Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for Richards equation with anisotropy
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1533-1567.

We extend the nonlinear Control Volume Finite Element scheme of [C. Cancès and C. Guichard, Math. Comput. 85 (2016) 549–580]. to the discretization of Richards equation. This scheme ensures the preservation of the physical bounds without any restriction on the mesh and on the anisotropy tensor. Moreover, it does not require the introduction of the so-called Kirchhoff transform in its definition. It also provides a control on the capillary energy. Based on this nonlinear stability property, we show that the scheme converges towards the unique solution to Richards equation when the discretization parameters tend to 0. Finally we present some numerical experiments to illustrate the behavior of the method.

DOI : 10.1051/m2an/2017012
Classification : 65M12, 65M08, 76S05
Mots-clés : Unsaturated porous media flow, Richards equation, nonlinear discretization, nonlinear stability, convergence analysis
Ait Hammou Oulhaj, Ahmed 1 ; Cancès, Clément 1 ; Chainais–Hillairet, Claire 2

1 Univ. Lille, CNRS, UMR 8524, Inria — Laboratoire Paul Painlevé, 59000 Lille, France
2 Univ. Lille, CNRS, UMR 8524, Inria — Laboratoire Paul Painlevé, 59000 Lille, France
@article{M2AN_2018__52_4_1533_0,
     author = {Ait Hammou Oulhaj, Ahmed and Canc\`es, Cl\'ement and Chainais{\textendash}Hillairet, Claire},
     title = {Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for {Richards} equation with anisotropy},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1533--1567},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4},
     year = {2018},
     doi = {10.1051/m2an/2017012},
     zbl = {1407.65160},
     mrnumber = {3875296},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2017012/}
}
TY  - JOUR
AU  - Ait Hammou Oulhaj, Ahmed
AU  - Cancès, Clément
AU  - Chainais–Hillairet, Claire
TI  - Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for Richards equation with anisotropy
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1533
EP  - 1567
VL  - 52
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2017012/
DO  - 10.1051/m2an/2017012
LA  - en
ID  - M2AN_2018__52_4_1533_0
ER  - 
%0 Journal Article
%A Ait Hammou Oulhaj, Ahmed
%A Cancès, Clément
%A Chainais–Hillairet, Claire
%T Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for Richards equation with anisotropy
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1533-1567
%V 52
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2017012/
%R 10.1051/m2an/2017012
%G en
%F M2AN_2018__52_4_1533_0
Ait Hammou Oulhaj, Ahmed; Cancès, Clément; Chainais–Hillairet, Claire. Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for Richards equation with anisotropy. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1533-1567. doi : 10.1051/m2an/2017012. http://www.numdam.org/articles/10.1051/m2an/2017012/

[1] G. Acosta and R.G. Durán, An optimal Poincaré inequality in L1 for convex domains. Proc. Amer. Math. Soc. 132 (2004) 195–202. | DOI | MR | Zbl

[2] R.A. Adams and J.J.F. Fournier, Sobolev spaces. Academic press (Elsevier), 2nd edition (2003). | MR | Zbl

[3] H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311–341. | DOI | MR | Zbl

[4] B. Andreianov, C. Cancès and A. Moussa, A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs. J. Funct. Anal. 273 (2017) 3633–3670. | DOI | MR | Zbl

[5] T. Arbogast, M.F. Wheeler and N.-Y. Zhang, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Numer. Anal. 33 (1996) 1669–1687. | DOI | MR | Zbl

[6] M. Bessemoulin-Chatard, C. Chainais-Hillairet and F. Filbet, On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35 (2015) 1125–1149. | DOI | MR | Zbl

[7] K. Brenner and C. Cancès, Improving Newton’s method performance by parametrization: the case of Richards equation. SIAM J. Numer. Anal. 55 (2017) 1760–1785. | DOI | MR | Zbl

[8] K. Brenner, D. Hilhorst and H.C. Vu Do, A gradient scheme for the discretization of Richards equation. In Finite volumes for complex applications. VII. Elliptic, parabolic and hyperbolic problems. Vol. 78 of Springer Proc. Math. Stat. Springer, Cham (2014) 537–545. | DOI | MR | Zbl

[9] R.H. Brooks and A.T. Corey, Hydraulic properties of porous media and their relation to drainage design. Transactions of the ASAE 7 (1964) 0026–0028. | DOI

[10] C. Cancès and C. Guichard, Entropy-diminishing CVFE scheme for solving anisotropic degenerate diffusion equations. In Finite volumes for complex applications. VII. Methods and theoretical aspects. Vol. 77 of Springer Proc. Math. Stat. Springer, Cham (2014) 187–196. | MR | Zbl

[11] C. Cancès and C. Guichard, Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations. Math. Comput. 85 (2016) 549–580. | DOI | MR | Zbl

