This paper is devoted to the definition, analysis and implementation of semi-Lagrangian methods as they result from particle methods combined with remeshing. We give a complete consistency analysis of these methods, based on the regularity and momentum properties of the remeshing kernels, and a stability analysis of a large class of second and fourth order methods. This analysis is supplemented by numerical illustrations. We also describe a general approach to implement these methods in the context of hybrid computing and investigate their performance on GPU processors as a function of their order of accuracy.
Mots-clés : advection equations, particle methods, semi-lagrangian methods, GPU computing
@article{M2AN_2014__48_4_1029_0, author = {Cottet, G.-H. and Etancelin, J.-M. and Perignon, F. and Picard, C.}, title = {High order semi-lagrangian particle methods for transport equations: numerical analysis and implementation issues}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1029--1060}, publisher = {EDP-Sciences}, volume = {48}, number = {4}, year = {2014}, doi = {10.1051/m2an/2014009}, mrnumber = {3264345}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2014009/} }
TY - JOUR AU - Cottet, G.-H. AU - Etancelin, J.-M. AU - Perignon, F. AU - Picard, C. TI - High order semi-lagrangian particle methods for transport equations: numerical analysis and implementation issues JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 1029 EP - 1060 VL - 48 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2014009/ DO - 10.1051/m2an/2014009 LA - en ID - M2AN_2014__48_4_1029_0 ER -
%0 Journal Article %A Cottet, G.-H. %A Etancelin, J.-M. %A Perignon, F. %A Picard, C. %T High order semi-lagrangian particle methods for transport equations: numerical analysis and implementation issues %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 1029-1060 %V 48 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2014009/ %R 10.1051/m2an/2014009 %G en %F M2AN_2014__48_4_1029_0
Cottet, G.-H.; Etancelin, J.-M.; Perignon, F.; Picard, C. High order semi-lagrangian particle methods for transport equations: numerical analysis and implementation issues. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 1029-1060. doi : 10.1051/m2an/2014009. http://www.numdam.org/articles/10.1051/m2an/2014009/
[1] Multilevel adaptive particle methods for convection-diffusion equations. SIAM Multiscale Model. Simul. 4 (2005) 328-357. | MR | Zbl
, and ,[2] A lagrangian particle-wavelet method. SIAM Multiscale Model. Simul. 5 (2006) 980-995. | MR | Zbl
and ,[3] A portable opencl implementation of generic particle-mesh and mesh-particle interpolation in 2d and 3d. Parallel Comput. 39 (2013) 94-111.
, and ,[4] Numerical study of slightly viscous flow. J. Fluid Mech. 57 (1973) 785-796. | MR
,[5] Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations. J. Comput. Phys. 227 (2008) 9091-9120. | MR
, and ,[6] The remapped particle-mesh semi-lagrangian advection scheme. Q. J. Meteorol. Soc. 133 (2007) 251-260.
, and ,[7] Vortex methods. Cambridge University Press (2000). | MR | Zbl
and ,[8] Particle methods revisited: a class of high order finite-difference methods. C.R. Math. 343 (2006) 51-56. | MR | Zbl
and ,[9] A forward semi-lagrangian method for the numerical solution of the vlasov equation. Comput. Phys. Commun. 180 (2009) 1730-1745. | MR | Zbl
, and ,[10] Simulation Using Particles. Inst. Phys. Publ. (1988).
and ,[11] PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation. Parallel Comput. 38 (2012) 157-174.
, , , , and ,[12] Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys. 138 (1997) 821-857. | MR | Zbl
,[13] High resolution simulation of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296 (1995) 1-38. | Zbl
and ,[14] Méthodologie et environnement de développement orientés objets: de l'analyse mathématique à la programmation. MATAPLI 70 (2003) 79-92.
, and ,[15] G Balarac, and G.-H. Cottet, Hybrid spectral particle method for turbulent transport of passive scalar. J. Comput. Phys. 260 (2014) 127-142. | MR
,[16] Computing three-dimensional incompressible flows with vortex elements. Annu. Rev. Fluid Mech. 17 (1985) 523-559. | Zbl
.[17] High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33 (1996) 627-665. | MR | Zbl
,[18] Accurate, non-oscillatory, remeshing schemes for particle methods. J. Comput. Phys. 231 (2012) 152-172. | MR
and ,[19] Extrapolating B splines for interpolation. J. Comput. Phys. 60 (1985) 253-262. | MR | Zbl
,[20] An introduction to sph. Comput. Phys. Commun. 48 (1988) 89-96. | Zbl
,[21] The OpenCL Specification. Khronos OpenCL Working Group (2011).
,[22] Blending finite-difference and vortex methods for incompressible flow computations. SIAM J. Sci. Comput. 22 (2000) 1655-1674. | MR | Zbl
, and ,[23] Analysis of a new class of forward semi-lagrangian schemes for the 1d Vlasov-Poisson equations. Numer. Math. 118 (2011) 329-366. | MR | Zbl
and ,[24] GPU accelerated simulations of bluff body flows using vortex methods. J. Comput. Phys. 229 (2010) 3316-3333. | MR
, , and ,[25] Mesh-particle interpolations on graphics processing units and multicorecentral processing units. Philosophical Transactions of the Royal Society A: Mathematical, Phys. Engrg. Sci. 369 (2011) 2164-2175. | MR | Zbl
, and ,[26] Vortex methods for incompressible flow simulations on the GPU. Visual Comput. 24 (2008) 699-708.
and ,[27] Optimizing matrix transpose in cuda. NVIDIA CUDA SDK Application Note (2009).
and ,[28] PPM-a highly efficient parallel particle-mesh library for the simulation of continuum systems. J. Comput. Phys. 215 (2006) 566-588. | Zbl
, , , , and ,[29] Contribution to the problem of approximation of equidistant data by analytic functions. Q. Appl. Math. 4 (1946) 45-99. | MR | Zbl
,[30] Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-gpu clusters. J. Parallel Distrib. Comput. 73 (2012) 1483-1493.
, , and ,[31] GPU-accelerated numerical simulations of the knudsen gas on time- dependent domains. Comput. Phys. Commun. 184 (2013) 532-536. | MR
and ,[32] Petascale turbulence simulation using a highly parallel fast multipole method. Comput. Phys. Commun. 184 (2013) 445-455. | MR
, , and ,[33] Fast tridiagonal solvers on the GPU. SIGPLAN Not. 45 (2010) 127-136.
, and ,Cité par Sources :