In this paper we analyze a two-dimensional shape optimization problem, governed by Stokes equations that are defined on a domain with a part of the boundary that is described as the graph of the control function. The state problem formulation is mapped onto a reference domain, which is independent of the control function, and the analysis is mainly led on such domain. The existence of an optimal control function is proved, and optimality conditions are derived. After the analytical inspection of the problem, finite element discretization is considered for both the control function and the state variables, and a priori convergence error estimates are derived. Numerical experiments assess the validity of the theoretical results.
DOI : 10.1051/m2an/2014060
Mots-clés : Shape optimization, Stokes problem, reference domain, convergence rates, finite elements
@article{M2AN_2015__49_4_921_0, author = {Fumagalli, Ivan and Parolini, Nicola and Verani, Marco}, title = {Shape {Optimization} for {Stokes} flows: a finite element convergence analysis}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {921--951}, publisher = {EDP-Sciences}, volume = {49}, number = {4}, year = {2015}, doi = {10.1051/m2an/2014060}, mrnumber = {3371898}, zbl = {1320.76068}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2014060/} }
TY - JOUR AU - Fumagalli, Ivan AU - Parolini, Nicola AU - Verani, Marco TI - Shape Optimization for Stokes flows: a finite element convergence analysis JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 921 EP - 951 VL - 49 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2014060/ DO - 10.1051/m2an/2014060 LA - en ID - M2AN_2015__49_4_921_0 ER -
%0 Journal Article %A Fumagalli, Ivan %A Parolini, Nicola %A Verani, Marco %T Shape Optimization for Stokes flows: a finite element convergence analysis %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 921-951 %V 49 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2014060/ %R 10.1051/m2an/2014060 %G en %F M2AN_2015__49_4_921_0
Fumagalli, Ivan; Parolini, Nicola; Verani, Marco. Shape Optimization for Stokes flows: a finite element convergence analysis. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 4, pp. 921-951. doi : 10.1051/m2an/2014060. http://www.numdam.org/articles/10.1051/m2an/2014060/
G. Allaire, Conception optimale de structures. Springer-Verlag (2007). | MR | Zbl
Multigrid shape optimization governed by elliptic PDEs. SIAM J. Control Optim. 51 (2013) 1417–1440. | DOI | MR | Zbl
, and ,Shape Optimization by Free-Form Deformation: Existence Results and Numerical Solution for Stokes Flows. J. Sci. Comput. 60 (2013) 537–563. | DOI | MR | Zbl
, , and ,Application de la méthode des éléments finis à l’approximation d’un problème de domaine optimal. Méthodes de résolution des problèmes approchés. Appl. Math. Optim. 2 (1975) 130–169. | DOI | MR | Zbl
and ,F. Bélahcène and J.A. Desideri, Paramétrisation de Bézier adaptative pour l’optimisation de forme en Aérodynamique. Research Report RR-4943, INRIA (2003).
The Differentiability of the Drag with Respect to the Variations of a Lipschitz Domain in a Navier–Stokes Flow. SIAM J. Control Optim. 35 (1997) 626–640. | DOI | MR | Zbl
, , and ,S.C. Brenner and R. Scott, The mathematical theory of finite element methods. Springer Texts Appl. Math., 3rd edition (2008). | MR | Zbl
On the existence uniqueness and approximation of saddle point problems arising from lagrangian multipliers. Rev. Fr. Automat. Infor. 8 (1974) 129–151. | Numdam | MR | Zbl
,Controllability of an elliptic equation and its finite difference approximation by the shape of the domain. Numer. Math. 95 (2003) 63–99. | DOI | MR | Zbl
and ,Finite-element approximation of 2D elliptic optimal design. J. Math. Pure Appl. 85 (2006) 225–249. | DOI | MR | Zbl
and ,Shape and topology optimization of the robust compliance via the level set method. ESAIM: COCV 14 (2008) 43–70. | Numdam | MR | Zbl
, and ,M.C. Delfour and J.P. Zolésio, Shapes and geometries. Society for Industrial and Applied Mathematics (SIAM), 2nd edition (2011). | MR | Zbl
Discrete gradient flows for shape optimization and applications. Comput. Methods Appl. Mech. 196 (2007) 3898–3914. | DOI | MR | Zbl
, , and ,An elementary proof of the continuity from to of Bogovskii’s right inverse of the divergence. Rev. Un. Mat. Argentina 53 (2013) 59–78. | MR | Zbl
,Second derivatives and sufficient optimality conditions for shape functionals. Control Cybern. 29 (2000) 485–511. | MR | Zbl
,On Convergence in Elliptic Shape Optimization. SIAM J. Control Optim. 46 (2007) 61–83. | DOI | MR | Zbl
, and ,I. Fumagalli, Shape optimization for Stokes flows: a reference-domain approach. M.Sc. thesis, Politecnico di Milano, Italy (2013). Available at http://www.mate.polimi.it/biblioteca/?pp=view&id=537&collezione=tesi&L=i.
V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations. Springer-Verlag (1986). | MR | Zbl
M.D. Gunzburger, Perspectives in flow control and optimization. Society for Industrial and Applied Mathematics (SIAM) (2003). | MR | Zbl
On a shape control problem for the stationary Navier–Stokes equations. ESAIM: M2AN 34 (2000) 1233–1258. | DOI | Numdam | MR | Zbl
, and ,Analytic regularity of Stokes flow on polygonal domains in countably weighted Sobolev spaces. J. Comput. Appl. Math. 190 (2006) 487–519. | DOI | MR | Zbl
and ,J. Haslinger and R.A.E. Mäkinen, Introduction to shape optimization. Society for Industrial and Applied Mathematics (SIAM) (2003). | MR | Zbl
J. Haslinger and P. Neittaanmäki, Finite element approximation for optimal shape design: Theory and applications. Wiley Chichester (1988). | MR | Zbl
K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications. Society for Industrial and Applied Mathematics (SIAM) (2008). | MR | Zbl
A.M. Khludnev and J. Sokolowski, Modelling and control in solid mechanics. Birkhäuser Verlag, Basel (1997). | MR | Zbl
A priori error estimates for finite element discretizations of a shape optimization problem. ESAIM: M2AN 47 (2013) 1733–1763. | DOI | Numdam | MR | Zbl
and ,Newton’s method for a class of optimal shape design problems. SIAM J. Optim. 10 (2000) 503–533. | DOI | MR | Zbl
,J.L. Lions, Optimal control of systems governed by partial differential equations. Springer-Verlag (1971). | MR | Zbl
A. Logg, K.A. Mardal and G.N. Wells, Automated Solution of Differential Equations by the Finite Element Method. Springer (2012). | Zbl
Adaptive finite element method for shape optimization. ESAIM: COCV 18 (2012) 1122–1149. | Numdam | MR | Zbl
, , and ,J. Nocedal and S.J. Wright, Numerical optimization. 2nd edition, Springer (2006). | MR | Zbl
On optimum profiles in Stokes flow. J. Fluid Mech. 59 (1973) 117–128. | DOI | MR | Zbl
,P. Plotnikov and J. Sokołowski, Compressible Navier-Stokes equations. Theory and shape optimization. Birkhäuser/Springer, Basel (2012). | MR | Zbl
A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Series Comput. Math. Springer (2008). | Zbl
J. Sokolowsky and J.P. Zolésio, Introduction to Shape Optimization. Springer-Verlag (1992). | MR | Zbl
Cité par Sources :