We extend the nonlinear Control Volume Finite Element scheme of [C. Cancès and C. Guichard, Math. Comput. 85 (2016) 549–580]. to the discretization of Richards equation. This scheme ensures the preservation of the physical bounds without any restriction on the mesh and on the anisotropy tensor. Moreover, it does not require the introduction of the so-called Kirchhoff transform in its definition. It also provides a control on the capillary energy. Based on this nonlinear stability property, we show that the scheme converges towards the unique solution to Richards equation when the discretization parameters tend to 0. Finally we present some numerical experiments to illustrate the behavior of the method.
Mots-clés : Unsaturated porous media flow, Richards equation, nonlinear discretization, nonlinear stability, convergence analysis
@article{M2AN_2018__52_4_1533_0, author = {Ait Hammou Oulhaj, Ahmed and Canc\`es, Cl\'ement and Chainais{\textendash}Hillairet, Claire}, title = {Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for {Richards} equation with anisotropy}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1533--1567}, publisher = {EDP-Sciences}, volume = {52}, number = {4}, year = {2018}, doi = {10.1051/m2an/2017012}, zbl = {1407.65160}, mrnumber = {3875296}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2017012/} }
TY - JOUR AU - Ait Hammou Oulhaj, Ahmed AU - Cancès, Clément AU - Chainais–Hillairet, Claire TI - Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for Richards equation with anisotropy JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 1533 EP - 1567 VL - 52 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2017012/ DO - 10.1051/m2an/2017012 LA - en ID - M2AN_2018__52_4_1533_0 ER -
%0 Journal Article %A Ait Hammou Oulhaj, Ahmed %A Cancès, Clément %A Chainais–Hillairet, Claire %T Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for Richards equation with anisotropy %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 1533-1567 %V 52 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2017012/ %R 10.1051/m2an/2017012 %G en %F M2AN_2018__52_4_1533_0
Ait Hammou Oulhaj, Ahmed; Cancès, Clément; Chainais–Hillairet, Claire. Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for Richards equation with anisotropy. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1533-1567. doi : 10.1051/m2an/2017012. http://www.numdam.org/articles/10.1051/m2an/2017012/
[1] An optimal Poincaré inequality in L1 for convex domains. Proc. Amer. Math. Soc. 132 (2004) 195–202. | DOI | MR | Zbl
and ,[2] Sobolev spaces. Academic press (Elsevier), 2nd edition (2003). | MR | Zbl
and ,[3] Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311–341. | DOI | MR | Zbl
and ,[4] A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs. J. Funct. Anal. 273 (2017) 3633–3670. | DOI | MR | Zbl
, and ,[5] A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Numer. Anal. 33 (1996) 1669–1687. | DOI | MR | Zbl
, and ,[6] On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35 (2015) 1125–1149. | DOI | MR | Zbl
, and ,[7] Improving Newton’s method performance by parametrization: the case of Richards equation. SIAM J. Numer. Anal. 55 (2017) 1760–1785. | DOI | MR | Zbl
and ,[8] A gradient scheme for the discretization of Richards equation. In Finite volumes for complex applications. VII. Elliptic, parabolic and hyperbolic problems. Vol. 78 of Springer Proc. Math. Stat. Springer, Cham (2014) 537–545. | DOI | MR | Zbl
, and ,[9] Hydraulic properties of porous media and their relation to drainage design. Transactions of the ASAE 7 (1964) 0026–0028. | DOI
and ,[10] Entropy-diminishing CVFE scheme for solving anisotropic degenerate diffusion equations. In Finite volumes for complex applications. VII. Methods and theoretical aspects. Vol. 77 of Springer Proc. Math. Stat. Springer, Cham (2014) 187–196. | MR | Zbl
