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Abstract. We consider a variational formulation of the three-dimensional Navier–Stokes equations
with mixed boundary conditions and prove that the variational problem admits a solution provided that
the domain satisfies a suitable regularity assumption. Next, we propose a finite element discretization
relying on the Galerkin method and establish a priori and a posteriori error estimates.
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1. Introduction

Let Ω be a bounded connected domain in R
3, with a Lipschitz-continuous boundary ∂Ω. We consider a

partition without overlap of ∂Ω into two connected parts Γm and Γ and introduce the unit outward normal
vector n to Ω on ∂Ω. We are interested in the finite element discretization of the Navier–Stokes equations, for
a positive constant viscosity ν,

−νΔu + (u · ∇)u + gradP = f in Ω,
div u = 0 in Ω,

u = 0 on Γ,
u · n = 0 on Γm,

(curl u) × n = 0 on Γm, (1.1)

where the unknowns are the velocity u and the pressure P of the fluid. This type of mixed boundary conditions
appears in a large number of physical situations, the simplest one being a tank closed by a membrane on a part
of its boundary (the index “m” in Γm means membrane). An other example is the flow in a bifurcating pipe [8].

The Navier–Stokes equations with mixed boundary conditions have been considered for a long time. We refer
to [4] for a pioneering paper on this subject. However, in a number of works concerning these mixed conditions,
the boundary of the domain Ω is assumed to be piece-wise smooth. Here, we prove the existence of a solution
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to problem (1.1) with minimal regularity assumptions on the boundary. We refer to [2] for similar results which,
however, mainly concern the two-dimensional situation.

In order to discretize the Navier–Stokes equations provided with the boundary conditions on Γm, a new
formulation has been recently introduced in [20] (see also [11,12]) and has been extended to mixed conditions
in [1]: the vorticity of the fluid is considered as a third independent unknown. However, we prefer to keep the
formulation with two unknowns, in order to make use of standard finite element results. We propose several
finite element discretizations of our problem and prove optimal a priori estimates provided some regularity
assumptions are satisfied. These conditions seem to be not too restrictive. In addition, we establish a poste-
riori error estimates which are optimal except in a neighbourhood of the re-entrant corners and edges in Γm.
Despite this lack of optimality, we think that the discretizations that we propose lead to efficient simulations of
incompressible viscous fluids in realistic situations.

An outline of the paper is as follows:
• In Section 2, we give a variational formulation of the problem and prove the existence of a solution.
• Section 3 is devoted to the description of the finite element discretization.
• In Section 4, we prove the existence of a solution for the discrete problem and derive a priori error

estimates.
• In Section 5, finally, we present a posteriori error estimates based on residual error indicators.
• A numerical experiment is described in Section 6.

2. The continuous problem

From now on, we assume for simplicity that Ω is simply-connected and has a connected boundary, and also
that ∂Γm = ∂Γ is a Lipschitz-continuous submanifold of ∂Ω. For the variational formulation of problem (1.1),
we first observe by using the formulas

−Δu = curl (curl u) − grad (div u)

and

(u · ∇)u = (curl u) × u +
1
2
grad |u|2

that this problem can equivalently be written as, for ε = 0 and 1,

ν curl (curl u) − εν grad (div u)

+ (curl u) × u + grad p = f in Ω,
div u = 0 in Ω,
u × n = 0 on Γ,
u · n = 0 on Γ ∪ Γm,

(curl u) × n = 0 on Γm, (2.1)

where the new unknown

p = P +
1
2
|u|2

represents the dynamic pressure. The reason for choosing this modified form is that the last boundary condition,
namely (curl u)×n = 0 on Γm, can now be treated as a natural boundary condition. Note also that, thanks to
the equation div u = 0 in Ω, the two formulations for ε = 0 and ε = 1 are equivalent in the sense of distributions;
the reason for considering both of them is explained later on (see Rem. 3.3).
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We consider the full scale of Sobolev spaces Hs(Ω), s ≥ 0, provided with the usual norm ‖·‖Hs(Ω) and
semi-norm |·|Hs(Ω), together with their subspaces Hs

0 (Ω). We introduce the domain H(div ,Ω) of the divergence
operator, namely

H(div ,Ω) =
{
v ∈ L2(Ω)d; div v ∈ L2(Ω)

}
·

Since the normal trace operator v �→ v · n is defined from H(div,Ω) onto H− 1
2 (∂Ω), see [14], Chapter I,

Theorem 2.5, we also consider its kernel

H0(div ,Ω) =
{
v ∈ H(div,Ω); v · n = 0 on ∂Ω

}
·

Similarly, we introduce the domain of the curl operator

H(curl ,Ω) =
{
v ∈ L2(Ω)3; curl v ∈ L2(Ω)3

}
·

The tangential trace operator v �→ v×n is defined on H(curl ,Ω) with values in H− 1
2 (∂Ω)3, see [14], Chapter I,

Theorem 2.11. It can also be checked that its restriction to Γ maps H(curl ,Ω) into the dual space H
1
2
00(Γ)′

of H
1
2
00(Γ) (see [17], Chapter I, Thm. 11.7, for the definition of the last space). So, in view of the first boundary

condition in (2.1), we define the space

H∗(curl ,Ω) =
{
v ∈ H(curl ,Ω); v × n = 0 on Γ

}
·

We set
X(Ω) = H0(div,Ω) ∩H∗(curl ,Ω).

From now on, this space is equipped with the semi-norm

‖v‖X(Ω) =
(
‖divv‖2

L2(Ω) + ‖curl v‖2
L2(Ω)3

) 1
2 . (2.2)

Since Ω is simply-connected, we recall from [3], Corollary 3.16, that this quantity is a norm, which is equivalent
to the graph norm of H(div,Ω)∩H(curl ,Ω), i.e., that there exists a constant c only depending on Ω such that

∀v ∈ X(Ω), ‖v‖L2(Ω)3 ≤ c‖v‖X(Ω).

