A matching of singularities in domain decomposition methods for reaction-diffusion problems with discontinuous coefficients
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 1, pp. 23-37.

In this paper we certify that the same approach proposed in previous works by Chniti et al. [C. R. Acad. Sci. 342 (2006) 883-886; CALCOLO 45 (2008) 111-147; J. Sci. Comput. 38 (2009) 207-228] can be applied to more general operators with strong heterogeneity in the coefficients. We consider here the case of reaction-diffusion problems with piecewise constant coefficients. The problem reduces to determining the coefficients of some transmission conditions to obtain fast convergence of domain decomposition methods. After explaining the theoretical results, we explicitly compute the coefficients in the transmission boundary conditions. The numerical results presented in this paper confirm the optimality properties.

DOI : 10.1051/m2an/2010031
Classification : 65N55, 35J05, 65N30, 35J25, 35R05
Mots clés : Corner singularity, domain decomposition method, Kondratiev theory
@article{M2AN_2011__45_1_23_0,
     author = {Chniti, Chokri},
     title = {A matching of singularities in domain decomposition methods for reaction-diffusion problems with discontinuous coefficients},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {23--37},
     publisher = {EDP-Sciences},
     volume = {45},
     number = {1},
     year = {2011},
     doi = {10.1051/m2an/2010031},
     mrnumber = {2781130},
     zbl = {1270.65074},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2010031/}
}
TY  - JOUR
AU  - Chniti, Chokri
TI  - A matching of singularities in domain decomposition methods for reaction-diffusion problems with discontinuous coefficients
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2011
SP  - 23
EP  - 37
VL  - 45
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2010031/
DO  - 10.1051/m2an/2010031
LA  - en
ID  - M2AN_2011__45_1_23_0
ER  - 
%0 Journal Article
%A Chniti, Chokri
%T A matching of singularities in domain decomposition methods for reaction-diffusion problems with discontinuous coefficients
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2011
%P 23-37
%V 45
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2010031/
%R 10.1051/m2an/2010031
%G en
%F M2AN_2011__45_1_23_0
Chniti, Chokri. A matching of singularities in domain decomposition methods for reaction-diffusion problems with discontinuous coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 1, pp. 23-37. doi : 10.1051/m2an/2010031. http://www.numdam.org/articles/10.1051/m2an/2010031/

[1] C. Chniti, F. Nataf and F. Nier, Improved interface conditions for the domain decomposition of a non-convex polygonal domain. C. R. Acad. Sci. 342 (2006) 883-886. | MR | Zbl

[2] C. Chniti, F. Nataf and F. Nier, Improved interface conditions for 2D domain decomposition with corners: a theoretical determination. CALCOLO 45 (2008) 111-147. | MR | Zbl

[3] C. Chniti, F. Nataf and F. Nier, Improved interface conditions for 2D domain decomposition with corners: Numerical applications. J. Sci. Comput. 38 (2009) 207-228. | MR | Zbl

[4] O. Dubois, Optimized Schwarz Methods for the Advection-Diffusion Equation and for Problems with Discontinuous Coefficients. Ph.D. Thesis, McGill University, Montréal (2007). | MR

[5] M.J. Gander, Optimized schwarz methods. SIAM J. Numer. Anal. 44 (2006) 699-731. | MR | Zbl

[6] P. Grisvard, Singularities in boundary value problems, Research Notes in Applied Mathematics, RMA 22. Springer-Verlag (1992). | MR | Zbl

[7] C. Japhet and F. Nataf, The Best Interface Conditions for Domain Decomposition Methods: Absorbing Boundary Conditions, in Absorbing Boundaries and Layers, Domain Decomposition Methods - Applications to Large Scale Computation, L. Tourrette and L. Halpern Eds., Nova Science Publishers, Publ. Science (2001) 348-373. | MR

[8] B.N. Khoromskij and G. Wittum, Numerical Solution of Elliptic Differential Equations by Reduction to the Interface, Lect. Notes Comput. Sci. Eng. 36. Springer-Verlag, Berlin (2004). | MR | Zbl

[9] V.A. Kondratiev, Boundary problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obshch. 16 (1967) 227-313. | MR | Zbl

[10] P.L. Lions, On the Schwarz Alternating Method III: A variant for Nonoverlapping Subdomains, in Third Internationnal Symposium on Domain Decomposition Methods for Partial Differentiel Equations, held in Houston, Texas, March 20-22, Philadelphia, SIAM (1989) 202-223. | MR | Zbl

[11] F. Nier, Remarques sur les algorithmes de décomposition de domaines, in Séminaire EDP-École Polytechnique (1998-1999). | Numdam | MR | Zbl

Cité par Sources :