We consider the linear elliptic equation
Mots-clés : Stochastic PDEs, lognormal coefficients, n-term approximation, Hermite polynomials
@article{M2AN_2017__51_1_341_0, author = {Bachmayr, Markus and Cohen, Albert and DeVore, Ronald and Migliorati, Giovanni}, title = {Sparse polynomial approximation of parametric elliptic {PDEs.} {Part} {II:} lognormal coefficients}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {341--363}, publisher = {EDP-Sciences}, volume = {51}, number = {1}, year = {2017}, doi = {10.1051/m2an/2016051}, mrnumber = {3601011}, zbl = {1366.41005}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2016051/} }
TY - JOUR AU - Bachmayr, Markus AU - Cohen, Albert AU - DeVore, Ronald AU - Migliorati, Giovanni TI - Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 341 EP - 363 VL - 51 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2016051/ DO - 10.1051/m2an/2016051 LA - en ID - M2AN_2017__51_1_341_0 ER -
%0 Journal Article %A Bachmayr, Markus %A Cohen, Albert %A DeVore, Ronald %A Migliorati, Giovanni %T Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 341-363 %V 51 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2016051/ %R 10.1051/m2an/2016051 %G en %F M2AN_2017__51_1_341_0
Bachmayr, Markus; Cohen, Albert; DeVore, Ronald; Migliorati, Giovanni. Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 341-363. doi : 10.1051/m2an/2016051. http://www.numdam.org/articles/10.1051/m2an/2016051/
A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007) 1005–1034. | DOI | MR | Zbl
, and ,Sparse polynomial approximation of parametric elliptic PDEs. Part I: Affine coefficients, ESAIM: M2AN 51 (2017) 321–339. | DOI | Numdam | MR | Zbl
, and ,On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Math. Models Methods Appl. Sci. 22 (2012) 1–33. | DOI | MR | Zbl
, , and ,Convergence of quasi-optimal stochastic Galerkin methods for a class of PDEs with random coefficients. Comput. Math. Appl. 67 (2014) 732–751. | DOI | MR | Zbl
, , and ,Strong and weak error estimates for elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50 (2012) 216–246. | DOI | MR | Zbl
,Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. Math. Pures Appl. 103 (2015) 400–428. | DOI | MR | Zbl
, and ,A. Cohen, Numerical analysis of wavelet methods, Studies in Mathematics and its Applications. Elsevier, Amsterdam (2003). | MR | Zbl
Approximation of high-dimensional parametric PDEs. Acta Numer. 24 (2015) 1–159. | DOI | MR | Zbl
and ,Analytic regularity and polynomial approximation of parametric and stochastic PDEs. Anal. Appl. 9 (2011) 11–47. | DOI | MR | Zbl
, and ,M. Dashti and A.M. Stuart, The Bayesian Approach to Inverse Problems. Handbook of Uncertainty Quantification, edited by R. Ghanem, D. Higdon and H. Owhadi. Springer (2015).
Nonlinear Approximation, Acta Numer. 7 (1998) 51–150. | DOI | MR | Zbl
,O. Ernst and B. Sprungk, Stochastic Collocation for Elliptic PDEs with Random Data: The Lognormal Case, in Sparse Grids and Applications – Munich (2012), edited by J. Garcke and D. Pflüger. Vol. 97 of Lect. Notes Comput. Sci. Eng. Springer International Publishing Switzerland (2014). | MR
Approximating infinity-dimensional stochastic Darcy’s equations without uniform ellipticity. SIAM J. Numer. Anal. 47 (2009) 3624–3651. | DOI | MR | Zbl
and ,Spectral techniques for stochastic finite elements. Arch. Comput. Methods Engrg. 4 (1997) 63–100. | DOI | MR
and ,R.G. Ghanem and P.D. Spanos, Stochastic Finite Elements: A Spectral Approach, 2nd edition, Dover (2007). | MR | Zbl
Stochastic Galerkin discretization of the log-normal isotropic diffusion problem. Math. Models Methods Appl. Sci. 20 (2010) 237–263. | DOI | MR | Zbl
,Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131 (2015) 329–368. | DOI | MR | Zbl
, , , , and ,M. Hairer, An Introduction to Stochastic PDEs. Lecture notes. Available at http://www.hairer.org (2009).