We denote by L2
0(Ω) the space of functions in L2(Ω) with a zero mean-value on Ω.

We now assume that the data f belong to the dual space X(Ω)′ of X(Ω) and consider the variational problem:
Find (u, p) in X(Ω) × L2

0(Ω) such that

∀v ∈ X(Ω), aε(u,v) + c(u,u,v) + b(v, p) = 〈f ,v〉,
∀q ∈ L2

0(Ω), b(u, q) = 0, (2.3)

where the bilinear forms aε(·, ·) and b(·, ·) and the trilinear form c(·, ·, ·) are defined by

aε(u,v) = ν

∫
Ω

(curl u)(x) · (curl v)(x) dx

+ εν

∫
Ω

(div u)(x)(div v)(x) dx,

b(v, q) = −
∫

Ω

(div v)(x)q(x) dx,

c(w,u,v) =
∫

Ω

(
(curlw)(x) × u(x)

)
· v(x) dx.
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Here, 〈·, ·〉 stands for the duality pairing between X(Ω) and its dual space. The reason for the introduction of
this problem is stated in the next proposition.

Proposition 2.1. Any solution of problem (2.3) is a solution of problem (2.1) where the first two equations
are satisfied in the sense of distributions.

Proof. Let (u, p) be a solution of problem (2.3). Denoting by D(Ω) the space of infinitely differentiable functions
with a compact support in Ω, we first take v in D(Ω)3 in the first line of problem (2.3). This gives the
first equation in problem (2.1). Next, it is readily checked from the Stokes formula that the second line of
problem (2.3) is also satisfied when q is a constant, hence for all q in L2(Ω). Thus, we take q in D(Ω), which
yields the second equation in problem (2.1). It also follows from the definition of X(Ω) that the first two
boundary conditions in problem (2.1) hold. Finally, introducing an infinitely differentiable function ϕ with a
compact support in Γm and choosing v as a lifting in X(Ω) ∩H1(Ω)3 of the extension of ϕ × n by zero to ∂Ω
gives the last boundary condition of problem (2.1). �

Note that the converse property, i.e., the fact that any solution of problem (2.1) is a solution of problem (2.3),
would require the density of D(Ω)3 in X(Ω) which is unlikely when Γm has a positive measure.

Next, we observe that the forms aε(·, ·) and b(·, ·) are continuous on X(Ω)×X(Ω) and X(Ω)×L2
0(Ω), respec-

tively. Moreover the following ellipticity property holds for ε = 1:

∀v ∈ X(Ω), a1(v,v) ≥ ν‖v‖2
X(Ω). (2.4)

On the other hand, the kernel
V =

{
v ∈ X(Ω); ∀q ∈ L2

0(Ω), b(v, q) = 0
}

is a closed subspace of X(Ω) and coincides with

V =
{
v ∈ X(Ω); div v = 0 in Ω

}
·

This result together with the definition (2.2) of the norm of X(Ω) yields the following ellipticity property for
ε = 0 and 1:

∀v ∈ V, aε(v,v) ≥ ν‖v‖2
X(Ω). (2.5)

Finally, the inf-sup condition for b(·, ·) is a direct consequence of its analogue with X(Ω) replaced by H1
0 (Ω)3

which can be found in [14], Chapter I, Corollary 2.4, for instance: there exists a constant β > 0 such that

∀q ∈ L2
0(Ω), sup

v∈X(Ω)

b(v, q)
‖v‖X(Ω)

≥ β‖q‖L2(Ω). (2.6)

Combining all this with [14], Chapter I, Corollary 4.1, yields the well-posedness of the Stokes problem with the
same boundary conditions as in problem (2.1).

Lemma 2.2. For any data f in X(Ω)′, the Stokes problem

Find (u, p) in X(Ω) × L2
0(Ω) such that

∀v ∈ X(Ω), aε(u,v) + b(v, p) = 〈f ,v〉,
∀q ∈ L2

0(Ω), b(u, q) = 0, (2.7)

has a unique solution (u, p) in X(Ω) × L2
0(Ω). Moreover, this solution satisfies

ν‖u‖X(Ω) + β‖p‖L2(Ω) ≤ 3‖f‖X(Ω)′. (2.8)
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Let S denote the Stokes operator, i.e., the operator which associates with any f in X(Ω)′ the part u of the
solution (u, p) of problem (2.7). Lemma 2.2 states that this operator is well-defined. We now prove some further
regularity properties.

Lemma 2.3. The operator S maps L2(Ω)3 into Hs(Ω)3 for s ≤ 1
2 in the general case and s ≤ 1 when Ω is

convex.

Proof. This follows from the embedding of H0(div ,Ω) ∩ H(curl ,Ω) into H
1
2 (Ω)3 in the general case [9] and

into H1(Ω)3 when Ω is convex [3], Theorem 2.17. �
It can also be noted that, for any data f in L2(Ω)3, the restrictions of Sf to any subdomain of Ω which does

not intersect a neighbourhood of Γ or a neighbourhood of Γm is more regular. However, the singularities that
appear near Γ ∩ Γm seem presently unknown. On the other hand, it is likely that, if Ω is a convex polyhedron,
S maps L2(Ω)3 into Hs(Ω)3 for some s > 1. However, proving this result is beyond the scope of this work.

To study the non-linear part of the problem, we suppose that:

Assumption 2.4. The space X(Ω) is compactly embedded in L4(Ω)3.

Assumption 2.4 is always satisfied when Ω has a C1,1 boundary or is convex: indeed, it is proved in [13]
or in [3], Theorem 2.17 that, in these cases, the space H0(div ,Ω) ∩H(curl ,Ω) is contained in H1(Ω)3, hence
in L6(Ω)3. This of course yields the desired embedding. In the next lemma, we make more precise the situations
where we can prove that this hypothesis is satisfied.

