Theoretical aspects and numerical computation of the time-harmonic Green's function for an isotropic elastic half-plane with an impedance boundary condition
ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 4, pp. 671-692.

This work presents an effective and accurate method for determining, from a theoretical and computational point of view, the time-harmonic Green's function of an isotropic elastic half-plane where an impedance boundary condition is considered. This method, based on the previous work done by Durán et al. (cf. [Numer. Math. 107 (2007) 295-314; IMA J. Appl. Math. 71 (2006) 853-876]) for the Helmholtz equation in a half-plane, combines appropriately analytical and numerical techniques, which has an important advantage because the obtention of explicit expressions for the surface waves. We show, in addition to the usual Rayleigh wave, another surface wave appearing in some special cases. Numerical results are given to illustrate that. This is an extended and detailed version of the previous article by Durán et al. [C. R. Acad. Sci. Paris, Ser. IIB 334 (2006) 725-731].

DOI : 10.1051/m2an/2010020
Classification : 31A10, 35E05, 65T50, 74B05, 74J15
Mots-clés : Green's function, half-plane, time-harmonic elasticity, impedance boundary condition, surface waves
@article{M2AN_2010__44_4_671_0,
     author = {Dur\'an, Mario and Godoy, Eduardo and N\'ed\'elec, Jean-Claude},
     title = {Theoretical aspects and numerical computation of the time-harmonic {Green's} function for an isotropic elastic half-plane with an impedance boundary condition},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {671--692},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {4},
     year = {2010},
     doi = {10.1051/m2an/2010020},
     mrnumber = {2683578},
     zbl = {1194.31002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2010020/}
}
TY  - JOUR
AU  - Durán, Mario
AU  - Godoy, Eduardo
AU  - Nédélec, Jean-Claude
TI  - Theoretical aspects and numerical computation of the time-harmonic Green's function for an isotropic elastic half-plane with an impedance boundary condition
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2010
SP  - 671
EP  - 692
VL  - 44
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2010020/
DO  - 10.1051/m2an/2010020
LA  - en
ID  - M2AN_2010__44_4_671_0
ER  - 
%0 Journal Article
%A Durán, Mario
%A Godoy, Eduardo
%A Nédélec, Jean-Claude
%T Theoretical aspects and numerical computation of the time-harmonic Green's function for an isotropic elastic half-plane with an impedance boundary condition
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2010
%P 671-692
%V 44
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2010020/
%R 10.1051/m2an/2010020
%G en
%F M2AN_2010__44_4_671_0
Durán, Mario; Godoy, Eduardo; Nédélec, Jean-Claude. Theoretical aspects and numerical computation of the time-harmonic Green's function for an isotropic elastic half-plane with an impedance boundary condition. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 4, pp. 671-692. doi : 10.1051/m2an/2010020. http://www.numdam.org/articles/10.1051/m2an/2010020/

[1] H. Bateman, Tables of Integral Transformations, Volume I. McGraw-Hill Book Company, Inc. (1954).

[2] W.W. Bell, Special Functions for Scientists and Engineers. Dover Publications, Inc., New York, USA (1968). | Zbl

[3] M. Bonnet, Boundary Integral Equation Methods for Solids and Fluids. John Wiley & Sons Ltd., Chichester, UK (1995). | Zbl

[4] Z. Chen and M. Dravinski, Numerical evaluation of harmonic Green's functions for triclinic half-space with embedded sources - Part I: A 2D model. Int. J. Numer. Meth. Engrg. 69 (2007) 347-366. | Zbl

[5] Z. Chen and M. Dravinski, Numerical evaluation of harmonic Green's functions for triclinic half-space with embedded sources - Part II: A 3D model. Int. J. Numer. Meth. Engrg. 69 (2007) 367-389. | Zbl

[6] P. Colton and R. Kress, Integral Equations Methods in Scattering Theory. John Wiley, New York, USA (1983). | Zbl

[7] J. Dompierre, Équations Intégrales en Axisymétrie Généralisée, Application à la Sismique Entre Puits. Ph.D. Thesis, École Centrale de Paris, France (1993).

[8] M. Durán, E. Godoy and J.-C. Nédélec, Computing Green's function of elasticity in a half-plane with impedance boundary condition. C. R. Acad. Sci. Paris, Ser. IIB 334 (2006) 725-731.

[9] M. Durán, I. Muga and J.-C. Nédélec, The Helmholtz equation in a locally perturbed half-plane with passive boundary. IMA J. Appl. Math. 71 (2006) 853-876. | Zbl

[10] M. Durán, R. Hein and J.-C. Nédélec, Computing numerically the Green's function of the half-plane Helmholtz operator with impedance boundary conditions. Numer. Math. 107 (2007) 295-314. | Zbl

[11] G.R. Franssens, Calculation of the elasto-dynamics Green's function in layered media by means of a modified propagator matrix method. Geophys. J. Roy. Astro. Soc. 75 (1983) 669-691. | Zbl

[12] F.B. Jensen, W.A. Kuperman, M.B. Porter and H. Schmidt, Computational Ocean Acoustics. Springer-Verlag, New York, USA (1994). | Zbl

[13] L.R. Johnson, Green function's for Lamb's Problem. Geophys. J. Roy. Astro. Soc. 37 (1974) 99-131. | Zbl

[14] A.M. Linkov, Boundary Integral Equations in Elasticity Theory. Kluwer Academic Publishers, Dordrecht, Boston (2002). | Zbl

[15] A.M. Linkov, A theory of rupture pulse on softening interface with application to the Chi-Chi earthquake. J. Geophys. Res. 111 (2006) 1-14.

[16] J.-C. Nédélec, Acoustic and Electromagnetic Equations - Integral Representations for Harmonic Problems, Applied Mathematical Sciences 144. Springer, Germany (2001). | Zbl

[17] C. Richter and G. Schmid, A Green's function time-domain boundary element method for the elastodynamic half-plane. Int. J. Numer. Meth. Engrg. 46 (1999) 627-648. | Zbl

[18] M. Spies, Green's tensor function for Lamb's problem: The general anisotropic case. J. Acoust. Soc. Am. 102 (1997) 2438-2441.

[19] T.R. Stacey and C.H. Page, Practical Handbook for Underground Rock Mechanics, Series on Rock and Soil Mechanics 12. Trans Tech Publications, Germany (1986).

[20] C.-Y. Wang and J.D. Achenbach, Lamb's problem for solids of general anisotropy. Wave Mot. 24 (1996) 227-242. | Zbl

Cité par Sources :