The present work aims at proposing a rigorous analysis of the mathematical and numerical modelling of ultrasonic piezoelectric sensors. This includes the well-posedness of the final model, the rigorous justification of the underlying approximation and the design and analysis of numerical methods. More precisely, we first justify mathematically the classical quasi-static approximation that reduces the electric unknowns to a scalar electric potential. We next justify the reduction of the computation of this electric potential to the piezoelectric domains only. Particular attention is devoted to the different boundary conditions used to model the emission and reception regimes of the sensor. Finally, an energy preserving finite element/finite difference numerical scheme is developed; its stability is analyzed and numerical results are presented.
Mots clés : piezoelectricity, quasi-static approximation, ultrasonic sensors
@article{M2AN_2012__46_4_875_0, author = {Imperiale, Sebastien and Joly, Patrick}, title = {Mathematical and numerical modelling of piezoelectric sensors}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {875--909}, publisher = {EDP-Sciences}, volume = {46}, number = {4}, year = {2012}, doi = {10.1051/m2an/2011070}, mrnumber = {2891473}, zbl = {1279.78013}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2011070/} }
TY - JOUR AU - Imperiale, Sebastien AU - Joly, Patrick TI - Mathematical and numerical modelling of piezoelectric sensors JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 875 EP - 909 VL - 46 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2011070/ DO - 10.1051/m2an/2011070 LA - en ID - M2AN_2012__46_4_875_0 ER -
%0 Journal Article %A Imperiale, Sebastien %A Joly, Patrick %T Mathematical and numerical modelling of piezoelectric sensors %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 875-909 %V 46 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2011070/ %R 10.1051/m2an/2011070 %G en %F M2AN_2012__46_4_875_0
Imperiale, Sebastien; Joly, Patrick. Mathematical and numerical modelling of piezoelectric sensors. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 4, pp. 875-909. doi : 10.1051/m2an/2011070. http://www.numdam.org/articles/10.1051/m2an/2011070/
[1] Finite element modeling for ultrasonic transducers. SPIE Int. Symp. Medical Imaging (1998).
, and ,[2] Models of elastic plates with piezoelectric inclusions part i : Models without homogenization. Math. Comput. Model. 26 (1997) 79-106. | MR | Zbl
and ,[3] Optimizing ultrasonic transducers based on piezoelectric composites using a finite-element method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37 (2002) 135-140.
,[4] Higher-order numerical methods for transient wave equations. Springer (2002). | MR | Zbl
,[5] Elastic waves in solids, free and guided propagation. Springer (2000). | MR | Zbl
and ,[6] Influence of gauss and gauss-lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain. Numer. Methods Partial Differ. Equ. 25 (2009) 526-551. | MR | Zbl
, and ,[7] Piezoelectric modelling using a time domain finite element program. J. Eur. Ceram. Soc. 27 (2007) 4153-4157.
and ,[8] Fundamentals of piezoelectricity. Oxford science publications (1990).
,[9] Effective computational methods for wave propagation. Chapman and Hall/CRC (2008). | MR | Zbl
, and ,[10] Fem-based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 (2008) 465-475.
, , , and .[11] Simulation of piezoelectric devices by two-and three-dimensional finite elements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37 (2002) 233-247.
,[12] Transient wave propagation in a transversely isotropic piezoelectric half space. Z. Angew. Math. Phys. 51 (2000) 236-266. | MR | Zbl
,[13] Existence, uniqueness, and regularity results for piezoelectric systems. SIAM J. Math. Anal. 37 (2005) 651-672. | MR | Zbl
and ,[14] Numerical modeling of a circular piezoelectric ultrasonic transducer radiating in water. ABCM Symposium Series in Mechatronics 2 (2005) 458-464.
, and ,[15] Finite element methods for maxwell's equations. Oxford science publications (2003). | Zbl
,[16] Acoustic and electromagnetic equations : integral representations for harmonic problems. Springer (2001). | MR | Zbl
,[17] An initial boundary-value problem for model electromagnetoelasticity system. J. Differ. Equ. 235 (2007) 31-55. | MR | Zbl
and ,[18] Ultrasonic nondestructive evaluation systems. Springer (2007).
and ,[19] A local compactness theorem for maxwell's equations. Math. Methods Appl. Sci. 2 (1980) 12-25. | MR | Zbl
and ,Cité par Sources :