Lemma 2.5. Assume that Ω is a polyhedron and denote by V a neighbourhood of the re-entrant corners of Ω
inside Γm. Then, the space of restrictions of functions of X(Ω) to Ω \ V is compactly embedded in L4(Ω\V)3.

Proof. Since this property is local, it suffices to check it for the different parts of Ω\V. For each such part Ωk,
we implicitly use a regular function αk which is equal to 1 on Ωk and vanishes outside a (small enough)
neighbourhood of Ωk in Ω\V.

(1) Let Ω1 be a convex subset of Ω\V. Then, the previous arguments yield the desired property with Ω \ V
replaced by Ω1.

(2) Let Ω2 be a subset of Ω\V such that ∂Ω2 ∩ ∂Ω does not intersect Γm. Since the space of functions in
H(div ,Ω2) ∩H(curl ,Ω2) with zero traces on ∂Ω2 coincides with H1

0 (Ω2)3, we have the desired result
on Ω2.

(3) Let Ω3 be a neighbourhood in Ω\V of part of a re-entrant edge E in Γm. It follows from [10], equa-
tion (2.1) that each function in H0(div ,Ω) ∩ H(curl ,Ω) can be written as the sum of a function in
H1(Ω3)3 ∩H0(div ,Ω3) and of the gradient of a function Φ3. Moreover, this function Φ3 can be written
as (see [10], Sect. 3.E)

Φ3(r, θ, z) = S(r, z) r
π
ω ϕ(θ),

where
• z stands for the tangential coordinate on E;
• r and θ denote the polar coordinates in the dihedron with axis E such that its two faces inter-

sect ∂Ω3;
• ω is the angle of this dihedron;
• S is a smooth cut-off function and ϕ a smooth function on [0, ω] which satisfies the appropriate

boundary conditions.
Thus, it is readily checked that, since π < ω < 2π, the function grad Φ3 belongs to a compact subset
of L4(Ω3)3, whence the desired embedding follows.

(4) Let Ω4 be a neighbourhood of the re-entrant corners or edges in Γ∩Γm, and let Γ4 denote the intersection
Γ ∩ ∂Ω4. Using once more [10], equation (2.1), we observe that the restriction to Ω4 of any function v
in H0(div ,Ω) ∩H(curl ,Ω) can be written as

v|Ω4 = v4 + grad Φ4,
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where v4 belongs to H1(Ω4)3 ∩ H0(div ,Ω4) and Φ4 is the product of a smooth cut-off function by a
harmonic function ϕ4. If, moreover, v belongs to X(Ω), the following boundary conditions hold on Γ4

v4 + grad Φ4 = 0 on Γ4.

By using the harmonic lifting of v4 in H1(Ω4)3, we can easily assume that grad Φ4 vanishes on Γ4.
Thus, the function ϕ4 satisfies, up to a constant,

−Δϕ4 = 0 in Ω4, ϕ4 = ∂nϕ4 = 0 on Γ4.

Thus, according to Holmgren’s principle (see [21], Sect. 21, for instance), it is zero, and the function v4

belongs to H1(Ω4)3.
This concludes the proof. �

It follows from the previous lemma that Assumption 2.4 holds for any polyhedron without re-entrant corners
inside Γm. This assumption seems necessary to prove the continuity of the form c(·, ·, ·).

Lemma 2.6. If Assumption 2.4 is satisfied, the form c(·, ·, ·) is continuous on X(Ω) × X(Ω) × X(Ω).

Proof. Owing to Assumption 2.4, this a direct consequence of Hölder’s inequality

|c(w,u,v)| ≤ ‖curlw‖L2(Ω)3‖u‖L4(Ω)3‖v‖L4(Ω)3 . �

Moreover, the following antisymmetry property is readily checked:

∀w ∈ X(Ω), ∀v ∈ X(Ω), c(w,v,v) = 0. (2.9)

Thus, we are in a position to prove the existence of a solution to problem (2.3). We proceed in three steps and
begin with an a priori estimate of the solution.

Proposition 2.7. If Assumption 2.4 is satisfied, for any data f in X(Ω)′, any solution (u, p) of problem (2.3)
satisfies

‖u‖X(Ω) ≤ 1
ν
‖f‖X(Ω)′ ;

‖p‖L2(Ω) ≤ c‖f‖X(Ω)′
(
1 + ‖f‖X(Ω)′

)
. (2.10)

Proof. When taking v equal to u in problem (2.3) and using (2.5) and property (2.9), we obtain the estimate for u
in (2.10) with the desired constant. The estimate for p is then easily derived from the inf-sup condition (2.6). �

Proposition 2.8. If Assumption 2.4 is satisfied, there exists a real number ν0 > 0 such that, for ν ≥ ν0 and
for any data f in X(Ω)′, problem (2.3) has a unique solution (u, p).

Proof. With any function u in X(Ω), we associate the function

Φ(u) = S
(
f − (curl u) × u

)
.

(1) Taking v equal to Φ(u) in the equation defining Φ(u), we derive from inequality (2.5) and Assumption 2.4
that

‖Φ(u)‖X(Ω) ≤
1
ν
‖f‖X(Ω)′ +

c20
ν
‖u‖2

X(Ω),
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where c0 stands for the norm of the embedding of X(Ω) into L4(Ω)3. We now set:

ν0 > 2c0
√
‖f‖X(Ω)′ ,

R =
ν

2c20

(
1 −

√
1 − 4c20

ν2
‖f‖X(Ω)′

)
.

It thus follows from the previous lines that, for ν ≥ ν0, Φ maps the ball with radius R into itself.
(2) Let u1 and u2 be two functions in the ball with radius R. The same arguments previously used yield

that

‖Φ(u1) − Φ(u2)‖X(Ω) ≤
1
ν

sup
v∈X(Ω)

c(u1 − u2,u1,v) + c(u2,u1 − u2,v)
‖v‖X(Ω)

≤ 2c20R
ν

‖u1 − u2‖X(Ω).

