Continuous limits of discrete perimeters
ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 2, pp. 207-230.

We consider a class of discrete convex functionals which satisfy a (generalized) coarea formula. These functionals, based on submodular interactions, arise in discrete optimization and are known as a large class of problems which can be solved in polynomial time. In particular, some of them can be solved very efficiently by maximal flow algorithms and are quite popular in the image processing community. We study the limit in the continuum of these functionals, show that they always converge to some “crystalline” perimeter/total variation, and provide an almost explicit formula for the limiting functional.

DOI : 10.1051/m2an/2009044
Classification : 49Q20, 65K10
Mots-clés : generalized coarea formula, total variation, anisotropic perimeter
@article{M2AN_2010__44_2_207_0,
     author = {Chambolle, Antonin and Giacomini, Alessandro and Lussardi, Luca},
     title = {Continuous limits of discrete perimeters},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {207--230},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {2},
     year = {2010},
     doi = {10.1051/m2an/2009044},
     mrnumber = {2655948},
     zbl = {1185.94008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2009044/}
}
TY  - JOUR
AU  - Chambolle, Antonin
AU  - Giacomini, Alessandro
AU  - Lussardi, Luca
TI  - Continuous limits of discrete perimeters
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2010
SP  - 207
EP  - 230
VL  - 44
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2009044/
DO  - 10.1051/m2an/2009044
LA  - en
ID  - M2AN_2010__44_2_207_0
ER  - 
%0 Journal Article
%A Chambolle, Antonin
%A Giacomini, Alessandro
%A Lussardi, Luca
%T Continuous limits of discrete perimeters
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2010
%P 207-230
%V 44
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2009044/
%R 10.1051/m2an/2009044
%G en
%F M2AN_2010__44_2_207_0
Chambolle, Antonin; Giacomini, Alessandro; Lussardi, Luca. Continuous limits of discrete perimeters. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 2, pp. 207-230. doi : 10.1051/m2an/2009044. http://www.numdam.org/articles/10.1051/m2an/2009044/

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network flows, Theory, algorithms, and applications. Prentice Hall Inc., Englewood Cliffs, USA (1993). | Zbl

[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, USA (2000). | Zbl

[3] Y. Boykov and V. Kolmogorov, Computing geodesics and minimal surfaces via graph cuts, in International Conference on Computer Vision (2003) 26-33.

[4] Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 1124-1137. | Zbl

[5] A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press, Oxford, UK (2002). | Zbl

[6] A. Chambolle and J. Darbon, On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84 (2009) 288-307.

[7] W.H. Cunningham, On submodular function minimization. Combinatoria 5 (1985) 185-192. | Zbl

[8] G. Dal Maso, An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications 8. Birkhäuser Boston Inc., Boston, USA (1993). | Zbl

[9] H. Federer, Geometric measure theory. Springer-Verlag New York Inc., New York, USA (1969). | Zbl

[10] E. Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics 80. Birkhäuser Verlag, Basel, Switzerland (1984). | Zbl

[11] D.M. Greig, B.T. Porteous and A.H. Seheult, Exact maximum a posteriori estimation for binary images. J. R. Statist. Soc. B 51 (1989) 271-279.

[12] S. Iwata, L. Fleischer and S. Fujishige, A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions, in Proceedings of the 32nd annual ACM symposium on Theory of computing, ACM (2000) 97-106. | Zbl

[13] L. Lovász, Submodular functions and convexity, in Mathematical programming: the state of the art (Bonn, 1982), Springer, Berlin, Germany (1983) 235-257. | Zbl

[14] J.C. Picard and H.D. Ratliff, Minimum cuts and related problems. Networks 5 (1975) 357-370. | Zbl

[15] A. Schrijver, A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory (B) 80 (2000) 436-355. | Zbl

[16] A. Visintin, Nonconvex functionals related to multiphase systems. SIAM J. Math. Anal. 21 (1990) 1281-1304. | Zbl

[17] A. Visintin, Generalized coarea formula and fractal sets. Japan J. Indust. Appl. Math. 8 (1991) 175-201. | Zbl

Cité par Sources :