A new quadrilateral MINI-element for Stokes equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 955-968.

We introduce a new stable MINI-element pair for incompressible Stokes equations on quadrilateral meshes, which uses the smallest number of bubbles for the velocity. The pressure is discretized with the P1-midpoint-edge-continuous elements and each component of the velocity field is done with the standard Q1-conforming elements enriched by one bubble a quadrilateral. The superconvergence in the pressure of the proposed pair is analyzed on uniform rectangular meshes, and tested numerically on uniform and non-uniform meshes.

DOI : 10.1051/m2an/2013129
Classification : 65N30, 74S05, 76M10
Mots clés : MINI-element, superconvergence
@article{M2AN_2014__48_4_955_0,
     author = {Kwon, Oh-In and Park, Chunjae},
     title = {A new quadrilateral {MINI-element} for {Stokes} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {955--968},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {4},
     year = {2014},
     doi = {10.1051/m2an/2013129},
     mrnumber = {3264342},
     zbl = {1299.76140},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2013129/}
}
TY  - JOUR
AU  - Kwon, Oh-In
AU  - Park, Chunjae
TI  - A new quadrilateral MINI-element for Stokes equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2014
SP  - 955
EP  - 968
VL  - 48
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2013129/
DO  - 10.1051/m2an/2013129
LA  - en
ID  - M2AN_2014__48_4_955_0
ER  - 
%0 Journal Article
%A Kwon, Oh-In
%A Park, Chunjae
%T A new quadrilateral MINI-element for Stokes equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2014
%P 955-968
%V 48
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2013129/
%R 10.1051/m2an/2013129
%G en
%F M2AN_2014__48_4_955_0
Kwon, Oh-In; Park, Chunjae. A new quadrilateral MINI-element for Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 955-968. doi : 10.1051/m2an/2013129. http://www.numdam.org/articles/10.1051/m2an/2013129/

[1] D.N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations. CALCOLO 21 (1984) 337-344. | MR | Zbl

[2] I. Babuška, The finite element method with Lagrange multipliers. Numer. Math. 20 (1973) 179-192. | MR | Zbl

[3] W. Bai, The quadrilateral ‘Mini' finite element for the Stokes problem. Comput. Methods Appl. Mech. Eng. 143 (1997) 41-47. | MR | Zbl

[4] F. Brezzi, On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO Anal. Numer. R2 8 (1974) 129-151. | Numdam | MR | Zbl

[5] J. Douglas Jr., J.E. Santos, D. Sheen and X. Ye, Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. RAIRO: M2AN 33 (1999) 747-770. | Numdam | MR | Zbl

[6] H. Eichel, L. Tobiska and H. Xie, Supercloseness and superconvergence of stabilized low order finite element discretization of the Stokes Problem. Math. Comput. 80 (2011) 697-722. | MR

[7] L.P. Franca, S.P. Oliveira and M. Sarkis, Continuous Q1-Q1 Stokes elements stabilized with non-conforming null edge average velocity functions. Math. Models Meth. Appl. Sci. 17 (2007) 439-459. | MR | Zbl

[8] V. Girault and P.A. Raviart, Finite element methods for the Navier-Stokes equations: Theory and Algorithms. Springer-Verlag, New York (1986). | MR | Zbl

[9] C. Park and D. Sheen, P1-nonconforming quadrilateral finite element methods for second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 624-640. | MR | Zbl

[10] R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Eq. 8 (1992) 97-111. | MR | Zbl

Cité par Sources :