and ,[11] Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations. Math. Comput. 85 (2016) 549–580. | DOI | MR | Zbl
and ,[12] Numerical analysis of a robust free energy-diminishing Finite Volume scheme for degenerate parabolic equations with gradient structure. Found. Comput. Math. 17 (2017) 1525–1584. | DOI | MR | Zbl
and ,[13] An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field. SIAM J. Math. Anal. 44 (2012) 966–992. | DOI | MR | Zbl
and ,[14] Nonlinear functional analysis. Springer Verlag, Berlin (1985). | DOI | MR | Zbl
,[15] Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24 (2014) 1575–1619. | DOI | MR | Zbl
,[16] TP or not TP, that is the question. Comput. Geosci. 18 (2014) 285–296. | DOI | MR | Zbl
, , , and ,[17] Finite volume methods. In Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII. North-Holland, Amsterdam (2000) 713–1020 | MR | Zbl
, and ,[18] Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. | DOI | MR | Zbl
, and ,[19] Approximation by the finite volume method of an elliptic-parabolic equation arising in environmental studies. Math. Models Methods Appl. Sci. 11 (2001) 1505–1528. | DOI | MR | Zbl
, , , and ,[20] The finite volume method for Richards equation. Comput. Geosci. 3 (2000) 259–294. | DOI | MR | Zbl
, and ,[21] A control volume finite element approach to NAPL groundwater contamination. SIAM J. Sci. Statist. Comput. 12 (1991) 1029–1057. | DOI | MR | Zbl
,[22] Monotonicity considerations for saturated–unsaturated subsurface flow. SIAM J. Sci. Comput. 18 (1997) 1328–1354. | DOI | MR | Zbl
and ,[23] Compactness of discrete approximate solutions to parabolic PDEs – application to a turbulence model. Commun. Pure Appl. Anal. 11 (2012) 2371–2391. | DOI | MR | Zbl
and ,[24] Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In Finite volumes for complex applications V. ISTE, London (2008) 659–692. | MR | Zbl
and ,[25] Poröse medien: methoden und simulation. Verlag Beiträge zur Hydrologie (1984).
and ,[26] Free energy and the Fokker-Planck equation. In Special Issue: 16th Annual International Conference of the Center for Nonlinear Studies, Los Alamos, 1996. Phys. D 107 (1997) 265–271. | MR | Zbl
, and ,[27] Convergence of MPFA on triangulations and for Richards’ equation. Int. J. Numer. Meth. Fl. 58 (2008) 1327–1351. | DOI | MR | Zbl
, and ,[28] Topologie et équations fonctionnelles. Ann. Sci. École Norm. Sup. 51 (1934) 45–78. | DOI | JFM | Numdam | MR
and ,[29] A study on iterative methods for solving Richards’ equation. Comput. Geosci. 20 (2016) 341–353. | DOI | MR | Zbl
and ,[30] A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12 (1976) 513–522. | DOI
,[31] L1-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differ. Equ. 131 (1996) 20–38. | DOI | MR | Zbl
,[32] Error estimates for a time discretization method for the Richards’ equation. Comput. Geosci. 6 (2002) 141–160. | DOI | MR | Zbl
,[33] Error estimates for the finite volume discretization for the porous medium equation. J. Comput. Appl. Math. 234 (2010) 2135–2142. | DOI | MR | Zbl
, , and ,[34] Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards’ equation. SIAM J. Numer. Anal. 42 (2004) 1452–1478. | DOI | MR | Zbl
, and ,[35] Newton-type methods for the mixed finite element discretization of some degenerate parabolic equations. In Numer. Math. Adv. Appl. Springer. Berlin (2006). 1192–1200 | DOI | MR | Zbl
, and ,[36] Capillary conduction of liquids through porous mediums. J. Appl. Phys. 1 (1931) 318–333. | Zbl
,[37] Compact sets in the space Lp(0,T ; B). Ann. Mat. Pura Appl. 146 (1987) 65–96. | DOI | MR | Zbl
,[38] A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J. 44 (1980) 892–898. | DOI
,[39] General mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26 (1990) 1483–1496. | DOI
, and ,Cité par Sources :