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IMPROVED SUCCESSIVE CONSTRAINT METHOD BASED A POSTERIORI

ERROR ESTIMATE FOR REDUCED BASIS APPROXIMATION
OF 2D MAXWELL’S PROBLEM

Yanlai Chen1, Jan S. Hesthaven1, Yvon Maday1, 2 and Jerónimo Rodŕıguez3

Abstract. In a posteriori error analysis of reduced basis approximations to affinely parametrized
partial differential equations, the construction of lower bounds for the coercivity and inf-sup stability
constants is essential. In [Huynh et al., C. R. Acad. Sci. Paris Ser. I Math. 345 (2007) 473–478],
the authors presented an efficient method, compatible with an off-line/on-line strategy, where the on-
line computation is reduced to minimizing a linear functional under a few linear constraints. These
constraints depend on nested sets of parameters obtained iteratively using a greedy algorithm. We
improve here this method so that it becomes more efficient and robust due to two related properties:
(i) the lower bound is obtained by a monotonic process with respect to the size of the nested sets;
(ii) less eigen-problems need to be solved. This improved evaluation of the inf-sup constant is then used
to consider a reduced basis approximation of a parameter dependent electromagnetic cavity problem
both for the greedy construction of the elements of the basis and the subsequent validation of the
reduced basis approximation. The problem we consider has resonance features for some choices of the
parameters that are well captured by the methodology.
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1. Introduction

In the context of optimization, design or optimal control in many fields including, but not limited to, heat
and mass transfer, solid mechanics, acoustics, fluid dynamics and electromagnetics, the numerical simulation of
parametric problems written under the weak form: find u(ν) in an Hilbert space X such that

a(u(ν), v; ν) = f(v; ν), ∀v ∈ X, (1.1)

has to be done for many input parameter ν – a P -tuple with moderate P – chosen in a given parameter set D

Keywords and phrases. Reduced basis method, successive constraint method, inf-sup constant, a posteriori error estimate,
Maxwell’s equation, discontinuous Galerkin method.

1 Division of Applied Mathematics, Brown University, 182 George St, Providence, RI 02912, USA. Yanlai Chen@brown.edu;

Jan.Hesthaven@Brown.edu
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(a closed and bounded subset of R
P ). In the previous problem a and f are bilinear and linear forms, respectively,

associated to the PDE. The natural hypotheses over a(w, v; ν) that make problem (1.1) well-posed are
– uniform continuity, that is, there exists a uniformly bounded γ(ν) such that

|a(w, v; ν)| ≤ γ(ν)‖w‖X‖v‖X , ∀w, v ∈ X, ∀ν ∈ D;

– uniform inf-sup condition

0 < β0 < β(ν) ≡ inf
ω∈X

sup
v∈X

|a(ω, v; ν)|
‖ω‖X‖v‖X

= inf
ω∈X

‖a(ω, ·; ν)‖X′

‖ω‖X
, ∀ν ∈ D.

It follows directly from these assumptions that (1.1) admits a unique solution. A finite element (FE) discretiza-
tion of problem (1.1) is a standard way to approximate its solution uN (ν) � u(ν): Given ν ∈ D ⊂ R

P , find
uN (ν) ∈ XN satisfying

aN (uN (ν), v; ν) = fN (v; ν)4, ∀v ∈ XN .

Here XN is the finite element space approximating X with dim(XN ) ≡ N . We assume uN provides a reference
solution (called truth approximation throughout the paper) that is accurate enough for all ν ∈ D. The well-
posedness is a consequence of the discrete inf-sup condition,

0 < βN
0 < βN (ν) ≡ inf

ω∈XN
sup

v∈XN

|aN (ω, v; ν)|
‖ω‖XN ‖v‖XN

, ∀ν ∈ D.

It is most of the times infeasible to directly solve the finite element problem too many times because of
the high marginal cost resulting from the large dimension of the discrete systems to be solved (equal to the
dimension N of the finite element space).

The reduced basis method (RBM) [2,6,12,14,15,17] has emerged as a very efficient and accurate method
in this scenario. The fundamental observation that is recognized and exploited by the RBM is the following.
Instead of being an arbitrary element of XN , uN (ν) typically resides on Mν = {uN (ν), ν ∈ D} that can be
well approximated by a finite-dimensional space whenever the set Mν has a small Kolmogorov width in X . The
idea is then to propose an approximation of Mν by

WN = span{uN (ν1), . . . , uN (νN )}

where, uN (ν1), . . . , uN (νN ) are N (	 N ) truth approximations corresponding to the parameters {ν1, . . . , νN}
selected according to a judicious sampling strategy [10]. For a given ν, we now seek the Galerkin projec-
tion onto this N -dimensional approximation space WN , as the solution uN (ν). The on-line computation is
N -independent, thanks to the assumption that the (bi)linear forms are affine5 and the fact that they can be
approximated by affine (bi)linear forms when they are nonaffine [1,5]. Hence, the on-line part is very efficient.