O. Knio and O. Le Maitre, Spectral Methods for Uncertainty Quantication: With Applications to Computational Fluid Dynamics. Springer (2010). | MR | Zbl
F.Y. Kuo, R. Scheichl, Ch. Schwab, I.H. Sloan and E. Ullmann, Multilevel Quasi-Monte Carlo Methods for Lognormal Diffusion Problems, , to appear in Math. of Comp. (2015). | arXiv | MR
On the convergence of the stochastic Galerkin methods for random elliptic partial differential equations. ESAIM: M2AN 47 (2013) 1237–1263. | DOI | Numdam | MR | Zbl
and ,D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press (2010). | MR | Zbl
- Analyticity of parametric elliptic eigenvalue problems and applications to quasi-Monte Carlo methods, Complex Variables and Elliptic Equations, Volume 69 (2024) no. 1, pp. 1-21 | DOI:10.1080/17476933.2023.2205136 | Zbl:1532.35147
- Exploiting locality in sparse polynomial approximation of parametric elliptic PDEs and application to parameterized domains, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 58 (2024) no. 5, pp. 1581-1613 | DOI:10.1051/m2an/2024050 | Zbl:7957220
- A DIMENSION-ADAPTIVE COMBINATION TECHNIQUE FOR UNCERTAINTY QUANTIFICATION, International Journal for Uncertainty Quantification, Volume 14 (2024) no. 2, p. 21 | DOI:10.1615/int.j.uncertaintyquantification.2023046861
- Stochastic modelling of symmetric positive definite material tensors, Journal of Computational Physics, Volume 505 (2024), p. 30 (Id/No 112883) | DOI:10.1016/j.jcp.2024.112883 | Zbl:7842876
- Interfaces, free boundaries and geometric partial differential equations. Abstracts from the workshop held February 11–16, 2024, Oberwolfach Rep. 21, No. 1, 389-482, 2024 | DOI:10.4171/owr/2024/8 | Zbl:1546.00064
- Multilevel representations of isotropic Gaussian random fields on the sphere, IMA Journal of Numerical Analysis, Volume 43 (2023) no. 4, p. 1970 | DOI:10.1093/imanum/drac034
- Deep ReLU neural network approximation in Bochner spaces and applications to parametric PDEs, Journal of Complexity, Volume 79 (2023), p. 32 (Id/No 101779) | DOI:10.1016/j.jco.2023.101779 | Zbl:1545.65035
- Near-optimal approximation methods for elliptic PDEs with lognormal coefficients, Mathematics of Computation, Volume 92 (2023) no. 342, pp. 1665-1691 | DOI:10.1090/mcom/3825 | Zbl:1512.65013
- Adaptive nonintrusive reconstruction of solutions to high-dimensional parametric PDEs, SIAM Journal on Scientific Computing, Volume 45 (2023) no. 2, p. a457-a479 | DOI:10.1137/21m1461988 | Zbl:1530.65014
- Deep learning in high dimension: neural network expression rates for analytic functions in
, SIAM/ASA Journal on Uncertainty Quantification, Volume 11 (2023), pp. 199-234 | DOI:10.1137/21m1462738 | Zbl:1524.41084 - Collocation approximation by deep neural ReLU networks for parametric and stochastic PDEs with lognormal inputs, Sbornik: Mathematics, Volume 214 (2023) no. 4, pp. 479-515 | DOI:10.4213/sm9791e | Zbl:1535.65013
- A data-driven and model-based accelerated Hamiltonian Monte Carlo method for Bayesian elliptic inverse problems, Statistics and Computing, Volume 33 (2023) no. 4, p. 16 (Id/No 90) | DOI:10.1007/s11222-023-10262-y | Zbl:1517.62030
- Sparse polynomial approximations for affine parametric saddle point problems, Vietnam Journal of Mathematics, Volume 51 (2023) no. 1, pp. 151-175 | DOI:10.1007/s10013-022-00584-1 | Zbl:1528.41011
- Коллокационная аппроксимация глубокими
-нейронными сетями решений параметрических и стохастических уравнений с частными производными c логнормальными входами, Математический сборник, Volume 214 (2023) no. 4, p. 38 | DOI:10.4213/sm9791 - Goal-oriented adaptive finite element multilevel Monte Carlo with convergence rates, Computer Methods in Applied Mechanics and Engineering, Volume 402 (2022), p. 39 (Id/No 115582) | DOI:10.1016/j.cma.2022.115582 | Zbl:1507.65008