When ν ≥ ν0 the choice of R implies that the quantity 2c2
0R
ν is less than 1. Hence, the mapping Φ is a

contraction of the ball with radius R.
(3) Combining the first two parts of the proof with Banach’s fixed point theorem yields the existence of

a function u in X(Ω) such that Φ(u) = u. Denoting by p the function associated with this Φ(u) in
problem (2.7), we observe that the pair (u, p) is a solution of problem (2.3).

(4) Let (u1, p1) and (u2, p2) be two solutions of problem (2.3). The same arguments as in part (2) of the
proof combined with the estimates for u1 and u2 established in Proposition 2.7 lead to

‖u1 − u2‖X(Ω) ≤
2c20
ν2

‖f‖X(Ω)′‖u1 − u2‖X(Ω).

When ν ≥ ν0, this inequality implies that u1 is equal to u2. Next, by applying the inf-sup condition (2.6),
it is readily checked that p1 and p2 coincide. This gives the uniqueness of the solution. �

Proposition 2.9. If Assumption 2.4 is satisfied, for all ν > 0 and for any data f in X(Ω)′, problem (2.3) has
at least a solution (u, p).

Proof. Since the result for ν ≥ ν0 is proven in Proposition 2.8, we assume that 0 < ν < ν0. Denoting by S∗
the Stokes operator S for the viscosity ν equal to 1 and setting μ = 1

ν , we observe that problem (2.3) can
equivalently be written (up to a modification of the pressure) as

u + μS∗
(
(curl u) × u − f

)
. (2.11)

We now intend to prove the existence of a solution for this problem, for μ in the interval [μ0, μ1] with μ0 = 1
ν0

,
μ1 = 1

ν by using the Leray–Schauder theory (see [16], Chapter 2, Sect. 5, for instance).
(1) Let B denote the open ball of X(Ω) with radius 2μ1‖f‖X(Ω)′ . It follows from Proposition 2.7 that, for

any μ ∈ [μ0, μ1], equation (2.11) has no solution u such that ‖u‖X(Ω) = 2μ1‖f‖X(Ω)′ .
(2) Let Ψ be the mapping (μ,v) �→ v+μS∗

(
(curl v)×v− f

)
. The mapping Ψ is continuously differentiable

on [μ0, μ1] × X(Ω), and it follows from Assumption 2.4, more precisely from the compactness of the
embedding of X(Ω) into L4(Ω)3, that the mapping Id − Ψ maps [μ0, μ1] × B into a compact subset
of X(Ω).

(3) Proposition 2.8 yields that, for μ = μ0, equation (2.11) has a unique solution u. Then, this solution is
nonsingular in the sense that the Fréchet derivative of Ψ with respect to v at (μ0,u) is an isomorphism
of X(Ω). Thus the topological degree of Ψ(μ0, ·) with respect to B is not zero (we skip the technical
argument which is needed to check this result and which relies on the fact that the compact operator
D(Id − Ψ) is the limit of operators with finite-dimensional range).
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(4) Since the topological degree is invariant under homotopy, the degree of Ψ(μ1, ·) with respect to B is not
zero. This yields the existence of a solution u of equation (2.11) for μ = μ1.

(5) Using the inf-sup condition (2.6), we easily derive the existence of a p in L2
0(Ω) such that (u, p) is a

solution of problem (2.3). �

Remark 2.10. By combining Lemma 2.3 with a boot-strap argument, we easily derive that any solution (u, p)
of problem (2.3) satisfies the same regularity properties as the solution of problem (2.7). For instance, for any
data f in L2(Ω)3, the velocity u belongs to H1(Ω)3 when Ω is convex.

To conclude, we note that all results of this section hold for both ε = 0 and ε = 1. Working with ε = 0
seems simpler. But, as we will see in the next section, the formulation with ε = 1 is advantageous for the
discretization. Therefore we work from now on with ε = 1. For simplicity, we write a(·, ·) instead of a1(·, ·) in
what follows.

3. The discrete problem

From now on, we assume that Ω is a polyhedron. We introduce a regular family of triangulations (Th)h by
tetrahedra, in the usual sense that:

• For each h, Ω is the union of all elements of Th;
• The intersection of two different elements of Th, if not empty, is a vertex or a whole edge or a whole

face of both of them;
• The ratio of the diameter hK of any element K of Th to the diameter of its inscribed sphere is smaller

than a constant σ independent of h.

Further we make the non restrictive assumption that Γm is the union of whole faces of elements of Th.
As usual, h denotes the maximum of the diameters hK , K ∈ Th. For each K in Th and each nonnegative

integer k, we denote by Pk(K) the spaces of restrictions to K of polynomials with three variables and total
degree at most k.

In what follows, c, c′ . . . stand for generic constants which may vary from line to line but are always inde-
pendent of h. From now on, we call finite element space associated with Th a space of functions such that their
restrictions to any element K of Th belong to a space of polynomials of fixed degree.

For each h, we associate with Th two finite element spaces Xh and Mh which are contained in X(Ω) and
L2

0(Ω), respectively, and such that the following inf-sup condition holds for a constant β∗ > 0:

∀qh ∈ Mh, sup
vh∈Xh

b(vh, qh)
‖vh‖X(Ω)

≥ β∗‖qh‖L2(Ω). (3.1)

Indeed, there exist many examples of finite element spaces satisfying these conditions (the inf-sup condition
being usually proved with Xh replaced by Xh ∩H1

0 (Ω)3), see [14], Chapter II. We give two examples of them,
the second one dealing with continuous discrete pressures.