In order to be able to “optimally” find the N parameters and to assure the fidelity of the reduced basis
solution uN (ν) to approximate the truth solution uN (ν), we need the inf-sup number, βN (ν), of the bilinear
form [9,11,16–18]: indeed, one can prove that when aN is symmetric, we have the following upper and lower
bounds for the error of the reduced basis solution, ‖uN (ν) − uN(ν)‖XN ,

‖r(·, ν)‖(XN )′/γ(ν) ≤ ‖uN (ν) − uN (ν)‖XN ≤ ‖r(·, ν)‖(XN )′/βN (ν). (1.2)

Here, the residual is defined as r(v, ν) = f(v; ν) − aN (uN (ν), v; ν), and ‖·‖(XN )′ is the dual norm.

4A notation consistent with the reduced basis context is used here. It corresponds to uh, ah and fh in the finite element
context, where ah and fh are finite dimensional approximations of a(·, ·; ·) and f(·; ·) respectively and uh is the solution of the
discrete problem.

5a(w, v; ν) ≡ ∑Qa
q=1 Θq

a(ν) aq(w, v), ∀w, v ∈ XN , f(v; ν) ≡ ∑Qf
q=1 Θq

f (ν) fq(v), ∀v ∈ XN .
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It is therefore crucial to find a lower bound βLB(ν) of βN (ν) since the latter is generally not known. The
construction of βLB(ν) is a “bottleneck” of RBM, especially in the non-coercive case. Different ideas have come
up in the literature for the coercive and non-coercive cases, see [11,13] and the references therein. Recently,
Huynh et al. [8] have proposed an attractive strategy for this purpose – the successive constraint method
(SCM) – based on linear programming techniques that is more efficient than the earlier ones.

In this paper, we study, improve and test the SCM on non-coercive problems exemplified by an electromag-
netic cavity problem. The new SCM is superior to the previous [8] in the following two ways:

– first, the method is more stable in the sense that βLB is obtained by a monotonic process (in contrast
to being oscillatory before);

– second, we need to solve less eigen-problems.
This result was briefly announced in a short note [4].

The remaining part of the paper is organized as follows. In Section 2, we describe the original and the
improved SCM and prove the above-mentioned properties. We then show numerical results in Section 3 to
verify our claims. Some concluding remarks are provided in Section 4.

2. Successive constraint method

In this section, we first state the SCM proposed in [8] for completeness. Then, we describe the improvements.

2.1. The original method

We describe the SCM for the coercive and then the non-coercive case.

2.1.1. Coercive case

Given an affine bilinear form

aN (w, v; ν) ≡
Q∑

q=1

Θq(ν) aN
q (w, v), ∀w, v ∈ XN ,

the coercivity constant is

αN (ν) ≡ inf
w∈XN

aN (w, w; ν)
‖w‖2

XN
= inf

w∈XN

Q∑
q=1

Θq(ν)
aN

q (w, w)
‖w‖2

XN
= inf

w∈XN

Q∑
q=1

Θq(ν)yq(w).

Here, we set yq(w) = aN
q (w,w)

‖w‖2
XN

. Obviously, (y1(w), . . . , yQ(w)) belongs to the following set

Y ≡ {y = (y1, . . . , yQ) ∈ R
Q | ∃ w ∈ XN s.t. yq = yq(w), 1 ≤ q ≤ Q

} ·
Having defined the set Y, our coercivity constant can be found by solving the following minimization problem:

αN (ν) = inf
y ∈Y

J (ν; y), (2.1)

where the objective function J : D × R
Q → R is defined as

J (ν; y) =
Q∑

q=1

Θq(ν)yq.

Problem (2.1) appears like a minimization problem of a linear functional over a compact subset of R
Q.
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We only need to characterize the set Y now. The idea of SCM is to build two sets YLB and YUB over which
the minimization of J is feasible and satisfy YUB ⊂ Y ⊂ YLB. Therefore, we can perform the minimization on
these two sets to obtain an upper bound and a lower bound for αN (ν). For this purpose, we define

σ−
q ≡ inf

w∈XN
yq(w), σ+

q ≡ sup
w∈XN

yq(w), 1 ≤ q ≤ Q,

and let BQ ≡ ΠQ
q=1[σ

−
q , σ+

q ] ⊂ R
Q. Obviously, Y ⊂ BQ.