- On the convergence of adaptive stochastic collocation for elliptic partial differential equations with affine diffusion, SIAM Journal on Numerical Analysis, Volume 60 (2022) no. 2, pp. 659-687 | DOI:10.1137/20m1364722 | Zbl:1508.65163
- The uniform sparse FFT with application to PDEs with random coefficients, Sampling Theory, Signal Processing, and Data Analysis, Volume 20 (2022) no. 2, p. 39 (Id/No 19) | DOI:10.1007/s43670-022-00037-3 | Zbl:1515.65293
- Intrusive generalized polynomial chaos with asynchronous time integration for the solution of the unsteady Navier-Stokes equations, Computers and Fluids, Volume 223 (2021), p. 15 (Id/No 104952) | DOI:10.1016/j.compfluid.2021.104952 | Zbl:1521.76632
- Sparse-grid polynomial interpolation approximation and integration for parametric and stochastic elliptic PDEs with lognormal inputs, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 55 (2021) no. 3, pp. 1163-1198 | DOI:10.1051/m2an/2021017 | Zbl:7405595
- MDFEM: multivariate decomposition finite element method for elliptic PDEs with lognormal diffusion coefficients using higher-order QMC and FEM, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 55 (2021) no. 4, pp. 1461-1505 | DOI:10.1051/m2an/2021029 | Zbl:1492.65327
- Non-uniform recovery guarantees for binary measurements and infinite-dimensional compressed sensing, The Journal of Fourier Analysis and Applications, Volume 27 (2021) no. 2, p. 45 (Id/No 14) | DOI:10.1007/s00041-021-09813-6 | Zbl:1460.42044
- MDFEM: multivariate decomposition finite element method for elliptic PDEs with uniform random diffusion coefficients using higher-order QMC and FEM, Numerische Mathematik, Volume 148 (2021) no. 3, pp. 633-669 | DOI:10.1007/s00211-021-01212-9 | Zbl:1495.65219
- On expansions and nodes for sparse grid collocation of lognormal elliptic PDEs, Sparse grids and applications – Munich 2018. Selected papers based on the presentations at the fifth workshop, SGA2018, Munich, Germany, July 23–27, 2018, Cham: Springer, 2021, pp. 1-31 | DOI:10.1007/978-3-030-81362-8_1 | Zbl:1498.65210
- A sparse FFT approach for ODE with random coefficients, Advances in Computational Mathematics, Volume 46 (2020) no. 5, p. 21 (Id/No 65) | DOI:10.1007/s10444-020-09807-w | Zbl:1455.65241
- On the stable sampling rate for binary measurements and wavelet reconstruction, Applied and Computational Harmonic Analysis, Volume 48 (2020) no. 2, pp. 630-654 | DOI:10.1016/j.acha.2018.08.004 | Zbl:1454.94032
- Sparse polynomial chaos expansions using variational relevance vector machines, Journal of Computational Physics, Volume 416 (2020), p. 19 (Id/No 109498) | DOI:10.1016/j.jcp.2020.109498 | Zbl:1437.62114
- A data-driven approach for multiscale elliptic PDEs with random coefficients based on intrinsic dimension reduction, Multiscale Modeling Simulation, Volume 18 (2020) no. 3, pp. 1242-1271 | DOI:10.1137/19m1277485 | Zbl:1459.35194
- Unified analysis of periodization-based sampling methods for Matérn covariances, SIAM Journal on Numerical Analysis, Volume 58 (2020) no. 5, pp. 2953-2980 | DOI:10.1137/19m1269877 | Zbl:1471.60047
- Sparse compression of expected solution operators, SIAM Journal on Numerical Analysis, Volume 58 (2020) no. 6, pp. 3144-3164 | DOI:10.1137/20m132571x | Zbl:1475.65215
- On reconstructing functions from binary measurements, Compressed sensing and its applications. Selected papers of the third international MATHEON conference, TU Berlin, Berlin, Germany, December 4–8, 2017, Cham: Birkhäuser, 2019, pp. 97-128 | DOI:10.1007/978-3-319-73074-5_3 | Zbl:1450.94025
