We consider a class of discrete convex functionals which satisfy a (generalized) coarea formula. These functionals, based on submodular interactions, arise in discrete optimization and are known as a large class of problems which can be solved in polynomial time. In particular, some of them can be solved very efficiently by maximal flow algorithms and are quite popular in the image processing community. We study the limit in the continuum of these functionals, show that they always converge to some “crystalline” perimeter/total variation, and provide an almost explicit formula for the limiting functional.
Mots-clés : generalized coarea formula, total variation, anisotropic perimeter
@article{M2AN_2010__44_2_207_0, author = {Chambolle, Antonin and Giacomini, Alessandro and Lussardi, Luca}, title = {Continuous limits of discrete perimeters}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {207--230}, publisher = {EDP-Sciences}, volume = {44}, number = {2}, year = {2010}, doi = {10.1051/m2an/2009044}, mrnumber = {2655948}, zbl = {1185.94008}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2009044/} }
TY - JOUR AU - Chambolle, Antonin AU - Giacomini, Alessandro AU - Lussardi, Luca TI - Continuous limits of discrete perimeters JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2010 SP - 207 EP - 230 VL - 44 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2009044/ DO - 10.1051/m2an/2009044 LA - en ID - M2AN_2010__44_2_207_0 ER -
%0 Journal Article %A Chambolle, Antonin %A Giacomini, Alessandro %A Lussardi, Luca %T Continuous limits of discrete perimeters %J ESAIM: Modélisation mathématique et analyse numérique %D 2010 %P 207-230 %V 44 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2009044/ %R 10.1051/m2an/2009044 %G en %F M2AN_2010__44_2_207_0
Chambolle, Antonin; Giacomini, Alessandro; Lussardi, Luca. Continuous limits of discrete perimeters. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 2, pp. 207-230. doi : 10.1051/m2an/2009044. http://www.numdam.org/articles/10.1051/m2an/2009044/
[1] Network flows, Theory, algorithms, and applications. Prentice Hall Inc., Englewood Cliffs, USA (1993). | Zbl
, and ,[2] Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, USA (2000). | Zbl
, and ,[3] Computing geodesics and minimal surfaces via graph cuts, in International Conference on Computer Vision (2003) 26-33.
and ,[4] An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 1124-1137. | Zbl
and ,[5] Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press, Oxford, UK (2002). | Zbl
,[6] On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84 (2009) 288-307.
and ,[7] On submodular function minimization. Combinatoria 5 (1985) 185-192. | Zbl
,[8] An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications 8. Birkhäuser Boston Inc., Boston, USA (1993). | Zbl
,[9] Geometric measure theory. Springer-Verlag New York Inc., New York, USA (1969). | Zbl
,[10] Minimal surfaces and functions of bounded variation, Monographs in Mathematics 80. Birkhäuser Verlag, Basel, Switzerland (1984). | Zbl
,[11] Exact maximum a posteriori estimation for binary images. J. R. Statist. Soc. B 51 (1989) 271-279.
, and ,[12] A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions, in Proceedings of the 32nd annual ACM symposium on Theory of computing, ACM (2000) 97-106. | Zbl
, and ,[13] Submodular functions and convexity, in Mathematical programming: the state of the art (Bonn, 1982), Springer, Berlin, Germany (1983) 235-257. | Zbl
,[14] Minimum cuts and related problems. Networks 5 (1975) 357-370. | Zbl
and ,[15] A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory (B) 80 (2000) 436-355. | Zbl
,[16] Nonconvex functionals related to multiphase systems. SIAM J. Math. Anal. 21 (1990) 1281-1304. | Zbl
,[17] Generalized coarea formula and fractal sets. Japan J. Indust. Appl. Math. 8 (1991) 175-201. | Zbl
,Cité par Sources :