Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 1, pp. 125-147.

For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec's first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss-Seidel type which are performed only on basis functions associated with newly created edges/nodal points or those edges/nodal points where the support of the corresponding basis function has changed during the refinement process. The adaptive mesh refinement is based on Dörfler marking for residual-type a posteriori error estimators and the newest vertex bisection strategy. Using the abstract Schwarz theory of multilevel iterative schemes, quasi-optimal convergence of the LMM is shown, i.e., the convergence rates are independent of mesh sizes and mesh levels provided the coarsest mesh is chosen sufficiently fine. The theoretical findings are illustrated by the results of some numerical examples.

DOI : 10.1051/m2an/2012023
Classification : 65N30, 65N50, 65N55, 78M60
Mots clés : Maxwell equations, nédélec edge elements, indefinite, multigrid methods, local hiptmair smoothers, adaptive edge finite element methods, optimality
@article{M2AN_2013__47_1_125_0,
     author = {Chen, Huangxin and Hoppe, Ronald H. W. and Xu, Xuejun},
     title = {Uniform convergence of local multigrid methods for the time-harmonic {Maxwell} equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {125--147},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {1},
     year = {2013},
     doi = {10.1051/m2an/2012023},
     mrnumber = {2968698},
     zbl = {1278.65167},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2012023/}
}
TY  - JOUR
AU  - Chen, Huangxin
AU  - Hoppe, Ronald H. W.
AU  - Xu, Xuejun
TI  - Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2013
SP  - 125
EP  - 147
VL  - 47
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2012023/
DO  - 10.1051/m2an/2012023
LA  - en
ID  - M2AN_2013__47_1_125_0
ER  - 
%0 Journal Article
%A Chen, Huangxin
%A Hoppe, Ronald H. W.
%A Xu, Xuejun
%T Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2013
%P 125-147
%V 47
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2012023/
%R 10.1051/m2an/2012023
%G en
%F M2AN_2013__47_1_125_0
Chen, Huangxin; Hoppe, Ronald H. W.; Xu, Xuejun. Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 1, pp. 125-147. doi : 10.1051/m2an/2012023. http://www.numdam.org/articles/10.1051/m2an/2012023/

[1] B. Aksoylu and M. Holst, Optimality of multilevel preconditioners for local mesh refinement in three dimensions. SIAM J. Numer. Anal. 44 (2006) 1005-1025. | MR | Zbl

[2] B. Aksoylu, S. Bond and M. Holst, An odyssey into local refinement and multilevel preconditioning III : implementation and numerical experiments. SIAM J. Sci. Comput. 25 (2003) 478-498. | MR | Zbl

[3] D. Arnold, R. Falk and R. Winther, Multigrid in H(div) and H(curl). Numer. Math. 85 (2000) 197-218. | MR | Zbl

[4] D. Bai and A. Brandt, Local mesh refinement multilevel techniques. SIAM J. Sci. Stat. Comput. 8 (1987) 109-134. | MR | Zbl

[5] E. Bänsch, Local mesh refinement in 2 and 3 dimensions. Impact Comput. Sci. Eng. 3 (1991) 181-191. | MR | Zbl

[6] R. Beck, P. Deuflhard, R. Hiptmair, R.H.W. Hoppe and B. Wohlmuth, Adaptive multilevel methods for edge element discretizations of Maxwell's equations. Surv. Math. Indust. 8 (1999) 271-312. | MR | Zbl

[7] R. Beck, R. Hiptmair, R.H.W. Hoppe and B. Wohlmuth, Residual based a posteriori error estimators for eddy current computation. ESAIM : M2AN 34 (2000) 159-182. | Numdam | MR | Zbl

[8] A. Bossavit, Computational Electromagnetism : Variational Formulations, Complementarity, Edge Elements. Academic Press, San Diego (1998). | MR | Zbl

[9] J.H. Bramble, Multigrid Methods. Pitman (1993). | MR | Zbl

[10] J.H. Bramble, J.E. Pasciak, J. Wang and J. Xu, Convergence estimates for product iterative methods with applications to domain decomposition. Math. Comp. 57 (1991) 23-45. | MR | Zbl

[11] J.H. Bramble, D.Y. Kwak and J.E. Pasciak, Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems. SIAM J. Numer. Anal. 31 (1994) 1746-1763. | MR | Zbl

[12] C. Carstensen and R.H.W. Hoppe, Convergence analysis of an adaptive edge finite element method for the 2d eddy current equations. J. Numer. Math. 13 (2005) 19-32. | MR | Zbl

[13] H. Chen and X. Xu, Local multilevel methods for adaptive finite element methods for nonsymmetric and indefinite elliptic boundary value problems. SIAM J. Numer. Anal. 47 (2010) 4492-4516. | MR | Zbl

[14] Z. Chen, L. Wang and W. Zheng, An adaptive multilevel method for time-harmonic Maxwell equations with singularities. SIAM J. Sci. Comput. 29 (2007) 118-138. | MR | Zbl

