Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell's problem
ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 6, pp. 1099-1116.

In a posteriori error analysis of reduced basis approximations to affinely parametrized partial differential equations, the construction of lower bounds for the coercivity and inf-sup stability constants is essential. In [Huynh et al., C. R. Acad. Sci. Paris Ser. I Math. 345 (2007) 473-478], the authors presented an efficient method, compatible with an off-line/on-line strategy, where the on-line computation is reduced to minimizing a linear functional under a few linear constraints. These constraints depend on nested sets of parameters obtained iteratively using a greedy algorithm. We improve here this method so that it becomes more efficient and robust due to two related properties: (i) the lower bound is obtained by a monotonic process with respect to the size of the nested sets; (ii) less eigen-problems need to be solved. This improved evaluation of the inf-sup constant is then used to consider a reduced basis approximation of a parameter dependent electromagnetic cavity problem both for the greedy construction of the elements of the basis and the subsequent validation of the reduced basis approximation. The problem we consider has resonance features for some choices of the parameters that are well captured by the methodology.

DOI : 10.1051/m2an/2009037
Classification : 65N15, 65N30, 78A25
Mots clés : reduced basis method, successive constraint method, inf-sup constant, a posteriori error estimate, Maxwell's equation, discontinuous Galerkin method
Chen, Yanlai  ; Hesthaven, Jan S.  ; Maday, Yvon  ; Rodríguez, Jerónimo 1

1 Departamento de Matemática Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
@article{M2AN_2009__43_6_1099_0,
     author = {Chen, Yanlai and Hesthaven, Jan S. and Maday, Yvon and Rodr{\'\i}guez, Jer\'onimo},
     title = {Improved successive constraint method based a posteriori error estimate for reduced basis approximation of {2D} {Maxwell's} problem},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {1099--1116},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {6},
     year = {2009},
     doi = {10.1051/m2an/2009037},
     mrnumber = {2588434},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2009037/}
}
TY  - JOUR
AU  - Chen, Yanlai
AU  - Hesthaven, Jan S.
AU  - Maday, Yvon
AU  - Rodríguez, Jerónimo
TI  - Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell's problem
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2009
SP  - 1099
EP  - 1116
VL  - 43
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2009037/
DO  - 10.1051/m2an/2009037
LA  - en
ID  - M2AN_2009__43_6_1099_0
ER  - 
%0 Journal Article
%A Chen, Yanlai
%A Hesthaven, Jan S.
%A Maday, Yvon
%A Rodríguez, Jerónimo
%T Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell's problem
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2009
%P 1099-1116
%V 43
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2009037/
%R 10.1051/m2an/2009037
%G en
%F M2AN_2009__43_6_1099_0
Chen, Yanlai; Hesthaven, Jan S.; Maday, Yvon; Rodríguez, Jerónimo. Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell's problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 6, pp. 1099-1116. doi : 10.1051/m2an/2009037. http://www.numdam.org/articles/10.1051/m2an/2009037/

Cité par Sources :