We study the approximation properties of some finite element subspaces of H(div;Ω) and H(curl;Ω) defined on hexahedral meshes in three dimensions. This work extends results previously obtained for quadrilateral H(div;Ω) finite elements and for quadrilateral scalar finite element spaces. The finite element spaces we consider are constructed starting from a given finite dimensional space of vector fields on the reference cube, which is then transformed to a space of vector fields on a hexahedron using the appropriate transform (e.g., the Piola transform) associated to a trilinear isomorphism of the cube onto the hexahedron. After determining what vector fields are needed on the reference element to insure O(h) approximation in L2(Ω) and in H(div;Ω) and H(curl;Ω) on the physical element, we study the properties of the resulting finite element spaces.
@article{M2AN_2011__45_1_115_0, author = {Falk, Richard S. and Gatto, Paolo and Monk, Peter}, title = {Hexahedral $\mathbf {H}(\operatorname{div})$ and $\mathbf {H}(\operatorname{curl})$ finite elements}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {115--143}, publisher = {EDP-Sciences}, volume = {45}, number = {1}, year = {2011}, doi = {10.1051/m2an/2010034}, zbl = {1270.65066}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2010034/} }
TY - JOUR AU - Falk, Richard S. AU - Gatto, Paolo AU - Monk, Peter TI - Hexahedral $\mathbf {H}(\operatorname{div})$ and $\mathbf {H}(\operatorname{curl})$ finite elements JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 115 EP - 143 VL - 45 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2010034/ DO - 10.1051/m2an/2010034 LA - en ID - M2AN_2011__45_1_115_0 ER -
%0 Journal Article %A Falk, Richard S. %A Gatto, Paolo %A Monk, Peter %T Hexahedral $\mathbf {H}(\operatorname{div})$ and $\mathbf {H}(\operatorname{curl})$ finite elements %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 115-143 %V 45 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2010034/ %R 10.1051/m2an/2010034 %G en %F M2AN_2011__45_1_115_0
Falk, Richard S.; Gatto, Paolo; Monk, Peter. Hexahedral $\mathbf {H}(\operatorname{div})$ and $\mathbf {H}(\operatorname{curl})$ finite elements. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 1, pp. 115-143. doi : 10.1051/m2an/2010034. http://www.numdam.org/articles/10.1051/m2an/2010034/
[1] Finite element approximation on quadrilateral meshes. Comm. Num. Meth. Eng. 17 (2001) 805-812. | MR | Zbl
, , and ,[2] Approximation by quadrilateral finite elements. Math. Comp. 71 (2002) 909-922. | MR | Zbl
, and ,[3] Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42 (2005) 2429-2451. | MR | Zbl
, and ,[4] Survey lectures on the mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Proc. Sympos., Univ. Maryland, Baltimore, Md. Academic Press, New York (1972) 1-359. | MR | Zbl
and ,[5] Approximation properties of lowest-order hexahedral Raviart-Thomas elements. C. R. Acad. Sci. Paris, Sér. I 340 (2005) 687-692. | MR | Zbl
, , and ,[6] The Mathematical Theory of Finite Element Methods. Springer, New York (1994). | MR | Zbl
and ,[7] Mixed and Hybrid Finite Element Methods. Springer, New York (1991). | MR | Zbl
and ,[8] Discrete vector potential representation of a divergence free vector field in three dimensional domains: Numerical analysis of a model problem. SINUM 27 (1990) 1103-1142. | MR | Zbl
,[9] Polynomial Approximation of Functions in Sobolev Spaces. Math. Comp. 34 (1980) 441-463. | MR | Zbl
and ,[10] Elementi finiti su mesh di esaedri distorti per l'approssimazione di H(div) [Approximation of H(div) via finite elements over meshes of distorted hexahedra]. Master's Thesis, Dipartimento di Matematica, Università Pavia, Italy (2006).
,[11] Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics 5. Springer-Verlag, Berlin (1986). | MR | Zbl
and ,[12] Shape Functions for Velocity Interpolation in General Hexahedral Cells. Comput. Geosci. 6 (2002) 285-314. | MR | Zbl
, and ,[13] A finite-volume ELLAM for three-dimensional solute-transport modeling. Ground Water 41 (2003) 258-272.
, , and ,[14] Higher Order Finite Elements Methods, Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton (2004). | Zbl
, and ,[15] On the nested refinement of quadrilateral and hexahedral finite elements and the affine approximation. Numer. Math. 98 (2004) 559-579. | MR | Zbl
,[16] Invertible Jacobian for hexahedral finite elements. Part 1. Bijectivity. Preprint available at http://www.math.udel.edu/ szhang/research/p/bijective1.ps (2005).
,[17] Invertible Jacobian for hexahedral finite elements. Part 2. Global positivity. Preprint available at http://www.math.udel.edu/ szhang/research/p/bijective2.ps (2005).
,[18] Subtetrahedral test for the positive Jacobian of hexahedral elements. Preprint available at http://www.math.udel.edu/ szhang/research/p/subtettest.pdf (2005).
,Cité par Sources :