[15] J. Chen, Y. Xu and J. Zou, Convergence analysis of an adaptive edge element method for Maxwell's equations. Appl. Numer. Math. 59 (2009) 2950-2969. | MR | Zbl

[16] W. Dahmen and A. Kunoth, Multilevel preconditioning. Numer. Math. 63 (1992) 315-344. | MR | Zbl

[17] W. Dörfler, A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106-1124. | MR | Zbl

[18] J. Gopalakrishnan and J. Pasciak, Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations. Math. Comp. 72 (2003) 1-15. | MR | Zbl

[19] J. Gopalakrishnan, J. Pasciak and L.F. Demkowicz, Analysis of a multigrid algorithm for time harmonic Maxwell equations. SIAM J. Numer. Anal. 42 (2004) 90-108. | MR | Zbl

[20] R. Hiptmair, Multigrid method for Maxwell's equations. SIAM J. Numer. Anal. 36 (1998) 204-225. | MR | Zbl

[21] R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237-339. | MR | Zbl

[22] R. Hiptmair and J. Xu, Nodal auxiliary spaces preconditions in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45 (2007) 2483-2509. | MR | Zbl

[23] R. Hiptmair and W. Zheng, Local multigrid in H(curl,Ω). J. Comput. Math. 27 (2009) 573-603. | MR | Zbl

[24] R. Hiptmair, H. Wu and W. Zheng, On uniform convergence theory of local multigrid methods in H1(Ω) and H(curl,Ω). Preprint (2010).

[25] R.H.W. Hoppe and J. Schöberl, Convergence of adaptive edge element methods for the 3D eddy currents equations. J. Comput. Math. 27 (2009) 657-676. | MR | Zbl

[26] R.H.W. Hoppe, X. Xu and H. Chen, Local Multigrid on Adaptively Refined Meshes and Multilevel Preconditioning with Applications to Problems in Electromagnetism and Acoustics, in Efficient Preconditioned Solution Methods for Elliptic Partial Differential Equations, edited by O. Axelsson and J. Karatson. Bentham, Bussum, The Netherlands (2010) 125-145.

[27] R. Leis, Exterior boundary-value problems in mathematical physics, in Trends in Applications of Pure Mathematics to Mechanics, edited by H. Zorski. Monographs Stud. Math. 5 (1979) 187-203. | MR | Zbl

[28] P. Monk, A posteriori error indicators for Maxwell's equations. Comput. Appl. Math. 100 (1998) 173-190. | MR | Zbl

[29] P. Monk, Finite element methods for Maxwell equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003). | MR | Zbl

[30] J.-C. Nédélec, Mixed finite element in lR3. Numer. Math. 35 (1980) 315-341. | Zbl

[31] J.-C. Nédélec, A new family of mixed finite elements in lR3. Numer. Math. 50 (1986) 57-81. | MR | Zbl

[32] P. Oswald, Multilevel Finite Element Approximation : Theory and Applications. Teubner, Stuttgart (1994). | MR | Zbl

[33] U. Rüde, Fully adaptive multigrid methods. SIAM J. Numer. Anal. 30 (1993) 230-248. | MR | Zbl

[34] O. Sterz, A. Hauser and G. Wittum, Adaptive local multigrid methods for solving time-harmonic eddy current problems. IEEE Trans. Magn. 42 (2006) 309-318.

[35] L. Tartar, Introduction to Sobolev Spaces and Interpolation Theory. Springer, Berlin, Heidelberg, New York (2007). | MR

[36] H. Whitney, Geometric Integration Theory. Princeton University Press, Princeton (1957). | MR | Zbl

[37] H.J. Wu and Z.M. Chen, Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems. Sci. China 39 (2006) 1405-1429. | MR | Zbl

[38] J. Xu, L. Chen and R. Nochetto, Optimal multilevel methods for H(grad), H(curl), and H(div) systems on graded and unstructured grids, in Multiscale, Nonlinear and Adaptive Approximation. Springer (2009) 599-659. | MR | Zbl

[39] X. Xu, H. Chen and R.H.W. Hoppe, Optimality of local multilevel methods on adaptively refined meshes for elliptic boundary value problems. J. Numer. Math. 18 (2010) 59-90. | MR | Zbl

[40] X. Xu, H. Chen and R.H.W. Hoppe, Optimality of local multilevel methods for adaptive nonconforming P1 finite element methods. J. Comput. Math. (2012), in press. | Zbl

[41] L. Zhong, L. Chen and J. Xu, Convergence of adaptive edge finite element methods for H(curl)-elliptic problems. Numer. Lin. Algebra Appl. 17 (2009) 415-432. | MR | Zbl

[42] L. Zhong, L. Chen, S. Shu, G. Wittum and J. Xu, Quasi-optimal convergence of adaptive edge finite element methods for three dimensional indefinite time-harmonic Maxwell's equations. Math. Comp. 81 (2012), 623-642. | MR | Zbl

Cité par Sources :