[12] C. Cancès and C. Guichard, Numerical analysis of a robust free energy-diminishing Finite Volume scheme for degenerate parabolic equations with gradient structure. Found. Comput. Math. 17 (2017) 1525–1584. | DOI | MR | Zbl

[13] C. Cancès and M. Pierre, An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field. SIAM J. Math. Anal. 44 (2012) 966–992. | DOI | MR | Zbl

[14] K. Deimling, Nonlinear functional analysis. Springer Verlag, Berlin (1985). | DOI | MR | Zbl

[15] J. Droniou, Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24 (2014) 1575–1619. | DOI | MR | Zbl

[16] R. Eymard, T. Gallouët, C. Guichard, R. Herbin and R. Masson, TP or not TP, that is the question. Comput. Geosci. 18 (2014) 285–296. | DOI | MR | Zbl

[17] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. In Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII. North-Holland, Amsterdam (2000) 713–1020 | MR | Zbl

[18] R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. | DOI | MR | Zbl

[19] R. Eymard, T. Gallouët, R. Herbin, M. Gutnic and D. Hilhorst, Approximation by the finite volume method of an elliptic-parabolic equation arising in environmental studies. Math. Models Methods Appl. Sci. 11 (2001) 1505–1528. | DOI | MR | Zbl

[20] R. Eymard, M. Gutnic and D. Hilhorst, The finite volume method for Richards equation. Comput. Geosci. 3 (2000) 259–294. | DOI | MR | Zbl

[21] P.A. Forsyth, A control volume finite element approach to NAPL groundwater contamination. SIAM J. Sci. Statist. Comput. 12 (1991) 1029–1057. | DOI | MR | Zbl

[22] P.A. Forsyth and M.C. Kropinski, Monotonicity considerations for saturated–unsaturated subsurface flow. SIAM J. Sci. Comput. 18 (1997) 1328–1354. | DOI | MR | Zbl

[23] T. Gallouët and J.-C. Latché, Compactness of discrete approximate solutions to parabolic PDEs – application to a turbulence model. Commun. Pure Appl. Anal. 11 (2012) 2371–2391. | DOI | MR | Zbl

[24] R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In Finite volumes for complex applications V. ISTE, London (2008) 659–692. | MR | Zbl

[25] U. Hornung and W. Messing, Poröse medien: methoden und simulation. Verlag Beiträge zur Hydrologie (1984).

[26] R. Jordan, D. Kinderlehrer and F. Otto, Free energy and the Fokker-Planck equation. In Special Issue: 16th Annual International Conference of the Center for Nonlinear Studies, Los Alamos, 1996. Phys. D 107 (1997) 265–271. | MR | Zbl

[27] R.A. Klausen, F.A. Radu and G.T. Eigestad, Convergence of MPFA on triangulations and for Richards’ equation. Int. J. Numer. Meth. Fl. 58 (2008) 1327–1351. | DOI | MR | Zbl

[28] J. Leray and J. Schauder, Topologie et équations fonctionnelles. Ann. Sci. École Norm. Sup. 51 (1934) 45–78. | DOI | JFM | Numdam | MR

[29] F. List and F.A. Radu, A study on iterative methods for solving Richards’ equation. Comput. Geosci. 20 (2016) 341–353. | DOI | MR | Zbl

[30] Y. Mualem, A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12 (1976) 513–522. | DOI

[31] F. Otto, L1-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differ. Equ. 131 (1996) 20–38. | DOI | MR | Zbl

[32] I.S. Pop, Error estimates for a time discretization method for the Richards’ equation. Comput. Geosci. 6 (2002) 141–160. | DOI | MR | Zbl

[33] I.S. Pop, M. Sepúlveda, F.A. Radu and O.P. Vera Villagrán, Error estimates for the finite volume discretization for the porous medium equation. J. Comput. Appl. Math. 234 (2010) 2135–2142. | DOI | MR | Zbl

[34] F. Radu, I.S. Pop and P. Knabner, Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards’ equation. SIAM J. Numer. Anal. 42 (2004) 1452–1478. | DOI | MR | Zbl

[35] F.A. Radu, I.S. Pop and P. Knabner, Newton-type methods for the mixed finite element discretization of some degenerate parabolic equations. In Numer. Math. Adv. Appl. Springer. Berlin (2006). 1192–1200 | DOI | MR | Zbl

[36] L.A. Richards, Capillary conduction of liquids through porous mediums. J. Appl. Phys. 1 (1931) 318–333. | Zbl

[37] J. Simon, Compact sets in the space Lp(0,T ; B). Ann. Mat. Pura Appl. 146 (1987) 65–96. | DOI | MR | Zbl

[38] M.T. Van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J. 44 (1980) 892–898. | DOI

[39] R.L. Zarba, E.T. Bouloutas and M. Celia, General mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26 (1990) 1483–1496. | DOI

Cité par Sources :