To properly define YLB and YUB , we also need to introduce two parameter sets Ξ ≡ {ν1 ∈ D, . . . , νJ ∈ D}
and CK ≡ {ν1 ∈ D, . . . , νK ∈ D}. Ξ is a (rather large) sample set of grid points in the parameter domain
(e.g. defined from a mesh) and CK is any subset of Ξ. Let PM (ν; E) denote the M points closest to ν in E
with E being Ξ or CK .

We are now ready to define YLB and YUB : For given CK (and Mα ∈ N, M+ ∈ N, and Ξ), we define

YLB(ν; CK) ≡
{

y ∈ BQ |
Q∑

q=1

Θq(ν′)yq ≥ αN (ν′), ∀ν′ ∈ PMα(ν; CK);

Q∑
q=1

Θq(ν′)yq ≥ 0, ∀ν′ ∈ PM+(ν; Ξ)

}
, (2.2)

and YUB(CK) ≡ {y∗(νk), 1 ≤ k ≤ K} for y∗(ν) ≡ argminy∈YJ (ν; y). We then define

αLB(ν; CK) = inf
y∈YLB(ν;CK)

J (ν; y), (2.3)

and

αUB(ν; CK) = inf
y∈YUB(CK)

J (ν; y), (2.4)

to obtain:

Proposition 2.1. For given CK (and Mα ∈ N, M+ ∈ N, and Ξ), αLB(ν; CK) ≤ αN (ν) ≤ αUB(ν; CK), ∀ν ∈ D.

Proof. It is simple to recognize that YUB ⊂ Y ⊂ YLB . The result then follows. �

Note that (2.2), (2.3) is in fact a Linear Program (LP); our LP (2.3) contains Q design variables and
2Q + Mα + M+ (one-sided) inequality constraints: the operation count for the on-line stage ν → αLB(ν) is
independent of N .

It only remains to determine CK . It is constructed by an off-line “greedy” algorithm. Given Mα ∈ N, M+ ∈ N,
Ξ, and a tolerance εα ∈ [0, 1], the algorithm reads:

(1) Set K = 1 and choose C1 = {ν1} arbitrarily.
(2) Find νK+1 = argmaxν∈Ξ

αUB(ν;CK)−αLB(ν;CK)
αUB(ν;CK) .

(3) Update CK+1 = CK ∪ νK+1.
(4) Repeat (2) and (3) until maxν∈Ξ

αUB(ν;CKmax )−αLB(ν;CKmax )
αUB(ν;CKmax ) ≤ εα.

We note that the off-line computations are:

(1) 2Q + Kmax eigen-problems to form BQ and to obtain y∗(νk), αN (νk).
(2) O(NQKmax) operations to form YUB .
(3) JKmax LPs of size O(Q + Mα + M+).
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2.1.2. Non-coercive case

For the non-coercive case, we need to find a lower bound of the inf-sup number,

βN (ν) ≡ inf
ω∈XN

sup
v∈XN

|aN (ω, v; ν)|
‖ω‖XN ‖v‖XN

·

If we define an operator T ν : XN → XN as (T νw, v)XN = aN (w, v; ν), ∀v ∈ XN , it is easy to show that

βN (ν) = inf
w∈XN

‖T νw‖XN

‖w‖XN
,

which means

(βN (ν))2 = inf
w∈XN

(T νw, T νw)XN

‖w‖2
XN

·

To expand it, we need to define operators T q : XN → XN as

(T qw, v)XN = aN
q (w, v), ∀v ∈ XN , 1 ≤ q ≤ Q.

Realizing T νw ≡∑Q
q=1 Θq(ν)T qw, we can expand (βN (ν))2 as

(βN (ν))2 = inf
w∈XN

Q∑
q′=1

Q∑
q′′=q′

(2 − δq′q′′)Θq′
(ν)Θq′′

(ν)
(T q′

w, T q′′
w)XN

‖w‖2
XN

·

Here, δq′q′′ is the Kronecker delta. Next, we identify

(2 − δq′q′′)Θq′
(ν)Θq′′

(ν), 1 ≤ q′ ≤ q′′ ≤ Q �−→ Θ̂q(ν), 1 ≤ q ≤ Q̂ ≡ Q(Q + 1)
2

,

(T q′
w, T q′′

w)XN , 1 ≤ q′ ≤ q′′ ≤ Q �−→ âN
q (w, v), 1 ≤ q ≤ Q̂,

and obtain

(βN (ν))2 ≡ inf
w∈XN

Q̂∑
q=1

Θ̂q(ν)
âN

q (w, w)
‖w‖2

XN
· (2.5)

Hence (βN (ν))2 can be interpreted as the coercivity constant for the bilinear form

α̂N (ν) ≡ inf
w∈XN

Q̂∑
q=1

Θ̂q(ν)
âN

q (w, w)
‖w‖2

XN
·

And we may then directly apply the SCM procedure defined above to (2.5).

