In this paper we study different algorithms for backward stochastic differential equations (BSDE in short) basing on random walk framework for 1-dimensional Brownian motion. Implicit and explicit schemes for both BSDE and reflected BSDE are introduced. Then we prove the convergence of different algorithms and present simulation results for different types of BSDEs.
Mots-clés : backward stochastic differential equations, reflected stochastic differential equations with one barrier, numerical algorithm, numerical simulation
@article{M2AN_2011__45_2_335_0, author = {Peng, Shige and Xu, Mingyu}, title = {Numerical algorithms for backward stochastic differential equations with 1-d brownian motion: {Convergence} and simulations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {335--360}, publisher = {EDP-Sciences}, volume = {45}, number = {2}, year = {2011}, doi = {10.1051/m2an/2010059}, mrnumber = {2804642}, zbl = {1269.65008}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2010059/} }
TY - JOUR AU - Peng, Shige AU - Xu, Mingyu TI - Numerical algorithms for backward stochastic differential equations with 1-d brownian motion: Convergence and simulations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 335 EP - 360 VL - 45 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2010059/ DO - 10.1051/m2an/2010059 LA - en ID - M2AN_2011__45_2_335_0 ER -
%0 Journal Article %A Peng, Shige %A Xu, Mingyu %T Numerical algorithms for backward stochastic differential equations with 1-d brownian motion: Convergence and simulations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 335-360 %V 45 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2010059/ %R 10.1051/m2an/2010059 %G en %F M2AN_2011__45_2_335_0
Peng, Shige; Xu, Mingyu. Numerical algorithms for backward stochastic differential equations with 1-d brownian motion: Convergence and simulations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 2, pp. 335-360. doi : 10.1051/m2an/2010059. http://www.numdam.org/articles/10.1051/m2an/2010059/
[1] An approximation scheme for BSDEs and applications to control and nonlinear PDE's, in Pitman Research Notes in Mathematics Series 364, Longman, New York (1997). | MR
,[2] A quantization algorithm for solving discrete time multi-dimensional optimal stopping problems. Bernoulli 9 (2003) 1003-1049. | MR | Zbl
and ,[3] Error analysis of the quantization algorithm for obstacle problems. Stoch. Proc. Appl. 106 (2003) 1-40. | MR | Zbl
and ,[4] Discrete time approximation and Monte-Carlo simulation of backward stochastic differential equation. Stoch. Proc. Appl. 111 (2004) 175-206. | MR | Zbl
and ,[5] Donsker-type theorem for BSDEs. Elect. Comm. Probab. 6 (2001) 1-14. | MR | Zbl
, and ,[6] On the robustness of backward stochastic differential equations. Stoch. Process. Appl. 97 (2002) 229-253. | MR | Zbl
, and ,[7] Résolution numérique des équations différentielles stochastiques rétrogrades, in Numerical Methods in Finance, Cambridge University Press, Cambridge (1997). | Zbl
,[8] Stability in D of martingales and backward equations under discretization of filtration. Stoch. Process. Appl. 75 (1998) 235-248. | MR | Zbl
, and ,[9] Backward stochastic differential equations with constraints on the gain-process. Ann. Probab. 26 (1998) 1522-1551. | MR | Zbl
, and ,[10] An interpolated Stochastic Algorithm for Quasi-Linear PDEs. Math. Comput. 261 (2008) 125-158. | MR | Zbl
and ,[11] Numerical methods for forward-backward stochastic differential equations. Ann. Appl. Probab. 6 (1996) 940-968. | MR | Zbl
, and ,[12] Reflected solutions of backward SDE and related obstacle problems for PDEs. Ann. Probab. 25 (1997) 702-737. | MR | Zbl
, , , and ,[13] Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1-71. | MR | Zbl
, and ,[14] Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations. Bernoulli 12 (2006) 889-916. | MR | Zbl
, and ,[15] Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992). | MR | Zbl
and ,[16] Numerical method for backward stochastic differential equations. Ann. Appl. Probab. 12 (2002) 302-316. | MR | Zbl
, , and ,[17] Convergence of solutions of discrete reflected backward SDE's and simulations. Acta Math. Appl. Sin. (English Series) 24 (2008) 1-18. | MR | Zbl
, and ,[18] Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14 (1990) 55-61. | MR | Zbl
and ,[19] Monotonic limit theory of BSDE and nonlinear decomposition theorem of Doob-Meyer's type. Probab. Theory Relat. Fields 113 (1999) 473-499. | MR | Zbl
,[20] Reflected BSDE with Constraints and the Related Nonlinear Doob-Meyer Decomposition. Preprint, available at e-print:arXiv:math/0611869v4 (2006).
and ,[21] Risk measures via -expectations. Insur. Math. Econ. 39 (2006) 19-34. | MR | Zbl
,[22] Numerical algorithms and simulations for reflected BSDE with two barriers. Preprint, available at arXiv:0803.3712v2 [math.PR] (2007).
,[23] Some fine properties of backward stochastic differential equations. Ph.D. Thesis, Purdue University (2001). | MR
,[24] A numerical scheme for BSDEs. Ann. Appl. Probab. 14 (2004) 459-488. | MR | Zbl
,[25] Discretizing a backward stochastic differential equation. Int. J. Math. Math. Sci. 32 (2002) 103-116. | MR | Zbl
and ,Cité par Sources :