In this paper, multiscale finite element methods (MsFEMs) and domain decomposition techniques are developed for a class of nonlinear elliptic problems with high-contrast coefficients. In the process, existing work on linear problems [Y. Efendiev, J. Galvis, R. Lazarov, S. Margenov and J. Ren, Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Submitted.; Y. Efendiev, J. Galvis and X. Wu, J. Comput. Phys. 230 (2011) 937-955; J. Galvis and Y. Efendiev, SIAM Multiscale Model. Simul. 8 (2010) 1461-1483.] is extended to treat a class of nonlinear elliptic operators. The proposed method requires the solutions of (small dimension and local) nonlinear eigenvalue problems in order to systematically enrich the coarse solution space. Convergence of the method is shown to relate to the dimension of the coarse space (due to the enrichment procedure) as well as the coarse mesh size. In addition, it is shown that the coarse mesh spaces can be effectively used in two-level domain decomposition preconditioners. A number of numerical results are presented to complement the analysis.
Mots clés : generalized multiscale finite element method, nonlinear equations, high-contrast
@article{M2AN_2014__48_2_475_0, author = {Efendiev, Y. and Galvis, J. and Presho, M. and Zhou, J.}, title = {A {Multiscale} {Enrichment} {Procedure} for {Nonlinear} {Monotone} {Operators}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {475--491}, publisher = {EDP-Sciences}, volume = {48}, number = {2}, year = {2014}, doi = {10.1051/m2an/2013116}, mrnumber = {3177854}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2013116/} }
TY - JOUR AU - Efendiev, Y. AU - Galvis, J. AU - Presho, M. AU - Zhou, J. TI - A Multiscale Enrichment Procedure for Nonlinear Monotone Operators JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 475 EP - 491 VL - 48 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2013116/ DO - 10.1051/m2an/2013116 LA - en ID - M2AN_2014__48_2_475_0 ER -
%0 Journal Article %A Efendiev, Y. %A Galvis, J. %A Presho, M. %A Zhou, J. %T A Multiscale Enrichment Procedure for Nonlinear Monotone Operators %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 475-491 %V 48 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2013116/ %R 10.1051/m2an/2013116 %G en %F M2AN_2014__48_2_475_0
Efendiev, Y.; Galvis, J.; Presho, M.; Zhou, J. A Multiscale Enrichment Procedure for Nonlinear Monotone Operators. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 2, pp. 475-491. doi : 10.1051/m2an/2013116. http://www.numdam.org/articles/10.1051/m2an/2013116/
[1] A hierarchical multiscale method for two-phase flow based on upon mixed finite elements and nonuniform coarse grids. SIAM Multiscale Model. Simul. 5 (2006) 337-363. | MR | Zbl
, and ,[2] A multiscale mortar mixed finite element method. SIAM Multiscale Model. Simul. 6 (2007) 319-346. | MR
, , and ,[3] Nonlinearly preconditioned inexact Newton algorithms. SIAM J. Sci. Comput. 24 (2002) 183-200. | MR | Zbl
and ,[4] Principal eigenvalue and eigenfunction of elliptic operator with large convection and its application to a competition model. Indiana Univ. Math. J. 57 (2008) 627-658. | MR | Zbl
and ,[5] On the nonlinear domain decomposition method. BIT 37 (1997) 296-311. | MR | Zbl
and ,[6] Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Comput. Method Appl. Math. 12 (2012) 1-22. | MR | Zbl
, , , and ,[7] Generalized Multiscale Finite Element Method. J. Comput. Phys. (2013) 116-135. | MR
, and ,[8] Generalized Multiscale Finite Element Methods. Oversampling strategies. To appear in Int. J. Multiscale Comput. Engrg.
, , and ,[9] Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys. 230 (2011) 937-955. | MR
, and ,[10] Domain decomposition preconditioners for multiscale flows in high contrast media. SIAM Multiscale Model. Simul. 8 (2010) 1461-1483. | MR | Zbl
and ,[11] Multiscale Finite Element Methods: Theory and Applications. Springer, New York (2009). | MR | Zbl
and ,[12] A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169-189. | MR | Zbl
and ,[13] The variational multiscale method - a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg. 166 (1998) 3-24. | MR | Zbl
, , and ,[14] Multi-scale finite volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187 (2003) 47-67. | Zbl
, and ,[15] Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. BIT 37 (1997) 296-311. | Zbl
,[16] An iterative adaptive finite element method for elliptic eigenvalue problems. J. Comput. Appl. Math. 236 (2012) 4582-4599 | MR | Zbl
and ,[17] Rate of convergence of some space decomposition methods for linear and nonlinear problems. Springer-Verlag, Berlin-Heidelburg (2008). | Zbl
and ,[18] On an energy minimizing basis for algebraic multigrid methods. Comput. Visual Sci. 7 (2004) 121-127. | MR | Zbl
and ,[19] Numerical methods for computing nonlinear eigenpairs. Part I. Iso-homogeneous cases. SIAM J. Sci. Comput. 29 (2007) 1355-1374. | MR | Zbl
and ,[20] Numerical methods for computing nonlinear eigenpairs. Part II. Non iso-homogenous cases. SIAM J. Sci. Comp. 30 (2008) 937-956. | MR | Zbl
and ,[21] Nonlinear Functional Analysis and Its Applications III. Springer-Verlag, New York (1985). | MR | Zbl
,Cité par Sources :