Example 3.1. Spaces associated with the Bernardi–Raugel elements (see e.g. [14], Sect. II.2.1)

Xh =
{
vh ∈ X(Ω); ∀K ∈ Th, vh|K ∈ P(K)

}
,

where P(K) stands for the space spanned by the restrictions to K of functions in P1(K)3 and the normal
bubble functions ψe ne (for each face e of K, ψe denotes the bubble function on e equal to the product of the
barycentric coordinates associated with the vertices of e and ne stands for the unit outward normal vector on e),

Mh =
{
qh ∈ L2

0(Ω); ∀K ∈ Th, qh|K ∈ P0(K)
}
·
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Example 3.2. Spaces associated with the Taylor–Hood elements (see e.g. [14], Sect. II.4.2)

Xh =
{
vh ∈ X(Ω); ∀K ∈ Th, vh|K ∈ P2(K)3

}
,

Mh =
{
qh ∈ L2

0(Ω) ∩H1(Ω); ∀K ∈ Th, qh|K ∈ P1(K)
}
.

The discrete problem is obtained from problem (2.3) (with ε = 1) by the Galerkin method. It reads:
Find (uh, ph) in Xh × Mh such that

∀vh ∈ Xh, a(uh,vh) + c(uh,uh,vh) + b(vh, ph) = 〈f ,vh〉,
∀qh ∈ Mh, b(uh, qh) = 0. (3.2)

It follows from the choice of Xh and Mh that the discretization is fully conforming. As a consequence, the
forms a(·, ·), b(·, ·) and – if Assumption 2.4 holds – c(·, ·, ·) are continuous on Xh×Xh, Xh×Mh and Xh×Xh×Xh,
respectively, with norms bounded independently of h. Moreover, an immediate consequence of the ellipticity
property (2.4) is its discrete analogue

∀vh ∈ Xh, a(vh,vh) ≥ ν‖vh‖2
X(Ω). (3.3)

Remark 3.3. As usual, we denote by Vh the kernel

Vh =
{
vh ∈ Xh; ∀qh ∈ Mh, b(vh, qh) = 0

}
·

We have no examples of finite elements such that the space Vh consists of exactly divergence-free functions,
i.e., it coincides with Xh ∩ V . Indeed, this seems in contradiction with the inf-sup condition (3.1) (see [14],
Chapter II, or [6], Chapter VI, for more comments). For this reason, the discrete analogue of the ellipticity
property (2.5) does not hold, and we are led to work with ε = 1.

The antisymmetry property (2.9) also holds for all functions wh and vh in Xh. So using the same arguments
as in the proof of Proposition 2.7 combined with inequalities (3.1) and (3.3), we obtain an a priori estimate for
the solutions of problem (3.2).

Proposition 3.4. For any data f in X(Ω)′, any solution (uh, ph) of problem (3.2) satisfies

‖uh‖X(Ω) ≤
1
ν
‖f‖X(Ω)′ ,

‖ph‖L2(Ω) ≤ c‖f‖X(Ω)′
(
1 + ‖f‖X(Ω)′

)
.

4. Existence of a solution and A PRIORI error estimates

Our approach for proving the existence of a solution to problem (3.2) relies on the theory of Brezzi et al. [7].
So we first investigate the discretization of the linear problem (2.7).

For this, we need a further assumption concerning the approximation properties of the spaces Xh and Mh.

Assumption 4.1. There exists an integer k ≥ 1 such that the following approximation properties hold for any
function v in X(Ω) ∩Hs(Ω)3 and q in L2

0(Ω) ∩Hs−1(Ω), 1 ≤ s ≤ k + 1,

inf
vh∈Xh

‖v − vh‖X(Ω) ≤ c hs−1 ‖v‖Hs(Ω)3 ,

inf
q∈Mh

‖q − qh‖L2(Ω) ≤ c hs−1 ‖q‖Hs−1(Ω). (4.1)

It can be observed that this assumption holds with k = 1 for Example 3.1 and with k = 2 for Example 3.2.
For any data f in X(Ω)′, we consider the discrete Stokes problem:
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Find (uh, ph) in Xh × Mh such that

∀vh ∈ Xh, a(uh,vh) + b(vh, ph) = 〈f ,vh〉,
∀qh ∈ Mh, b(uh, qh) = 0. (4.2)

It follows from inequalities (3.1) and (3.3) that this problem has a unique solution.
We denote by Sh the operator which associates with any f in X(Ω)′ the part uh of the solution (uh, ph) of

problem (4.2). The first property of Sh is easily derived from inequality (3.3).

Lemma 4.2. The following stability property holds for any f in X(Ω)′:

‖Shf‖X(Ω) ≤
1
ν
‖f‖X(Ω)′ .

We also need an a priori error estimate between the solutions u of problem (2.7) and uh of problem (4.2).

Lemma 4.3. If Assumption 4.1 holds, for any f in X(Ω)′ ∩ Hs−2(Ω)3 such that Sf belongs to Hs(Ω)3 with
1 ≤ s ≤ k + 1, the error estimate

‖(S − Sh)f‖X(Ω) ≤ chs−1
(
‖Sf‖Hs(Ω)3 + ‖f‖Hs−2(Ω)3

)
is fulfilled.

Proof. Let p be the pressure associated with u = Sf in problem (2.7). The functions u and uh = Shf satisfy

∀vh ∈ Vh, ∀qh ∈ Mh, a(u,vh) = 〈f ,vh〉 − b(vh, p− qh),

∀vh ∈ Vh, a(uh,vh) = 〈f ,vh〉·

It thus follows from the ellipticity property (3.3) that

‖u− uh‖X(Ω) ≤ c
(

inf
wh∈Vh

‖u− wh‖X(Ω) + inf
q∈Mh

‖p− qh‖L2(Ω)

)
.

Next, combining the inf-sup condition (3.1) with [14], Chapter II, equation (1.16) gives

‖u− uh‖X(Ω) ≤ c
(

inf
wh∈Xh

‖u− wh‖X(Ω) + inf
q∈Mh

‖p− qh‖L2(Ω)

)
.

Finally, it follows from the regularity assumptions on f and u that p belongs to Hs−1(Ω) and satisfies

‖p‖Hs−1(Ω) ≤ c
(
‖Sf‖Hs(Ω)3 + ‖f‖Hs−2(Ω)3

)
.