2.2. Some improvements

2.2.1. On the definition of YLB(ν; CK)

We note that in (2.2), zero is used in the constraints for the M+ members of PM+(ν; Ξ). However, we have a
lower bound that we can evaluate on the set CK−1 available. These quantities are certainly better candidates
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to be used as the constraints. This motivates replacement of (2.2) by

YLB(ν; CK) ≡
{

y ∈ BQ |
Q∑

q=1

Θq(ν′)yq ≥ αN (ν′), ∀ν′ ∈ PMα(ν; CK);

Q∑
q=1

Θq(ν′)yq ≥ αLB(ν′, CK−1), ∀ν′ ∈ PM+(ν; Ξ\CK)

}
· (2.6)

Note that we define trivially, αLB(ν, C0) ≡ 0, ∀ν ∈ Ξ. Then, we obtain

Proposition 2.2. With YLB(ν; CK) defined as above and the greedy algorithm as in the previous subsection,
we have for any ν ∈ Ξ, as K increases,

(1) αLB(ν, CK) is nondecreasing.
(2) αUB(ν, CK) is nonincreasing.
(3) αUB(ν,CK)−αLB(ν,CK)

αUB(ν,CK) is nonincreasing.

Proof. (1) Simply follows from the fact that for any ν ∈ Ξ,
∑Q

q=1 Θq(ν)yq ≥ αLB(ν, CK−1) is included as one
constraint when we are looking for αLB(ν, CK). This means the updated lower bound is getting no smaller.
(2) is a direct consequence of the definition of αUB(ν, CK), and (3) follows from (1) and (2). �

Remark 2.1. The new SCM is more efficient than the original formulation, both off-line and on-line, in the
following two ways:

(1) The new method is likely to solve less eigen-problems than the old SCM to obtain the lower bound of
the same quality. This is because, on the same set CK , the new method provides larger lower bound.
The final set CK that meets the stopping criteria is going to be no larger than that for the original
method.

(2) With the same settings, the LP in the new method shall take less time to solve since the constraints
are stricter.

Remark 2.2. In the greedy algorithm, when we are searching for νK+1, we need αLB(ν, CK) for any ν ∈ Ξ. We
note that it is not needed to solve the LP for every ν. In fact, αLB(ν, CK) = αLB(ν, CK−1) when PMα(ν; CK) =
PMα(ν; CK−1) and PM+(ν; Ξ\CK) = PM+(ν; Ξ\CK−1). This means that we only solve LP for the ν′s that
have PMα(ν; CK) �= PMα(ν; CK−1) or PM+(ν; Ξ\CK) �= PM+(ν; Ξ\CK−1), i.e., only when νK ∈ PMα(ν; CK)
or νK ∈ PM+(ν; Ξ\CK−1). This substantially reduces the runtime for solving the LPs and thus the dominant
computations are for the eigenvalue-problems.

Remark 2.3. When searching for νK+1 in the greedy algorithm, we need to go through the set Ξ. It is preferred
to do this hierarchically by exploring a uniform mesh of [0, 1] with 2p elements in which we visit the grid points
in the following order: 0, 1; 1

2 ; 1
4 , 3

4 ; 1
8 , 3

8 , 5
8 , 7

8 ... The extension to multidimensional problems is straightforward.

2.2.2. On the conversion of the non-coercive case

For the non-coercive case, we can expand

(βN (ν))2 = inf
w∈XN

(T νw, T νw)XN

‖w‖2
XN
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as

(βN (ν))2 = inf
w∈XN

Q∑
q′=1

Q∑
q′′=1

Zq′
q′′(ν)

(T q′
w, T q′′

w)XN

‖w‖2
XN

= inf
w∈XN

Q∑
q=1

Zq
q (ν)

(T qw, T qw)XN

‖w‖2
XN

+
Q∑

q′=1

Q∑
q′′=q′+1

Zq′
q′′(ν)

(T q′
w, T q′′

w)XN + (T q′′
w, T q′

w)XN

‖w‖2
XN

= inf
w∈XN

Q∑
q=1

⎛
⎝Zq

q (ν) −
Q∑

q′=1,q′ �=q

Zq′
q (ν)

⎞
⎠ (T qw, T qw)XN

‖w‖2
XN

+
Q∑

q′=1

Q∑
q′′=q′+1

Zq′
q′′(ν)

(T q′
w + T q′′

w, T q′
w + T q′′

w)XN

‖w‖2
XN

, (2.7)

with Zq′
q′′(ν) = Θq′

(ν)Θq′′
(ν).

