Numerical study of the systematic error in Monte Carlo schemes for semiconductors
ESAIM: Modélisation mathématique et analyse numérique, Special Issue on Probabilistic methods and their applications, Tome 44 (2010) no. 5, pp. 1049-1068.

The paper studies the convergence behavior of Monte Carlo schemes for semiconductors. A detailed analysis of the systematic error with respect to numerical parameters is performed. Different sources of systematic error are pointed out and illustrated in a spatially one-dimensional test case. The error with respect to the number of simulation particles occurs during the calculation of the internal electric field. The time step error, which is related to the splitting of transport and electric field calculations, vanishes sufficiently fast. The error due to the approximation of the trajectories of particles depends on the ODE solver used in the algorithm. It is negligible compared to the other sources of time step error, when a second order Runge-Kutta solver is used. The error related to the approximate scattering mechanism is the most significant source of error with respect to the time step.

DOI : 10.1051/m2an/2010051
Classification : 82D37, 65C05
Mots-clés : Boltzmann-Poisson equations, electronic devices, Monte Carlo simulations
@article{M2AN_2010__44_5_1049_0,
     author = {Muscato, Orazio and Wagner, Wolfgang and Di Stefano, Vincenza},
     title = {Numerical study of the systematic error in {Monte} {Carlo} schemes for semiconductors},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {1049--1068},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {5},
     year = {2010},
     doi = {10.1051/m2an/2010051},
     mrnumber = {2731402},
     zbl = {1198.82068},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2010051/}
}
TY  - JOUR
AU  - Muscato, Orazio
AU  - Wagner, Wolfgang
AU  - Di Stefano, Vincenza
TI  - Numerical study of the systematic error in Monte Carlo schemes for semiconductors
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2010
SP  - 1049
EP  - 1068
VL  - 44
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2010051/
DO  - 10.1051/m2an/2010051
LA  - en
ID  - M2AN_2010__44_5_1049_0
ER  - 
%0 Journal Article
%A Muscato, Orazio
%A Wagner, Wolfgang
%A Di Stefano, Vincenza
%T Numerical study of the systematic error in Monte Carlo schemes for semiconductors
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2010
%P 1049-1068
%V 44
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2010051/
%R 10.1051/m2an/2010051
%G en
%F M2AN_2010__44_5_1049_0
Muscato, Orazio; Wagner, Wolfgang; Di Stefano, Vincenza. Numerical study of the systematic error in Monte Carlo schemes for semiconductors. ESAIM: Modélisation mathématique et analyse numérique, Special Issue on Probabilistic methods and their applications, Tome 44 (2010) no. 5, pp. 1049-1068. doi : 10.1051/m2an/2010051. http://www.numdam.org/articles/10.1051/m2an/2010051/

[1] A.M. Anile and O. Muscato, Improved hydrodynamical model for carrier transport in semiconductors. Phys. Rev. B 51 (1995) 16728-16740.

[2] V. Borsari and C. Jacoboni, Monte Carlo calculations on electron transport in CdTe. Phys. Stat. Sol. (B) 54 (1972) 649-662.

[3] W. Fawcett, A.D. Boardman and S. Swain, Monte Carlo determination of electron transport properties in gallium arsenide. J. Phys. Chem. Solids 31 (1970) 1963-1990.

[4] M.V. Fischetti and S.E. Laux, Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38 (1988) 9721-9745.

[5] C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation. Springer, New York (1989).

[6] C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Modern Phys. 55 (1983) 645-705.

[7] C. Jungemann and B. Meinerzhagen, Hierarchical Device Simulation. The Monte-Carlo Perspective. Springer, Wien (2003). | Zbl

[8] S.E. Laux, M.V. Fischetti, Numerical aspects and implementation of the DAMOCLES Monte Carlo device simulation program, in Monte Carlo Device Simulation: Full Band and Beyond, K. Hess Ed., Kluwer, Boston (1991) 1-26. | Zbl

[9] J.M. Miranda, C. Lin, M. Shaalan, H.L. Hartnagel and J.L. Sebastian, Influence of the minimization of self-scattering events on the Monte Carlo simulation of carrier transport in III-V semiconductors. Semicond. Sci. Technol. 14 (1999) 804-808.

[10] O. Muscato and W. Wagner, Time step truncation in direct simulation Monte Carlo for semiconductors. Compel 24 (2005) 1351-1366. | Zbl

[11] U. Ravaioli, Vectorization of Monte Carlo algorithms for semiconductor simulation, in Monte Carlo Device Simulation: Full Band and Beyond, K. Hess Ed., Kluwer, Boston (1991) 267-284. | Zbl

[12] H.D. Rees, Calculation of steady state distribution functions by exploiting stability. Phys. Lett. A 26 (1968) 416-417.

[13] H.D. Rees, Calculation of distribution functions by exploiting the stability of the steady state. J. Phys. Chem. Solids 30 (1969) 643-655.

[14] S. Rjasanow and W. Wagner, Stochastic Numerics for the Boltzmann Equation. Springer, Berlin (2005). | Zbl

[15] E. Sangiorgi, B. Ricco and F. Venturi, MOS2: an efficient Monte Carlo simulator for MOS devices. IEEE Trans. Computer-Aided Des. 7 (1988) 259-271.

[16] V. Sverdlov, E. Ungersboeck, H. Kosina and S. Selberherr, Current transport models for nanoscale semiconductor devices. Mater. Sci. Eng. R 58 (2008) 228-270.

[17] R.M. Yorston, Free-flight time generation in the Monte Carlo simulation of carrier transport in semiconductors. J. Comput. Phys. 64 (1986) 177-194. | Zbl

Cité par Sources :