This paper investigates the augmented plane wave methods which are widely used in full-potential electronic structure calculations. These methods introduce basis functions that describe different regions using different discretization schemes. We construct a nonconforming method based on this idea and present an a priori error analysis for both linear Schrödinger type equations and nonlinear Kohn−Sham equations. Some numerical experiments are presented to support our theory.
DOI : 10.1051/m2an/2014052
Mots clés : Kohn−Sham density functional theory, augmented plane wave methods, nonconforming, a priori error estimate.∗Financial support from the Alexander von Humboldt Foundation under grant CHN 1138663 STP
@article{M2AN_2015__49_3_755_0, author = {Chen, Huajie and Schneider, Reinhold}, title = {Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {755--785}, publisher = {EDP-Sciences}, volume = {49}, number = {3}, year = {2015}, doi = {10.1051/m2an/2014052}, zbl = {1330.65170}, mrnumber = {3342227}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2014052/} }
TY - JOUR AU - Chen, Huajie AU - Schneider, Reinhold TI - Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 755 EP - 785 VL - 49 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2014052/ DO - 10.1051/m2an/2014052 LA - en ID - M2AN_2015__49_3_755_0 ER -
%0 Journal Article %A Chen, Huajie %A Schneider, Reinhold %T Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 755-785 %V 49 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2014052/ %R 10.1051/m2an/2014052 %G en %F M2AN_2015__49_3_755_0
Chen, Huajie; Schneider, Reinhold. Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 755-785. doi : 10.1051/m2an/2014052. http://www.numdam.org/articles/10.1051/m2an/2014052/
Existence of minimizers for Kohn−Sham models in quantum chemistry, Ann. Inst. Henri Poincaré Anal. Non Lin. 26 (2009) 2425–2455. | DOI | Numdam | MR | Zbl
and ,Simple approach to the band structure problem. Solid State Commun. 13 (1973) 133–136. | DOI
,Linear methods in band theory. Phys. Rev. B 12 (1975) 3060–3083. | DOI
,Electronic states as linear combinations of muffin-tin orbitals. Phys. Rev. B 4 (1971) 1064–1069. | DOI
and ,I. Babuška and J. Osborn, Eigenvalue Problems, in Finite Element Methods (Part 1). Handb. Numer. Anal. Edited by P.G. Ciarlet and J.L. Lions. In vol. 2. Elsevier Science Publishers, North-Holand (1991) 640–787. | MR | Zbl
A finite element scheme for domains with corners. Numer. Math. 20 (1972) 1–21. | DOI | MR | Zbl
and ,Error estimates for Hermite and even-tempered Gaussian approximations in quantum chemistry. Numer. Math. 128 (2014) 137–165. | DOI | MR | Zbl
, and ,The Mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173–197. | DOI | MR | Zbl
,Coupling finite element and spectral methods: first results. Math. Comput. 54 (1990) 21–29. | DOI | MR | Zbl
, and ,C. Bernardi, Y. Maday and A.T. Patera, A new non conforming approach to domain decomposition: The Mortar element method, In Collège de France Seminar, edited by H. Brezis and J.L. Lions, Pitman (1990). | Zbl
S.C. Brenner and L.R. Scott, Mathematical Theory of Finite Element Methods. Springer (2002). | MR | Zbl
F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). | MR | Zbl
Numerical analysis of the planewave discretization of some orbital-free and Kohn−Sham models. ESAIM: M2AN 46 (2012) 341–388. | DOI | Numdam | MR | Zbl
, and ,C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods for Fluid Dynamics. Springer-Verlag (1988). | MR | Zbl
H. Chen and R. Schneider, DG methods using radial bases functions and plane waves for full-potential electronic structure calculations, preprint.
Numerical analysis of finite dimensional approximations of Kohn−Sham models. Adv. Comput. Math. 38 (2013) 225–256. | DOI | MR | Zbl
, , , and ,Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Rev. Francaise Automat. Informat. Recherch Operationelle Sér. Anal. Numér. 7 (1973) 33–75. | Numdam | MR | Zbl
and ,The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 (1998) 303–353. | DOI | MR | Zbl
, and ,Y.V. Egorov and B.W. Schulze, Pseudo-differential Operators, Singularities, Applications. Birkhäuser, Basel (1997). | MR | Zbl
H. Ehrenreich, F. Seitz and D. Turnbull, Solid State Physics. Edited by H. Ehrenreich, F. Seitz and D. Turnbull, New York, London (1971).