This leads to symmetric and positive semi-definite parameter independent bilinear forms, whereas the bilinear
forms in the previous expansion are nonsymmetric and could be negative definite.

Before extending this to the complex case, we interpret the expansion above in terms of matrices: if we
let w denote the vector of degrees of freedom for w ∈ XN and MT q′ ,T q′′ denote the matrix corresponding to
(T q′

w, T q′′
w)XN , we rewrite (2.7) as

(βN (ν))2 = inf
w∈XN

Q∑
q′=1

Q∑
q′′=1

Zq′
q′′(ν)

wT MT q′ ,T q′′ w

‖w‖2
XN

= inf
w∈XN

Q∑
q=1

⎛
⎝Zq

q (ν) −
Q∑

q′=1,q′ �=q

Zq′
q (ν)

⎞
⎠ wT MT q,T qw

‖w‖2
XN

+
Q∑

q′=1

Q∑
q′′=q′+1

Zq′
q′′(ν)

wT MT q′+T q′′ ,T q′+T q′′ w

‖w‖2
XN

·

When Θq(ν) is complex, we have

(βN (ν))2 = inf
w∈XN

Q∑
q′=1

Q∑
q′′=1

Zq′
q′′(ν)

wHMT q′ ,T q′′ w

‖w‖2
XN

= inf
w∈XN

Q∑
q=1

Zq
q (ν)

wHMT q,T qw

‖w‖2
XN

+
Q∑

q′=1

Q∑
q′′=q′+1

Zq′
q′′(ν)wHMT q′ ,T q′′ w + Zq′′

q′ (ν)wHMT q′′ ,T q′ w

‖w‖2
XN

= inf
w∈XN

Q∑
q=1

Zq
q (ν)

wHMT q,T qw

‖w‖2
XN

+
Q∑

q′=1

Q∑
q′′=q′+1

wH
(
Zq′

q′′(ν)MT q′ ,T q′′ + Zq′′
q′ (ν)MT q′ ,T q′′

T
)

w

‖w‖2
XN

·

Here, Zq′
q′′(ν) = Θq′

(ν)Θ̄q′′
(ν) = Z̄q′′

q′ (ν).
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Figure 1. The electromagnetic cavity problem.

Note that, when z is a complex number, X is a complex vector and A is a real matrix, we have that

XH
(
z A + z̄ AT

)
X = 2�z

(�XT�XT
)( A 0

0 A

)( �X
�X

)
+ 2�z

(�XT�XT
)( 0 −A

A 0

)( �X
�X

)

= 2�z
(�XT�XT

)( A+AT

2 0
0 A+AT

2

)( �X
�X

)

+ 2�z
(�XT�XT

)( 0 AT −A
2

A−AT

2 0

)( �X
�X

)
.

Here, � and � indicate real and imaginary parts, respectively. We can then proceed as in the real case by
replacing MT q′ ,T q′′ + MT q′′ ,T q′ by MT q′+T q′′ ,T q′+T q′′ − MT q′ ,T q′ − MT q′′ ,T q′′ .

3. Numerical results

It is relatively easy to find the coercivity constant for the coercive problems. The available methods, see [11,13]
and the references therein, are more challenging when it comes to non-coercive problems. There is an urgent
need for efficient methods especially when the inf-sup number may go to zero, as it is the case, for example,
around resonances in electromagnetics. The motivation for the preceding analysis comes from the problem we
want to approximate with reduced basis method that is a challenging electromagnetic cavity problem where
resonances do occur.

3.1. Problem setup

We are looking for the frequency-domain solution of the two-dimensional Maxwell’s equations in normalized
differential form in Ω, ⎧⎨

⎩
−εω2Ex + 1

μ
∂
∂y

(
∂Ey

∂x − ∂Ex

∂y

)
= iωJx

−εω2Ey − 1
μ

∂
∂x

(
∂Ey

∂x − ∂Ex

∂y

)
= iωJy

(3.1)

with boundary condition Ex n̂y−Ey n̂x = 0 on ∂Ω, (n̂x, n̂y) being the unit outward normal of ∂Ω, X = H(curl).
Here, see Figure 1, Ω = Ω1

⋃
Ω2 with Ω1 = [0, 0.5]× [0, 1], Ω2 = [0.5, 1]× [0, 1], ε|Ωi= εi, μ|Ωi= μi for i = 1, 2

with the range of εi, μi to be specified later. We set Jx = 0, Jy = cos(ω(y − 1
2 ))δΓi with Γi = 0.25 × [0.3, 0.7].
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Given a triangulation (locally refined around the tips of Γi) of Ω, ΩN =
⋃D

d=1 Td, we set XN = {v ∈
L2(ΩN ) | v ∈ ⊕D

d=1P
4(Td)}.

