We examine an elliptic optimal control problem with control and state constraints in ℝ3. An improved error estimate of 𝒪(hs) with 3/4 ≤ s ≤ 1 - ε is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.
Mots-clés : elliptic optimal control problem, state constraint, a priori error estimates
@article{M2AN_2012__46_5_1107_0, author = {R\"osch, Arnd and Steinig, Simeon}, title = {\protect\emph{A priori }error estimates for a state-constrained elliptic optimal control problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1107--1120}, publisher = {EDP-Sciences}, volume = {46}, number = {5}, year = {2012}, doi = {10.1051/m2an/2011076}, zbl = {1271.65104}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2011076/} }
TY - JOUR AU - Rösch, Arnd AU - Steinig, Simeon TI - A priori error estimates for a state-constrained elliptic optimal control problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 1107 EP - 1120 VL - 46 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2011076/ DO - 10.1051/m2an/2011076 LA - en ID - M2AN_2012__46_5_1107_0 ER -
%0 Journal Article %A Rösch, Arnd %A Steinig, Simeon %T A priori error estimates for a state-constrained elliptic optimal control problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 1107-1120 %V 46 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2011076/ %R 10.1051/m2an/2011076 %G en %F M2AN_2012__46_5_1107_0
Rösch, Arnd; Steinig, Simeon. A priori error estimates for a state-constrained elliptic optimal control problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 5, pp. 1107-1120. doi : 10.1051/m2an/2011076. http://www.numdam.org/articles/10.1051/m2an/2011076/
[1] Sobolev spaces. Academic Press, San Diego (2007). | MR | Zbl
and ,[2] Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math. 12 (1959) 623-727. | MR | Zbl
, and ,[3] A finite-element method for solving elliptic equations with Neumann data on a curved boundary using unfitted meshes. IMA J. Numer. Anal. 4 (1984) 309-325. | MR | Zbl
and ,[4] Interpolation spaces. Springer, Berlin (1976). | Zbl
and ,[5] Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37 (1999) 1176-1194. | MR | Zbl
, and ,[6] Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 4 (1986) 1309-1322. | MR | Zbl
,[7] Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems. ESAIM : COCV 16 (2010) 581-600. | EuDML | Numdam | MR | Zbl
and ,[8] Error estimates for the regularization of optimal control problems with pointwise control and state constraints. Z. Anal. Anwendungen 27 (2008) 195-212. | MR | Zbl
and ,[9] Error estimates for the Lavrentiev regularization of elliptic optimal control problems. Inverse Problems 24 (2008). | MR | Zbl
, and ,[10] The finite element method for elliptic problems. SIAM Classics In Applied Mathematics, Philadelphia (2002). | MR | Zbl
,[11] Finite element error analysis for state-constrained optimal control of the Stokes equations. Control and Cybernetics 37 (2008) 251-284. | MR | Zbl
, and ,[12] Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal. 45 (2007) 1937-1953. | MR | Zbl
and ,[13] Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations, in Numerical Mathematics and Advanced Applications, edited by K. Kunisch, G. Of and O. Steinbach, Berlin, Heidelberg, Springer-Verlag (2008) 597-604. | Zbl
and ,[14] Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). | MR | Zbl
,[15] The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13 (2003) 865-888. | MR | Zbl
, and ,[16] Optimization with PDE Constraints. Springer-Verlag, Berlin (2009). | MR | Zbl
, , and ,[17] Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM J. Optim. 13 (2002) 321-334. | MR | Zbl
and ,[18] Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control and Cybernetics 37 (2008) 51-85. | MR | Zbl
,[19] Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33 (2006) 209-228. | MR | Zbl
, and ,[20] Optimization of Elliptic Systems. Springer-Verlag, New York (2006). | MR | Zbl
, and ,[21] Zur L∞-Konvergenz linearer finiter elemente beim Dirichlet-problem. Math. Z. 149 (1976) 69-77. | MR | Zbl
,[22] Existence of regular Lagrange multipliers for elliptic optimal control problem with pointwise control-state constraints. SIAM J. Optim. 45 (2006) 548-564. | Zbl
and ,[23] Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. I : Global estimates. Math. Comput. 67 (1998) 877-899. | MR | Zbl
,[24] Interior maximum norm estimates for the finite element method. Math. Comput. 31 (1977) 414-442. | MR | Zbl
and ,[25] On the quasi-optimality in L∞ of the | MR | Zbl
and ,[26] Design of Adaptive Finite Element Software, The Finite Element Toolbox ALBERTA. Springer-Verlag, Berlin (2000). | MR | Zbl
and ,[27] Regular Lagrange multipliers for problems with pointwise mixed control-state constraints. SIAM J. Optim. 15 (2005) 616-634. | MR | Zbl
,[28] Optimal control of partial differential equations. Amer. Math. Soc., Providence, Rhode Island (2010).
,[29] The inhomogeneous Neumann problem in Lipschitz domains. Commun. Partial Differ. Equ. 25 (2000) 1771-1808. | MR | Zbl
,Cité par Sources :