Adaptive approximation of the Monge–Kantorovich problem via primal-dual gap estimates
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2237-2261.

The Monge–Kantorovich problem arises as a special case for linear cost functionals in optimal transportation problems. It leads to a convex minimization problem with limited regularity properties. The convergent finite element discretization and iterative solution of the problem and its dual are addressed. Based on these approximations a computable upper bound for the primal-dual gap is derived which is suitable for efficient local mesh refinement. Numerical experiments reveal a significant improvement of related adaptive methods.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017054
Classification : 65K10, 65N50, 49M25, 90C08
Mots-clés : Optimal transport, a posteriori error estimation, iterative solution, adaptive mesh refinement
Bartels, Sören 1 ; Schön, Patrick 1

1 Abteilung für Angewandte Mathematik, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Str. 10, 79104 Freiburg i.Br., Germany.
@article{M2AN_2017__51_6_2237_0,
     author = {Bartels, S\"oren and Sch\"on, Patrick},
     title = {Adaptive approximation of the {Monge{\textendash}Kantorovich} problem via primal-dual gap estimates},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2237--2261},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {6},
     year = {2017},
     doi = {10.1051/m2an/2017054},
     mrnumber = {3745171},
     zbl = {1396.65100},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2017054/}
}
TY  - JOUR
AU  - Bartels, Sören
AU  - Schön, Patrick
TI  - Adaptive approximation of the Monge–Kantorovich problem via primal-dual gap estimates
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 2237
EP  - 2261
VL  - 51
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2017054/
DO  - 10.1051/m2an/2017054
LA  - en
ID  - M2AN_2017__51_6_2237_0
ER  - 
%0 Journal Article
%A Bartels, Sören
%A Schön, Patrick
%T Adaptive approximation of the Monge–Kantorovich problem via primal-dual gap estimates
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 2237-2261
%V 51
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2017054/
%R 10.1051/m2an/2017054
%G en
%F M2AN_2017__51_6_2237_0
Bartels, Sören; Schön, Patrick. Adaptive approximation of the Monge–Kantorovich problem via primal-dual gap estimates. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2237-2261. doi : 10.1051/m2an/2017054. http://www.numdam.org/articles/10.1051/m2an/2017054/

G. Aronsson, On the partial differential equation u x 2 u xx +2u x u y u xy +u y 2 u yy =0. Ark. Mat. 7 (1968) 395–425. | MR | Zbl

S. Bartels, Error control and adaptivity for a variational model problem defined on functions of bounded variation. Math. Comp. 84 (2015) 1217–1240. | DOI | Zbl

S. Bartels, Numerical methods for nonlinear partial differential equations. Vol. 47 of Springer Series in Computational Mathematics. Springer, Cham (2015). | Zbl

D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications. Vol. 44 of Springer Series in Comput. Math. Springer, Heidelberg (2013). | Zbl

J. -David Benamou and G. Carlier, Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. J. Optim. Theory Appl. 167 (2015) 1–26. | DOI | Zbl

J.W. Barrett and L. Prigozhin, A mixed formulation of the Monge-Kantorovich equations. ESAIM: M2AN 41 (2007) 1041–1060. | DOI | Numdam | Zbl

L.C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, Current developments in mathematics, 1997 (Cambridge, MA), Int. Press, Boston, MA. (1999) 65–126. | Zbl

M. Farhloul, A mixed finite element method for a nonlinear Dirichlet problem. IMA J. Numer. Anal. 18 (1998) 121–132. | DOI | Zbl

M. Fortin and R. Glowinski, Augmented Lagrangian methods. Vol. 15 of Studies in Mathematics and its Applications. Applications to the numerical solution of boundary value problems, Translated from the French by B. Hunt and D. C. Spicer. North-Holland Publishing Co., Amsterdam (1983). | Zbl

N. Igbida, Equivalent formulations for Monge-Kantorovich equation. Nonlin. Anal. 71 (2009) 3805–3813. | DOI | Zbl

P. Lindqvist, Notes on the p-Laplace equation. University of Jyväskylä, Report 102 (2006). | Zbl

J. Lellmann, D.A. Lorenz, C. Schönlieb, and Tuomo Valkonen, Imaging with Kantorovich–Rubinstein discrepancy. SIAM J. Imaging Sci. 7 (2014) 2833–2859. | DOI | Zbl

Svetlozar T. Rachev and Ludger Rüschendorf, Mass transportation problems. Vol. II, Probability and its Applications. Springer-Verlag, New York (1998). | Zbl

Cédric Villani, Topics in Optimal Transportation. In vol. 58 of Graduate Studies in Mathematics. AMS, Providence, RI (2003). | Zbl

Cité par Sources :