Asymptotic regularity of solutions to Hartree-Fock equations with Coulomb potential. Math. Meth. Appl. Sci. 31 (2008) 2172–2201. | DOI | MR | Zbl
, and ,The electron density is smooth away from the nuclei. Commun. Math. Phys. 228 (2002) 401–415. | DOI | MR | Zbl
, , and ,Analyticity of the density of electronic wavefunctions. Arkiv för Matematik 42 (2004) 87–106. | DOI | MR | Zbl
, , and ,Non-isotropic cusp conditions and regularity of the electron density of molecules at the nuclei. Ann. Henri Poincaré 8 (2007) 731–748. | DOI | MR | Zbl
, , and ,First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25 (2002) 478–492. | DOI
, , , , , , , , , , , , , , and ,P. Grisvard, Singularities in boundary value problems. In vol. 22 of Research Appl. Math. Masson, Paris (1992). | MR | Zbl
Electron wavefunctions and densities for atoms. Ann. Henri Poincaré 2 (2001) 77–100. | DOI | MR | Zbl
, and ,Inhomogeneous Electron Gas. Phys. Rev. B 136 (1964) 864–871. | DOI | MR
and ,Analysis of periodic Schrödinger operators: Regularity and approximation of eigenfunctions. J. Math. Phys. 49 (2008) 08350101–08350121. | DOI | MR | Zbl
, and ,B.M. Irons and A. Razzaque, Experience with the patch test for convergence of finite elements, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Part II. Edited by A.K. Aziz. Academic Press, New York (1972) 557–587. | MR | Zbl
Use of energy derivative of the radial solution in an augmented plane wave method: application to copper. J. Phys. F: Metal Phys. 5 (1975) 2041–2054. | DOI
and ,Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140 (1965) 1133–1138. | DOI | MR
and ,On the accuracy of the wavefunctions calculated by LAPW method. I. Phys. B 91 (1993) 463–366.
, and ,Existence and convergence results for the Galerkin approximation of an electronic density functional. Math. Models Methods Appl. Sci. 20 (2010) 2237–2265. | DOI | MR | Zbl
, and ,C. Le Bris, Quelques problèmes mathématiques en chimie quanntique moléculaire. Ph.D. thesis, Ècole Polytechnique (1993).
On the convergence of Wilson’s nonconforming element for solving the elastic problems. Comput. Methods Appl. Mech. Engrg. 7 (1976) 1–16. | DOI | MR | Zbl
,Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations. Numer. Math. 94 (2000) 739–770. | DOI | MR | Zbl
and ,Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64 (2001) 1951341–1951349.
, , , and ,R.M. Martin, Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press (2005). | Zbl
A. Messiah, Quantum Mechanics, vol. I. Wiley, New York (1964). | Zbl
Spectral approximation for compact operators. Math. Comput. 29 (1975) 712–725. | DOI | MR | Zbl
,Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comput. 31 (1977) 391–413. | DOI | MR | Zbl
and ,Direct minimization for calculating invariant subspaces in density functional computations of the electronic structure. J. Comput. Math. 27 (2009) 360–387. | MR | Zbl
, , and ,Electronic structure calculations of solids using the WIEN2k package for material sciences Comput. Phys. Commun. 147 (2002) 71–76. | DOI | Zbl
, and ,D.J. Singh and L. Nordstrom, Planewaves, Pseudopotentials, and the LAPW Method. Springer-Berlin (2006).
An alternative way of linearizing the APW method. Solid State Commun. 114 (2000) 15–20. | DOI
, and ,Wave functions in a periodic potential. Phys. Rev. 51 (1937) 846–851. | DOI | JFM | Zbl
,G. Strang. Variational crimes in the finite element methods, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Part II. Edited by A.K. Aziz. Academic Press, New York (1972) 689–710. | MR | Zbl
Non-periodic finite-element formulation of Kohn−Sham density functional theory. J. Mech. Phys. Solid. 58 (2010) 256–280. | DOI | MR | Zbl
, , , and ,On the constitution of metallic sodium. Phys. Rev. 43 (1933) 804–810. | DOI | Zbl
and ,E. Zeidler, Nonlinear Functional Analysis and Its Applications. I: Fixed-Point Theorems, translated from the German by P.R. Wadsack. Springer-Verlag (1986). | MR | Zbl
ABINIT, http://www.abinit.org/
FLEUR: The Jülich FLAPW code family, http://www.flapw.de/pm/.
The exciting Code, http://exciting-code.org/.
WIEN2k, http://www.wien2k.at/.
Cité par Sources :