Thus, the desired estimate follows from the approximation properties stated in Assumption 4.1. �
We now set

G(u) = (curl u) × u − f ,
and observe that problem (2.3) can equivalently be written as

u + SG(u) = 0. (4.3)

Similarly, problem (3.2) can equivalently be written as

uh + ShG(uh) = 0. (4.4)

This new formulation is needed to apply the Brezzi–Rappaz–Raviart theorem. We now consider a solution of
problem (2.3). Denoting by D the Fréchet derivative assume that:
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Assumption 4.4. The solution (u, p) of problem (2.3) is such that

(1) it belongs to Hs(Ω)3 ×Hs−1(Ω) and curl u belongs to Hs− 3
4 (Ω)3 for some s > 3

2 ;
(2) the operator Id + SDG(u) is an isomorphism of X(Ω).

Part (1) of this assumption states a regularity result for the solution (u, p) of our problem. Even if the
regularity results for the Stokes problem with mixed boundary conditions in a three-dimensional domain are
presently unknown, this property seems likely for a convex polyhedron (see [18] for the first results in dimen-
sion 2) and can easily be extended to the nonlinear case. On the other hand, part (2) means that the solution u
is locally unique, which is much weaker than the global uniqueness, see Proposition 2.8.

In view of the next lemma, we also make a further assumption. It is likely satisfied when Ω is convex;
however, we think that it is weaker.

Assumption 4.5. The operator S maps L2(Ω)3 into Ht(Ω)3 for some t > 1.

Lemma 4.6. If Assumptions 2.4, 4.1, 4.4 and 4.5 are satisfied, there exists a real number h0 > 0 such that,
for all h ≤ h0, the operator Id + ShDG(u) is an isomorphism of X(Ω). Moreover, the norm of its inverse is
bounded independently of h.

Proof. We take advantage of the expansion

Id + ShDG(u) = Id + SDG(u) −
(
S − Sh

)
DG(u).

Therefore, owing to Part (2) of Assumption 4.4, it suffices to check that
(
S − Sh

)
DG(u) tends to zero in the

norm of endomorphisms of X(Ω). To prove this, we observe that for any z in X(Ω),

DG(u) · z = (curl u) × z + (curl z) × u.

Using Assumptions 2.4 and 4.4 and noting that the embeddings of Hs(Ω) and Hs− 3
4 (Ω) into L∞(Ω) and L4(Ω),

respectively, are compact, we conclude that the mapping z �→ DG(u) · z maps the unit sphere of X(Ω) into a
compact subset of L2(Ω)3. Owing to Assumption 4.5, the operator S maps this compact set into a compact
subset of Ht(Ω)3. The desired convergence property then is a direct consequence of Lemma 4.3. �

From now on we denote by L(X(Ω)) the space of endomorphisms of X(Ω).

Lemma 4.7. If Assumption 2.4 is satisfied, there exists a real number L > 0 such that the following Lipschitz
property holds

∀w ∈ X(Ω), ‖Sh

(
DG(u) −DG(w)

)
‖L(X(Ω)) ≤ L‖u− w‖X(Ω).

Proof. We now write

DG(u) · z −DG(w) · z =
(
curl (u − w)

)
× z + (curl z) × (u − w).

Owing to Assumption 2.4, this gives

‖DG(u) · z−DG(w) · z‖X(Ω)′ ≤ c20‖u− w‖X(Ω)‖z‖X(Ω).

Combining this with Lemma 4.2 yields the desired property. �

Lemma 4.8. If Assumptions 4.1 and 4.4 are satisfied, the following estimate holds

‖u + ShG(u)‖X(Ω) ≤ chs∗−1
(
‖u‖Hs(Ω)3 + ‖f‖Hs−2(Ω)3

)
, (4.5)

with s∗ = min{s, k + 1}.
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Proof. We have
‖u + ShG(u)‖X(Ω) = ‖(S − Sh)G(u)‖X(Ω).

Estimate (4.5) then is a direct consequence of equation (4.3), Assumption 4.4 and Lemma 4.3. �
We now state and prove the main result of this section.

Proposition 4.9. Suppose that Assumptions 2.4, 4.1 and 4.5 hold and that the solution (u, p) satisfies As-
sumption 4.4. Then, there exists a neighbourhood U of u in X(Ω) such that problem (3.2) has a unique solution
(uh, ph) with uh in U . Moreover, this solution satisfies the following a priori error estimate

‖u− uh‖X(Ω) + ‖p− ph‖L2(Ω) ≤ chs∗−1
(
‖u‖Hs(Ω)3 + ‖p‖Hs−1(Ω)

)
, (4.6)

with s∗ = min{s, k + 1}.
Proof. By combining the Brezzi–Rappaz–Raviart theorem [7] (see also [14], Chapter IV, Thm. 3.1) with Lem-
mas 4.6 to 4.8, we derive the existence of a neighbourhood U of u such that problem (4.4) has a unique
solution uh in U , together with the estimate for ‖u − uh‖X(Ω). On the other hand, it follows from the inf-sup
condition (3.1) that there exists a unique ph in Mh such that

∀vh ∈ Xh, b(vh, ph) = 〈f ,vh〉 − a(uh,vh) − c(uh,uh,vh).

Thus, the pair (uh, ph) is a solution of problem (3.2). Moreover, by subtracting problem (3.2) from problem (2.3)
and noting that the norms of both u and uh are bounded independently of h (see Props. 2.7 and 3.4), we obtain

‖p− ph‖L2(Ω) ≤ c
(
‖u− uh‖X(Ω) + inf

qh∈Mh

‖p− qh‖L2(Ω)

)
.

Thus, the estimate for ‖p−ph‖L2(Ω) follows from the estimate for ‖u−uh‖X(Ω) and the approximation properties
of the space Mh. �

Estimate (4.6) is fully optimal, and the regularity which is required for (u, p) seems reasonable. However,
Assumptions 2.4 and 4.5 apparently add limitations to the geometry of the domain.

