The Monge–Kantorovich problem arises as a special case for linear cost functionals in optimal transportation problems. It leads to a convex minimization problem with limited regularity properties. The convergent finite element discretization and iterative solution of the problem and its dual are addressed. Based on these approximations a computable upper bound for the primal-dual gap is derived which is suitable for efficient local mesh refinement. Numerical experiments reveal a significant improvement of related adaptive methods.
Accepté le :
DOI : 10.1051/m2an/2017054
Mots-clés : Optimal transport, a posteriori error estimation, iterative solution, adaptive mesh refinement
@article{M2AN_2017__51_6_2237_0, author = {Bartels, S\"oren and Sch\"on, Patrick}, title = {Adaptive approximation of the {Monge{\textendash}Kantorovich} problem via primal-dual gap estimates}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {2237--2261}, publisher = {EDP-Sciences}, volume = {51}, number = {6}, year = {2017}, doi = {10.1051/m2an/2017054}, mrnumber = {3745171}, zbl = {1396.65100}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2017054/} }
TY - JOUR AU - Bartels, Sören AU - Schön, Patrick TI - Adaptive approximation of the Monge–Kantorovich problem via primal-dual gap estimates JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 2237 EP - 2261 VL - 51 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2017054/ DO - 10.1051/m2an/2017054 LA - en ID - M2AN_2017__51_6_2237_0 ER -
%0 Journal Article %A Bartels, Sören %A Schön, Patrick %T Adaptive approximation of the Monge–Kantorovich problem via primal-dual gap estimates %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 2237-2261 %V 51 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2017054/ %R 10.1051/m2an/2017054 %G en %F M2AN_2017__51_6_2237_0
Bartels, Sören; Schön, Patrick. Adaptive approximation of the Monge–Kantorovich problem via primal-dual gap estimates. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2237-2261. doi : 10.1051/m2an/2017054. http://www.numdam.org/articles/10.1051/m2an/2017054/
On the partial differential equation . Ark. Mat. 7 (1968) 395–425. | MR | Zbl
,Error control and adaptivity for a variational model problem defined on functions of bounded variation. Math. Comp. 84 (2015) 1217–1240. | DOI | Zbl
,S. Bartels, Numerical methods for nonlinear partial differential equations. Vol. 47 of Springer Series in Computational Mathematics. Springer, Cham (2015). | Zbl
D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications. Vol. 44 of Springer Series in Comput. Math. Springer, Heidelberg (2013). | Zbl
Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. J. Optim. Theory Appl. 167 (2015) 1–26. | DOI | Zbl
and ,A mixed formulation of the Monge-Kantorovich equations. ESAIM: M2AN 41 (2007) 1041–1060. | DOI | Numdam | Zbl
and ,L.C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, Current developments in mathematics, 1997 (Cambridge, MA), Int. Press, Boston, MA. (1999) 65–126. | Zbl
A mixed finite element method for a nonlinear Dirichlet problem. IMA J. Numer. Anal. 18 (1998) 121–132. | DOI | Zbl
,M. Fortin and R. Glowinski, Augmented Lagrangian methods. Vol. 15 of Studies in Mathematics and its Applications. Applications to the numerical solution of boundary value problems, Translated from the French by B. Hunt and D. C. Spicer. North-Holland Publishing Co., Amsterdam (1983). | Zbl
Equivalent formulations for Monge-Kantorovich equation. Nonlin. Anal. 71 (2009) 3805–3813. | DOI | Zbl
,P. Lindqvist, Notes on the -Laplace equation. University of Jyväskylä, Report 102 (2006). | Zbl
and Tuomo Valkonen, Imaging with Kantorovich–Rubinstein discrepancy. SIAM J. Imaging Sci. 7 (2014) 2833–2859. | DOI | Zbl
, , ,Svetlozar T. Rachev and Ludger Rüschendorf, Mass transportation problems. Vol. II, Probability and its Applications. Springer-Verlag, New York (1998). | Zbl
Cédric Villani, Topics in Optimal Transportation. In vol. 58 of Graduate Studies in Mathematics. AMS, Providence, RI (2003). | Zbl
Cité par Sources :