We identify 1
iω

(
∂Ex

∂y − ∂Ey

∂x

)
as Hz and apply the discontinuous Galerkin method, see [7], and the weak

formulation is: find (Ex, Ey, Hz) ∈ (XN )3 such that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

iεω(Ex, φx)Td
+ 1

μ

[(
Hz,

∂φx

∂y

)
Td

− 〈Ĥzn̂y, φx〉∂Td

]
= (Jx, φx)Td

iεω(Ey, φy)Td
− 1

μ

[(
Hz,

∂φy

∂x

)
Td

− 〈Ĥzn̂x, φy〉∂Td

]
= (Jy, φy)Td

iω(Hz , φz)Td
+
(
Ex, ∂φz

∂y

)
Td

−
(
Ey, ∂φz

∂x

)
Td

+ 〈Êyn̂x − Êxn̂y, φz〉∂Td
= 0

(3.2)

holds for any (φx, φy, φz) ∈ (XN )3 and any d = 1, . . . , D. Here, (n̂x, n̂y) is the unit outward normal of the
element Td. The numerical flux Û (U being Ex, Ey or Hz) is a function of U−, the limit of U from inside of
the element, and U+, the limit of U from outside of the element. They are defined by

{
Êx = E+

x +E−
x

2 , Êy = E+
y +E−

y

2 on interior edges,
Êyn̂x − Êxn̂y = 0 on boundary edges,

Ĥz =

{
H+

z +H−
z

2 on interior edges,
H−

z on boundary edges.

Hence, (3.2) can be rewritten as

⎧⎨
⎩
−εω2(Ex, φx)ΩN − 1

μ

(
DN

y DD
y Ex, φx

)
ΩN + 1

μ

(
DN

y DD
x Ey, φx

)
ΩN = iω(Jx, φx)ΩN

−εω2(Ey, φy)ΩN + 1
μ

(
DN

x DD
y Ex, φy

)
ΩN − 1

μ

(
DN

x DD
x Ey, φy

)
ΩN = iω(Jy, φy)ΩN

(3.3)

where the matrices DD
x , DN

x are defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(g, DD
x f)ΩN =

∑D
d=1

[(
g, ∂f

∂x

)
Td

+
〈
g,
(
f̂ − f−

)
n̂x

〉
∂Td

]

with f̂ =

{
f−+f+

2 on interior edges
0 on boundary edges

(g, DN
x f)ΩN =

∑D
d=1

[(
g, ∂f

∂x

)
Td

+
〈
g,
(
f̂ − f−

)
n̂x

〉
∂Td

]

with f̂ =

{
f−+f+

2 on interior edges
f− on boundary edges

and similarly for DD
y , DN

y .
Hence, our bilinear form aN (w, v; ν) corresponds to the following matrix:

−εω2

(
M 0
0 M

)
+

1
μ

( −MDN
y DD

y MDN
y DD

x

MDN
x DD

y −MDN
x DD

x

)
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Figure 2. Two-dimensional case: The points selected by the original SCM and plot of
αUB−αLB

αUB
in the greedy algorithm.

where the parameter vector ν = (ε, ω, μ) and the matrix M is defined by

�gT M �f = (g, f)ΩN ,

where �f is the column vector containing the degrees of freedom of f .
The associated inner product is defined to be the H(curl) norm.

3.2. Results with two parameters

We show numerical results for two parameters, ε2 ∈ [2, 6], μ2 ∈ [1.0, 1.2]. We set ε1 = 1, μ1 = 1, ω = 5 π
2 ,

Mα = 20, M+ = 6, C1 = {(2.0, 1.0)}, εα = 0.8 and Ξ is a uniform Cartesian grid of 513 × 33. This is a pure
resonance case in which the inf-sup number goes to zero along the resonance lines.

We first run the original SCM and obtain 6817 points in the parameter space to compute the bounds. The
points are plotted in Figure 2. Also plotted here is maxν∈Ξ

αUB(ν,CK)−αLB(ν,CK)
αUB(ν,CK) for K = 1, . . . , 6817. This

quantity is oscillating although it gets below εα eventually. It may go back to one as shown by the third plot
in Figure 2, which means αLB(ν0, CK0) = 0 for certain ν0, K0 and αLB(ν0, CK) > 0 for some K < K0. This
phenomenon is a consequence of the looser constraint in (2.2). This motivated the modification in the new
definition (2.6).