5. A POSTERIORI error estimates

We first recall some standard notation: for each K in Th, EK denotes the set of all faces of K which are not
contained in ∂Ω and Em

K the set of faces ofK which are contained in Γm. Next, we introduce an approximation fh
of the data f which is constant on each element of Th.

We are thus in a position to define the error indicators. However, as in Section 2, we propose two families
associated with the values 0 and 1 of the parameter ε. For ε equal to 0 and 1 and for each K in Th, the
indicator ηε

K is given by

ηε
K = hK‖fh − ν curl (curl uh) + εν grad (div uh) − (curl uh) × uh − grad ph‖L2(K)3

+
∑

e∈EK

h
1
2
e ‖[ν(curl uh) × n + εν(div uh)n− phn]e‖L2(e)3

+
∑

e∈Em
K

h
1
2
e ‖ν(curl uh) × n‖L2(e)3 + ‖div uh‖L2(K), (5.1)

where
• for each e in EK or Em

K , he stands for the diameter of e;
• for each e in EK , [·]e denotes the jump across e in the direction of n which is a unit vector orthogonal

to e.
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In view of the discrete problem (3.2), it seems more natural to use the indicators η1
K . However, triangle

inequalities combined with the standard inverse inequality (see [5], Sect. XI.2, for instance)

hK‖ν grad (div uh)‖L2(K)3 +
∑

e∈EK

h
1
2
e ‖[ν(div uh)n]e‖L2(e)3 ≤ c ‖divuh‖L2(K) (5.2)

yield that the indicators η0
K and η1

K are fully equivalent.
In order to prove an upper bound of the error as a function of the indicators, we follow the approach of [19]

and [22], Chapter 2. We first establish the residual equations associated with any solutions (u, p) of problem (2.3)
and (uh, ph) of problem (3.2). To this end we observe that, for any v in X(Ω) and vh in Xh,

a(u,v) + c(u,u,v) + b(v, p) − a(uh,v) − c(uh,uh,v) − b(v, ph)

= 〈f ,v − vh〉 − a(uh,v − vh) − c(uh,uh,v − vh) − b(v − vh, ph).

By integrating by parts the right-hand side on each K in Th, we obtain

a(u,v) + c(u,u,v) + b(v, p) − a(uh,v) − c(uh,uh,v) − b(v, ph) = 〈f − fh,v − vh〉 + 〈R,v − vh〉, (5.3)

where the residual R is given by

〈R,v〉 =
∑

K∈Th

(∫
K

(
fh − ν curl (curl uh) + ν grad (div uh)

− (curl uh) × uh − grad ph

)
(x) · v(x) dx

−
∑

e∈EK

∫
e

(
ν(curl uh) × n + ν(div uh)n − phn

)
(τ ) · v(τ ) dτ

−
∑

e∈Em
K

∫
e

(
ν(curl uh) × n

)
(τ ) · v(τ ) dτ

)
.

On the other hand, it is readily checked that, for all q in L2(Ω),

b(u− uh, q) =
∫

Ω

(div uh)(x)q(x) dx. (5.4)

In what follows we consider solutions of problem (2.3) which satisfy a hypothesis weaker than Assumption 4.4:

Assumption 5.1. The solution (u, p) of problem (2.3) is such that the operator Id+SDG(u) is an isomorphism
of X(Ω).

Notation 5.2. Let V be a neighbourhood of the re-entrant corners and edges in Γm. For each re-entrant
edge Ei with angle ωi, π < ωi < 2π, we consider a neighbourhood Vi of a part of Ei in V which does not
contain any re-entrant corner and does not intersect any other Vj. Next, with each K in Th, we associate the
quantity γK :

• larger than 1 − π
ωi

if K is contained in Vi;
• equal to 1

2 if K intersects V but is not contained in any Vi;
• equal to 0 otherwise.
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We are now in a position to prove the upper bound for the error. It requires a further assumption on the
space Xh that is satisfied by all examples of spaces that we have in mind, and in particular by the spaces Xh

introduced in Examples 3.1 and 3.2.

Proposition 5.3. Suppose that the data f belong to L2(Ω)3, that Xh contains the space

Xh =
{
vh ∈ X(Ω); ∀K ∈ Th, vh|K ∈ P1(K)3

}
,

and that the solution (u, p) satisfies Assumption 5.1. Then, there exists a neighbourhood U∗ of u in X(Ω) such
that any solution (uh, ph) of problem (3.2) with uh in U∗ satisfies the following a posteriori error estimate

‖u− uh‖X(Ω) + ‖p− ph‖L2(Ω) ≤ c
( ∑

K∈Th

h−2γK

K

(
(ηε

K)2 + h2
K‖f − fh‖2

L2(K)3

)) 1
2
. (5.5)

Proof. We only establish estimate (5.5) for ε = 1, since it implies the estimate for ε = 0 owing to (5.2). It is
performed in two steps.

(1) The same arguments as in the proof of Lemma 4.7 combined with inequality (2.8) yield that the mapping
w �→ Id + SDG(w) is Lipschitz-continuous from X(Ω) into L(X(Ω)). Thus, owing to Assumption 5.1, it follows
from [19] (see also [22], Prop. 2.1) that, for any uh in an appropriate neighbourhood U∗ of u,

‖u− uh‖X(Ω) ≤ c‖uh + SG(uh)‖X(Ω).

