsmark, Simulation of anisotropic heterogeneous near-well flow using mpfa methods on flexible grids. Comput. Geosci. 14 (2010) 509–525. | DOI | Zbl

M. Nabil and P. Zunino, A computational study of cancer hyperthermia based on vascular magnetic nanoconstructs. R. Soc. Open Sci. 3 (2016). | DOI | MR

D.W. Peaceman, Interpretation of well-block pressures in numerical reservoir simulation. Soc. Pet. Eng. J. 18 (1978) 183–194

L. Possenti, G. Casagrande, S.D. Gregorio, P. Zunino and M. Constantino, Numerical simulations of the microvascular fluid balance with a non-linear model of the lymphatic system. MOX-Report No. 35 (2018)

F. Rathgeber, D.A. Ham, L. Mitchell, M. Lange, F. Luporini, A.T.T. Mcrae, G.-T. Bercea, G.R. Markall and P.H.J. Kelly, Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw. 43 (2016) 24:1–24:27. | MR | Zbl

J. Reichold, M. Stampanoni, A.L. Keller, A. Buck, P. Jenny and B. Weber, Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. J. Cerebral Blood Flow Metab. 29 (2009) 1429–1443. | DOI

R. Scott, Finite element convergence for singular data. Numer. Math. 21 (1973) 317–327. | DOI | MR | Zbl

T. Secomb, R. Hsu, N. Beamer and B. Coull, Theoretical simulation of oxygen transport to brain by networks of microvessels: effects of oxygen supply and demand on tissue hypoxia. Microcirculation 7 (2010) 237–247. | DOI

O. Strack, Analytical Groundwater Mechanics. Cambridge University Press, Cambridge (2017). | DOI

T. Strouboulis, I. Babuška and K. Copps, The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181 (2000) 43–69. | DOI | MR | Zbl

C.L. Tardif, A. Schäfer, R. Trampel, A. Villringer, R. Turner and P.-L. Bazin, Open science cbs neuroimaging repository: Sharing ultra-high-field mr images of the brain. Sharing the wealth: Brain Imaging Repositories in 2015. NeuroImage 124 (2016) 1143–1148.

C.J. Weiss, Finite-element analysis for model parameters distributed on a hierarchy of geometric simplices. Geophysics 82 (2017) E155–E167. | DOI

C.H. Wolters, H. Köstler, C. Möller, J. Härdtlein, L. Grasedyck and W. Hackbusch, Numerical mathematics of the subtraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models. SIAM J. Sci. Comput. 30 (2007) 24–45. | DOI | MR | Zbl

Cité par Sources :