Next, we run the new SCM with exactly the same settings and obtain 4855 points, plotted in Figure 3. In
addition to the fact that the final set of selected points is much smaller, the quantity

max
ν∈Ξ

αUB(ν, CK) − αLB(ν, CK)
αUB(ν, CK)

decreases monotonically until smaller than εα, as shown in Figure 3.
As shown by both Figures 2 and 3, the method selects points along several lines which are exactly where

the resonance occurs. We plot in Figures 4 and 5 the lower and upper bound computed by the new SCM on
the set C4855. We observe that the lower bound is very close to the upper bound and the 12 resonance lines
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Figure 3. Two-dimensional case: The points selected by the new SCM and plot of αUB−αLB

αUB

in the greedy algorithm.

Figure 4. Lower bound of the square of the inf-sup constant computed by the new SCM in
two-dimensional case: the first is in linear scale, the second in logarithmic scale and the third
being the contour plot of the logarithm.
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Figure 5. Upper bound of the square of the inf-sup constant computed by the new SCM in
two-dimensional case: the first is in linear scale, the second in logarithmic scale and the third
being the contour plot of the logarithm.
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0.2

ε
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I S

UB- I S
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(b)

Figure 6. The lower bound (LB), square of Inf-Sup (I-S) constant and upper bound (UB) on
the line with μ2 = 1.1 in the two-dimensional case: (a) is for the three quantities and (b) is for
the two ratios.

in our parameter domain are clearly identified. Moreover, the lines agree with the theory that provides an
analytic expression for the resonance lines satisfying ε.μ = constant.

To see the quality of our lower bounds and upper bounds to approximate the true value, i.e., the square of
the Inf-Sup constant, we compute the exact Inf-Sup constants along the line μ2 = 1.1. The results are plotted
in Figure 6 where we observe that the bounds are, in fact, effective and sharp.
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Figure 7. Three-dimensional case: The points selected by the new SCM on the face �ε2 = 0.

Figure 8. Contour plot of the logarithm of lower bound computed by the new SCM in three-
dimensional case.
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Figure 9. The points selected by the RBM to build the bases for the test problem.

3.3. Results with three parameters

Here, we show numerical results for three parameters, �ε2 ∈ [2, 6], �ε2 ∈ [0, 0.05], μ2 ∈ [1.0, 1.2]. We set
ε1 = 1, μ1 = 1, ω = 5 π

2 , Mα = 30, M+ = 9, C1 = {(2.0, 0.0, 1.0)}, εα = 0.8 and Ξ is a uniform Cartesian grid of
513×9×33. We run the SCM and obtain 36 363 points in the parameter space. The points selected on the face
�ε2 = 0 are plotted in Figure 7. Not surprisingly, the set is very similar to that in the case of two parameters.
Plotted in Figure 8 is the contour plot of the lower bound. We point out, again, that the contour on the face
�ε2 = 0 is almost the same as that for the two-parameter case.

3.4. Application to error estimate for the reduced basis method

Having obtained the lower bound of the inf-sup number, we can apply it to the a posteriori error estimate (1.2)
which is essential to build the reduced basis space. One algorithm for the construction of the reduced basis
spaces are outlined as follows, see [2,6,12,14,15,17] for details:

– Choose, arbitrarily, ν1 ∈ Ξ as the first parameter.
– Compute uN (ν1).
– Initialize the reduced basis space W 1 = span{uN (ν1)}.
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– For j = 2 . . . N :
– Choose the next parameter as νj = argmaxν∈Ξ

‖r(·,ν)‖(XN )′
βLB(ν) .

– Compute uN (νj).
– Update the reduced basis space as W j = span{uN (νi), i ∈ {1, . . . , j}}.

Clearly, the final sample set is {ν1, . . . , νN} and the final reduced basis space is WN = span{uN (νi),
i ∈ {1, . . . , N}}. Since WN is hierarchical, we also obtain the reduced basis spaces of any dimension lower
than N . In this paper, we take N = 50 and build W 50 for the two-parameter case as in Section 3.2. See
Figure 9 for the final sets {ν1, . . . , ν50}.

Then, we use this space to compute the reduced basis solution for any parameter. See Figure 10 for sample
solutions at (ε1, μ1) = (2, 1). Here, we show the truth approximation and the RB solutions with the dimension
of the RB spaces being 10, 20, and 30. We can see that, as we increase the dimension of the RB space,
the RB solution approximates the truth approximation better and better. Actually, the H(curl) norm of the
error between the RB solution and the truth approximation is decreasing exponentially. We also list, in the
last column, the relative CPU time to obtain these approximations. It is easy to conclude that the on-line
computation time for the RB solution is negligible compared to that of the truth approximation.