From equations (4.3), (5.3) and (5.4), we obtain

‖u− uh‖X(Ω) ≤ c

(
sup

v∈X(Ω)

inf
vh∈Xh

〈f − fh,v − vh〉 + 〈R,v − vh〉
‖v‖X(Ω)

+ sup
q∈L2

0(Ω)

∫
Ω(div uh)(x)q(x) dx

‖q‖L2(Ω)

)
· (5.6)

The next steps rely on the existence of a suitable Clément regularization operator mapping L2(Ω)3 into Xh.
For the standard no-slip boundary conditions this operator is constructed in [5], Theorem IX.3.11 and Corol-
lary IX.3.12. By straightforward but technical arguments this construction can easily be modified to take the
present boundary conditions into account. This operator has the following local approximation properties: when
1
2 < t ≤ 2, for each K in Th and each face e of K,

‖v − Chv‖L2(K)3 ≤ cht
K‖v‖Ht(ΔK)3 ,

‖v − Chv‖L2(e)3 ≤ ch
t− 1

2
e ‖v‖Ht(Δe)3 , (5.7)

where ΔK and Δe stand for the unions of all elements K of Th that intersect K and e, respectively. On the
other hand, by combining the arguments in the proof of Lemma 2.5 with [3], Remark 2.16, we obtain that, for
the V introduced in Notation 5.2, the spaces of restrictions of functions of X(Ω) to Ω\V and to V are embedded
in H1(Ω\V)3 and Ht(V)3, t > 1

2 (this follows from [10], equation (2.1) since Ω is a polyhedron). Moreover,
it also follows from [10] that the space of restrictions of functions of X(Ω) to Vi for the Vi also introduced in
Notation 5.2 are embedded in Hs(Vi)3 for all s < π

ωi
. Hence, taking vh equal to Chv in inequality (5.6) and

using estimates (5.7) combined with these embeddings, we obtain the desired estimate for ‖u− uh‖X(Ω).

(2) By computing b(v, p−ph) from equation (5.3), using the inf-sup condition (2.6) and the fact that the norms
of both u and uh are bounded independently of h, we derive from this estimate the bound of ‖p − ph‖L2(Ω)

stated in (5.5). �
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Proving the upper bounds for the indicators is standard. Therefore, we only give an abridged proof of the
next statement.

Proposition 5.4. Suppose that the data f belong to L2(Ω)3. Each indicator ηε
K , K ∈ Th, as defined in

equation (5.1) satisfies for any solution u of problem (2.3)

ηε
K ≤ c

(
‖u− uh‖X(ωK) + ‖p− ph‖L2(ωK) +

∑
κ∈Th
κ⊂ωK

hκ‖f − fh‖L2(κ)3
)
, (5.8)

where ωK stands for the union of elements of Th that share a least a face with K.

Proof. For the same reasons as above, we only give the proof for ε = 1. In formula (5.3), we take vh equal to
zero, and we choose successively v equal to

(1) vK , with

vK =

⎧⎪⎨
⎪⎩

(fh − ν curl (curl uh) + ν grad (div uh)
−(curl uh) × uh − grad ph)ψK on K,

0 on Ω\K,
where ψK is the bubble function on K, equal to the product of the barycentric coordinates associated
with the vertices of K;

(2) ve for each e in EK , with

ve =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Le,K([ν(curl uh) × n
+ ν(div uh)n− phn]e)ψe on K,

Le,K′([ν(curl uh) × n
+ ν(div uh)n− phn]e)ψe on K ′,

0 on Ω\(K ∪K ′),

where ψe is the bubble function on e, K ′ denotes the other element of Th adjacent to e and Le,κ is a
lifting operator from e into κ constructed by affine transformation from a fixed lifting operator on the
reference element;

(3) vm
e for each e in Em

K , with

vm
e =

{
Le,K(ν(curl uh) × n)ψe on K,
0 on Ω \K,

with the same notation as above.
Thus, standard inverse inequalities [22], Lemma 3.3 (see also [5], Sect. XI.2) lead to the desired bound for the
first three terms of η1

K . Similarly, in formula (5.4), we take q equal to qK , with

qK =

{
div uh on K,
0 on Ω\K.

This yields the bound for the fourth term of η1
K . �

Estimate (5.8) is fully optimal and the bound for each ηε
K is local, in the sense that it only involves the error

in a “small” neighbourhood of K. In contrast, estimate (5.5) is optimal only when Ω has neither re-entrant
corners nor re-entrant edges in Γm. However, the lack of optimality for a general domain only concerns the
elements that intersect a neighbourhood of these re-entrant corners or edges.
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Figure 1. The adapted mesh.

Figure 2. The isovalues of the two components of the velocity.

Figure 3. The isovalues of the vorticity.

6. A numerical experiment

The numerical simulation that we now present has been performed on the code FreeFem++ due to Hecht
and Pironneau, see [15]. We only consider a model domain, the square Ω = ]−1, 1[2, and take Γm equal to the
upper edge of Ω, namely Γm = ]−1, 1[ ×{1}.

It must be noted that, in dimension 2, curl u is a scalar function, so that the condition (curl u) × n = 0
on Γm must be replaced by curl u = 0. Up to these modifications, the analysis of the problem and of its
discretization is the same as in dimension 3. We also replace the data f by a boundary data g: more precisely
f is equal to zero and the third line in system (1.1) is replaced by

u = g on Γ. (6.1)
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The Navier–Stokes system is solved via the Newton–Raphson method, the initial value of the velocity being
computed as the solution of the Stokes problem.

We work with the parameter ε equal to 1 and with Taylor–Hood finite elements as described in Example 3.2.
We take the viscosity ν equal to 10−2. The datum g has its second component equal to zero on Γ, while its
first component gx is given by

gx(±1, y) =

{
0, −1 ≤ y ≤ 0,
y2, 0 ≤ y ≤ 1,

gx(x,−1) = 0, −1 ≤ x ≤ 1.

(6.2)

Figure 1 presents the final adapted mesh. It can be noted that curl uh is discontinuous at the vertices (±1, 1),
whence the refinement of the final mesh near these vertices.

Figure 2 presents the curves of isovalues of the two components of the velocity. Figure 3 presents the curve
of isovalues of curl uh. The boundary conditions that are enforced on these unknowns are perfectly taken into
account in the computation.
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