- Multilevel quasi-Monte Carlo integration with product weights for elliptic PDEs with lognormal coefficients, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 5, pp. 1507-1552 | DOI:10.1051/m2an/2019016 | Zbl:7135561
- A mixed
regularization approach for sparse simultaneous approximation of parameterized PDEs, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 6, pp. 2025-2045 | DOI:10.1051/m2an/2019048 | Zbl:7167647 - Quasi–Monte Carlo integration with product weights for elliptic PDEs with log-normal coefficients, IMA Journal of Numerical Analysis, Volume 39 (2019) no. 3, p. 1563 | DOI:10.1093/imanum/dry028
- QMC integration for lognormal-parametric, elliptic PDEs: local supports and product weights, Numerische Mathematik, Volume 141 (2019) no. 1, pp. 63-102 | DOI:10.1007/s00211-018-0991-1 | Zbl:7006664
- Multivariate approximation in downward closed polynomial spaces, Contemporary computational mathematics – a celebration of the 80th birthday of Ian Sloan. In 2 volumes, Cham: Springer, 2018, pp. 233-282 | DOI:10.1007/978-3-319-72456-0_12 | Zbl:1405.41021
- Sparse quadrature for high-dimensional integration with Gaussian measure, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 52 (2018) no. 2, pp. 631-657 | DOI:10.1051/m2an/2018012 | Zbl:6966736
- Representations of Gaussian random fields and approximation of elliptic PDEs with lognormal coefficients, The Journal of Fourier Analysis and Applications, Volume 24 (2018) no. 3, pp. 621-649 | DOI:10.1007/s00041-017-9539-5 | Zbl:1428.60054
- QMC Algorithms with Product Weights for Lognormal-Parametric, Elliptic PDEs, Monte Carlo and Quasi-Monte Carlo Methods, Volume 241 (2018), p. 313 | DOI:10.1007/978-3-319-91436-7_17
- A Bramble-Pasciak Conjugate Gradient Method for Discrete Stokes Problems with Lognormal Random Viscosity, Recent Advances in Computational Engineering, Volume 124 (2018), p. 63 | DOI:10.1007/978-3-319-93891-2_5
- Convergence of sparse collocation for functions of countably many Gaussian random variables (with application to elliptic PDEs), SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 2, pp. 877-905 | DOI:10.1137/17m1123079 | Zbl:6864017
- Uncertainty quantification for low-frequency, time-harmonic Maxwell equations with stochastic conductivity models, SIAM/ASA Journal on Uncertainty Quantification, Volume 6 (2018), pp. 1295-1334 | DOI:10.1137/17m1156010 | Zbl:1405.35264
- Linear Reconstructions and the Analysis of the Stable Sampling Rate, Sampling Theory in Signal and Image Processing, Volume 17 (2018) no. 1, p. 103 | DOI:10.1007/bf03549616
- Hessian-based adaptive sparse quadrature for infinite-dimensional Bayesian inverse problems, Computer Methods in Applied Mechanics and Engineering, Volume 327 (2017), pp. 147-172 | DOI:10.1016/j.cma.2017.08.016
- Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 51 (2017) no. 1, p. 321 | DOI:10.1051/m2an/2016045
- Stable splittings of Hilbert spaces of functions of infinitely many variables, Journal of Complexity, Volume 41 (2017), pp. 126-151 | DOI:10.1016/j.jco.2017.01.003 | Zbl:1378.46019
- Fully discrete approximation of parametric and stochastic elliptic PDEs, SIAM Journal on Numerical Analysis, Volume 55 (2017) no. 5, pp. 2151-2186 | DOI:10.1137/17m111626x | Zbl:1377.65005
- Hyperbolic Cross Approximation, arXiv (2016) | DOI:10.48550/arxiv.1601.03978 | arXiv:1601.03978
- Hilbert function space splittings on domains with infinitely many variables, arXiv (2016) | DOI:10.48550/arxiv.1607.05978 | arXiv:1607.05978
- Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients, arXiv (2015) | DOI:10.48550/arxiv.1509.07045 | arXiv:1509.07045
Cité par 49 documents. Sources : Crossref, NASA ADS, zbMATH