Next, we test our error estimate on a set of 1300 points in the parameter domain, see Figure 11 for the
set, Ξtrain ⊂ Ξ\{ν1, . . . , νN}. We first pick three points in Ξtrain which have the largest, median and smallest
lower bounds for the inf-sup number. The truth approximations are shown in Figure 12 together with the
error and error estimate of the RB solution computed using 30 reduced bases. We see that, even if the truth
approximations are very different with varying parameter configurations, the reduced basis solution converges
to the truth approximation nicely and it is indicated by the error estimate effectively.

We then compute, for any ν ∈ Ξtrain, the truth approximation and the reduced basis solutions for
N = 10, . . . , 30 and evaluate the energy and H(curl) norms of the error uN (ν) − uN (ν) and the error es-

timate
‖r(·,ν)‖(XN )′

βLB(ν) . In Figures 13a–13c, we plot the maximum, median, and minimum of these values over
Ξtrain and observe that all basically decrease exponentially with respect to N .

Note that the truth approximations have very strong singularity. Hence, when 30 reduced bases are used, the
RB solution has error around 10−5 and error indicator around 10−2 in the worst case. This is still meaningful
since the error of the truth approximations (evaluated between the truth solution and the solution obtained on
the same mesh with piecewise polynomials of degree ≤ 7) is at about this level. Another reason for the behavior
of the error estimate in the worst case is that the lower bound of the inf-sup number, βN (ν), is rather small.
In fact, all the worst cases for N > 12 in Figure 13c take place on the ν’s that have lower bound smaller than
the median lower bound in Ξtrain. It is also worth mentioning that the quality of the error estimate could be
improved by building the estimate on the energy norm rather than on the H(curl) norm.

Finally, we have sorted Ξtrain according to the corresponding lower bound and let Ξk
train be the set of the first

k points in Ξtrain for k = 1, . . . , 1300. Figure 13d represents the the maximum effectivity indices over Ξk
train

versus k for reduced basis spaces of dimensions 10, 15, 20, 25. We see that the error estimate is sharper as the
parameter stays further away from the resonances. It is interesting however to note also that the effectivity
indices are rather independent of the size of the reduced basis that is used for the computation. That is,
the effectivity indices remain of the same magnitude when the errors become many magnitudes smaller as we
increase the dimension of the reduced basis space. Hence, the method provides a quite reliable a posteriori
estimator for the actual error.

4. Concluding remarks

We have improved the currently available best method we are aware of for the construction of lower bounds
for the coercivity and inf-sup stability constants. The new method is more efficient, more robust and has a
nice property, namely, the computed lower bound is monotonically increasing with respect to the size of the
nested sets its construction is based on. We have applied this method to construct the lower bound of the
inf-sup constant of a challenging electromagnetic cavity problem. The projected enhancements are confirmed
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2.1 e–4
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4.2 e–4

2.6 e–5
6.4 e–4

Figure 10. Sample solutions at (ε, μ) = (2.0, 1.0): the truth (first row) and reduced basis
approximations with 10 (second), 20 (third), and 30 (last) bases. “Error” denotes the H(curl)
difference from the truth approximation; “Time” means the relative on-line computation time.
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Figure 11. Ξtrain contains 1300 points.
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Error
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(3.0625,1)
0.133
6.32 e–7
4.27 e–5

(3.625,1.03125)
2.49 e–2
2.77 e–7
8.29 e–5

(3.4375,1.125)
4.72 e–3
1.35 e–6
3.97 e–3

Figure 12. Sample truth solutions with different parameter configurations. “Error” denotes
the H(curl) norm of the difference between the truth approximation (shown) and the reduced
basis solution with 30 basis (not shown).
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Figure 13. (a) The dimensions of the reduced basis space versus the energy norm of the errors
of the solution. (b) The dimensions of the reduced basis space versus the H(curl) norm of the
errors of the solution. (c) The dimensions of the reduced basis space versus the H(curl) error
estimate. (d) The size of the train set versus the maximum effectivity index of the error
estimates.

by the numerical results; the method captures the resonance lines very accurately. Moreover, we have applied the
constructed lower bounds to the error estimate for the reduced basis approximation. The resulting method is very
efficient. Exponential convergence of the reduced basis approximation to the truth finite element approximation
are confirmed.

Future works include efficient strategies to deal with problems with high-dimensional parameter spaces. In
such cases, using the greedy algorithm based on uniform Cartesian grids to determine the set CK and the reduced
basis space WN becomes very expensive. One possible direction is to combine these greedy type algorithms
with some adaptive sampling approach similar to the one used in [3].

Acknowledgements. Research supported by AFOSR Grant FA9550-07-1-0425. The authors thank the anonymous referee
for calling their attention to reference [3].
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